JP2004279745A - テーパー加工フォトニック結晶ファイバ、その製造方法、及びフォトニック結晶ファイバの接続方法 - Google Patents

テーパー加工フォトニック結晶ファイバ、その製造方法、及びフォトニック結晶ファイバの接続方法 Download PDF

Info

Publication number
JP2004279745A
JP2004279745A JP2003071232A JP2003071232A JP2004279745A JP 2004279745 A JP2004279745 A JP 2004279745A JP 2003071232 A JP2003071232 A JP 2003071232A JP 2003071232 A JP2003071232 A JP 2003071232A JP 2004279745 A JP2004279745 A JP 2004279745A
Authority
JP
Japan
Prior art keywords
photonic crystal
crystal fiber
core
tapered
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071232A
Other languages
English (en)
Other versions
JP4116479B2 (ja
Inventor
Kazuyuki Miyake
和幸 三宅
Shunichiro Yamaguchi
俊一郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2003071232A priority Critical patent/JP4116479B2/ja
Publication of JP2004279745A publication Critical patent/JP2004279745A/ja
Application granted granted Critical
Publication of JP4116479B2 publication Critical patent/JP4116479B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02376Longitudinal variation along fibre axis direction, e.g. tapered holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

【課題】コア径の異なるフォトニック結晶ファイバを容易、且つ良好に接続可能とするテーパー加工フォトニック結晶ファイバを提供する。
【解決手段】ファイバ中心軸方向に延びるコア10と、上記コア10に沿って延び、且つ上記コアの周囲に配置されている複数の細孔9aを有するクラッド9と、を備えたフォトニック結晶ファイバ2の一端に保護パイプ3を被覆する。該保護パイプ3を加熱し、上記フォトニック結晶ファイバ2と融着一体化させ、保護パイプ3を被覆した部分をテーパー加工する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、極細コアを有する伝搬用フォトニック結晶ファイバ等に接続して使用されるテーパー加工フォトニック結晶ファイバに関する。
【0002】
【従来の技術】
近年、通常のコア及びクラッドからなる光ファイバでは実現することができない光学特性を発現する光ファイバとして、非常に小さい実効コア断面積を持ったフォトニック結晶ファイバが注目されている。このフォトニック結晶ファイバのなかには、実効コア断面積が10μmを下回るような光ファイバも実用化されている。
【0003】
ところが、このようなフォトニック結晶ファイバを伝搬用光ファイバとして使用する場合、以下の問題があった。即ち、伝搬用フォトニック結晶ファイバは、コア径が2μm程度と非常に小さいため、このコアに直接信号光を入射しようとする際、光源からの光を上記コア径以下に絞り込むことが困難であった。また、光源からの光を上記コア径以下に絞り込むことができた場合であっても、光源光のスポットと上記コアとのアライメントが非常に困難であった。また、接続時のアライメントを高精度に調整できた場合であっても、使用中に振動等の外乱によりいわゆる軸ズレが生じ、ファイバの導波特性が安定しないという問題があった。
【0004】
そのため、上記伝搬用フォトニック結晶ファイバの入射端に通常のシングルモードファイバを入射用ファイバとして融着接続し、このシングルモードファイバ介して上記伝搬用フォトニック結晶ファイバに信号光を入力することで導波特性の安定化が図られていた。しかし、通常のシングルモードファイバと上記フォトニック結晶ファイバとでは、光のモード径に大きな差がある。そのため、上記両ファイバの融着接続部におけるモード変換ロスが非常に大きいという問題があった。
【0005】
一方、フォトニック結晶ファイバはコア径の大きなものでもシングルモード動作をすることが確認されている。さらに、コア径の大きなシングルモードフォトニック結晶ファイバの一端をテーパ状に加工することにより、損失なくモード径の細径化が可能であることも確認されている。(例えば、非特許文献1参照。)
そこで、コア径の小さい伝搬用フォトニック結晶ファイバの端部に、コア径の大きなフォトニック結晶ファイバの一端をテーパ加工してコア径を小さく揃えた入射用フォトニック結晶ファイバを接続する方法が提案されている。(例えば、特許文献1参照。)。この方法によれば、融着接続部におけるコア径が揃っているため、モード不整合による融着接続部のモード変換ロスは防止することができる。
【0006】
また、このような入射用フォトニック結晶ファイバは、入力端側コア径が大きいため、光源から容易に信号光を入射することができる。さらに、上記入射用フォトニック結晶ファイバは、使用中の外乱に対しても比較的安定した特性を維持することができる。
【0007】
【非特許文献1】
G.E.town and J.T.Lizier, Taperd holey fibers for spot−size snd numerical−aperture conversion, 「Optical Letters」,Vol.26,No.14(July 15,2001)
【特許文献1】
国際公開第00/49435号パンフレット
【0008】
【発明が解決しようとする課題】
しかしながら、上記伝搬用フォトニック結晶ファイバに、テーパ加工を施した入射用フォトニック結晶ファイバを接続する方法では、以下の問題があった。即ち、テーパ加工前において、入射用フォトニック結晶ファイバは、伝搬用フォトニック結晶ファイバより大きいコア径を有するが、両者の外径は略同等である。
【0009】
そのため、入射用フォトニック結晶ファイバの接続端にテーパ加工を施してコア径を小さくした場合、入射用フォトニック結晶ファイバの外径が極端に細くなり、伝搬用フォトニック結晶ファイバとの接続が困難になるといった問題があった。
【0010】
例えば、伝搬用フォトニック結晶ファイバの外径が125μm、そのコア径が2μmであったとする。これに接続される入射用フォトニック結晶ファイバは、接続部におけるモード変換ロスを防止するため、その出射端のコア径を2μmとしなければならない。そこで、テーパ加工前の入射用フォトニック結晶ファイバの外径が125μm、そのコア径が10μmであるとすると、コア径を2μmにまでテーパ加工を施した場合、細径化率は1/5となる。このため、入射用フォトニック結晶ファイバの出射端において、テーパー加工前に125μmであった外径が、テーパ加工により25μm程度にまで細くなってしまう。その結果、外径が125μmの伝搬用フォトニック結晶ファイバに出射端の外径が25μmの入射用フォトニック結晶ファイバを接続する場合、外径の差が大きくなりすぎることから融着接続が非常に困難であった。
【0011】
この問題を回避するために、伝搬用フォトニック結晶ファイバの外径を80μm、コア径を2μmに設定する一方、入射用フォトニック結晶ファイバのテーパ加工前の外径を250μm、コア径を10μm程度として、このフォトニック結晶ファイバの出射端を1/5にテーパ加工し、接続することも試みられてきた。
【0012】
しかし、このような試みにおいても出射端においてなおコア径及び外径に多少の差があるため、高精度のアライメントで融着接続することは困難であった。
【0013】
また、外径が80μm、コア径が2μmの伝搬用フォトニック結晶ファイバを使用する場合、入射用フォトニック結晶ファイバに外径が400μm、コア径が10μmのフォトニック結晶ファイバを用いることも考えられる。即ちこのようなフォトニック結晶ファイバの出射端を上記伝搬用フォトニック結晶ファイバに合わせて外径を80μm、コア径を2μmにテーパー加工することにより、上記外径が80μmの伝搬用フォトニック結晶ファイバとの接続は可能となる。
【0014】
しかし、この方策では材料費の上昇は免れない。また、一般的なファイバの外径が80〜125μm程度であることに鑑みれば、外径が400μmという大口径のフォトニック結晶ファイバの作製には、付加的な労力を要するといった問題もある。
【0015】
従って、伝搬用フォトニック結晶ファイバに接続して使用される入射用フォトニック結晶ファイバに関し、入射端のコア径は比較的大きく、出射端の外径及びコア径は伝搬用フォトニック結晶ファイバのそれらと一致したフォトニック結晶ファイバが望まれていた。
【0016】
【課題を解決するための手段】
本発明は、上記入射用フォトニック結晶ファイバに用いられるテーパー加工フォトニック結晶ファイバであって、テーパー加工された出射端の外径とコア径が伝搬用フォトニック結晶ファイバの外径とコア径に一致するようにした。
【0017】
具体的には、請求項1に係る発明は、ファイバ中心軸方向に延びる中実または中空のコアと、上記コアに沿って延び、且つ上記コアの周囲に配置されている複数の細孔を有するクラッドと、を備えたフォトニック結晶ファイバの一端に、保護パイプを被覆した状態でテーパー加工が施されてなるテーパー加工フォトニック結晶ファイバである。
【0018】
請求項1の構成であれば、上記テーパー加工フォトニック結晶ファイバの一端において、保護パイプが被覆された状態でテーパー加工が施されることにより、その外径及びコア径を伝搬用フォトニック結晶ファイバの外径及びコア径に一致させることができる。一方、上記テーパー加工フォトニック結晶ファイバの他端において、その外径及びコア径はテーパー加工前の大きさに維持されている。そのため、上記テーパー加工フォトニック結晶ファイバの上記一端を出射端、他端を入射端とした場合、該出射端におけるコア径が、入射端におけるコア径よりも小さいテーパー加工フォトニック結晶ファイバを得ることができる。
【0019】
本発明に係るテーパー加工フォトニック結晶ファイバは、コア径の大きい上記入射端から光源の信号光を容易に入射できる。一方、該テーパー加工フォトニック結晶ファイバは、コア径の小さい上記出射端を伝搬用フォトニック結晶ファイバに接続し、モード変換ロスを発生させずに信号光を伝搬用フォトニック結晶ファイバに出射する。
【0020】
請求項2に係る発明は、ファイバ中心軸方向に延びる中実または中空のコアと、上記コアに沿って延び、且つ上記コアの周囲に配置されている複数の細孔を有するクラッドと、を備えたフォトニック結晶ファイバの一端に、保護パイプを被覆した状態でテーパー加工が施され、該保護パイプの先端部近傍の外径が上記フォトニック結晶ファイバの他端の外径と同等であるテーパー加工フォトニック結晶ファイバである。
【0021】
請求項2の構成であれば、上記テーパー加工フォトニック結晶ファイバの一端において、保護パイプが被覆された状態でテーパー加工が施されることにより、その外径及びコア径を伝搬用フォトニック結晶ファイバの外径及びコア径に一致させることができる。一方、上記テーパー加工フォトニック結晶ファイバの他端において、外径及びコア径はテーパー加工前の大きさに維持されている。そのため、上記テーパー加工フォトニック結晶ファイバの上記一端を出射端、他端を入射端とした場合、該出射端におけるコア径は、入射端におけるコア径よりも小さく、且つ出射端の外径と入射端の外径とが同等であるテーパー加工フォトニック結晶ファイバを得ることができる。
【0022】
本発明に係るテーパー加工フォトニック結晶ファイバは、コア径の大きい上記入射端から光源の信号光を容易に入射できる。一方、該テーパー加工フォトニック結晶ファイバは、コア径の小さい上記出射端を伝搬用フォトニック結晶ファイバに接続し、モード変換ロスを発生させずに信号光を伝搬用フォトニック結晶ファイバに出射する。
【0023】
また、本発明に係るテーパー加工フォトニック結晶ファイバは、その出射端の外径と入射端の外径が同等に形成されている。これにより、規格化された外径を有し、コア径の異なる光ファイバの接続を容易、且つ良好に行うことができる。
【0024】
請求項3に係る発明は、ファイバ中心軸方向に延びる中実または中空のコアと、上記コアに沿って延び、且つ上記コアの周囲に配置されている複数の細孔を有するクラッドと、を備えたフォトニック結晶ファイバの一端に被覆された保護パイプを加熱し、上記フォトニック結晶ファイバと保護パイプとを融着一体化させるステップと、上記フォトニック結晶ファイバに保護パイプを被覆した部分をテーパー加工するステップとを包含したテーパー加工フォトニック結晶ファイバの製造方法である。
【0025】
請求項3の構成であれば、当初、両端で同等の外径及びコア径を有するフォトニック結晶ファイバの一端において、その外径が他端と同等であり、且つそのコア径が他端のコア径よりも小さいテーパー加工フォトニック結晶ファイバを容易に製造することができる。
【0026】
請求項4に係る発明は、ファイバ中心軸方向に延びる中実または中空のコアと、上記コアに沿って延び、且つ上記コアの周囲に配置されている複数の細孔を有するクラッドと、を備えたフォトニック結晶ファイバの一端に、保護パイプを被覆した状態でテーパー加工が施されてなるテーパー加工フォトニック結晶ファイバと、上記テーパー加工フォトニック結晶ファイバにおいてテーパー加工が施された一端の外径及びコア径と同等の外径及びコア径を有する伝搬用フォトニック結晶ファイバと、を上記テーパー加工フォトニック結晶ファイバのテーパー加工が施された一端で融着接続するフォトニック結晶ファイバの接続方法である。
【0027】
請求項4の構成であれば、上記テーパー加工フォトニック結晶ファイバの出射端と伝搬用フォトニック結晶ファイバの入射端とにおける外径及びコア径が同等で一致しているため、それらを良好に融着接続することができる。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。本実施形態に係るテーパー加工フォトニック結晶ファイバは、伝搬用フォトニック結晶ファイバに信号光を入射する入射用フォトニック結晶ファイバとして使用される。即ち、上記テーパー加工フォトニック結晶ファイバは、その入射端に光源から延びるシングルモードファイバが接続され、出射端に伝搬用フォトニック結晶ファイバが接続される。
【0029】
図1は、本発明の実施形態に係るテーパー加工フォトニック結晶ファイバ1の概略構成図である。該テーパー加工フォトニック結晶ファイバ1は、大口径シングルモード型フォトニック結晶ファイバ2と保護パイプ3とから形成されている。本実施形態では、上記保護パイプとして石英パイプ3を用いる。
【0030】
テーパー加工フォトニック結晶ファイバ1は、ファイバ部4とテーパー部6から構成され、ファイバ部4の端部が入射端5となり、テーパー部6の端部が出射端7となる。上記出射端7における石英パイプ3の先端部の外径は、上記フォトニック結晶ファイバ2の入射端5の外径と同等であり、出射端7のコア径は、伝搬用フォトニック結晶ファイバ(図1では図示せず。)のコア径に等しく形成される。
【0031】
テーパー部6は、テーパー加工を施す前の上記大口径シングルモード型フォトニック結晶ファイバ2の一端部近傍に、所定肉厚の石英パイプ3が被覆され、該石英パイプ3とともに上記フォトニック結晶ファイバを先細り状になるようテーパー加工が施されて形成されている。
【0032】
図5は、上記テーパー加工フォトニック結晶ファイバ2の入射端5の拡大図である。本実施形態において、上記大口径シングルモード型フォトニック結晶ファイバ2は、ファイバ中心軸Pを含んで該ファイバ中心軸方向に延びるコア10と、該コア10に沿って延び、且つ上記コア10の周囲に配置されている複数の小孔9aを有するクラッド9と、により構成されている。
【0033】
具体的に上記フォトニック結晶ファイバ2は、石英から形成されており、径方向の最外部には中実なオーバークラッド部9bを有し、その内側にはファイバ中心軸方向に延びる多数の小孔9a、9a…が周期的に配置されてなるクラッド9を有する。クラッド9のファイバ径方向の最もファイバ中心軸Pに近い部分には、ファイバ中心軸Pを挟んで対向する6つの小孔9a、9a…が正六角形状に配置されている。本実施形態において、これら6つの小孔9a、9a…に囲まれた中実の内部領域がコア10となる。
【0034】
上記クラッド9における小孔9a、9a…は、隣り合う小孔間の距離が全て同じであって、隣接する三つの孔が正三角形をなす周期的な配置を取る。そして上記コア10は、このような小孔の周期的配置の欠陥部分ともいえ、周期的に配置された小孔の一つが消失して中実に形成されている部分である。
【0035】
また、本発明において、上記コアを中空に形成することもできる。この場合、入射された光は中空部分とクラッドとのフォトニックバンドギャップによって、該中空部分に閉じ込められて伝搬する。
【0036】
次に、本発明に係るテーパー加工フォトニック結晶ファイバの製造方法について説明する。
【0037】
本実施形態に係るテーパー加工フォトニック結晶ファイバ1は、上記大口径シングルモード型フォトニック結晶ファイバ2と石英パイプ3とを用いて製造される。
【0038】
本実施形態に係る大口径シングルモード型フォトニック結晶ファイバ2は、図6にその断面図を示すように、中実の石英ロッド11と中心部に孔15を有する石英キャピラリ12とを石英管13で束ねて作製される。これらの石英ロッド11及び石英キャピラリ12の外径は全て同じである。石英ロッド11は、石英母材を所望の径にまで加熱延伸して作製する。石英キャピラリ12は石英棒材にそれぞれ所定の孔を開けた後、所望の径に加熱延伸して作製する。
【0039】
次に、上記石英管13の中心軸部分に上記中実の石英ロッド11を挿入し、該石英ロッド11に接するように6本の石英キャピラリ12を配置して、石英ロッド11の周りを石英キャピラリ12で一重に取り囲む。次に、上記6本の石英キャピラリ12の周囲に12本の石英キャピラリ12、12…を配置し、更にその周囲に18本の石英キャピラリ12、12…を配置する、というよう上記石英ロッド11の周囲を数重に石英キャピラリ12で取り囲む。上記石英管13の内壁に接するまで、上記石英キャピラリ12を詰め込んでゆく。
【0040】
このように石英ロッド11及び石英キャピラリ12を詰め込んだ石英管13の両端を閉鎖した後、加熱延伸すると石英ロッド11、石英キャピラリ12及び石英管13の相互の境界が溶融し互いに密着した状態で延伸される。上記石英キャピラリ12の孔15は上記フォトニック結晶ファイバの小孔9aとなり、石英管13は上記オーバークラッド9bとなる。また、上記石英ロッド11と該石英ロッドに接する石英キャピラリの一部が溶融してコア10を形成する。
【0041】
次に、本実施形態に係るテーパー加工フォトニック結晶ファイバ1の製造方法について説明する。
【0042】
本実施形態に使用される上記石英パイプ3は、上記大口径シングルモード型フォトニック結晶ファイバ2のクラッド9と同質の石英から形成された管状の部材であって、その長さは数センチ程度が適当である。また、石英パイプ3の内径は、これに挿通される上記フォトニック結晶ファイバ2の外径より1〜50μm程度大きく形成されている。上記石英パイプ3の外径は、上記大口径シングルモード型フォトニック結晶ファイバ2のコア径と、先端部に施されるテーパー加工の程度によって決定される。
【0043】
即ち、上記大口径シングルモード型フォトニック結晶ファイバ2のテーパー加工前のコア径に対する伝搬用フォトニック結晶ファイバ20のコア径の比率を求める。伝搬用フォトニック結晶ファイバ20の外径をこの比率で除した値が概ね石英パイプ3の外径となる。
【0044】
図3に示すように、上記大口径シングルモード型フォトニック結晶ファイバ2の一端を上記石英パイプ3の一端から他端に達するまで挿通する。大口径シングルモード型フォトニック結晶ファイバ2が石英パイプ3によって被覆された部分をバーナー等の適当な方法で加熱し、上記フォトニック結晶ファイバ2と石英パイプ3とを融着一体化させる。この際、大口径シングルモード型フォトニック結晶ファイバ2と石英パイプ3との間に隙間ができないように融着させる。
【0045】
次に上記融着一体化した石英パイプ3の適当な部位を再びバーナー等で加熱し、軟化させて延伸する。このように延伸した領域の外径を測定し、上記伝搬用フォトニック結晶ファイバ20の外径と等しい部位で切断する。このように延伸され先細り状にテーパー加工された領域がテーパー部6となる。テーパー部6は、その先端部の外径が上記伝搬用フォトニック結晶ファイバ20の外径と等しく、また、コア径も上記伝搬用フォトニック結晶ファイバ20のコア径と等しい。このようにテーパ加工により形成されたテーパー部6の先端が上記出射端7となる。
【0046】
(その他の実施形態)
これまで説明した実施形態は一例に過ぎず、本発明は上記実施形態に限定されるものではない。上記実施形態に示した大口径シングルモード型フォトニック結晶ファイバの製造方法に関し、ロッドとキャピラリとを束ねる方法でも、石英製母材に小孔を開ける方法でもその他の方法でも構わない。
【0047】
上記フォトニック結晶ファイバのコア10及びクラッド9には、他の元素は添加されてていないものが一般的であるが、コア10の屈折率を高めるためにGeやその他金属元素、又は希土類元素などを添加することや、コア以外の部分の屈折率を下げるためにF等を添加することも可能である。また、複数種の元素をそれぞれの領域に添加することも可能である。
【0048】
コア10の形状も限定されず、菱形などでもよく、ほぼ扁平で長軸と短軸とが直交していればよいし、その外形線が滑らかではなく例えば鋸刃状のジグザグ形状であってもよい。小孔9aの形状も円形以外でもよく、例えば楕円形や正多角形などでもよい。孔の内径もすべて同一であってもよいし、偏波保持機能を持たせるために一部の孔のみ他より大きい径とするなど、適宜変化させることも可能である。
【0049】
また、上記石英パイプ3に関し、その材質は、フォトニック結晶ファイバ2と同質のものであってもよいし、異なるものであってもよい。
【0050】
【実施例】
本発明の一実施例を具体的に説明する。図4に示すように、本実施例に係るテーパー加工フォトニック結晶ファイバ1は、その入射端5に光源から延ばされたシングルモードファイバ30が接続され、出射端7に伝搬用フォトニック結晶ファイバ20が接続される。
【0051】
図2の(a)に示す伝搬用フォトニック結晶ファイバ20は、外径125μm、コア径2μmのフォトニック結晶ファイバである。また、図2の(b)に示す光源から延ばされた光ファイバは、外径125μm、コア径が10μmのシングルモード光ファイバ30である。
【0052】
図1に概略構成を示すように、本実施例に係るテーパー加工フォトニック結晶ファイバ1は、大口径シングルモード型フォトニック結晶ファイバ2と石英パイプ3とから形成される。テーパー加工フォトニック結晶ファイバ1は、ファイバ部4とテーパー部6から構成され、ファイバ部4の端部が入射端5となり、テーパー部6の端部が出射端7となる。本実施例において、上記テーパー加工フォトニック結晶ファイバ1のファイバ部4における入射端5の外径は125μmであり、コア径は10μmである。一方、テーパー部6における出射端7の外径は125μmであり、コア径は2μmである。
【0053】
本実施例に係る大口径シングルモード型フォトニック結晶ファイバ2は、上記実施形態で示した製造方法により、外径125μm、コア径10μmに形成した。この大口径シングルモード型フォトニック結晶ファイバ2と、外径125μm、コア径2μmの伝搬用フォトニック結晶ファイバ20とを接続するために、石英パイプ3を用いてテーパー加工を施した。
【0054】
本実施例に係る石英パイプ3の内径は、上記フォトニック結晶ファイバ2がスムーズに挿通でき、且つ該フォトニック結晶ファイバ2との融着が良好に行われるよう、フォトニック結晶ファイバ2の外径より僅かに大きい130μmと設定した。
【0055】
上記石英パイプ3の外径は以下のように決定される。伝搬用フォトニック結晶ファイバ20のコア径2μmを上記フォトニック結晶ファイバ2のコア径10μmで除すると0.2となる。即ち、コア径が10μmであるフォトニック結晶ファイバ2のコア径を2μmにまでテーパー加工を施すとすると、細径化率は1/5(=0.2)となる。従って、テーパー加工後に石英パイプ3の外径が125μmとなるために、テーパー加工前の石英パイプ3の外径は、125μmを0.2で除した625μmと決定することができる。
【0056】
図3に示すように、上記フォトニック結晶ファイバ2の一端部近傍を、外径625μm、内径130μm、長さ10cmの石英パイプ3に挿通した。この状態で、石英パイプ3の被覆された部分をバーナーで加熱し、フォトニック結晶ファイバ2と石英パイプ3を融着一体化した。
【0057】
融着一体化したフォトニック結晶ファイバ2と石英パイプ3の端から数cmの部分を更に加熱して延伸した。上記石英パイプ3の延伸部分の最小径部分の外径が、上記伝搬用フォトニック結晶ファイバ20の入射端5の外径である125μmとなるまでテーパー加工を施した。その後、延伸されて最小径が125μmとなる部分で石英パイプ3を切断した。
【0058】
このように得られたテーパー加工フォトニック結晶ファイバ1は、入射端5の外径が125μm、コア径が10μmであり、出射端7の外径が125μm、コア径が2μmとなる。従って、本実施例において、上記テーパー加工を施された石英パイプ3の先端部近傍の外径は、上記フォトニック結晶ファイバ2の他端(入射端)の外径と等しく、出射端7のコア径は、伝搬用フォトニック結晶ファイバ20のコア径に等しい。
【0059】
図4に示すように、上記製造方法で得られたテーパー加工フォトニック結晶ファイバ1の出射端7には、上記伝搬用フォトニック結晶ファイバ20を融着法により接続した。
【0060】
一方、上記テーパー加工フォトニック結晶ファイバ1の入射端5には、光源から延伸された外径125μm、コア径10μmのシングルモードファイバ30を融着法により接続した。
【0061】
これら各ファイバの融着接続は、各ファイバの外径が同等であるため、容易、且つ良好に行うことができた。特に、テーパー加工フォトニック結晶ファイバ1の出射端7と伝搬用フォトニック結晶ファイバ20の接続は、両ファイバのコア径がともに2μmと非常小さいにも拘わらず、それらの外径が125μmと等しいため、高精度にアライメントを調整することができた。
【0062】
その他の実施例として、各ファイバ同士の接続方法に関し、上記融着法による接続の他、透明スリーブと紫外線硬化型接着剤を使用する方法など選択した場合であっても、同様の効果を得ることができた。
【0063】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に述べる効果を奏する。
【0064】
本発明に係るテーパー加工フォトニック結晶ファイバは、入射端のコア径が出射端のコア径よりも大きく形成される。これにより、比較的大きい入射端側のコアに信号光を入射することにより、極めてコア径の小さい伝搬用フォトニック結晶ファイバへ確実に信号光を入射することができる。
【0065】
また、本発明に係るテーパー加工フォトニック結晶ファイバの出射端の外径と、その入射端の外径とが同等であるフォトニック結晶ファイバを得ることができる。これにより、規格化された外径を有しコア径の異なる光ファイバ同士を本発明に係るテーパー加工フォトニック結晶ファイバを用いることによって容易、且つ良好に接続することができる。
【図面の簡単な説明】
【図1】実施形態に係るテーパー加工フォトニック結晶ファイバの概略構成図である。
【図2】実施形態に係る伝搬用フォトニック結晶ファイバ、及び光源から延ばされたシングルモード光ファイバの端面の一部拡大図である。
【図3】実施形態に係るテーパー加工フォトニック結晶ファイバの製造工程を表す概略図である。
【図4】実施形態に係るテーパー加工フォトニック結晶ファイバに伝搬用フォトニック結晶ファイバと光源から延ばされたシングルモードファイバを接続した状態を表す概略構成図である。
【図5】フォトニック結晶ファイバの端面の一部拡大図である。
【図6】フォトニック結晶ファイバの母材の端面の一部拡大図である。
【符号の説明】
1 テーパー加工フォトニック結晶ファイバ
2 大口径シングルモード型フォトニック結晶ファイバ
3 石英パイプ
4 ファイバ部
5 入射端
6 テーパー部
7 出射端
9 クラッド
10 コア
20 伝搬用フォトニック結晶ファイバ
30 シングルモードファイバ

Claims (4)

  1. ファイバ中心軸方向に延びる中実または中空のコアと、
    上記コアに沿って延び、且つ上記コアの周囲に配置されている複数の細孔を有するクラッドと、を備えたフォトニック結晶ファイバの一端に、保護パイプを被覆した状態でテーパー加工が施されてなるテーパー加工フォトニック結晶ファイバ。
  2. ファイバ中心軸方向に延びる中実または中空のコアと、
    上記コアに沿って延び、且つ上記コアの周囲に配置されている複数の細孔を有するクラッドと、を備えたフォトニック結晶ファイバの一端に、保護パイプを被覆した状態でテーパー加工が施され、該保護パイプの先端部近傍の外径が上記フォトニック結晶ファイバの他端の外径と同等であるテーパー加工フォトニック結晶ファイバ。
  3. ファイバ中心軸方向に延びる中実または中空のコアと、上記コアに沿って延び、且つ上記コアの周囲に配置されている複数の細孔を有するクラッドと、を備えたフォトニック結晶ファイバの一端に被覆された保護パイプを加熱し、上記フォトニック結晶ファイバと保護パイプとを融着一体化させるステップと、上記フォトニック結晶ファイバに保護パイプを被覆した部分をテーパー加工するステップとを包含したテーパー加工フォトニック結晶ファイバの製造方法。
  4. ファイバ中心軸方向に延びる中実または中空のコアと、上記コアに沿って延び、且つ上記コアの周囲に配置されている複数の細孔を有するクラッドと、を備えたフォトニック結晶ファイバの一端に、保護パイプを被覆した状態でテーパー加工が施されてなるテーパー加工フォトニック結晶ファイバと、
    上記テーパー加工フォトニック結晶ファイバにおいてテーパー加工が施された一端の外径及びコア径と同等の外径及びコア径を有する伝搬用フォトニック結晶ファイバと、を上記テーパー加工フォトニック結晶ファイバのテーパー加工が施された一端で融着接続するフォトニック結晶ファイバの接続方法。
JP2003071232A 2003-03-17 2003-03-17 テーパー加工フォトニック結晶ファイバ、その製造方法、及びフォトニック結晶ファイバの接続方法 Expired - Fee Related JP4116479B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071232A JP4116479B2 (ja) 2003-03-17 2003-03-17 テーパー加工フォトニック結晶ファイバ、その製造方法、及びフォトニック結晶ファイバの接続方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071232A JP4116479B2 (ja) 2003-03-17 2003-03-17 テーパー加工フォトニック結晶ファイバ、その製造方法、及びフォトニック結晶ファイバの接続方法

Publications (2)

Publication Number Publication Date
JP2004279745A true JP2004279745A (ja) 2004-10-07
JP4116479B2 JP4116479B2 (ja) 2008-07-09

Family

ID=33287718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071232A Expired - Fee Related JP4116479B2 (ja) 2003-03-17 2003-03-17 テーパー加工フォトニック結晶ファイバ、その製造方法、及びフォトニック結晶ファイバの接続方法

Country Status (1)

Country Link
JP (1) JP4116479B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076047A1 (en) * 2004-02-06 2005-08-18 Matthew Henderson Optical product with integral terminal part
JP2007279228A (ja) * 2006-04-04 2007-10-25 Sumitomo Electric Ind Ltd 光部品
JP2007293259A (ja) * 2005-12-26 2007-11-08 Nippon Electric Glass Co Ltd 光出射装置
JP2008009067A (ja) * 2006-06-28 2008-01-17 Nippon Electric Glass Co Ltd 光導波構造体
JP2008102357A (ja) * 2006-10-19 2008-05-01 Nippon Electric Glass Co Ltd 光出射装置
JP2009230080A (ja) * 2008-03-25 2009-10-08 Nippon Telegr & Teleph Corp <Ntt> フォトニック結晶ファイバ
JP2009545012A (ja) * 2006-07-25 2009-12-17 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ 中空コアのファイバテーパを用いる装置および方法
US11409033B2 (en) 2014-12-18 2022-08-09 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
CN116608891A (zh) * 2023-07-20 2023-08-18 山东省科学院激光研究所 一种光纤f-p腔传感器及其制造方法
US11988940B2 (en) 2008-07-11 2024-05-21 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219006A (ja) * 1985-03-25 1986-09-29 Fujitsu Ltd 光フアイバ加工法
JPH01118811A (ja) * 1987-05-21 1989-05-11 Corning Glass Works モード・フィールド・モディファィア
JPH02163708A (ja) * 1988-10-24 1990-06-25 Corning Inc モード・フィールド変更器および光学装置
JPH06148469A (ja) * 1991-04-29 1994-05-27 Corning Inc 同軸光カプラおよびその製造方法ならびに双方向光通信システムのための結合装置
JPH07301735A (ja) * 1994-04-28 1995-11-14 Corning Inc 二方向光通信装置のための入力/出力装置
JP2001004877A (ja) * 1999-06-22 2001-01-12 Hitachi Ltd 光導波路、光モジュールおよび光システム
JP2002537574A (ja) * 1999-02-19 2002-11-05 ブレイズフォトニクス リミティド フォトニック結晶ファイバ及びこれに係る改良
JP2003528339A (ja) * 1999-11-09 2003-09-24 コーニング インコーポレイテッド 多モード光ファイバシステムのモード適応

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219006A (ja) * 1985-03-25 1986-09-29 Fujitsu Ltd 光フアイバ加工法
JPH01118811A (ja) * 1987-05-21 1989-05-11 Corning Glass Works モード・フィールド・モディファィア
JPH02163708A (ja) * 1988-10-24 1990-06-25 Corning Inc モード・フィールド変更器および光学装置
JPH06148469A (ja) * 1991-04-29 1994-05-27 Corning Inc 同軸光カプラおよびその製造方法ならびに双方向光通信システムのための結合装置
JPH07301735A (ja) * 1994-04-28 1995-11-14 Corning Inc 二方向光通信装置のための入力/出力装置
JP2002537574A (ja) * 1999-02-19 2002-11-05 ブレイズフォトニクス リミティド フォトニック結晶ファイバ及びこれに係る改良
JP2001004877A (ja) * 1999-06-22 2001-01-12 Hitachi Ltd 光導波路、光モジュールおよび光システム
JP2003528339A (ja) * 1999-11-09 2003-09-24 コーニング インコーポレイテッド 多モード光ファイバシステムのモード適応

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076047A1 (en) * 2004-02-06 2005-08-18 Matthew Henderson Optical product with integral terminal part
JP2007293259A (ja) * 2005-12-26 2007-11-08 Nippon Electric Glass Co Ltd 光出射装置
JP2007279228A (ja) * 2006-04-04 2007-10-25 Sumitomo Electric Ind Ltd 光部品
JP2008009067A (ja) * 2006-06-28 2008-01-17 Nippon Electric Glass Co Ltd 光導波構造体
JP2009545012A (ja) * 2006-07-25 2009-12-17 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ 中空コアのファイバテーパを用いる装置および方法
JP2008102357A (ja) * 2006-10-19 2008-05-01 Nippon Electric Glass Co Ltd 光出射装置
JP2009230080A (ja) * 2008-03-25 2009-10-08 Nippon Telegr & Teleph Corp <Ntt> フォトニック結晶ファイバ
US11988940B2 (en) 2008-07-11 2024-05-21 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US11409033B2 (en) 2014-12-18 2022-08-09 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
JP7244205B2 (ja) 2014-12-18 2023-03-22 エヌケイティー フォトニクス アクティーゼルスカブ フォトニック結晶ファイバ、その作製方法、及びスーパーコンティニューム光源
US11719881B2 (en) 2014-12-18 2023-08-08 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
CN116608891A (zh) * 2023-07-20 2023-08-18 山东省科学院激光研究所 一种光纤f-p腔传感器及其制造方法
CN116608891B (zh) * 2023-07-20 2023-11-03 山东省科学院激光研究所 一种光纤f-p腔传感器及其制造方法

Also Published As

Publication number Publication date
JP4116479B2 (ja) 2008-07-09

Similar Documents

Publication Publication Date Title
US6078716A (en) Thermally expanded multiple core fiber
KR100647378B1 (ko) 광자결정 광섬유 관련 및 광자결정 광섬유에 있어서의 개량
KR100822953B1 (ko) 광 도파관 렌즈 및 그 제조방법
JP5175282B2 (ja) 放射光を光ファイバに結合し又は光ファイバから出力するための装置
US20080037939A1 (en) Splicing small core photonic crystal fibers and conventional single mode fiber
CA2523930A1 (en) Method of making fiber optic couplers with precise positioning of fibers
JP4116479B2 (ja) テーパー加工フォトニック結晶ファイバ、その製造方法、及びフォトニック結晶ファイバの接続方法
JP5128913B2 (ja) 光コンバイナの製造方法
JP2002148468A (ja) フォトニッククリスタルファイバの融着方法
JP6835827B2 (ja) ファイバカプラの製造
JP2006010961A (ja) フォトニッククリスタルファイバおよびレーザ加工機
JP2004271860A (ja) フォトニック結晶ファイバ
KR101984640B1 (ko) 광섬유 빔 결합기 제조장치 및 그 제조방법
JP2018531406A6 (ja) ファイバカプラの製造
US20040161199A1 (en) Photonic crystal fiber coupler and fabricating method thereof
JP2005326888A (ja) ガラス毛細管及びその製造方法
JP3130363B2 (ja) 光ファイバカプラの製造方法
JP3260162B2 (ja) スターカプラの製造方法
JP2006064804A (ja) 偏波保持フォトニックバンドギャップファイバの製造方法
JPH05288953A (ja) 光ファイバカプラとその製法
JPS6241733A (ja) 光導波路ロツドの製造方法
JPH11167041A (ja) 多分岐光カプラ
JP2000206361A (ja) 光ファイバ型多分岐カプラ―及びその製造方法
JPS60150012A (ja) 光スタ−カプラおよびその製造方法
JP2005326889A (ja) ガラス毛細管及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees