JP2004273577A - Shield film and its manufacturing method - Google Patents

Shield film and its manufacturing method Download PDF

Info

Publication number
JP2004273577A
JP2004273577A JP2003059279A JP2003059279A JP2004273577A JP 2004273577 A JP2004273577 A JP 2004273577A JP 2003059279 A JP2003059279 A JP 2003059279A JP 2003059279 A JP2003059279 A JP 2003059279A JP 2004273577 A JP2004273577 A JP 2004273577A
Authority
JP
Japan
Prior art keywords
film
shield
layer
base film
conductive adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003059279A
Other languages
Japanese (ja)
Other versions
JP4340454B2 (en
Inventor
Shoji Nakagama
詳治 中釜
Takeshi Miyazaki
健史 宮崎
Koki Nakama
幸喜 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Printed Circuits Inc
Original Assignee
Sumitomo Electric Printed Circuits Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Printed Circuits Inc filed Critical Sumitomo Electric Printed Circuits Inc
Priority to JP2003059279A priority Critical patent/JP4340454B2/en
Publication of JP2004273577A publication Critical patent/JP2004273577A/en
Application granted granted Critical
Publication of JP4340454B2 publication Critical patent/JP4340454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin shield film having high flexibility in a shield film wherein basic configuration is formed of a base film and a shield layer, and a method for manufacturing the thin shield film having high flexibility. <P>SOLUTION: The shield film is provided with the shield layer and the base film 1 composed of aromatic polyamide resin, and especially, the shield layer is provided with a conductive adhesive layer 3 and a metal thin film 2 which is formed being laminated on the base film. In the method for manufacturing the shield film, metal is deposited after nitrogen plasma treatment is performed to a surface of the base film 1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フレキシブルプリント配線板などの電気回路から発生する電磁波ノイズをシールドするシールドフィルムに関する。
【0002】
【従来の技術】
フレキシブルプリント配線板などの電気回路からは電磁波ノイズが発生し、他の電気回路や電気製品へ好ましくない影響を与えることがある。そこで、電磁波ノイズを遮断するためのシールドフィルムが用いられ、これを貼り合わせたフレキシブルプリント配線板が提案されている。フレキシブルプリント配線板のような繰返し屈曲される電気回路は、繰返しの屈曲に耐えられる屈曲性が求められる。そこで、このような電気回路に貼り合わされて使用されるシールドフィルムにも、優れたシールド効果とともに、高い屈曲性(シールド効果を劣化させずに繰返しの屈曲に耐えられる性質)が求められる。
【0003】
このシールドフィルムとしては、ベースフィルムとその上に積層したシールド層(導電性層)を基本構成とするものが広く知られている。通常、この基本構成に、ベースフィルム側にはハンドリングのための補強フィルムを、シールド層側にはゴミ付着防止の保護フィルムを貼付されて販売されている。そして、優れたシールド効果と高い屈曲性を得るために、シールド層として、金属薄膜(特開平5−3395号公報第1欄第2〜8行、図1)、金属フィラーを含有する導電性接着剤層、該導電性接着剤層と金属薄膜との組合せ(特開平7−122882号公報第1欄第2〜6行、図1)などが用いられている。
【0004】
しかし、上記のようなシールドフィルムは、ベースフィルムの材料やシールド層自身の屈曲性が乏しいため、近年の屈曲性に対する高い要請を、必ずしも充分に満足するものではない。また、従来のシールドフィルムは、機械的強度を得るなどの理由によりある程度の厚みを必要とする。しかし、シールドフィルムを厚くすると、フレキシブルプリント配線板と貼り合わせた際に、全体として柔軟性に欠けたものとなるとともに、シールドフィルムを貼り合わせたフレキシブルプリント配線板全体の屈曲性に対するシールドフィルムの影響が大きくなり、シールドフィルムが全体の屈曲性を低下させる主たる原因にもなる。現在、高周波ノイズのシールドをより充分にするために、フレキシブルプリント配線板の両面にシールドフィルムを貼り合わせることも要請されているが、このような要請にも対応するため、より薄くてかつ高い屈曲性を有するシールドフィルムが望まれている。
【0005】
【特許文献1】
特開平5−3395号公報(第1欄第2〜8行、図1)
【特許文献2】
特開平7−122882号公報(第1欄第2〜6行、図1)
【0006】
【発明が解決しようとする課題】
本発明は、ベースフィルムとシールド層を基本構成とするシールドフィルムにおいて、薄くてかつ高い屈曲性を有するシールドフィルムを提供することを目的とする。本発明は、また、このような薄くてかつ高い屈曲性を有するシールドフィルムを製造するすぐれた方法を提供することを目的とする。
【0007】
本発明者は、検討の結果、ベースフィルムに芳香族ポリアミド樹脂を用いることにより、薄くてかつ高い屈曲性を有するシールドフィルムが得られることを見出した。
本発明者は、さらに、ベースフィルムとして芳香族ポリアミド樹脂を用い、かつシールド層が導電性接着剤層およびベースフィルム上に積層された金属薄膜からなるシールドフィルムについては、該ベースフィルム表面に窒素プラズマ処理をした後、該ベースフィルム表面に該金属薄膜の金属を蒸着することにより、ベースフィルムと金属薄膜との密着性にすぐれたシールドフィルムが得られることを見出した。
本発明は、このような知見に基づき完成されたものである。
【0008】
【課題を解決するための手段】
本発明は、シールド層と芳香族ポリアミド樹脂からなるベースフィルムを有することを特徴とするシールドフィルムを提供するものである。
本発明は、また、シールド層と芳香族ポリアミド樹脂からなるベースフィルムを有することを特徴とするシールドフィルムであって、該シールド層が、導電性接着剤層および/または金属薄膜を有することを特徴とするシールドフィルムを提供するものである。
本発明は、また、シールド層と芳香族ポリアミド樹脂からなるベースフィルムを有することを特徴とするシールドフィルムであって、該シールド層が、導電性接着剤層およびベースフィルム上に積層された金属薄膜を有することを特徴とするシールドフィルムを提供するものである。
本発明は、また、シールド層と芳香族ポリアミド樹脂からなるベースフィルムを有し、かつ該シールド層が導電性接着剤層を有するシールドフィルムにおいて、該導電性接着剤層が、エポキシーナイロン系接着剤に導電性フィラーを分散させたものであることを特徴とするシールドフィルムを提供するものである。
本発明は、さらに、シールド層と芳香族ポリアミド樹脂からなるベースフィルムを有し、該シールド層が、導電性接着剤層およびベースフィルム上に積層された金属薄膜を有することを特徴とするシールドフィルムの製造方法であって、ベースフィルム表面に窒素プラズマ処理をした後、該ベースフィルム表面に該金属薄膜の金属を蒸着する工程を有することを特徴とするシールドフィルムの製造方法を提供するものである。
