JP2004280117A - Mems制御器を備えた調節可能な複合マイクロレンズ装置 - Google Patents

Mems制御器を備えた調節可能な複合マイクロレンズ装置 Download PDF

Info

Publication number
JP2004280117A
JP2004280117A JP2004077391A JP2004077391A JP2004280117A JP 2004280117 A JP2004280117 A JP 2004280117A JP 2004077391 A JP2004077391 A JP 2004077391A JP 2004077391 A JP2004077391 A JP 2004077391A JP 2004280117 A JP2004280117 A JP 2004280117A
Authority
JP
Japan
Prior art keywords
microlens
microlenses
optical
movable
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004077391A
Other languages
English (en)
Other versions
JP4607479B2 (ja
Inventor
Avinoam Kornblit
コーンブリット アヴィノーム
Stanley Pau
パウ スタンレー
Maria Elina Simon
エリナ シモン マリア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of JP2004280117A publication Critical patent/JP2004280117A/ja
Application granted granted Critical
Publication of JP4607479B2 publication Critical patent/JP4607479B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Lens Barrels (AREA)
  • Micromachines (AREA)
  • Prostheses (AREA)

Abstract

【課題】光学軸に沿って互いから分離される第1と第2のマイクロレンズを含む調節可能な複合光学マイクロレンズ装置を提供すること。
【解決手段】実施形態では1つのマイクロレンズが静止型であり、その他が可動型である。MEMS制御器は可動型マイクロレンズの他に対する位置を電気的に制御する。マイクロレンズの対向する光学表面は半透明の金属コーティングを有し、それにより、装置は光学フィルタまたは分散補償器として機能する。アレー内の第1の装置の光学パラメータ(例えば実効焦点距離)のバラツキを補償する方法であって、(a)アレー内の第1の装置が所定の標準値と異なるパラメータ値を有することを判定する工程、および(b)第1の装置のMEMS制御器に電気信号を加え、それにより、第1の装置のパラメータの値を標準値にさらに近付ける機械的動作を制御器に実行させる工程を含む。
【選択図】図35

Description

本発明は複合マイクロレンズに関し、さらに特定すると微細電気機械的構造もしくはサブシステム(MEMS)によって制御される複合マイクロレンズに関する。
オプトエレクトロニクス技術では、光学レンズは個別レンズ素子(単一または複合レンズ)またはそのような素子のアレーの両方として多くの応用法を有する。個別レンズ素子は、例えば光源(例えばレーザ)を光学的レセプタに結合させるために使用される。レセプタにはよく知られている光学的導波路(例えば光ファイバおよびシリカ導波路)、よく知られている光学検知器(例えばp−i−nおよびアバランシェ・フォトダイオード)、およびその他の光学装置が含まれる。他方で、そのようなレンズのアレーは光源のアレーと光学的レセプタのアレーの間で同じ結合機能を実行することが可能である。この結合機能には次の機能種、すなわち焦点集束、視準およびシェーピングのうちの1つまたは複数が含まれる可能性がある。
最先端のレンズ・アレーには半導体(例えばSi)または誘電体(例えばシリカを主原料とするガラス)の本体にエッチングされるマイクロレンズが含まれる。そのようなマイクロレンズ・アレーを製造するための多くの技術が存在する。大部分は標準的なフォトリソグラフィの処理技術を含む。マスタが利用可能であるときはいつでも、マイクロレンズ・アレーは成型技術を使用して複製されることが可能である。多くの応用法で、すべてのレンズにわたる大規模な焦点距離均一性が望まれるが、材料中の欠陥および処理の中の変動(例えばエッチング・プロファイル)が理由となって必ずしも達成されない。後者の問題を解決するための1つの取り組み方はMethod for Compensating for Nonuniform Etch Profilesというタイトルの係属中の米国特許出願番号10/010,570号でC.Bolleによって述べられている。2001年11月13日に出願され、本出願の譲受人に譲受されたこの出願はここで参考資料で取り入れられている。Siマイクロレンズを作製するための別の先行技術はL.Erdmannら、Opt.Eng.、第36巻、No.4、1094〜1098頁、(1977年)によって述べられており、これもやはりここで参考資料で取り入れられている。
少なくとも理論では、そのような個別マイクロレンズまたはマイクロレンズ・アレーはプラスティックのような他の材料から作製されることが可能である。しかしながら実際では、材料の選択はしばしば特定の応用法によって要求される精度によって決まる。例えば、以下で検討する多くのオプトエレクトロニクス応用は、或る装置/素子から別のものへと結合される光ビームの経路で極めて高い精度を要求する。これらの応用法は、マイクロレンズが相当する精度で成形されることを可能にする成熟した処理技術を有する材料(例えばSi)の使用を指示する。
マイクロレンズ・アレーは、光スイッチ、ルータ、アッテネータ、フィルタ、イコライザおよび分散補償器といった多くのタイプの光学サブシステムにとって必須の部品である。通常の応用法では、マイクロレンズ・アレーはファイバのアレーから由来する光学ビームを視準するため、およびそれらをレセプタのアレー上に焦点集束するために使用される。
従来の光学ルータおよびスイッチは光入力ファイバから光出力ファイバへと光ビームを視準/焦点集束するためにマイクロレンズのアレーを使用し、それにより、2つのアレー間の結合が有効化される。視準および焦点集束の機能は光ビームの径を光ファイバの開口に合わせるのに役立つ。
米国特許出願番号10/010,570号 L.Erdmannら、Opt.Eng.、第36巻、No.4、1094〜1098頁、(1977年)
MEMS構造では、そのような従来のマイクロレンズ・アレーはいくつかの理由から光ファイバへの光ビームの最適な結合を概して供給しない。第1に、限度のある製造許容差に起因してレンズの曲率はレンズとレンズで異なる。これらの曲率のバラツキは焦点距離のバラツキにつながり、それが今度は光出力ファイバ内の光ビーム径のバラツキにつながる。第2に、入力と出力のファイバの多様な対の間の光学経路長が多様な経路設定について異なり、それが出力ファイバのビーム径のバラツキにつながる。
本発明の一態様によると、調節可能な複合光学マイクロレンズ装置は第1と第2のマイクロレンズを含み、それらの光学軸に沿ってそれらは互いから分離される。マイクロレンズのうちの少なくとも一方は他方に相対して可動性である。好ましい実施形態では、一方のマイクロレンズは静止型であり、他方は可動型である。MEMS制御器が静止型マイクロレンズに相対する可動型マイクロレンズの位置、または少なくとも2つの可動型マイクロレンズの互いに相対する位置を電気的に制御する。
本発明の一実施形態によると、そのようなマイクロレンズ装置のアレーもやはり、特に光スイッチおよびルータといった応用法に関して考慮に入れられている。
本発明の別の実施形態によると、マイクロレンズの対向する光学表面は装置が光学フィルタまたは分散補償器として機能するように半透明の金属コーティングを含む。
本発明の別の態様によると、アレー内の第1の装置の光学パラメータ(例えば実効焦点距離)のバラツキを補償する方法は、(a)アレー内の第1の装置が所定の標準値と異なるパラメータ値を有することを判定する工程、および(b)第1の装置のMEMS制御器に電気信号を印加し、それにより、第1の装置のパラメータ値を標準値に近付ける機械的動作を制御器に実行させる工程を含む。(具体的に述べると、機械的動作が第1の装置内のマイクロレンズの対の間の分離度および/または傾斜を変える。)一実施形態では、標準値は(例えばコンピュータ内に)記憶され、別の実施形態ではそれはアレー内の第2の装置の同じパラメータ値によって決定される。応用に応じて、経時的に多数回の調節あるいは単一の調節の後の可動型マイクロレンズすべての定位置固定を考慮に入れる。
本発明は、その様々な特徴および利点と共に、添付の図面と結び付けて為される以下のさらに詳細な説明から容易に理解されることが可能である。
本発明の様々な態様に従って、以下の節ではMEMS調節可能な(すなわち調整可能な)複合マイクロレンズ装置(すなわち複合マイクロレンズを含む単一装置またはそのような装置のアレーのいずれか)、ならびにそれらを作製する方法、および様々なシステム内でそれらを操作する方法を説明する。特定の実施形態に応じて、共通の光学軸に沿ったマイクロレンズ間の垂直方向の分離、それらの光学軸の水平方向の分離および/またはそれらの光学軸の互いに関する傾きはMEMSを介して印加される電圧によって調節されることが可能である。代わって今度は、分離度と傾斜の制御がマイクロレンズ装置の光学パラメータ(例えば実効焦点距離)を変えることを可能にする。
単一の複合マイクロレンズ装置は、例えばアッテネータ、イコライザ、分散補償器、またはフィルタ(図34)として使用される可能性があり、そのような装置の多数がアレー(図36)として構成される可能性がある。アレーのピッチは固定型または可変型(空間であって時間ではない)であってもよい。
複合マイクロレンズ装置のアレーは、均一性の要求性が高い場合または調整性能が望まれる場合の応用(例えば光ファイバ伝送システム)で特に有用である。調整可能なマイクロレンズ・アレーは光学サブシステム(例えば光スイッチまたはルータ)に含まれ、かつマイクロレンズ・アレーを温度変化のような内的変動またはビーム・プロファイルの変化のような外的変動に順応させるフィードバック電圧源によって制御されることになると想定される。
マイクロレンズ・ダブレットとMEMS制御器を含む単一装置10aは図1(a)に図式的に示されている。ここでは、装置10aは2つの同軸のマイクロレンズ12aと14aを含むものとして描かれている。マイクロレンズのうちの少なくとも一方は可動性である。例示したケースではレンズ14aが可動型であってレンズ12aが静止型であり、ダブレットは2つの湾曲表面を有し、各々のマイクロレンズの内側対向表面に1つずつである。別の選択肢として、同軸のマイクロレンズ12b(静止型)と14b(可動型)によって構成されたダブレットをやはり含む同様の装置10bが図1(b)に示されている。しかしこのケースでは、ダブレットは3つの湾曲表面を有し、マイクロレンズ12bの内側と外側の表面の各々に1つずつ、およびマイクロレンズ14bの外側表面に1つである。しかしながら、もしも複雑さに付帯的増加が許容され得るならば、2つを超えるマイクロレンズ(例えばトリプレット)、したがって4つを超える湾曲表面が使用されることが可能である。
付け加えると、各々のレンズは凹型であっても凸型であってもよく、球面、非球面であってもよく、あるいはアナモルフィックを含むその他の形状(例えば円筒状)を有してもよい。
マイクロレンズは、普通、特定のシステムおよび/または応用法によって決定される波長範囲内で低い反射率を有するように設計された抗反射コーティングを被覆される。(しかしながら、例えば後節で検討するフィルタおよび分散補償器といったいくつかの応用では反射コーティングが使用される。)
本発明による単一マイクロレンズ装置の様々な実施形態のさらに詳細で、なおさらに図式的な表現が図13、14および33に示されている。
各々のマイクロレンズ装置10aと10bのMEMS部分は、それぞれ図1(a)と1(b)に示したように支持構造16aと16b、弾性手段20aと20b、上部電極と多数の底部電極20aと20bを含む。支持構造16aと16bは可動型レンズ14aと14bがそれぞれ懸架される開口部22aと22b(例えば正方形の開口部)を有する。弾性手段20aと20bは開口部22aと22b内で可動型レンズ14aと14bをそれぞれ懸架する。具体的に述べると、弾性手段は蛇行バネ20aと20bであってそれらは単純化して図1(a)と1(b)の上面図だけで描かれ、図1(c)の拡大上面図で描かれている。最後に、可動型マイクロレンズ14aと14b全体は上部電極として働き、それに対して底部電極18aと18bは静止型マイクロレンズ12aと12bそれぞれの周縁部の周りに配置される。図1(a)で、電極18aが正方形の開口部22aの4つの角に配置して示され、図1(b)で、電極18bが正方形の開口部22bの4つの辺の中点に配置されて示される。底部電極の他の配列もやはり適切である。
例示的に、上部電極(可動型レンズ)は接地電位の電源に結合され、底部電極は電圧源に結合される。各々の底部電極はそれに印加される同じ電圧または異なる電圧を有する可能性がある。図13と14の実施形態はこの様式で設計されている。これらの実施形態では、ダブレット内のマイクロレンズの垂直方向分離、水平方向分離および/または傾斜は、多数の底部電極のすべてまたはいかなる部分的組み合わせに印加される電圧を変えることによっても調節(すなわち調整)される可能性がある。しかしながら、水平方向の分離を変えるために、図1(a)と1(b)の設計は可動型レンズの横方向の運動を可能にするように変更されるであろう。通常の変更設計には静止型レンズ周縁部の周りの追加の電極18(図示せず)および可動型レンズを支持構造に結合させる追加のバネ20(図示せず)が含まれる。
概して、MEMSを介して印加される電圧はマイクロレンズ間の容量性結合を変化させ、それにより、マイクロレンズを互いに関して移動させる。例えば、図1の多数の底部電極と上部電極(可動型レンズ)の間に電圧が印加されると、可動型マイクロレンズ14a、14bは静止型マイクロレンズ12a、12bに向かってそれぞれ引っ張られる。可動型レンズ12a、12bをそれぞれ支える蛇行バネ20a、20bは復元力を与え、マイクロレンズ間の垂直方向分離dの大きな変化を可能にするように設計されることが可能である。バネの長さと反復数を増すことによって、本発明は小さなバネ定数と大きな移動量(それによって垂直方向の分離が変化する量)を達成する。
場合によっては、上部電極(可動型レンズ)が電圧源に結合され、底部電極が接地電位の電源に結合される。図33の実施形態はこの様式で設計される。この実施形態では、2つのマイクロレンズ間の垂直方向の分離は調節されることが可能であるが、相対的な位置または傾斜は不可能である。
図1の装置の両方のマイクロレンズが同じ光学軸を有すると仮定すると、ダブレットの実行焦点距離f12とその微分式は、
Figure 2004280117
で与えられ、ここでfとfは2つのマイクロレンズの焦点距離であり、dはそれらの垂直方向の分離である。マイクロレンズの各々の焦点距離はその製造に使用される処理技術によって固定される。(上記のBolleの出願およびErdmannらの引用論文を参照。)固定されたf12とdについて、最大調整可能性∂f12/∂dは、
+f≒d (3)
である図2の特異点付近およびfの最小値で生じる。マイクロレンズの曲率に応じてfおよび/またはfが正または負のいずれかになり得ることに留意すべきである。実効焦点距離の通常の関数的関係は正規化した分離度の関数として図2に示されている。d/f〜2.1である特異点の領域の外側では変化が小さいことに留意すべきである。比率f/fを変えるとd/f軸に沿って曲線が変位する。
フィルタ
上述したように、調整可能な複合マイクロレンズ装置はフィルタ機能を実行するように構成されることが可能である。例示的なフィルタ30であるGire−Tournois(GT)フィルタ(または干渉計)が図34に示されている。このGTフィルタは図1(a)に示したタイプのダブレットを使用する。しかしながら、(これには限定されないが)図1(b)に示したそれを含む他のダブレットの設計もやはり適切である。図34では、マイクロレンズ32aと32bの内側表面はそれぞれ反射コーティング33aと33bで被覆される。これらのコーティングは金属であってもよく、多層化された誘電体であってもよく、あるいは当該技術でよく知られている他の適切な設計であってもよい。いずれのケースでも、2つの反射コーティングは空洞共振器を形成する。可動型マイクロレンズの位置を変えるためにMEMSを使用することによって共振器の長さを変えることが可能であり、それが今度は放射(または光)ビーム34をスペクトルまたは空間的にフィルタ処理することを可能にする。付け加えると、GTフィルタは独自の波長分散特性を有しており、それは別の光学装置の分散を補償するように設計されることが可能である。
フィードバック制御サブシステム
多くの応用で、マイクロレンズ装置またはそれらのアレーは装置またはアレーが変化し得る光学パラメータ(例えば波長、パワー、ビーム・プロファイル)を有する原因となる変動状況(例えば温度、湿度、老朽化)に晒される。その結果、図35に示したように、相違する入力光学ビーム42iがマイクロレンズ装置41を通過し、視準化された出力光学ビーム42oとして出る。(単純化するために、ビームの1本の線だけが示されている。)例えば周囲温度の変化の結果として装置41の温度が変化すれば、出力ビームの特性(例えば波長、パワー、ビーム・プロファイル)もやはり変化するであろう。これらのパラメータを安定化させる(すなわちそれらの変化を所定の受容可能な範囲に制限する)ために、装置はフィードバック制御サブシステムを設けられ、それは制御器45、温度センサ43、および光検出器44を含む。後者は、例えば出力ビーム42oから情報を抽出するのに使用される受信器47と連動した(またはその一部をなす)受信/検出器として機能することが可能であり、あるいは、例えば出力ビーム42oの光学パラメータを感知するのに使用されるフィードバック・ループ内のモニタ/検出器として機能することが可能である。
まず、光検出器が受信/検出器であり、かつ装置41とセンサ43がチャンバ46(例えば密閉チャンバ)内に位置すると想定する。このケースでは、光検出器が(解読されるべき情報を含む)電気信号をリード44aと44b上で(リード44c上の制御器45ではなく)受信器47へと供給する。センサ43は(温度に比例した)電気信号をリード43a上で制御器45の入力部へと供給する。今度は逆に、制御器がリード45aに電気出力信号を供給し、それが(1)(望ましい初期位置に設定する信号に応答した)可動型マイクロレンズ41aの位置の粗調整および(2)(センサ43から入る信号に応答した)可動型マイクロレンズ41aの位置の微調整の両方を供給する。
場合によっては、フィードバック制御は出力ビーム42oの波長、パワーまたは空間プロファイルに基づくことも可能である。このケースでは、光検出器44はこれら光学パラメータの変化を感知するため、およびリード44aと44c上で制御器45の別の入力部へと電気信号を供給するためのモニタ/検出器として使用されることが可能であり、それは可動型マイクロレンズ41aの位置を制御するために上述したそれと同様の方式で機能する。
検出器44はチャンバ46の内側に位置するように描かれているが、しかし場合によってそれは出力ビームが光検出器上に入射するように透過手段(例えば窓)が設けられることを前提とすると外側に配置されることも可能である。
対照的に、もしも装置41が温度/湿度制御された環境中に置かれるならば、チャンバ46およびおそらく温度センサの必要性は除外され、フィードバック制御は温度以外のパラメータを感知することに断定されるであろう。
アレー
図36に図式的に描かれた本発明の重要な実施形態では、多数の調節可能な複合マイクロレンズ装置51がアレー50を構成している。各々の装置51は上述したタイプの複合レンズとMEMS制御器を有する。
通常の応用では、マイクロレンズ・アレーは光ビームを光源61のアレー60から光学レセプタ71のアレー70へと結合させる。具体的に示す目的で、通常の単一光源61aから発する(多数のうちの)2本の線だけが、マイクロレンズ・アレー50に入射する光ビーム62を構成するように描かれている。実際では、多数の線源61が同時に、マイクロレンズ・アレー内の様々な装置に入射する多数のそのようなビームを発射する。図示したように、ビーム62は通常のマイクロレンズ装置51aに入射し、それがビームを視準化する。視準化されたビーム64は通常のレセプタ71a上に入射する。
線源のアレー60はレーザのような能動的装置のアレーを含むことが可能である。通常、能動的線源はマイクロレンズ・アレー50に直接的に結合される半導体ダイオード・レーザである。線源アレー60はVCSELとして知られている垂直キャビティ型面発光レーザのアレーを含むことが好ましい。場合によっては、アレー60は、光ビームをマイクロレンズ・アレー50に結合させる光入力ファイバまたは光学マイクロ・ミラーのような受動的装置のアレーを含むことも可能である。能動的装置は電気的信号を光学的なそれに変換し、逆に受動的装置は変換しないという意味で受動的および能動的という用語を使用する(例えば後者は具体的に述べると光学導波路あるいは光ビーム・リダイレクタである)。
レセプタ71のアレー70は同様に光検出器のような能動的装置のアレーあるいは光出力ファイバ、スプリッタ、もしくはマイクロ・ミラーのような受動的装置のアレーを含む可能性がある。
光学ルータそのようなアレーの重要なサブシステム応用例である。例えば、通常のルータでは線源アレー60は、その入力端部でレーザのアレーに結合され、その出力端部でマイクロレンズ・アレー50に結合された光ファイバのアレーを含む。視準化されたビーム(例えば64)はよく知られているマイクロ・ミラーのアレー内に方向付けられ、それがビーム操縦機能を実行する。マイクロ・ミラー・アレーによって方向設定し直された後、ビームは別のマイクロレンズ・アレー内に結合され、それがビームを光出力ファイバのアレーの入力端部上に再度焦点集束させる。
補償方法
前に述べたように、従来のマイクロレンズ・アレーは、概して、いくつかの理由で光ファイバ(もしくは他の光学レセプタ)に対する光ビームの最適の結合を提供しない。第1に、限度のある製造許容差に起因してレンズの曲率はマイクロレンズ間で異なる。これらの曲率のバラツキは焦点距離のバラツキにつながり、それが今度は光出力ファイバ内の光ビーム径のバラツキにつながる。第2に、入力と出力のファイバの多様な対の間の光学経路長が多様な経路設定について異なり、それが出力ファイバのビーム径のバラツキにつながる。
本発明の別の態様によると、光学パラメータ(例えば実効焦点距離)のバラツキを、上述したタイプのアレー内の個々のマイクロレンズ装置の異なるそれらの中で補償する方法が提供される。本補償方法は、(a)アレー内の第1の装置が所定の標準値と異なるパラメータ値を有することを判定する工程、および(b)第1の装置のMEMS制御器に電気信号を印加し、それにより、第1の装置のパラメータ値を標準値に近付ける機械的動作を制御器に実行させる工程を含む。本発明のこの態様の例示的な実施形態では、機械的動作が第1の装置のマイクロレンズの対の間の垂直方向分離、水平方向分離および/または傾斜を変える。
もちろん、少なくとも1つの他の装置の値と異なる値を有する多数の装置に同じ方法が適用されることが可能である。
付け加えると、この光学パラメータの標準値は(1)アレーの特定の第2の装置に現存するかまたは(2)コンピュータに記憶されたそのパラメータの所定の値であってもよく、調節はその規格を満たさない装置に対して為される。
応用法に応じて、時間経過に伴なう多数回の調節(工場内または現場)、あるいは1回の調節(工場内)とその後の可動型レンズ(もしくはレンズ群)の定位置固定を考慮に入れている。後者は、例えば組み立てられたルータ(もしくはスイッチ)内の焦点システムを最適化し、その後に可動型マイクロレンズのすべてを定位置にロックするために使用される可能性がある。
次に、図13、14および33に示したタイプの複合マイクロレンズ装置を製造する2つの方法を説明する。相当する文中では、特に言及しない限り様々な材料、寸法および動作条件は単に例示の方式で与えられ、本発明の範囲を限定するように意図されるものではない。
製造方法I
以下の製造技術は図13または14に示したタイプの調節可能な複合マイクロレンズ装置を作製するための処理の流れを述べている。能動型(可動型)レンズ、静止型レンズおよびMEMS、ならびに様々な部品の組み立て品の製造法を説明する。本技術はそのような装置のアレーを述べているが、しかしながら、希望されるならばそれはダイシングされるかそうでなければ分離されて個別装置にされることが可能である。
能動型レンズ
図3〜9と関連させて能動型マイクロレンズの製造法を説明する。
図3に示したように、能動型マイクロレンズを作製するための出発材料はシリコン・オン・インシュレータ(SOI)のウェハ80であって、それは下部のSi領域(または基板)82と上部のSi領域(または層)83の間に埋め込まれたSiO層81を含む。SOIウェハはよく知られており、例えば最新式ICならびにMEMSの製造に使用される。SOIウェハの代わりにバルクのSiウェハを使用することは可能であるが、処理がはるかに複雑であり、はるかに狭い処理余裕度を伴なう。他の材料(例えば溶融シリカ、石英、酸化亜鉛または同等のプラスティック)、または他の半導体(例えばSiGe)から成るウェハを使用することは可能である。
開始の工程はSOIウェハ上で基本的に円形(上面図で)の能動型マイクロレンズ84(図4)のアレーを製造することである。概して、これらのマイクロレンズはウェハの上に半球状のマスク85(図3)を形成し、それらの形状を上部Si層83に移すことによって作製される。このタイプの成形マスクを作製するために知られているいくつかの方法が存在する。普通、マスク作製処理は、ウェハの上面に対して基本的に直角の円筒軸を有する多数の基本的に円筒形のマスク(図示せず、各能動型マイクロレンズについて1つ)を形成することで始まる。これらのマスクは標準的なフォトリソグラフィによってポリマー(例えばフォトレジスト(PR))層内に形成される。その後、円筒形状のPRマスクは、例えば高温でのベーキングおよび/または溶剤への暴露を含むよく知られているによってフロー処理される。これらの手法の殆どが円筒のマスクを基本的に半球のマスク84(図3)へと変換する。いったんマスクの形状が上部Si層83に移されると、エッチング条件(例えばエッチング剤のタイプと強さ、エッチング時間と温度)に応じて球形または非球形のいずれかのマイクロレンズ84(図4)が得られる。
場合によっては、マスク材料は高温への暴露で形状を変えるガラスから成る可能性もある。
マスク材料85と上部Si層はその後、一緒にエッチングされて図4に示したマイクロレンズ84を形成する。レンズ開口aおよびレンズ・サグsは特定の応用法に適合するように設計される。例えば、応用法によって指示されるマイクロレンズ開口が0.4mmでかつ必要な焦点距離が0.4mmであるならば、球形のマイクロレンズについてはサグsは20.4μmであろう(Siについては屈折率n=3.48を使用する)。
エッチング剤にClを主成分とする化学物質を使用する例示のエッチング処理では、Siはnovolacを主成分とするフォトレジスト(nPR)のマスクよりも1.3倍速くエッチングされる。(novolacとも書かれるNovolacはよく知られているフェノールホルムアルデヒド樹脂である。)したがって、nPRの目標とされるサグ高さは15.7μmでなければならない。例示のレジストのフロー工程では、nPRのマイクロレンズ・サグはコーティングされた時のnPR厚さよりも1.8倍大きい。(容積不変に基づいた単純計算は、開口(直径)aを備えた円筒が、マイクロレンズに変換されると初期の高さのほぼ2倍の高さのサグにつながることを示している。)しかしながらある程度の焼きしまりのせいで、nPRのサグは約10%小さくなり、1.8の値を生じる。これらの計算に基づくと、リフローに先立つnPR厚さの目標値は8.7μmである。
フロー工程によって得られるマスク形状は図3に示したように基本的に球形である。エッチング処理はいくぶん形状に影響を与えるが、しかし上述した寸法に関すると、球形の形状からの偏差は微小であり、すべての実際上の目的について、Siマイクロレンズ84(図4)の湾曲表面の形状は球形である(SiとPRの基本的に等しいエッチング速度が球形の形状を保つが、しかしながら上記の範例の寸法については偏差は小さい)。PRがその全体を消失されると、たとえエッチング処理が続いてもマイクロレンズの形状は不変を維持する。(実際では、ウェハ全体からのPR除去の完遂を確実化するためにオーバーエッチ処理が推奨される。)上部Si層83中で、隣り合うマイクロレンズ間に位置する残りの領域83a(図4)は本発明の一実施形態による蛇行バネを形成するために使用されるであろう。数マイクロメートルのバネ厚さ(高さ)が適切である。例えば、望ましいバネ高さが5μmであるならば、Si領域83aの初期の厚さは25.4μm(レンズ・サグとバネ厚さの合計)よりもわずかに大きくなければならない。バネを形成するエッチング工程の均一性と制御が大切であるが、その理由はこれらの処理特性がバネ定数に影響を与えるからである。
ここで図4で縁取りをした区画の(いくつかの追加処理工程の後の)拡大図を示す図5と6に戻る。これらの図は、個別マイクロレンズのためのバネがどのようにして形成されるかを具体的に示す。(これ以降、単一のマイクロレンズ装置の製造法だけを説明するが、その処理が同様にアレーの製造に適用可能であることは理解される。)処理のこの部分のためのマスクはPR、絶縁保護ハードマスク(例えばSiO)またはそれら2つの組み合わせである。もしもPRマスクだけが使用される場合、それはエッチング処理全体を通してマイクロレンズを覆うのに充分なほど厚くなければならない。単純計算で、極端なケースであるがもしも平坦なプロファイルを作製するためにPRがフロー処理される場合、その厚さはおよそ25μmでなければならない。対照的に、もしもSiOハードマスクだけが使用される場合、その厚さは(Si:SiOのエッチング速度比を5:1と仮定すると)少なくとも1μmでなければならない。このタイプのハードマスクは従来のドライエッチング(例えばプラズマ・エッチング)技術によってパターン化され、その後、PRが剥離され、Si領域83aのエッチングの間でSiOがマスクとして働く。最後に、図5に示したようにSi領域83aのエッチングの間でPR層86とハードマスク87の組み合わせが使用される場合、都合のよいことにさらに薄いPRの層とハードマスクSiOを使用することが可能である。
次に標準的なフォトリソグラフィを使用してPRがパターン化されることで蛇行開口部86aが形成され、そのパターンをSi領域83aに移すためにドライエッチング処理が使用される(それらの断面だけが図5に示されている)。PRの剥離後に、図6に示した構造が得られる。蛇行バネは88で示される。この構造は、SOIウェハが好ましい出発材料である理由を明示しており、すなわち、埋め込み酸化層81が上記のバネ形成工程および以下で述べるような空洞89(図8)を形成するために使用される後工程のエッチング工程の両方でエッチング停止層として働くからである。
図8に示したように、本装置の製造の次の段階はマイクロレンズ84の下に空洞89を形成する工程を含み、それはマイクロレンズがその蛇行バネ88によって懸架されることを可能にする。図7に示したように、第1の工程はマイクロレンズの上面を比較的厚いPR層90で覆うことであり、それはマイクロレンズの上面を保護し、かつPR層の平坦な上面90aを供給する。エッチング処理(例えば、熱を発生するプラズマ・エッチング)の間で、ウェハはチャックにクランプされることによって冷却される。ウェハとチャックの間の熱的接触を供給するためにヘリウム・ガスが使用される。平坦な表面90aは、エッチング・チャンバ内へのヘリウムのリーク率を下げるのに有利である。PR層90の厚さは処理のこの段階で少なくとも50μmでなければならない。
マイクロレンズがPR層90によって保護された後、ウェハが反転され、図7に示したようにPR層91を使用して開口部89がフォトリソグラフィで規定される。約700μmの深さまで底部Si層82をエッチングするのを容易にするために、パターン化されたPR層91は少なくとも20μmの厚さでなければならない。通常、この工程のためのエッチング剤はSFを主成分とするものであり、少なくとも50:1のSi:PRのエッチング速度選択性が実現される。
このエッチング工程の均一性、ならびにSiO以上にSiをエッチングするその選択性がSOIウェハ内の埋め込みSiO層81の厚さを決定する。±5%のこの工程のエッチング均一性はウェハ全体のエッチング速度で±10%のバラツキと解釈される。このバラツキは、空洞89を形成するエッチング工程がウェハのいくつかの領域で(底部から)SiO層81を露出させる可能性があり、それに対して他の領域ではこの同じエッチング工程が、層82の残りのSiの約70μm下に埋め込まれて層81を残す可能性があることを意味する。その後、図7の構造はいかなる残りのSiも除去されるまでドライエッチング(例えばプラズマ・エッチング)に晒される。具体的に示す目的で、この工程で少なくとも100:1のSi:SiOエッチング速度選択性を仮定するならば、SiO層81は少なくとも0.7μmの厚さでなければならない。しかしながら、エッチング工程の安全度の余裕を与えるために、さらに少し厚い層(少なくとも1μm)が好ましい。
ドライエッチング処理の後、PR層90と91が剥離され、結果として図8に示した構造につながる。次に、適切なエッチング剤(例えばHF溶液)が図8に示したSiO層81と87を除去する。
その後、図9に示したように、抗反射コーティング(ARC)92と93がマイクロレンズ84の上面と底面上に堆積される。各々のARCは、例えば動作中心波長の1/4に等しい厚さを備えた誘電体材料(例えばSi)の単層、または広範囲の波長にわたって低い反射率を供給するように設計された多層の誘電体構造であることが可能である。
ここで、図9の能動型マイクロレンズが支持構造もしくはスペーサ102を含み、能動型マイクロレンズがが静止型のそれの上に懸架されることを可能にするであろうことに留意すべきである。支持構造102は図13に示したようにその中にレンズが突き出る空洞89を形成する。
支持構造は幾何学的形状をとることが可能であるが、最も単純なものの1つは正方形であり(図1の上面図に描かれている)、それは円形のマイクロレンズ(上面図)がその中に配置されることを容易に可能にする。
静止型レンズ
図10〜12に結び付けて静止レンズおよびそれに付随する電極の製造法を説明する。
図10に示した静止型マイクロレンズ94は標準的な半導体(例えばSi)ウェハから製造されることが可能であり、SOIウェハを必要としない。しかしながら、原理的には他の材料(例えば溶融シリカ、石英、光学ガラス、酸化亜鉛または同等のプラスティック)あるいは他の半導体(例えばSiGe)が同様に使用されることが可能である。
標準的なSiウェハ98を使用することを想定すると、半球形状のマイクロレンズ94を形成するために使用される最初の工程は、図3と4に関連して説明したような能動型マイクロレンズ84を成形するのに使用したものと同様である。この時点で、(もしも標準的なSiウェハが粗い裏面を有していれば)ウェハ98の裏が研磨され、ARCコーティング95と96が上面と底面にそれぞれ堆積される。その後、捨てる層97(例えば200nmの厚さのSiO)が上部ARC95の上に堆積される。層97は下記で検討するエッチング工程の間で下にあるARC95を保護する。得られる構造は図10に示されている。場合によっては、同様に保護層で底部ARC96を覆うことも有利である可能性がある。
図11に示したように、静止型マイクロレンズ94の周縁部の周りの電極を形成する処理を開始するために、保護層97の上に金属層99が最初に堆積される。金属の堆積(例えば0.5μmの厚さのAl)の後にPR層が堆積される。PR層は、静止型マイクロレンズ94の周縁部の周りに配置される多数のPR柱100を形成するために標準的なフォトリソグラフィによってパターン化される。図11の二次元図では2つの柱だけが示されているが、しかしながら三次元では2つを超える、通常では4つの柱が、例えば図1に示したように後工程で4つの電極(18a、18b)が形成されることを可能にするために使用されるであろう。対応する電極が図12〜14で番号101で示されている。
次に、パターン化されたウェハはPRのパターンを金属層99に移すためにエッチングされ、それによって図12に示したように電極101を規定する。この工程はまた、電気信号が電極101に印加されるのを可能にするように導体もしくは配線(図示せず)を形成するためにも使用される。(可動型のマイクロレンズについては相当する配線は不要であるが、その理由はそれが接地され、したがって電流を搬送しないからである。導電性のエポキシは可動型のマイクロレンズを接地に結合させるのに充分である。)その後、保護層97を除去して図12に示した構造を残すためにウェットもしくはドライエッチングの工程が使用される。ARC95と96の材料としてSiを、および保護層97の材料としてSiOを使用するとき、適切なウェットエッチング剤にはエチレングリコール/HF溶液またはエチレングリコール/BOE溶液が含まれる。
組み立て
本発明の一実施形態によると、能動型マイクロレンズ(図9)と静止型マイクロレンズ(図12)が組み立てられて図13に示した装置を構成する。この組み立て体は、図8で形成されてここでは静止型レンズ94の上に同軸に能動型レンズ84を支持もしくは懸架するように2つのレンズの間に差し挟まれる支持構造(またはスペーサ)102を含む。その高さは、2つのレンズの間にそれらの分離度および/または傾斜が電気的に調節されることを可能にする隙間を供給するのに充分である。
具体的に示すと、支持構造は半導体材料(例えばSiまたはSiGe)を含み、接着材料(例えばエポキシまたはポリイミド)によって静止型レンズの周縁部の周りに貼り付けられる。
動作時では、配線(図示せず)が電圧源を底部電極101のうちの選択されたものに結合させる。2つのマイクロレンズ間の垂直方向の分離だけを変えるようにすべての電極101に対して同じ電位が印加されるか、または能動型(もしくは可動型)マイクロレンズの傾斜ならびに2つのマイクロレンズ間の垂直方向の分離を変えるように電極101の様々なものに異なる電位が印加される可能性がある。他方で、図13では能動型マイクロレンズ84と構造102は互いから電気的に分離されない。上述したように、能動型マイクロレンズと支持構造は接地電位源へと結合される。
図13の実施形態では、2つのマイクロレンズの半球表面は図1(b)の設計に似て同じ方向を向いているが、しかしマイクロレンズの12bの背面の湾曲表面を含まない。場合によっては、図14に示したように能動型マイクロレンズが反転されて装着され、それによって2つのマイクロレンズの半球表面が図1(a)の設計に似て互いに向かい合うことも可能である。この構造では、Si支持構造102(図13)は2つのマイクロレンズ間の適切な分離を可能にするのに充分なほど高くならなくてもよい。このケースでは、代替のさらに高い支持構造103(図14)が2つのマイクロレンズ間に挿入される可能性がある。この支持構造は半導体材料から作製される必要がなく、適切な代替物はフォトリソグラフィで規定可能なポリイミドである。
能動型および静止型マイクロレンズの各々について焦点距離がf=f=0.4mmであり、かつそれらの分離d=700μmであると仮定すると、式(1)は図13または図14のいずれかの装置の実効焦点距離f12=1.6mmを与える。
製造方法II
以下の製造技術は図33に示したタイプの好ましい調節可能な複合マイクロレンズ装置を作製するための処理の流れを述べている。能動型(可動型)レンズ、静止型レンズおよびMEMS、ならびに様々な部品の組み立て品の製造法を説明する。本技術はそのような装置のアレーを述べているが、しかしながら、希望されるならばそれはダイシングされるかそうでなければ分離されて個別装置にされることが可能である。
この製造技術はさらに少し複雑であるが、図13と14に示した前の設計の有意の利点を有する設計に結果的につながる。特に、図33のマイクロレンズ装置では能動型レンズと支持構造の壁が互いから隔離され、壁と静止型レンズが接地電位に保たれているときに能動型レンズが電力供給されることを可能にする。この設計が前のそれよりもはるかに良好な挙動を示すこと、すなわち新たな設計がさらに低い動作電圧とさらに大きな動作変化量を有することをシミュレーションが示している。
付け加えると、方法IIの第2のエッチング停止層の組み入れは方法Iのバネ形成に付随する制御の課題を解決する。
能動型レンズ
図15〜31と関連付けて改造された能動型レンズの製造法を説明する。
方法Iのように、出発材料は1μmの厚さの埋め込みS層111を有する、図15の底部に示したようなSOIウェハ110である。上部Si層112の厚さは能動型マイクロレンズ構造のバネの厚さとほぼ等しくなければならない。方法Iでは厚さが約5μmであったが、しかし方法IIのエッチング均一性の要求条件がそれほど厳しくないので、さらに薄い上部Si層112でも使用されることが可能である。層112はまた、個々の能動型マイクロレンズへの導電体としても働くであろうから、したがってそれ相応のドーピング・レベル(例えば約1016〜1017cm−3の範囲であり、それは過度の光学吸収を引き起こさない適切な導電性を与えるのに充分である)を有する必要がある。
次に、各々約1μmの厚さのSiO層113と114を作り出すためにSOIウェハ110が両側で酸化される。
図15の上部分に示したように、第2のウェハ115(SOIではなくバルクのSi)が同様に酸化されてSiO層116を形成する。[この工程もやはりバルク・ウェハの上面に酸化層(図示せず)を形成する可能性があるが、最終的に上面は研削および研磨されるであろうからそのような酸化層の存在は意味のないものである。]酸化されたSOIとバルクSiウェハは酸化層113と116の露出表面を一体に接着することによって連結される。接着された酸化層は図16で参照番号117で示される。(図16に示していないけれども、実際には沿う117の厚さは層113と116の厚さの合計にほぼ等しいであろう。)これらの層の接着の後、バルクSiウェハ115の上面が研削および研磨されてSi層115a(図16)を生じ、そこに能動型マイクロレンズが形成されることになるであろう。したがって、層115aは所望のマイクロレンズのサグよりも約0.5μm大きい厚さを有する必要がある。方法Iでサグは具体的に約25.4μmと示されており、それは方法IIにもやはり当てはまる。したがって、層115aの合計厚さは約26μmでなければならない。
結果的に生じる図16に示した構造はダブルSOIとして知られている。このタイプのウェハもやはり、フランスのBerninにオフィスのあるSoitec Inc.およびマサチューセッツ州のPeabodyといった市販の供給源から入手可能である。
次に、標準的なフォトリソグラフィとエッチングの技術を使用してウェハの裏の酸化層114がパターン化(図17)され、円形の開口部118を形成する。各々の開口部は最終的に能動型マイクロレンズと位置合わせされ、かつマイクロレンズの開口よりもわずかに小さい直径を有するであろう。開口の直径が0.4mmであった方法Iの具体例を使用すると、開口部118の直径は約0.38mmでなければならないと見積もられる。
この時点で、マイクロレンズ119がウェハの裏の開口部118に位置合わせされること以外は方法Iに述べた方式で、半球形状のPRマスク120(図18)を使用して能動型マイクロレンズ119(図19)がSi層115a内に形成される。
その後、図20に示したようにマイクロレンズ119上にARC121が堆積される。前のように、1/4波長の厚さを備えたSi層がARCに使用されることが可能である。約200nmの厚さの保護SiO層122がARC121の上に堆積される。
次の工程が個々のレンズを互いから分離する。そうするために、パターン化されたPR層123がフォトリソグラフィで保護層122の上に形成される。PR層はエッチング処理(すなわちPRの開口部によって露出するSi/SiO材料を除去するエッチング)の間でマイクロレンズを保護するのに充分な厚さでなければならない。上述のようにPR層がウェハを平面化する最悪のケースの筋書きでは、PR層は少なくとも26μmの厚さでなければならない。(現実には、殆どのケースで完全な平面化は達成されず、それゆえさらに薄いPRを使用することが可能である。)パターン化されたPRの開口部124は隣り合うマイクロレンズ間の領域を露出させる。これらの領域が下方にSi層115bへとエッチングされ、図21の構造で示されるように頂上で酸化層117の区分117aに隔絶された各マイクロレンズ119を残す。実際では、このエッチング工程は露出した領域内で次の層を除去する、すなわち保護層122、ARC121、Si層115aおよびSiO層117である。
個々の能動型が隔絶された後に、約500nmの厚さ(正確な厚さは厳密ではなく、応用例によって異なる可能性がある)のドープされたポリシリコン(またはアモルファスSi)層125がウェハ全体にわたって堆積される(図22)。その後、下のSi層115bへの電気的接続を最終的に供給するであろうスペーサ126(図23と24)を形成するために層125はエッチ・バックされる。上面図で、スペーサは能動型レンズの周りの完全な環を形成している。図24は破線の四角形で縁取りした図23の個々の能動型マイクロレンズの拡大図を示している。
図25に示したように、本処理の次の部分はSi層115bのフォトリソグラフィによるパターニングとエッチングを含む。パターン化されるSiは2つの目的を有し、それは各能動型マイクロレンズへの電気的経路設定(配線)を形成し、かつ蛇行バネ材料として働く。
次に、ウェハの裏側で空洞128(図28)が開口されるであろう。空洞はマイクロレンズ119の光学軸に沿って直列に配置された2つの区画を有し、すなわち狭い方の区画128a(図28参照、図24〜26に示した開口部118の幅に対応している)、および広い方の区画128b(図28参照、図26に示した開口部131の幅に対応している)である。空洞は、図26と27に関連して説明する多数の工程で形成される。
第1に、厚いPR層129と130(図26)がウェハの上部と下部にそれぞれ堆積される。前のように、上部PR層129は平面状の表面を供給するのに充分なほど厚くなければならず、それはウェハがエッチング治具のチャックに設置されることを可能にする。その後、ウェハの底部のPR層130がフォトリソグラフィでパターン化されて開口部131を形成するがこれはマイクロレンズ119とそのバネ127(図26)を包含するのに充分なほど広い。
第2に、図27に示したように、狭い方の空洞区画128aを形成するために酸化層114の開口部118が使用される、すなわち具体的に述べると、Si:SiOに関して>100:1のエッチング速度選択性を有するSFを主成分とするエッチング剤を1μmの厚さの酸化物マスクと併せて使用してウェハの裏(Si領域110a)からSiの約100μmがエッチングされる。
第3に、酸化層114の残りの露出部分114aがエッチング除去され、かつ埋め込み酸化層111の中央部分111a(図28)が露出するまでSi領域110aのディープ・エッチングが再開される。ディープ・エッチング工程は広い方の空洞区画128bを形成し、上に向かって埋め込み酸化層111の中央部分に接するまで狭い方の空洞区画128aの形状に形を変える。
空洞形成処理が各マイクロレンズの下の埋め込み酸化層111の中央部分111aを露出させると、その後、光路内で多数の反射表面を有することを回避するためにその部分がエッチング除去される(図29)。その後、図30に示した構造を作り出すためにSi層112の露出中央部分112aが(例えば、再びSFを主成分とするエッチング剤を使用して)除去される。この工程は再び酸化物を露出させるが、しかし今回は酸化層117の中央部分117aである。
この時点でPRが剥離され、マイクロレンズが解放される、すなわち図30と31に示したように、埋め込み酸化層111の周縁部分111b(バネ127の下)および酸化層117の中央部分117a(マイクロレンズ119の底部上)が図31に示したようにエッチング除去される。最後に、マイクロレンズの上側上のARC121の形成に関連して前に検討したのと同様の厚さの要求条件でARC132がマイクロレンズ119の底部上(および付随的に他の裏側表面上)に堆積される。図31はバネ127によって支持構造133から弾性的に懸架された能動型マイクロレンズの最終形状を示している。
静止型レンズ
静止型マイクロレンズ134(図32)を作製するための処理は、電極101(図12〜14)を形成するのに使用される金属層99(図11)を除いて方法Iで述べたそれと同様である。ARC135と136が上側と下側にそれぞれ堆積された後のマイクロレンズ134が図32に示されている。
方法IIの静止型マイクロレンズ134は方法Iの相当するマイクロレンズ94よりも製造するのが単純であるが、その理由は前者が1回のフォトリソグラフィ工程しか必要とせず(それに対して方法Iではそのような工程が2回である)、かつ電極を形成するための酸化物と金属の堆積を必要としないからである。
組み立て
その後、能動型マイクロレンズ119と静止型マイクロレンズ134は図33に示したように静止型マイクロレンズの周縁部表面に支持構造133を装着することによって組み立てられる。通常、支持構造133は適切な接着材料(例えばエポキシまたはポリイミド)によって周縁部表面に貼り付けられる。
この設計では、静止型レンズ134および支持構造の壁の両方が接地電位源に結合されるが、それに対して能動型マイクロレンズ119は電力供給される(すなわち電圧源に結合される)。
シャドウマスクの開口部を通して金属の標準的な蒸着を使用することによって、電気的接続を形成することを容易にする金属パッド(図示せず)が組み立て品の上面に堆積されることが可能である。場合によっては、パッドは次の処理によって形成される可能性もある、すなわちスペーサ(図24)形成後の追加的なフォトリソグラフィ工程、金属層の蒸着、およびよく知られているリフトオフ技術である。
上述の配列が、本発明の原理の応用を表わすために考案され得る多くの可能な実施形態の単に具体的例示であることは理解されるべきである。本発明の精神と範囲から逸脱することなく、無数の、かつ変更を加えた他の構成がこれらの原理に従って当業者によって考え出される可能性がある。特に、図13と14の装置と同様に図33の装置の能動型および静止型マイクロレンズもやはりSiGe、溶融シリカ、石英、酸化亜鉛または同等のプラスティックといった材料から製造されることが可能である。
2つの湾曲表面を有するレンズ・ダブレットを利用する、一実施形態による複合マイクロレンズ装置を示す概略の断面図である。 3つの湾曲表面を有するレンズ・ダブレットを利用する、別の実施形態による複合マイクロレンズ装置を示す概略の断面図である。 図1(a)および図1(b)の実施形態に蛇行バネが利用されることを示す概略の上面図である。 正規化した焦点距離対正規化したレンズ分離度を示すグラフである。 図13および14に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図13および14に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図13および14に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図13および14に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図13および14に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図13および14に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図13および14に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図13および14に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図13および14に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図13および14に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 2つの湾曲表面を有するレンズ・ダブレットを利用し、かつ図1(a)に示したタイプの、本発明の一実施形態による複合マイクロレンズ装置を示す概略の断面図である。 2つの湾曲表面を有するレンズ・ダブレットを利用し、かつ図1(b)に示したタイプの、本発明の別の実施形態による複合マイクロレンズ装置を示す概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 図33に示す複合マイクロレンズ装置の製造の様々な処理工程を説明するのに使用される概略の断面図である。 2つの湾曲表面を有するレンズ・ダブレットを利用し、かつ図1(a)に示したタイプの、本発明の別の実施形態による複合マイクロレンズ装置を示す概略の断面図である。 フィルタまたは干渉計の機能を実行するように改造された複合マイクロレンズ装置を示す概略の断面図である。 本発明のさらに別の実施形態によって複合マイクロレンズ装置を制御するためのフィードバック・ループを含むサブシステムを示す概略のブロック図である。 本発明のもう1つの実施形態による複合マイクロレンズ装置のアレーの典型的な応用法を示す別のサブシステムの概略図である。

Claims (10)

  1. マイクロレンズ装置であって、
    第1と第2の光学マイクロレンズを含み、
    複合レンズを形成するように前記マイクロレンズがそれらの光学軸に沿って互いから分離され、前記マイクロレンズの少なくとも1つが他方に対して運動可能であり、
    少なくとも1つの可動型のマイクロレンズの位置を電気的に制御するために前記装置がさらにMEMS制御器を含むことを特徴とする装置。
  2. 前記マイクロレンズのうちの一方が可動型であって他方が静止型であり、かつ前記可動型マイクロレンズが第1の電極として働き、前記MEMS制御器が前記静止型マイクロレンズによって支えられた構造を含み、前記可動型マイクロレンズが弾性的に支持される開口部を前記構造が有し、前記静止型マイクロレンズに隣接して配置された多数の第2の電極をさらに含み、前記第1と第2の電極が、前記第2の電極と前記可動型マイクロレンズの間に印加される電気信号に応答して前記可動型マイクロレンズの位置を制御するように協同作用する、請求項1に記載の装置。
  3. 前記MEMS制御器が、前記構造と前記可動型マイクロレンズの間の弾性的結合手段を含む、請求項2に記載の装置。
  4. 前記静止型マイクロレンズが基本的に円形であり、かつ前記第2の電極が前記静止型マイクロレンズの周縁部の周りで基本的に等間隔を置かれる、請求項2に記載の装置。
  5. 光学素子のアレーを含む装置であって、前記素子の各々が請求項1に記載の装置を含む装置。
  6. 第1の光学装置のアレー内でそのような光学装置の光学パラメータのバラツキを補償する方法であって、前記装置の各々が、(i)少なくとも1つが他に対して可動性である少なくとも2つのマイクロレンズを有する複合マイクロレンズ、および(ii)前記少なくとも1つの可動型マイクロレンズの位置を電気的に制御するためのMEMS制御器を含み、前記制御器が、それに加えられる電気信号に応答して機械的動作を作り出し、その動作が
    (a)前記第1の装置が標準値と異なる前記パラメータの値を有することを判定する工程、および
    (b)前記第1の装置の前記MEMS制御器に電気信号を加え、それにより、前記第1の装置の前記パラメータの値を前記標準値のそれにさらに近付けるために前記第1の装置の前記少なくとも1つの可動型レンズを移動させる前記機械的動作を前記第1の装置の制御器に実行させる工程
    を含む方法。
  7. 前記標準値が第2の装置の前記光学パラメータの値である、請求項6に記載の方法。
  8. 前記第1と第2の装置がそのような装置のアレー内に含まれ、かつ工程(a)が、多数の前記装置が前記第2の装置と異なる前記パラメータの値を有することを判定することを含む、請求項7に記載の方法。
  9. 前記光学パラメータが装置の実効焦点距離であり、かつ工程(a)が、前記第1の装置の実効光学焦点距離が前記標準値と異なることを判定する、請求項6に記載の方法。
  10. 工程(b)の後に、前記可動型レンズのすべてを定位置に貼り付ける追加的工程(c)をさらに含む、請求項6に記載の方法。
JP2004077391A 2003-03-18 2004-03-18 Mems制御器を備えた調節可能な複合マイクロレンズ装置 Expired - Lifetime JP4607479B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/391,330 US6912090B2 (en) 2003-03-18 2003-03-18 Adjustable compound microlens apparatus with MEMS controller

Publications (2)

Publication Number Publication Date
JP2004280117A true JP2004280117A (ja) 2004-10-07
JP4607479B2 JP4607479B2 (ja) 2011-01-05

Family

ID=32824857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077391A Expired - Lifetime JP4607479B2 (ja) 2003-03-18 2004-03-18 Mems制御器を備えた調節可能な複合マイクロレンズ装置

Country Status (6)

Country Link
US (1) US6912090B2 (ja)
EP (1) EP1460456B1 (ja)
JP (1) JP4607479B2 (ja)
CN (1) CN100501455C (ja)
AT (1) ATE306678T1 (ja)
DE (1) DE602004000123T2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006323353A (ja) * 2006-01-26 2006-11-30 Matsushita Electric Works Ltd 半導体レンズの製造方法
JP2007101649A (ja) * 2005-09-30 2007-04-19 Oki Electric Ind Co Ltd 光学レンズ,および,光学レンズの製造方法
JP2009503611A (ja) * 2005-08-02 2009-01-29 インターナショナル・ビジネス・マシーンズ・コーポレーション 光学的相互接続のための射出成形されたマイクロレンズ
JP2010066459A (ja) * 2008-09-10 2010-03-25 Konica Minolta Holdings Inc 駆動装置、撮像装置、および撮像装置の製造方法
JP2010139622A (ja) * 2008-12-10 2010-06-24 Konica Minolta Holdings Inc 駆動装置および撮像装置
JP2010197465A (ja) * 2009-02-23 2010-09-09 Konica Minolta Holdings Inc 撮像装置およびその製造方法
US8313632B2 (en) 2005-05-18 2012-11-20 Panasonic Corporation Process of making an optical lens
JP2014063157A (ja) * 2012-09-20 2014-04-10 Palo Alto Research Center Inc 携帯用機器に関する操作可能な照射光源
JP2014534462A (ja) * 2011-10-07 2014-12-18 シンガポール国立大学National University Of Singapore Mems型ズームレンズシステム

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003129B2 (ja) * 2003-01-22 2007-11-07 ソニー株式会社 立体撮像装置、立体表示装置、立体撮像表示装置および情報記録方法
US8553113B2 (en) * 2003-08-20 2013-10-08 At&T Intellectual Property I, L.P. Digital image capturing system and method
US6947223B2 (en) * 2003-08-25 2005-09-20 Agilent Technologies, Inc. Multi-focal length miniature refractive element and method for making the same
US7405761B2 (en) * 2003-10-01 2008-07-29 Tessera North America, Inc. Thin camera having sub-pixel resolution
DE502004001467D1 (de) 2003-12-06 2006-10-26 Diehl Bgt Defence Gmbh & Co Kg Bildgebungsvorrichtung mit einem beweglichen mikrooptischen Linsenfeld zur stabilisierten Abbildung eines Gegenstands auf einen Detektor
US7339737B2 (en) * 2004-04-23 2008-03-04 Microvision, Inc. Beam multiplier that can be used as an exit-pupil expander and related system and method
US7283703B2 (en) * 2004-04-27 2007-10-16 Intel Corporation Movable lens beam steerer
US20060055811A1 (en) * 2004-09-14 2006-03-16 Frtiz Bernard S Imaging system having modules with adaptive optical elements
DE102005006052A1 (de) 2004-12-21 2006-07-06 Osram Opto Semiconductors Gmbh Linse, Laseranordnung und Verfahren zur Herstellung einer Laseranordnung
DE102006045704A1 (de) * 2006-09-27 2008-04-03 Osram Opto Semiconductors Gmbh Optisches Element und optoelektronisches Bauelement mit solch einem optischen Element
KR100826452B1 (ko) * 2006-12-18 2008-04-29 삼성전기주식회사 광학 부품 및 그 제조방법
DE102007022452A1 (de) 2007-05-10 2008-11-13 Oerlikon Contraves Gmbh Modul, insbesondere Laser-/ Licht- Modul mit variabler Fokussierung
CN101387815B (zh) * 2007-09-12 2010-09-29 鸿富锦精密工业(深圳)有限公司 投影机
DE102009021645B3 (de) * 2009-05-16 2010-11-18 Sick Ag Optische Reihenanordnung für Lichtgitter
US20110188054A1 (en) * 2010-02-02 2011-08-04 Primesense Ltd Integrated photonics module for optical projection
US8098437B2 (en) * 2010-06-21 2012-01-17 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Lens device having protective elements
US8632012B2 (en) 2010-06-28 2014-01-21 Symbol Technologies, Inc. Focus adjustment with MEMS actuator in imaging scanner
JP5985661B2 (ja) 2012-02-15 2016-09-06 アップル インコーポレイテッド 走査深度エンジン
US20140003777A1 (en) * 2012-07-02 2014-01-02 Commscope, Inc. Of North Carolina Light focusing structures for fiber optic communications systems and methods of fabricating the same using semiconductor processing and micro-machining techniques
CN102937733B (zh) * 2012-10-24 2015-04-22 江苏大学 可见光无线通信大视场可调复眼结构光学接收器
US10036877B2 (en) * 2013-02-05 2018-07-31 Vanderbilt University Microlens array for enhanced imaging of multiregion targets
US10154197B2 (en) * 2013-09-11 2018-12-11 Google Llc Image capture device having light field image capture mode, 2D image capture mode, and intermediate capture mode
KR102282827B1 (ko) * 2014-07-23 2021-07-28 에이엠에스 센서스 싱가포르 피티이. 리미티드. 수직 정렬 피처들을 포함하는 광 방출기 및 광 검출기 모듈들
US10475830B2 (en) 2015-08-06 2019-11-12 Ams Sensors Singapore Pte. Ltd. Optical modules including customizable spacers for focal length adjustment and/or reduction of tilt, and fabrication of the optical modules
CN106067841A (zh) * 2016-07-28 2016-11-02 中南民族大学 基于复眼结构的自适应可见光接收系统
US10466036B2 (en) 2016-10-07 2019-11-05 Arizona Board Of Regents On Behalf Of The University Of Arizona Attachable depth and orientation tracker device and method of depth and orientation tracking using focal plane polarization and color camera
CN107783207A (zh) * 2017-11-27 2018-03-09 成都信息工程大学 一种可调焦微透镜阵列
CN108169918B (zh) * 2017-12-28 2023-04-11 中国科学院西安光学精密机械研究所 一种水下成像激光照明光斑匀化调节装置
CN113557644B (zh) * 2019-02-04 2024-03-29 苹果公司 具有一体式微透镜的竖直发射器
US11994694B2 (en) 2021-01-17 2024-05-28 Apple Inc. Microlens array with tailored sag profile
CN115128794A (zh) * 2021-03-25 2022-09-30 中强光电股份有限公司 匀光元件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324202A (ja) * 1993-05-14 1994-11-25 Ricoh Opt Ind Co Ltd 集光用レンズおよび集光用レンズアレイ
JPH08313830A (ja) * 1995-05-12 1996-11-29 Commiss Energ Atom マイクロレンズ変位を伴うマイクロ光学コンポーネントおよびオプトメカニカル・マイクロ偏向子
JPH09318872A (ja) * 1996-05-28 1997-12-12 Sony Corp ダブレットレンズ、可変頂角プリズム、及び振れ補正装置
JPH1054947A (ja) * 1996-04-18 1998-02-24 Commiss Energ Atom 光学機械マイクロ偏向器用途に利用するための光学機械マイクロデバイス
JPH1168243A (ja) * 1997-08-19 1999-03-09 Nec Corp 光モジュール及び光軸調整方法
JP2002182095A (ja) * 2000-12-19 2002-06-26 Fuji Photo Film Co Ltd 焦点位置調整装置および露光ヘッドならびに画像記録装置
JP2002214546A (ja) * 2000-11-15 2002-07-31 Oki Electric Ind Co Ltd 光スイッチ
JP2002277705A (ja) * 2001-03-22 2002-09-25 Ricoh Co Ltd マイクロレンズ系およびその調整方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286333A (en) * 1990-12-21 1994-02-15 Alfa Costruzioni Meccaniche S.P.A. Device for supporting and driving the label gumming and transfer unit in labeling machinery
JP3245469B2 (ja) 1993-01-26 2002-01-15 オリンパス光学工業株式会社 2群ズームレンズ
US5286338A (en) 1993-03-01 1994-02-15 At&T Bell Laboratories Methods for making microlens arrays
US6091549A (en) 1998-04-14 2000-07-18 Siros Technologies, Inc. Method and apparatus for adjustable spherical aberration correction and focusing
US6091537A (en) * 1998-12-11 2000-07-18 Xerox Corporation Electro-actuated microlens assemblies
US6608685B2 (en) * 2000-05-15 2003-08-19 Ilx Lightwave Corporation Tunable Fabry-Perot interferometer, and associated methods
US6577793B2 (en) * 2000-06-28 2003-06-10 Megasense, Inc. Optical switch
US6636653B2 (en) * 2001-02-02 2003-10-21 Teravicta Technologies, Inc. Integrated optical micro-electromechanical systems and methods of fabricating and operating the same
US6757458B2 (en) * 2001-06-29 2004-06-29 Lucent Technologies Inc. Optical MEMS switch with converging beams
US6704476B2 (en) * 2001-06-29 2004-03-09 Lucent Technologies Inc. Optical MEMS switch with imaging system
JP2003132567A (ja) * 2001-10-23 2003-05-09 Funai Electric Co Ltd 光ディスク装置
US6809869B2 (en) * 2002-08-28 2004-10-26 Genlyte Thomas Group Llc Zoomable beamspreader for non-imaging illumination applications

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324202A (ja) * 1993-05-14 1994-11-25 Ricoh Opt Ind Co Ltd 集光用レンズおよび集光用レンズアレイ
JPH08313830A (ja) * 1995-05-12 1996-11-29 Commiss Energ Atom マイクロレンズ変位を伴うマイクロ光学コンポーネントおよびオプトメカニカル・マイクロ偏向子
JPH1054947A (ja) * 1996-04-18 1998-02-24 Commiss Energ Atom 光学機械マイクロ偏向器用途に利用するための光学機械マイクロデバイス
JPH09318872A (ja) * 1996-05-28 1997-12-12 Sony Corp ダブレットレンズ、可変頂角プリズム、及び振れ補正装置
JPH1168243A (ja) * 1997-08-19 1999-03-09 Nec Corp 光モジュール及び光軸調整方法
JP2002214546A (ja) * 2000-11-15 2002-07-31 Oki Electric Ind Co Ltd 光スイッチ
JP2002182095A (ja) * 2000-12-19 2002-06-26 Fuji Photo Film Co Ltd 焦点位置調整装置および露光ヘッドならびに画像記録装置
JP2002277705A (ja) * 2001-03-22 2002-09-25 Ricoh Co Ltd マイクロレンズ系およびその調整方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313632B2 (en) 2005-05-18 2012-11-20 Panasonic Corporation Process of making an optical lens
JP2009503611A (ja) * 2005-08-02 2009-01-29 インターナショナル・ビジネス・マシーンズ・コーポレーション 光学的相互接続のための射出成形されたマイクロレンズ
JP2007101649A (ja) * 2005-09-30 2007-04-19 Oki Electric Ind Co Ltd 光学レンズ,および,光学レンズの製造方法
JP2006323353A (ja) * 2006-01-26 2006-11-30 Matsushita Electric Works Ltd 半導体レンズの製造方法
JP2010066459A (ja) * 2008-09-10 2010-03-25 Konica Minolta Holdings Inc 駆動装置、撮像装置、および撮像装置の製造方法
JP2010139622A (ja) * 2008-12-10 2010-06-24 Konica Minolta Holdings Inc 駆動装置および撮像装置
JP2010197465A (ja) * 2009-02-23 2010-09-09 Konica Minolta Holdings Inc 撮像装置およびその製造方法
JP2014534462A (ja) * 2011-10-07 2014-12-18 シンガポール国立大学National University Of Singapore Mems型ズームレンズシステム
JP2014063157A (ja) * 2012-09-20 2014-04-10 Palo Alto Research Center Inc 携帯用機器に関する操作可能な照射光源

Also Published As

Publication number Publication date
EP1460456B1 (en) 2005-10-12
JP4607479B2 (ja) 2011-01-05
CN1532565A (zh) 2004-09-29
US20040184155A1 (en) 2004-09-23
ATE306678T1 (de) 2005-10-15
DE602004000123D1 (de) 2006-02-23
CN100501455C (zh) 2009-06-17
DE602004000123T2 (de) 2006-06-29
EP1460456A1 (en) 2004-09-22
US6912090B2 (en) 2005-06-28

Similar Documents

Publication Publication Date Title
JP4607479B2 (ja) Mems制御器を備えた調節可能な複合マイクロレンズ装置
CN109384190B (zh) 包括膜和致动器的mems器件
US6768756B2 (en) MEMS membrane with integral mirror/lens
US7525713B2 (en) Optical device
US20180335584A1 (en) Optical interconnect modules with 3d polymer waveguide
US6747806B2 (en) Method for controlling light beam using adaptive micro-lens
US6636653B2 (en) Integrated optical micro-electromechanical systems and methods of fabricating and operating the same
JP6338756B2 (ja) 光回路スイッチコリメータ装置および光学レンズアレイ
EP1091219A2 (en) Optical attenuator
US6913705B2 (en) Manufacturing method for optical integrated circuit having spatial reflection type structure
US20200049892A1 (en) Methods and system for microelectromechanical packaging
US9274282B2 (en) Coupling light from an external source to a waveguide using a multi-step converter
US20020164111A1 (en) MEMS assemblies having moving members and methods of manufacturing the same
KR20020086972A (ko) 마이크로미러 액튜에이터
US6509998B2 (en) Tunable multi-channel optical attenuator (TMCOA)
US7468995B2 (en) Optical switch
KR20040072406A (ko) 파장 조절 광 공진기 및 그를 이용한 튜너블 광 필터
US6870300B2 (en) Micro-electrical-mechanical system (MEMS) device having a plurality of pairs of reflective element actuators located on opposing sides of a reflective element and a method of manufacture therefor
US20040061618A1 (en) Sensing of mirror position in an optical switch
US20050225835A1 (en) Mars optical modulators
KR20050073147A (ko) 광 스위치 및 그 제조방법
US20100033796A1 (en) Optical module, optical control method by optical module, optical switch, and optical switching method
JPH05203883A (ja) ファブリ・ペロー型可変波長フィルタ及びその製造方法
KR20030097142A (ko) 마이크로 광 스위치 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090901

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100521

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Ref document number: 4607479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250