【0009】
【発明の実施の形態】
本発明のシールドフィルムを構成するベースフィルムは、シールドフィルムに機械的強度を付与するとともに、フレキシブルプリント配線板に貼り合わされて使用される時には、シールド層の保護層の役割もする。上記のように本発明のシールドフィルムは、該ベースフィルムが芳香族ポリアミド樹脂からなることを特徴とする。ここで、芳香族ポリアミド樹脂からなるとは、芳香族ポリアミド樹脂を主体とするとの意味であって、本発明の趣旨を損なわない範囲で、他の樹脂などが混合されていてもよい。
芳香族ポリアミド樹脂は、芳香環がアミド基と直接結合した構造を持つ樹脂であり、一般にアラミド樹脂と言われている。芳香族ポリアミド樹脂としては、下記の構造式(I)で表されるパラ系アラミド樹脂や下記の構造式(II)で表されるメタ系アラミド樹脂などが例示される。
【0010】

Figure 2004273577
【0011】
式(I)および(II)中のXおよびYは芳香族ポリアミド樹脂に、溶解性、低吸湿性、ガスバリアー性などの性質を付与するための置換基であり、mおよびnは0以上の整数、pおよびqは重合度を表す。置換基XおよびYの種類は、本発明の趣旨を損なわない限り、特に限定されない。また、該置換基を有しない、すなわちmおよびnが0の芳香族ポリアミド樹脂も用いることが可能である。本発明においては、通常、弾性率が高いパラ系アラミド樹脂が好ましく用いられる。
【0012】
従来のシールドフィルムでは、ベースフィルムにポリフェニレンサルファイドなどが用いられていたが、芳香族ポリアミド樹脂は、引っ張り弾性率が11〜15GPとポリフェニレンサルファイドに比べても2.5〜4程度大きく、耐熱性も優れている。従って、ベースフィルムを薄くすることができるが、本発明者は、芳香族ポリアミド樹脂からなる薄いベースフィルムを用いることにより、さらに高い屈曲性も得られることを見出し本発明を完成したのである。
芳香族ポリアミド樹脂からなるベースフィルムの厚みとしては、2〜12μm程度が好ましく、より好ましくは4〜9μm程度である。厚みが、2μm未満であるとピンホールなどの存在確率が増え、本発明のシールドフィルムを構成するベースフィルムとして好ましくない場合があり、一方厚みが12μmを越えると屈曲性が低下する場合がある。
【0013】
本発明のシールドフィルムを構成するシールド層は、導電性を有し、シールド効果を担う層である。すなわち、使用時にはフレキシブルプリント配線板などの電気回路のグランド回路(アース回路)と接合され共振回路を形成し、その結果、発生した電磁ノイズを遮断しシールド効果を発揮する。
【0014】
このシールド層としては、導電性フィラーを樹脂中に分散させた導電性樹脂層、金属薄膜、これらの組合せなどが例示される。導電性樹脂層、金属薄膜などをベースフィルムなどに貼り合わせるためには、通常、接着剤層が必要となるが、導電性樹脂層として導電性フィラーを接着剤中に分散させた導電性接着剤層を用いることにより、該導電性接着剤層以外に接着剤層を設ける必要はなくなる。従って、このシールド層としては、導電性接着剤層または導電性接着剤層と金属薄膜の組合せが好ましい。特に、金属薄膜は薄くてシールドフィルムの可撓性、柔軟性を損なわないにもかかわらず優れたシールド効果を発揮するので、導電性接着剤層と金属薄膜の組合せが好ましい。
【0015】
導電性接着剤層は、導電性を付与する役割と接着剤層としての役割を担うため、そこに用いられる接着剤樹脂としては、導電性フィラーをよく分散し、かつ優れた接着性能を有する樹脂が好ましく用いられる。
フレキシブルプリント配線板分野では、ポリビニルブチラール/フェノール樹脂系、アクリロニトリルブタジンゴム(NBR)/フェノール樹脂系、エポキシ/ナイロン樹脂系、NBR/エポキシ樹脂系、アクリルエラストマー/エポキシ樹脂系等の接着剤が可撓性フィルムと銅箔との貼り合わせに使用されているが、本発明のシールドフィルムの導電性接着剤層に使用する接着剤樹脂としても、同様なものを用いることができる。また、従来のシールドフィルムで用いられているポリアミド(ナイロン)系の接着剤に難燃剤を添加したものも用いることができる。特に、エポキシ/ナイロン樹脂系接着剤は優れた接着性能を有するため好ましい。
【0016】
導電性接着剤層中に分散される導電性フィラーは、導電性接着剤層に導電性を付与するものであるが、該導電性フィラーとしては、金属フィラーやカーボンフィラーが例示される。
金属フィラーとしては、ニッケル、銅、銀などの金属粉、ハンダなどの合金粉、金属ウイスカー、銀がコートされた銅、金属メッキを施したガラス繊維やカーボンなどを挙げることができる。
接着剤樹脂への導電性フィラーの配合割合は、所望のシールド効果が達成される限り特に制限はなく、導電性フィラーの種類、形状、大きさ、比重などにより、その好ましい範囲は変動する。しかし、金属フィラーを用いる場合は、通常、接着剤樹脂100重量部に対して20〜300重量部が好ましく、特に好ましくは100〜200重量部である。
【0017】
導電性接着剤層の厚みの好ましい範囲も、接着剤樹脂の種類などにより変動し、機械的強度やフィルムとしての柔軟性などを考慮して決められる。接着剤樹脂としてエポキシ/ナイロン樹脂系接着剤を用いた場合は、その厚みの好ましい範囲は、5〜25μmである。厚みが5μm未満であると、フレキシブルプリント配線板に貼り合わされるとき、導体回路段差の空間をその導電性接着剤層で埋めきれず、この層を形成した初期段階での密着性が低下し、製造工程中の高温時に気泡が発生してはがれの原因となる。一方25μmを越えると、シールドフィルム、しいてはそれを貼り合わせたフレキシブルプリント配線板の可撓性、柔軟性が低下し、屈曲性が低下する場合がある。
【0018】
シールド層を構成する金属薄膜に用いられる金属としては、銀、銅などの導電性が高い金属が好ましく、特に好ましくは銀である。金属薄膜の厚みは、フィルムの可撓性、柔軟性を維持するため、通常、1μm程度以下が好ましく、さらに好ましくは0.4μm程度以下である。一方、銀、銅などの導電性が高い金属を用いた場合は、0.04μm程度以上あれば優れたシールド効果が得られる。この金属薄膜と導電性接着剤層との組合せからなるシールド層においては、シールド効果の大部分はこの金属薄膜により担われる。
【0019】
金属薄膜と導電性接着剤層との組合せからなるシールド層の場合、この金属薄膜はベースフィルムに接触して形成され、その上に導電性接着剤層が形成される。そして、導電性接着剤層とフレキシブルプリント配線板が貼り合わされ、通常、導電性接着剤層がフレキシブルプリント配線板中のグランド回路(アース回路)と接合し、金属薄膜は直接グランド回路(アース回路)と接合されない。従って、導電性接着剤層は、金属薄膜とグランド回路(アース回路)を導通する役割も担う。
【0020】
本発明のシールドフィルムは、上記の基本的構成、すなわちベースフィルムとシールド層に加えて、ベースフィルム側にハンドリングのための補強フィルムを、シールド層側にはゴミ付着防止の保護フィルムが貼付されて販売されることが多い。補強フィルムに用いられる樹脂としては、ポリエチレンテレフタレートなどが通常使用される。保護フィルムに用いられる樹脂としては、ポリエチレンなどが例示される。
【0021】
本発明のシールドフィルムは、ベースフィルム上にシールド層を形成することにより製造できる。中でも、シールド層が導電性接着剤層およびベースフィルムに接触して形成された金属薄膜を有するものは、芳香族ポリアミド樹脂からなるベースフィルムの片面に金属薄膜を形成し、その後該金属薄膜上に導電性接着剤層を形成して得ることができる。通常、ベースフィルムの他の面に補強フィルムがラミネートされ、また導電性接着剤層形成後、その上に保護フィルムがラミネートされる。
【0022】
金属薄膜をベースフィルム上に形成する方法としては、該金属の蒸着やスパッタリング、イオンプレーティングなどが例示されるが、成膜スピードの観点から蒸着が好ましい。
芳香族ポリアミド樹脂と銀などの金属の密着性は高くない。従って、芳香族ポリアミド樹脂からなるベースフィルム上に銀などをそのまま蒸着しても密着性が充分でない場合が多い。そこで通常は蒸着前に、厚み0.1μm程度のポリマー層をコートするプライマー処理がなされている。しかし、蒸着層の密着性をさらに向上させるために、好ましくは、蒸着前に、芳香族ポリアミド樹脂からなるベースフィルムに、窒素プラズマ処理を施した後蒸着を行う。窒素プラズマ処理を施すことにより、蒸着した金属薄膜と芳香族ポリアミド樹脂からなるベースフィルムとの密着性がさらに向上する。
窒素プラズマ処理の搬送速度としては、5〜25m/分程度の範囲が好ましい。搬送速度がこの範囲より低くても、高くても密着性が低下する傾向がある。窒素プラズマ処理は、通常は、プラズマ密度0.01〜0.2W/cm、圧力0.01〜0.1Torr程度の条件で行われる。
【0023】
補強フィルムとしては、上述のようにポリエチレンテレフタレートなどが用いられるが、好ましくは、微粘着剤などにより微粘着性が付与されたものが用いられる。この場合、該補強フィルムを、この微粘着性によりベースフィルム上に貼り付ける(ラミネートする)ことができる。
補強フィルムは、ハンドリングのためのものであり、シールドフィルムの製造のなるべく早い段階にラミネートされた方が、ハンドリングのためには好ましい。しかし、好ましくは、窒素プラズマ処理を施した後、補強フィルムをベースフィルム上にラミネートする。すなわち、ベースフィルム単独で窒素プラズマ処理を施した後、非処理面に補強フィルムを貼り付ける方法が好ましい。補強フィルムを貼り付けた後、窒素プラズマ処理を行うと、ポリエチレンテレフタレートなどの補強フィルムに含まれているオリゴマーなどの成分が、窒素プラズマ処理時の雰囲気により揮散し、ベースフィルムの表面に付着する。その結果、金属蒸着層の密着性が低下するので好ましくない。
【0024】
または、補強フィルムをベースフィルム上に貼り付けた後に窒素プラズマ処理を施す場合は、補強フィルムのベースフィルムと反対側を冷却しながら行うことが好ましい。冷却することにより、補強フィルムに含まれているオリゴマーなどの成分の揮散を押さえることができる。冷却の方法としては、水を用いる方法や、冷却キャンドラムを補強フィルムのベースフィルムと反対側に接触させる方法などを例示することができる。
【0025】
金属薄膜上へ導電性接着剤層を形成する方法としては、導電性フィラーと接着剤樹脂とを混合したペーストを作成し該ペーストを金属薄膜上に塗布した後硬化する方法、溶媒に接着剤樹脂を溶解し導電性フィラーを分散させた後、この液を金属薄膜上に塗布し、その後溶媒を除去して硬化する方法などが例示される。
【0026】
以下、図を用いて本発明のシールドフィルムの例をより具体的に説明するが、本発明は、この例に限定されるものではない。
図1は、本発明のシールドフィルムの一例を示す断面図である。この例では、芳香族ポリアミド樹脂からなるベースフィルム1の上に銀蒸着層2(金属薄膜)が形成されている。銀蒸着層2の上には、導電性接着剤層3が形成されている。導電性接着剤層3の銀蒸着層2とは反対側に、保護フィルム4がラミネートされており、ベースフィルム1の銀蒸着層2とは反対側に、補強フィルム5がラミネートされている。
【0027】
次に、上記のようなシールドフィルムを、フレキシブルプリント配線板に貼り合わせて用いる方法の例を説明する。
まずフレキシブルプリント配線板のカバーレイに直径1〜2mm程度の穴(スルーホール)を数カ所開けておき、グランド回路(アース回路)が露出するように加工しておく。次にシールドフィルムの保護フィルムを剥がして導電性接着剤層とカバーレイを熱プレスで貼り合せる。このときグランド回路と導電性接着剤層との接合部を形成することにより、回路のグランドと銀蒸着層との間で共振回路を形成でき、その結果グランドのノイズを減衰させることができる。熱プレス後は補強フィルムを取り除いてフレキシブルプリント配線板と一体化した機器部品として出荷する。
【0028】
図2および図3は、上記の例に従いシールドフィルムが、貼り合わされたフレキシブルプリント配線板を表す断面図である。図2は、フレキシブルプリント配線板の片面にシールドフィルムが貼り合わされた例、図3は、フレキシブルプリント配線板の両面にシールドフィルムが貼り合わされた例である。
図2および図3の例においては、フレキシブルプリント配線板は、カバーレイ6、グランド回路(アース回路)8、他の回路9、ポリイミド樹脂膜10からなり、カバーレイ6には直径1〜2mm程度の穴(スルーホール7)が開けられている。上記のように、導電性接着剤層3とカバーレイ6を熱プレスで貼り合せることにより、このスルーホール7の部分で導電性接着剤層3とグランド回路(アース回路)8との電気的接合が形成されている。なお、図3の例においては、スルーホール7は、カバーレイ6およびグランド回路(アース回路)8、ポリイミド樹脂膜10を貫通して形成されており、また導電性接着剤層3は、ポリイミド樹脂膜10側からも熱プレスで貼り合されるので、両面の導電性接着剤層3同士がここで電気的に接合している。その結果ポリイミド樹脂膜10側のシールド層も、グランド回路(アース回路)8と共振し、より大きなシールド効果を発揮することができる。
【0029】
【実施例】
次に本発明を、実施例を用いてより具体的に説明するが、実施例は、本発明の範囲を限定するものではない。
【0030】
実施例1
厚み4.4μmの芳香族ポリアミドフィルム(東レ製パラ系アラミド樹脂、商品名ミクトロン)を真空装置内にセットして、真空度1×10−5Torr台まで放置後、窒素ガスにより窒素プラズマ処理を施した。プラズマ処理中の真空度は0.02Torr、プラズマは単位面積あたり0.2W/cm程度であった。プラズマ時間は、該芳香族ポリアミドフィルムの送り速度の10m/分に対応する時間で行った。その後、厚み50μmのポリエチレンテレフタレートフィルム(東レ株式会社製:S10、微粘着剤付き)をプラズマ処理面とは反対の面にラミネートした。
次に、真空蒸着装置にて、厚さ0.1μmの銀蒸着層をプラズマ処理面上に形成した。
一方、エポキシ−ナイロン樹脂系接着剤(東海ゴム/東亜合成製、商品名:AS−78)に、還元銀粉末(福田金属粉工業製、商品名:AgC−74T)を2.5Vol%となるように加え、さらに粘度調整のための溶媒(トルエン、メタノール混合溶媒)を加えて粘度を2000Pa・Sとし、導電性接着剤を作成した。こうして作成した導電性接着剤を、銀蒸着層に、スロットダイコーターで塗布しその後乾燥した。乾燥温度130℃、塗布時の搬送速度は7m/分であった。その結果、乾燥後の導電性接着剤層の厚みは10μmとなった。最後に導電性接着剤層の銀蒸着層とは反対側に保護フィルムとしてポリエチレンをラミネートし、シールドフィルムを得た。
【0031】
このシールドフィルムについて、シールド性能の目安であるシート抵抗は100mΩ/口以下と問題ないことを確認した。その後、フレキシブルプリント配線板(厚み12μmの銅および厚み25μmのポリイミドからなる2層基板に、接着剤付きの厚み40μmのカバ−レイを貼り合わせたもの)を作成して、保護フィルムを剥がしたシールドフィルムを180℃×30分、30kg/cmの条件で熱プレスして貼り合わせた。その後MIT屈曲試験機にかけて屈曲性を評価した(評価条件は、R2.0、荷重500g、速度175回/分)。その結果を、表1に示す。
【0032】
実施例2〜8
芳香族ポリアミドフィルム、銀蒸着層、導電性接着剤層の厚みを変えた以外は実施例1と同様にして屈曲性などを評価した。その結果も表1に示す。
なお、20万回を越えてもシールドフィルムの断線が見られなかったものは、その時点で屈曲試験を停止した。
【0033】
比較例1〜3
比較例として、芳香族ポリアミドフィルムの代わりにポリフェニレンサルファイドフィルムを用いた以外は、実施例と同じ条件で屈曲性などを評価した。その結果も表1に示す。
その他の実施例を別表に記す。
【0034】
なお、銀蒸着前に芳香族ポリアミドフィルム表面に窒素プラズマ処理を施さない方法でもシールドフィルムを作成したが、このシールドフィルムは、銀蒸着層が比較的容易に剥離し、密着性は必ずしも充分ではなかった。
窒素プラズマ処理を、ポリエチレンテレフタレートフィルムのラミネート後に行った場合も、得られたシールドフィルムの銀蒸着層の密着性は必ずしも充分ではなかった。
【0035】
【表1】
Figure 2004273577
【0036】
屈曲性テスト
MIT法で、電気抵抗が初期値の10%増となるまでの屈曲回数で評価した。◎:15万回超 ○:15〜5万回超 △:5〜1万回超 ×:1万回以下
初期シールド特性
シートの電気抵抗値で評価した。 ○:100mΩ/口未満 △:100〜110mΩ/口 ×:110mΩ/口超
【0037】
表1の結果は、ベースフィルムとして芳香族ポリアミドフィルムを用いると、現状で良好とされるポリフェニレンサルファイドフィルムよりも良好な屈曲性が得られることを示している。
【0038】
【発明の効果】
本発明のシールドフィルムは、優れたシールド効果とともに、薄くてかつ高い屈曲性を有する。その屈曲性は、従来のポリフェニレンサルファイドをベースフィルムとして用いたシールドフィルムの7〜8倍にも達する。従って、フレキシブルプリント配線板のような繰返し屈曲される電気回路に好ましく使用される。
また、シールド層と芳香族ポリアミド樹脂からなるベースフィルムを有し、該シールド層が導電性接着剤層およびベースフィルムに接触して形成された金属薄膜を有することを特徴とするシールドフィルムについては、本発明の製造方法により、金属薄膜とベースフィルムとの密着性が高いシールドフィルムを得ることができる。
【図面の簡単な説明】
【図1】本発明のシールドフィルムの例を示す断面図である。
【図2】本発明のシールドフィルムが貼り合わされたフレキシブルプリント配線板の例を表す断面図である。
【図3】本発明のシールドフィルムが貼り合わされたフレキシブルプリント配線板の他の例を表す断面図である。
【符号の説明】
1. ベースフィルム
2. 銀蒸着層(金属薄膜)
3. 導電性接着剤層
4. 保護フィルム
5. 補強フィルム
6. カバーレイ
7. スルーホール
8. グランド回路(アース回路)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shielding film for shielding electromagnetic noise generated from an electric circuit such as a flexible printed wiring board.
[0002]
[Prior art]
Electromagnetic noise is generated from an electric circuit such as a flexible printed wiring board, which may have an undesired effect on other electric circuits and electric products. Therefore, a shield film for shielding electromagnetic wave noise is used, and a flexible printed wiring board in which the shield film is bonded has been proposed. An electrical circuit that is repeatedly bent, such as a flexible printed wiring board, is required to have a flexibility that can withstand repeated bending. Therefore, a shielding film used by being bonded to such an electric circuit is required to have not only an excellent shielding effect but also high flexibility (a property capable of withstanding repeated bending without deteriorating the shielding effect).
[0003]
As the shield film, a film having a basic structure of a base film and a shield layer (conductive layer) laminated thereon is widely known. Usually, a reinforcing film for handling is attached to the base film side, and a protective film for preventing adhesion of dust is attached to the shield layer side. In order to obtain an excellent shielding effect and high flexibility, a conductive thin film containing a metal thin film (JP-A-5-3395, column 1, lines 2 to 8, FIG. 1) and a metal filler are used as a shielding layer. An agent layer, a combination of the conductive adhesive layer and a metal thin film (JP-A-7-122882, column 1, lines 2 to 6, FIG. 1) and the like are used.
[0004]
However, the above-described shield film does not always sufficiently satisfy the recent high demands on the flexibility because the material of the base film and the flexibility of the shield layer itself are poor. Further, the conventional shield film requires a certain thickness for reasons such as obtaining mechanical strength. However, if the shield film is made thicker, it will lack flexibility as a whole when bonded to a flexible printed wiring board, and the effect of the shield film on the flexibility of the entire flexible printed wiring board to which the shield film is bonded And the shielding film also becomes a main cause of lowering the overall flexibility. At present, it is also required to attach a shield film to both sides of a flexible printed wiring board in order to more fully shield high-frequency noise, but in order to respond to such a demand, a thinner and higher bend is required. There is a demand for a shielding film having properties.
[0005]
[Patent Document 1]
JP-A-5-3395 (column 1, lines 2-8, FIG. 1)
[Patent Document 2]
JP-A-7-122882 (column 1, lines 2 to 6, FIG. 1)
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin and highly flexible shield film having a basic structure of a base film and a shield layer. Another object of the present invention is to provide an excellent method for producing such a thin and highly flexible shielding film.
[0007]
As a result of the study, the present inventors have found that a thin and highly flexible shield film can be obtained by using an aromatic polyamide resin for the base film.
The present inventor further proposes that the aromatic polyamide resin is used as the base film, and the shield layer is made of a conductive adhesive layer and a metal thin film laminated on the base film. After the treatment, it was found that a metal film of the metal thin film was vapor-deposited on the surface of the base film to obtain a shield film having excellent adhesion between the base film and the metal thin film.
The present invention has been completed based on such findings.
[0008]
[Means for Solving the Problems]
The present invention provides a shield film having a shield layer and a base film made of an aromatic polyamide resin.
The present invention also provides a shield film having a shield layer and a base film made of an aromatic polyamide resin, wherein the shield layer has a conductive adhesive layer and / or a metal thin film. To provide a shield film.
The present invention also relates to a shield film comprising a shield layer and a base film made of an aromatic polyamide resin, wherein the shield layer is a conductive adhesive layer and a metal thin film laminated on the base film. And a shield film characterized by having:
The present invention also provides a shield film having a shield film and a base film comprising an aromatic polyamide resin, and the shield layer having a conductive adhesive layer, wherein the conductive adhesive layer is an epoxy-nylon adhesive. And a conductive film dispersed in the conductive film.
The present invention further comprises a shield layer and a base film made of an aromatic polyamide resin, wherein the shield layer has a conductive adhesive layer and a metal thin film laminated on the base film. A method for producing a shield film, comprising a step of subjecting a base film surface to a nitrogen plasma treatment and then depositing a metal of the metal thin film on the base film surface. .
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The base film constituting the shield film of the present invention imparts mechanical strength to the shield film, and also functions as a protective layer of the shield layer when used by being bonded to a flexible printed wiring board. As described above, the shield film of the present invention is characterized in that the base film is made of an aromatic polyamide resin. Here, “comprising an aromatic polyamide resin” means that an aromatic polyamide resin is mainly used, and other resins and the like may be mixed within a range that does not impair the purpose of the present invention.
An aromatic polyamide resin is a resin having a structure in which an aromatic ring is directly bonded to an amide group, and is generally called an aramid resin. Examples of the aromatic polyamide resin include a para-aramid resin represented by the following structural formula (I) and a meta-aramid resin represented by the following structural formula (II).
[0010]
Figure 2004273577
[0011]
X and Y in the formulas (I) and (II) are substituents for imparting properties such as solubility, low hygroscopicity and gas barrier properties to the aromatic polyamide resin, and m and n are 0 or more. Integers, p and q represent the degree of polymerization. The types of the substituents X and Y are not particularly limited as long as the purpose of the present invention is not impaired. It is also possible to use an aromatic polyamide resin having no substituent, that is, m and n are 0. In the present invention, usually, a para-aramid resin having a high elastic modulus is preferably used.
[0012]
In the conventional shield film, polyphenylene sulfide or the like was used for the base film. However, the aromatic polyamide resin has a tensile modulus of 11 to 15 GP, which is about 2.5 to 4 larger than that of polyphenylene sulfide, and also has heat resistance. Are better. Accordingly, although the base film can be made thinner, the present inventors have found that higher flexibility can be obtained by using a thin base film made of an aromatic polyamide resin, and have completed the present invention.
The thickness of the base film made of an aromatic polyamide resin is preferably about 2 to 12 μm, and more preferably about 4 to 9 μm. When the thickness is less than 2 μm, the probability of existence of pinholes or the like increases, which may not be preferable as a base film constituting the shield film of the present invention. On the other hand, when the thickness exceeds 12 μm, the flexibility may decrease.
[0013]
The shield layer constituting the shield film of the present invention is a layer having conductivity and having a shielding effect. That is, at the time of use, a resonance circuit is formed by being joined to a ground circuit (earth circuit) of an electric circuit such as a flexible printed wiring board, and as a result, generated electromagnetic noise is cut off and a shielding effect is exhibited.
[0014]
Examples of the shield layer include a conductive resin layer in which a conductive filler is dispersed in a resin, a metal thin film, a combination thereof, and the like. To bond a conductive resin layer, a metal thin film, etc. to a base film, etc., an adhesive layer is usually required, but a conductive adhesive in which a conductive filler is dispersed in the adhesive as the conductive resin layer By using a layer, there is no need to provide an adhesive layer other than the conductive adhesive layer. Therefore, the shield layer is preferably a conductive adhesive layer or a combination of the conductive adhesive layer and a metal thin film. In particular, the combination of the conductive adhesive layer and the metal thin film is preferable because the metal thin film is thin and exhibits an excellent shielding effect despite not impairing the flexibility and flexibility of the shield film.
[0015]
Since the conductive adhesive layer plays a role of imparting conductivity and a role of an adhesive layer, as an adhesive resin used therein, a resin in which a conductive filler is well dispersed and which has excellent adhesive performance is used. Is preferably used.
In the field of flexible printed wiring boards, adhesives such as polyvinyl butyral / phenol resin, acrylonitrile butazine rubber (NBR) / phenol resin, epoxy / nylon resin, NBR / epoxy resin, and acrylic elastomer / epoxy resin can be used. Although used for bonding a flexible film and a copper foil, the same adhesive resin can be used as the adhesive resin used for the conductive adhesive layer of the shield film of the present invention. Further, a polyamide (nylon) -based adhesive used in a conventional shield film to which a flame retardant is added can also be used. In particular, an epoxy / nylon resin-based adhesive is preferable since it has excellent adhesive performance.
[0016]
The conductive filler dispersed in the conductive adhesive layer imparts conductivity to the conductive adhesive layer. Examples of the conductive filler include a metal filler and a carbon filler.
Examples of the metal filler include metal powders such as nickel, copper and silver, alloy powders such as solder, metal whiskers, silver-coated copper, metal-plated glass fibers and carbon.
The mixing ratio of the conductive filler to the adhesive resin is not particularly limited as long as a desired shielding effect is achieved, and the preferred range varies depending on the type, shape, size, specific gravity, and the like of the conductive filler. However, when a metal filler is used, it is usually preferably 20 to 300 parts by weight, particularly preferably 100 to 200 parts by weight, per 100 parts by weight of the adhesive resin.
[0017]
The preferred range of the thickness of the conductive adhesive layer also varies depending on the type of the adhesive resin and the like, and is determined in consideration of the mechanical strength, the flexibility as a film, and the like. When an epoxy / nylon resin adhesive is used as the adhesive resin, a preferable range of the thickness is 5 to 25 μm. When the thickness is less than 5 μm, when bonded to a flexible printed wiring board, the space of the conductor circuit step cannot be filled with the conductive adhesive layer, and the adhesion at the initial stage of forming this layer is reduced, Bubbles are generated at a high temperature during the manufacturing process and cause peeling. On the other hand, if the thickness exceeds 25 μm, the flexibility and flexibility of the shield film, and hence the flexible printed wiring board to which the shield film is attached, may decrease, and the flexibility may decrease.
[0018]
As a metal used for the metal thin film constituting the shield layer, a metal having high conductivity such as silver or copper is preferable, and silver is particularly preferable. The thickness of the metal thin film is usually preferably about 1 μm or less, more preferably about 0.4 μm or less, in order to maintain the flexibility and flexibility of the film. On the other hand, when a highly conductive metal such as silver or copper is used, an excellent shielding effect can be obtained if it is about 0.04 μm or more. In the shield layer made of a combination of the metal thin film and the conductive adhesive layer, most of the shielding effect is provided by the metal thin film.
[0019]
In the case of a shield layer composed of a combination of a metal thin film and a conductive adhesive layer, the metal thin film is formed in contact with the base film, and the conductive adhesive layer is formed thereon. Then, the conductive adhesive layer and the flexible printed wiring board are bonded together. Usually, the conductive adhesive layer is bonded to a ground circuit (earth circuit) in the flexible printed wiring board, and the metal thin film is directly connected to the ground circuit (earth circuit). Not joined. Therefore, the conductive adhesive layer also has a role of conducting the metal thin film and the ground circuit (earth circuit).
[0020]
The shield film of the present invention has, in addition to the above-described basic configuration, that is, a base film and a shield layer, a reinforcing film for handling on the base film side, and a protective film for preventing dust adhesion on the shield layer side. Often sold. As the resin used for the reinforcing film, polyethylene terephthalate or the like is usually used. Examples of the resin used for the protective film include polyethylene and the like.
[0021]
The shield film of the present invention can be manufactured by forming a shield layer on a base film. Among them, the shield layer having a metal thin film formed in contact with the conductive adhesive layer and the base film, a metal thin film is formed on one side of a base film made of an aromatic polyamide resin, and then formed on the metal thin film. It can be obtained by forming a conductive adhesive layer. Usually, a reinforcing film is laminated on the other surface of the base film, and a protective film is laminated thereon after forming the conductive adhesive layer.
[0022]
Examples of a method for forming a metal thin film on a base film include vapor deposition, sputtering, and ion plating of the metal, and vapor deposition is preferred from the viewpoint of film formation speed.
The adhesion between the aromatic polyamide resin and a metal such as silver is not high. Therefore, even when silver or the like is vapor-deposited on a base film made of an aromatic polyamide resin, adhesion is often insufficient. Therefore, a primer treatment for coating a polymer layer having a thickness of about 0.1 μm is usually performed before vapor deposition. However, in order to further improve the adhesion of the deposited layer, preferably, the base film made of the aromatic polyamide resin is subjected to a nitrogen plasma treatment before the deposition before the deposition. By performing the nitrogen plasma treatment, the adhesion between the deposited metal thin film and the base film made of the aromatic polyamide resin is further improved.
The transfer speed of the nitrogen plasma treatment is preferably in the range of about 5 to 25 m / min. If the transport speed is lower or higher than this range, the adhesion tends to decrease. The nitrogen plasma treatment is usually performed under the conditions of a plasma density of 0.01 to 0.2 W / cm 2 and a pressure of about 0.01 to 0.1 Torr.
[0023]
As the reinforcing film, polyethylene terephthalate or the like is used as described above, but preferably, a film to which a slight adhesiveness is imparted by a slight adhesive or the like is used. In this case, the reinforcing film can be attached (laminated) on the base film due to the slight adhesiveness.
The reinforcing film is for handling, and it is preferable that the reinforcing film is laminated as early as possible in the production of the shield film for handling. However, preferably, after the nitrogen plasma treatment, the reinforcing film is laminated on the base film. That is, a method is preferred in which after the base film alone is subjected to the nitrogen plasma treatment, a reinforcing film is attached to the non-treated surface. When a nitrogen plasma treatment is performed after the reinforcing film is attached, components such as oligomers contained in the reinforcement film such as polyethylene terephthalate volatilize in an atmosphere during the nitrogen plasma treatment and adhere to the surface of the base film. As a result, the adhesion of the metal deposition layer decreases, which is not preferable.
[0024]
Alternatively, in the case where the nitrogen plasma treatment is performed after attaching the reinforcing film to the base film, it is preferable to perform the cooling while cooling the side of the reinforcing film opposite to the base film. By cooling, volatilization of components such as oligomers contained in the reinforcing film can be suppressed. Examples of the cooling method include a method using water and a method in which a cooling can drum is brought into contact with the reinforcing film on the side opposite to the base film.
[0025]
As a method of forming a conductive adhesive layer on a metal thin film, a method of preparing a paste in which a conductive filler and an adhesive resin are mixed, applying the paste on a metal thin film and then curing the paste, a method of forming an adhesive resin in a solvent After dissolving the conductive filler and dispersing the conductive filler, the solution is applied onto a metal thin film, and then the solvent is removed and the resin is cured.
[0026]
Hereinafter, an example of the shield film of the present invention will be described more specifically with reference to the drawings, but the present invention is not limited to this example.
FIG. 1 is a sectional view showing an example of the shield film of the present invention. In this example, a silver deposition layer 2 (metal thin film) is formed on a base film 1 made of an aromatic polyamide resin. On the silver deposition layer 2, a conductive adhesive layer 3 is formed. The protective film 4 is laminated on the conductive adhesive layer 3 on the side opposite to the silver deposition layer 2, and the reinforcing film 5 is laminated on the base film 1 on the side opposite to the silver deposition layer 2.
[0027]
Next, an example of a method of using the above-described shield film by bonding it to a flexible printed wiring board will be described.
First, several holes (through holes) having a diameter of about 1 to 2 mm are formed in the coverlay of the flexible printed wiring board, and processed so that a ground circuit (earth circuit) is exposed. Next, the protective film of the shield film is peeled off, and the conductive adhesive layer and the cover lay are bonded by hot pressing. At this time, by forming the joint between the ground circuit and the conductive adhesive layer, a resonance circuit can be formed between the ground of the circuit and the silver deposition layer, and as a result, the ground noise can be attenuated. After the hot pressing, the reinforcing film is removed and the product is shipped as a device part integrated with the flexible printed wiring board.
[0028]
2 and 3 are cross-sectional views showing a flexible printed wiring board on which a shield film is adhered according to the above example. FIG. 2 shows an example in which a shield film is bonded to one side of a flexible printed wiring board, and FIG. 3 shows an example in which a shield film is bonded to both sides of a flexible printed wiring board.
2 and 3, the flexible printed wiring board includes a coverlay 6, a ground circuit (earth circuit) 8, another circuit 9, and a polyimide resin film 10. The coverlay 6 has a diameter of about 1 to 2 mm. Hole (through hole 7). As described above, by bonding the conductive adhesive layer 3 and the cover lay 6 by hot pressing, an electrical connection between the conductive adhesive layer 3 and the ground circuit (earth circuit) 8 at the through hole 7 is obtained. Is formed. In the example of FIG. 3, the through hole 7 is formed to penetrate the coverlay 6, the ground circuit (earth circuit) 8, and the polyimide resin film 10, and the conductive adhesive layer 3 is made of polyimide resin. Since the film 10 is also bonded by hot pressing, the conductive adhesive layers 3 on both surfaces are electrically joined here. As a result, the shield layer on the polyimide resin film 10 side also resonates with the ground circuit (earth circuit) 8, and can exhibit a greater shielding effect.
[0029]
【Example】
Next, the present invention will be described more specifically with reference to examples, but the examples do not limit the scope of the present invention.
[0030]
Example 1
A 4.4 μm-thick aromatic polyamide film (para-aramid resin manufactured by Toray Industries, trade name: Miktron) is set in a vacuum apparatus, and left to a degree of vacuum of 1 × 10 −5 Torr. gave. The degree of vacuum during the plasma treatment was 0.02 Torr, and the plasma was about 0.2 W / cm 2 per unit area. The plasma time was a time corresponding to 10 m / min of the feeding speed of the aromatic polyamide film. Then, a 50 μm-thick polyethylene terephthalate film (manufactured by Toray Industries, Inc .: S10, with a slight adhesive) was laminated on the surface opposite to the plasma-treated surface.
Next, a 0.1 μm-thick silver deposited layer was formed on the plasma-treated surface by a vacuum deposition apparatus.
On the other hand, an epoxy-nylon resin-based adhesive (manufactured by Tokai Rubber / Toa Gosei, trade name: AS-78) has a reduced silver powder (manufactured by Fukuda Metal Powder Co., Ltd., trade name: AgC-74T) of 2.5 Vol%. And a solvent for adjusting the viscosity (a mixed solvent of toluene and methanol) was added to adjust the viscosity to 2000 Pa · S to prepare a conductive adhesive. The conductive adhesive thus prepared was applied to the silver deposition layer by a slot die coater, and then dried. The drying temperature was 130 ° C., and the transport speed during coating was 7 m / min. As a result, the thickness of the conductive adhesive layer after drying was 10 μm. Finally, polyethylene was laminated as a protective film on the side of the conductive adhesive layer opposite to the silver deposited layer to obtain a shield film.
[0031]
With respect to this shield film, it was confirmed that the sheet resistance, which is a measure of the shield performance, was 100 mΩ / port or less and was not a problem. Thereafter, a flexible printed wiring board (a laminate in which a 40-μm-thick cover lay with an adhesive is adhered to a two-layer substrate made of 12 μm-thick copper and 25 μm-thick polyimide) was formed, and the protective film was peeled off. The films were bonded together by hot pressing at 180 ° C. for 30 minutes at 30 kg / cm 2 . Thereafter, the flexibility was evaluated using an MIT bending tester (evaluation conditions: R2.0, load 500 g, speed 175 times / min). Table 1 shows the results.
[0032]
Examples 2 to 8
Flexibility and the like were evaluated in the same manner as in Example 1 except that the thicknesses of the aromatic polyamide film, the silver deposition layer, and the conductive adhesive layer were changed. The results are also shown in Table 1.
When no breakage of the shield film was observed even after exceeding 200,000 times, the bending test was stopped at that time.
[0033]
Comparative Examples 1-3
As a comparative example, the flexibility and the like were evaluated under the same conditions as in the example except that a polyphenylene sulfide film was used instead of the aromatic polyamide film. The results are also shown in Table 1.
Other examples are shown in the separate table.
[0034]
Although a shield film was prepared by a method in which nitrogen plasma treatment was not performed on the surface of the aromatic polyamide film before silver deposition, the silver film was relatively easily peeled off from the shield film, and the adhesion was not always sufficient. Was.
Even when the nitrogen plasma treatment was performed after laminating the polyethylene terephthalate film, the adhesion of the silver deposited layer of the obtained shield film was not always sufficient.
[0035]
[Table 1]
Figure 2004273577
[0036]
The bending test was performed by the MIT method to evaluate the number of bending times until the electric resistance increased by 10% from the initial value. :: more than 150,000 times 5〜: more than 15 to 50,000 times Δ: more than 50,000 to 10,000 times ×: 10,000 times or less Evaluated by the electric resistance value of the initial shield characteristic sheet. :: less than 100 mΩ / mouth △: 100 to 110 mΩ / mouth ×: more than 110 mΩ / mouth
The results in Table 1 show that the use of an aromatic polyamide film as the base film provides better flexibility than the currently preferred polyphenylene sulfide film.
[0038]
【The invention's effect】
ADVANTAGE OF THE INVENTION The shield film of this invention is thin and has high flexibility with an excellent shielding effect. Its flexibility is as high as 7 to 8 times that of a conventional shield film using polyphenylene sulfide as a base film. Therefore, it is preferably used for a repeatedly bent electric circuit such as a flexible printed wiring board.
Further, a shield film having a shield layer and a base film made of an aromatic polyamide resin, wherein the shield layer has a metal thin film formed in contact with the conductive adhesive layer and the base film, According to the production method of the present invention, a shield film having high adhesion between a metal thin film and a base film can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a shield film of the present invention.
FIG. 2 is a cross-sectional view illustrating an example of a flexible printed wiring board to which a shield film of the present invention is attached.
FIG. 3 is a cross-sectional view illustrating another example of a flexible printed wiring board to which a shield film of the present invention is attached.
[Explanation of symbols]
1. 1. base film Silver deposition layer (metal thin film)
3. 3. conductive adhesive layer Protective film5. 5. Reinforcing film Coverlay 7. 7. Through hole Ground circuit (earth circuit)

Claims (11)

シールド層と芳香族ポリアミド樹脂からなるベースフィルムを有することを特徴とするシールドフィルム。A shield film comprising a shield layer and a base film made of an aromatic polyamide resin. ベースフィルムの厚みが2〜12μmであることを特徴とする請求項1に記載のシールドフィルム。The shield film according to claim 1, wherein the thickness of the base film is 2 to 12 m. シールド層が導電性接着剤層および/または金属薄膜を有することを特徴とする請求項1または請求項2に記載のシールドフィルム。3. The shield film according to claim 1, wherein the shield layer has a conductive adhesive layer and / or a metal thin film. シールド層が、導電性接着剤層およびベースフィルム上に積層された金属薄膜を有するものであることを特徴とする請求項1ないし請求項3に記載のシールドフィルム。The shield film according to claim 1, wherein the shield layer has a conductive adhesive layer and a metal thin film laminated on the base film. 導電性接着剤層が、エポキシーナイロン系接着剤に導電性フィラーを分散させたものであることを特徴とする請求項4に記載のシールドフィルム。The shield film according to claim 4, wherein the conductive adhesive layer is formed by dispersing a conductive filler in an epoxy-nylon-based adhesive. 導電性接着剤層の厚みが5〜25μmであることを特徴とする請求項5に記載のシールドフィルム。The shield film according to claim 5, wherein the thickness of the conductive adhesive layer is 5 to 25 m. 金属薄膜の厚みが0.04〜0.4μmであることを特徴とする請求項4ないし請求項6のいずれかに記載のシールドフィルム。The shield film according to any one of claims 4 to 6, wherein the thickness of the metal thin film is 0.04 to 0.4 µm. 金属薄膜の金属が銀であることを特徴とする請求項4ないし請求項7のいずれかに記載のシールドフィルム。The shield film according to any one of claims 4 to 7, wherein the metal of the metal thin film is silver. シールド層と芳香族ポリアミド樹脂からなるベースフィルムを有し、該シールド層が、導電性接着剤層および該ベースフィルム上に積層された金属薄膜を有することを特徴とするシールドフィルムの製造方法であって、ベースフィルム表面に窒素プラズマ処理をした後、該ベースフィルム表面に該金属薄膜の金属を蒸着する工程を有することを特徴とするシールドフィルムの製造方法。A method for manufacturing a shield film, comprising: a shield layer and a base film made of an aromatic polyamide resin, wherein the shield layer has a conductive adhesive layer and a metal thin film laminated on the base film. And subjecting the surface of the base film to a nitrogen plasma treatment and then depositing a metal of the metal thin film on the surface of the base film. 窒素プラズマ処理を、ベースフィルム単独で行うことを特徴とする請求項9に記載のシールドフィルムの製造方法。The method according to claim 9, wherein the nitrogen plasma treatment is performed on the base film alone. 窒素プラズマ処理を、ベースフィルムに補強フィルムを貼り付けた後、該補強フィルムを冷却しながら行うことを特徴とする請求項9に記載のシールドフィルムの製造方法。The method for producing a shield film according to claim 9, wherein the nitrogen plasma treatment is performed while attaching the reinforcing film to the base film and then cooling the reinforcing film.
JP2003059279A 2003-03-06 2003-03-06 Shield film and manufacturing method thereof Expired - Fee Related JP4340454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059279A JP4340454B2 (en) 2003-03-06 2003-03-06 Shield film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059279A JP4340454B2 (en) 2003-03-06 2003-03-06 Shield film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004273577A true JP2004273577A (en) 2004-09-30
JP4340454B2 JP4340454B2 (en) 2009-10-07

Family

ID=33122134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059279A Expired - Fee Related JP4340454B2 (en) 2003-03-06 2003-03-06 Shield film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4340454B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088127A1 (en) * 2005-02-18 2006-08-24 Toyo Ink Manufacturing Co., Ltd. Electromagnetic-wave-shielding adhesive film, process for producing the same, and method of shielding adherend from electromagnetic wave
JP2007294918A (en) * 2006-03-29 2007-11-08 Tatsuta System Electronics Kk Shielding film and shielding printed wiring board
WO2009090997A1 (en) * 2008-01-15 2009-07-23 Toyo Ink Manufacturing Co., Ltd. Curable electromagnetic shielding adhesive film, method for producing the same, use of the same, method for producing electromagnetic shielding article, and electromagnetic shielding article
JP2009290194A (en) * 2008-04-30 2009-12-10 Toyo Ink Mfg Co Ltd Curable electromagnetic shielding adhesive film, and method for manufacturing the same
JP2010041565A (en) * 2008-08-07 2010-02-18 Funai Electric Co Ltd Manufacturing method of microphone unit and its housing
WO2010067485A1 (en) * 2008-12-12 2010-06-17 ソニーケミカル&インフォメーションデバイス株式会社 Shield film and shielded circuit board
WO2011070736A1 (en) * 2009-12-08 2011-06-16 日本電気株式会社 Noise-suppressing tape
JP2011228339A (en) * 2010-04-15 2011-11-10 Renesas Electronics Corp Optical coupler
JP2013168643A (en) * 2012-01-17 2013-08-29 Toyo Ink Sc Holdings Co Ltd Electromagnetic wave shield sheet and manufacturing method of wiring board with electromagnetic wave shield layer
JP2015012098A (en) * 2013-06-27 2015-01-19 住友電工プリントサーキット株式会社 Shield film and printed wiring board
KR101523332B1 (en) * 2012-09-13 2015-05-27 디아이씨 가부시끼가이샤 Adhesive sheet, electromagnetic wave shielding sheet and electronic device
KR20160094858A (en) 2015-02-02 2016-08-10 토요잉크Sc홀딩스주식회사 Electromagnetic wave shielding sheet, printed wiring board and electronic devices
KR20160100815A (en) 2015-01-20 2016-08-24 (주)창성 Electromagnetic wave shielding film and manufacturing method thereof
JP2017220592A (en) * 2016-06-08 2017-12-14 信越ポリマー株式会社 Electromagnetic wave shield film and printed wiring board with electromagnetic wave shield film
WO2018147301A1 (en) * 2017-02-08 2018-08-16 タツタ電線株式会社 Electromagnetic wave shielding film, shielded printed wiring board, and electronic device
WO2018147302A1 (en) * 2017-02-08 2018-08-16 タツタ電線株式会社 Electromagnetic wave shielding film, shielded printed wiring board, and electronic device
WO2018147299A1 (en) * 2017-02-08 2018-08-16 タツタ電線株式会社 Electromagnetic wave shielding film, shielded printed wiring board, and electronic device
CN109819583A (en) * 2017-11-21 2019-05-28 拓自达电线株式会社 Electromagnetic shielding film

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100874302B1 (en) 2005-02-18 2008-12-18 도요 잉키 세이조 가부시끼가이샤 Electromagnetic shielding adhesive film, manufacturing method thereof and electromagnetic shielding method of adherend
WO2006088127A1 (en) * 2005-02-18 2006-08-24 Toyo Ink Manufacturing Co., Ltd. Electromagnetic-wave-shielding adhesive film, process for producing the same, and method of shielding adherend from electromagnetic wave
JP2007294918A (en) * 2006-03-29 2007-11-08 Tatsuta System Electronics Kk Shielding film and shielding printed wiring board
WO2009090997A1 (en) * 2008-01-15 2009-07-23 Toyo Ink Manufacturing Co., Ltd. Curable electromagnetic shielding adhesive film, method for producing the same, use of the same, method for producing electromagnetic shielding article, and electromagnetic shielding article
JP2009290194A (en) * 2008-04-30 2009-12-10 Toyo Ink Mfg Co Ltd Curable electromagnetic shielding adhesive film, and method for manufacturing the same
JP2010041565A (en) * 2008-08-07 2010-02-18 Funai Electric Co Ltd Manufacturing method of microphone unit and its housing
WO2010067485A1 (en) * 2008-12-12 2010-06-17 ソニーケミカル&インフォメーションデバイス株式会社 Shield film and shielded circuit board
JP5699937B2 (en) * 2009-12-08 2015-04-15 日本電気株式会社 Noise suppression tape
WO2011070736A1 (en) * 2009-12-08 2011-06-16 日本電気株式会社 Noise-suppressing tape
JP2011228339A (en) * 2010-04-15 2011-11-10 Renesas Electronics Corp Optical coupler
JP2013168643A (en) * 2012-01-17 2013-08-29 Toyo Ink Sc Holdings Co Ltd Electromagnetic wave shield sheet and manufacturing method of wiring board with electromagnetic wave shield layer
KR101523332B1 (en) * 2012-09-13 2015-05-27 디아이씨 가부시끼가이샤 Adhesive sheet, electromagnetic wave shielding sheet and electronic device
JP2015012098A (en) * 2013-06-27 2015-01-19 住友電工プリントサーキット株式会社 Shield film and printed wiring board
KR20160100815A (en) 2015-01-20 2016-08-24 (주)창성 Electromagnetic wave shielding film and manufacturing method thereof
KR20160094858A (en) 2015-02-02 2016-08-10 토요잉크Sc홀딩스주식회사 Electromagnetic wave shielding sheet, printed wiring board and electronic devices
KR20180062438A (en) 2015-02-02 2018-06-08 토요잉크Sc홀딩스주식회사 Electromagnetic wave shielding sheet, printed wiring board and electronic devices
JP2017220592A (en) * 2016-06-08 2017-12-14 信越ポリマー株式会社 Electromagnetic wave shield film and printed wiring board with electromagnetic wave shield film
CN107484324A (en) * 2016-06-08 2017-12-15 信越聚合物株式会社 Electromagnetic shielding film and the printing distributing board with electromagnetic shielding film
CN107484324B (en) * 2016-06-08 2021-08-17 信越聚合物株式会社 Electromagnetic wave shielding film and printed wiring board with electromagnetic wave shielding film
JP6404533B1 (en) * 2017-02-08 2018-10-10 タツタ電線株式会社 Electromagnetic shielding film, shield printed wiring board, and electronic equipment
KR102256655B1 (en) 2017-02-08 2021-05-25 타츠타 전선 주식회사 Electromagnetic shielding film, shielded printed wiring board, and electronic devices
JP6404535B1 (en) * 2017-02-08 2018-10-10 タツタ電線株式会社 Electromagnetic shielding film, shield printed wiring board, and electronic equipment
WO2018147302A1 (en) * 2017-02-08 2018-08-16 タツタ電線株式会社 Electromagnetic wave shielding film, shielded printed wiring board, and electronic device
JP6404534B1 (en) * 2017-02-08 2018-10-10 タツタ電線株式会社 Electromagnetic shielding film, shield printed wiring board, and electronic equipment
TWI761445B (en) * 2017-02-08 2022-04-21 日商拓自達電線股份有限公司 Electromagnetic wave shielding film, shielding printed wiring board and electronic equipment
TWI761446B (en) * 2017-02-08 2022-04-21 日商拓自達電線股份有限公司 Electromagnetic wave shielding film, shielding printed wiring board and electronic equipment
TWI761447B (en) * 2017-02-08 2022-04-21 日商拓自達電線股份有限公司 Electromagnetic wave shielding film, shielding printed wiring board and electronic equipment
CN110199583A (en) * 2017-02-08 2019-09-03 拓自达电线株式会社 Electromagnetic shielding film, shielding printed wiring board and electronic equipment
CN110199584A (en) * 2017-02-08 2019-09-03 拓自达电线株式会社 Electromagnetic shielding film, shielding printed wiring board and electronic equipment
CN110235538A (en) * 2017-02-08 2019-09-13 拓自达电线株式会社 Electromagnetic shielding film, shielding printed wiring board and electronic equipment
KR20190116973A (en) * 2017-02-08 2019-10-15 타츠타 전선 주식회사 Electromagnetic shielding film, shielded printed wiring boards and electronic equipment
KR20190116971A (en) * 2017-02-08 2019-10-15 타츠타 전선 주식회사 Electromagnetic shielding film, shielded printed wiring boards and electronic equipment
KR20190116972A (en) * 2017-02-08 2019-10-15 타츠타 전선 주식회사 Electromagnetic shielding film, shielded printed wiring boards and electronic equipment
CN110235538B (en) * 2017-02-08 2020-12-22 拓自达电线株式会社 Electromagnetic wave shielding film, shielded printed wiring board, and electronic device
CN110199583B (en) * 2017-02-08 2020-12-22 拓自达电线株式会社 Electromagnetic wave shielding film, shielded printed wiring board, and electronic device
CN110199584B (en) * 2017-02-08 2021-03-16 拓自达电线株式会社 Electromagnetic wave shielding film, shielded printed wiring board, and electronic device
KR102231053B1 (en) 2017-02-08 2021-03-22 타츠타 전선 주식회사 Electromagnetic shielding film, shielded printed wiring board, and electronic devices
KR102245681B1 (en) 2017-02-08 2021-04-27 타츠타 전선 주식회사 Electromagnetic shielding film, shielded printed wiring board, and electronic devices
WO2018147299A1 (en) * 2017-02-08 2018-08-16 タツタ電線株式会社 Electromagnetic wave shielding film, shielded printed wiring board, and electronic device
WO2018147301A1 (en) * 2017-02-08 2018-08-16 タツタ電線株式会社 Electromagnetic wave shielding film, shielded printed wiring board, and electronic device
TWI743368B (en) * 2017-11-21 2021-10-21 日商拓自達電線股份有限公司 Electromagnetic wave shielding film and shielding printed wiring board
KR102352852B1 (en) * 2017-11-21 2022-01-17 타츠타 전선 주식회사 Electromagnetic wave shield film
CN109819583B (en) * 2017-11-21 2022-02-22 拓自达电线株式会社 Electromagnetic wave shielding film
JP2019096684A (en) * 2017-11-21 2019-06-20 タツタ電線株式会社 Electromagnetic wave shield film
KR20190058265A (en) * 2017-11-21 2019-05-29 타츠타 전선 주식회사 Electromagnetic wave shield film
CN109819583A (en) * 2017-11-21 2019-05-28 拓自达电线株式会社 Electromagnetic shielding film

Also Published As

Publication number Publication date
JP4340454B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
KR101561132B1 (en) Shield film for printed wiring board, and printed wiring board
JP4340454B2 (en) Shield film and manufacturing method thereof
JP6467701B2 (en) Electromagnetic wave shielding film, flexible printed wiring board with electromagnetic wave shielding film, and manufacturing method thereof
JP6435540B2 (en) Electromagnetic wave shielding film, flexible printed wiring board with electromagnetic wave shielding film, and manufacturing method thereof
JP2009038278A5 (en)
JP6184025B2 (en) Electromagnetic wave shielding film and method for producing flexible printed wiring board with electromagnetic wave shielding film
JP2017195278A (en) Electromagnetic wave shielding film and printed wiring board with the same
JP4324029B2 (en) Laminated film having metal film and adhesive layer and method for producing the same
JP7256618B2 (en) Electromagnetic wave shielding film with transfer film, method for producing electromagnetic wave shielding film with transfer film, and method for producing shield printed wiring board
JP2018056330A (en) Electromagnetic wave shield film, method of manufacturing electromagnetic wave shield film and method of manufacturing printed wiring board with electromagnetic wave shield film
JP6839669B2 (en) Electromagnetic wave shield film
CN112314064A (en) Method for manufacturing shielded printed wiring board and shielded printed wiring board
JP7424745B2 (en) Electromagnetic shielding film, printed wiring board with electromagnetic shielding film, and manufacturing method thereof
JP5457308B2 (en) Flexible printed wiring board
JP2018201056A (en) Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and manufacturing methods therefor
JP2018201055A (en) Electromagnetic wave shield film, flexible printed circuit board with electromagnetic wave shield film, and manufacturing method therefor
JP2020064927A (en) Electromagnetic wave shield film, manufacturing method of the same, and printed wiring board with electromagnetic wave shield film
WO2022131183A1 (en) Electromagnetic wave shielding film and shielded printed wiring board
JP2019016782A (en) Electromagnetic wave shielding film and method of producing the same, and printed wiring board with electromagnetic wave shielding film and method of manufacturing the same
JP2006310643A (en) Flexible printed wiring board
JP2018056424A (en) Method for manufacturing electromagnetic wave shield film and method for manufacturing printed-wiring board with electromagnetic wave shield film
JP2018056423A (en) Method for manufacturing electromagnetic wave shield film and method for manufacturing printed-wiring board with electromagnetic wave shield film
JP2004079594A (en) Multilayer flexible printed wiring board
TW202233744A (en) Electromagnetic wave shielding film and printed circuit board with electromagnetic wave shielding film
JP2018129472A (en) Electromagnetic wave shielding film and printed wiring board with electromagnetic wave shielding film

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees