【0001】
【発明の属する技術分野】
本発明は優れた耐屈曲性及び打抜き性を有する多層フレキシブル印刷配線板に関するものである。
【0002】
【従来の技術】
近年、エレクトロニクス分野の発展が目覚ましく、特に通信用、民生用の電子機器の小型化、軽量化、高密度化が進み、これらの性能に対する要求がますます高度なものとなっている。このような要求に対して、フレキシブル印刷配線板は可撓性を有し、繰り返し屈曲に耐えるため狭い空間に立体的高密度の実装が可能であり、電子機器への配線、ケーブル、或いはコネクター機能を付与した複合部品としての用途が拡大しつつある。
特に、最近では電子機器の小型化、高性能化に伴い、回路の密度を上げるためにフレキシブル印刷配線板を多層化する傾向がみられる。この多層フレキシブル印刷配線板とは片面もしくは両面フレキシブル印刷配線用基板に、常法により回路を作製し、これを保護するためのカバーレイフィルムを貼り合わせ、接着シートを用いて多層化したものであり、必要に応じてスルーホール加工により積層された回路の導通を行う。このような複雑な形状及び複雑な工程を経て得られる多層フレキシブル印刷配線板は、片面フレキシブル印刷配線板に比べ収率及び信頼性が若干低くなる傾向がみられる。
【0003】
従来、このような多層フレキシブル印刷配線板に対するより優れた耐屈曲性の要求に対して、回路の構造面、製造面及び設計面から対応してきたが、昨今のより高度な耐屈曲性の要求に対して十分に対応できるものはなかった。
特に、最近では電子機器の小型化、高性能化に伴い、フレキシブル印刷配線板を多層化する傾向がみられる。この多層フレキシブル印刷配線板は2層以上の回路層を有するもので、これを用いる際、通常の片面品に比べドリル加工及びスルーホール鍍金等の複雑な加工工程が必要である。また、基材が厚いため外形加工工程での、打ち抜き性に問題があり、これが多層フレキシブル印刷配線板の収率を落とす要因の1つとなっていた。この問題を解決するために外形加工時に使用する金型の改良、回路設計の検討が行われており、ある程度の効果が得られているが、複雑な手順を必要とするものが多く、より簡便に打ち抜き性を改良する方法はこれまでなかった。
【0004】
【発明が解決しようとする課題】
本発明の課題は、高度な耐屈曲性及び優れた打抜き性を有する多層フレキシブル印刷配線板を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、このような課題を解決すべく鋭意検討した結果、各基材に使用される接着剤層の厚さの範囲を特定することによって、高度な耐屈曲性が得られることを見出だし本発明を完成した。
即ち、本発明は片面フレキシブル印刷配線板2枚を接着シートを介して積層し、更に、片面フレキシブル印刷配線板の回路上にカバーレイフィルムを積層してなる多層フレキシブル印刷配線板において、各基材の接着剤層の厚さが、下記のような範囲であることを特徴とする、耐屈曲性に優れた多層フレキシブル印刷配線板である。
カバーレイフィルムの接着剤層の厚さ 10μm〜25μm、
フレキシブル印刷配線板の接着剤層の厚さ 3μm〜18μm、
接着シートの接着剤層の厚さ 5μm〜25μm。
【0006】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の多層フレキシブル印刷配線板の一例について、図1にしたがって説明する。図1の▲1▼銅箔、▲3▼接着剤層、▲5▼電気絶縁性フィルムよりなる2枚の片面フレキシブル印刷配線用基板aの▲5▼電気絶縁性フィルム面と、所定の位置を孔開け加工した▲4▼接着シートとを▲4▼接着シートをサンドイッチ状に挟んで積層、加熱、圧着し、得られた多層板の▲1▼銅箔面に、常法により所定の回路を形成して銅回路とし、更に、上記2つの銅回路面に、カバーレイフィルムb(図1中、▲2▼接着剤層及び▲5▼電気絶縁性フィルムよりなる)の▲2▼接着剤層の面を各々加熱圧着して、本発明の多層フレキシブル印刷配線板を得る。また、所定の位置を孔開け加工してない▲4▼接着シートを使用した多層フレキシブル印刷配線板(図2)においても本発明の効果が得られる。
【0007】
本発明におけるカバーレイフィルムは、電気絶縁性フィルムの片面に接着剤を塗布し半硬化状態としたもので、一般には離型材と貼り合わせた状態で供給される。使用にあたっては、離型材を剥がして、接着剤付き電気絶縁性フィルムの状態で使用する。
本発明における接着シートは、離型材の両面に接着剤を塗布し半硬化状態としたものと離型材とを貼り合わせたもので、フレキシブル印刷配線板とフレキシブル印刷配線板もしくはフレキシブル印刷配線用基板とフレキシブル印刷配線用基板とを貼り合わせて多層フレキシブル印刷配線板を製造する場合、フレキシブル印刷配線板と補強板とを貼り合わせる場合等の接着材料として使用される。
【0008】
本発明における電気絶縁性フィルムとしては、ポリイミドフィルム、PET(ポリエチレンテレフタレート)フィルム、ポリエステルフィルム、ポリパラバン酸フィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルファイドフィルム、アラミドフィルム等が例示され、なかでも耐熱性、寸法安定性、機械特性が優れているので、ポリイミドフィルムが好ましい。
このフィルムの厚さは、できるだけ薄くすることが好ましく、本発明の効果を十分に得るためには、12.5μm〜25μmの範囲であることが好ましい。12.5μm未満のフィルムはこれを製造することが困難であり、25μmを超えると耐屈曲性に悪影響を及ぼし、本発明の効果が十分に得られなくなる。
【0009】
一般に、フレキシブル印刷配線板に使用される金属箔としては、電解銅箔、圧延銅箔、アルミニウム箔、タングステン箔、鉄箔等が例示されるが、本発明においては加工性、耐屈曲性、電気伝導率が優れていることから電解銅箔または圧延銅箔が用いられる。銅箔の厚さは可能な限り薄くすることが好ましく、本発明の効果を十分に得るためには、9μm〜35μmの範囲内が好ましく、より好ましくは9μm〜18μmの範囲内である。9μm未満の銅箔の製造が困難であり、35μmを超えると耐屈曲性に悪影響を及ぼし、本発明の効果が十分に得られなくなる。
【0010】
本発明における接着剤は、ナイロン/エポキシ系、NBR/フェノール系、NBR/エポキシ系、ポリエステル/エポキシ系、イミド/エポキシ系等が挙げられ、一般に、フレキシブル印刷配線板の材料として使用されているものであれば特に限定されるものではない。接着剤の厚さは用途によって異なり、フレキシブル印刷配線用基板では3μm以上、18μm以下が好ましく、更に好ましくは5μm〜13μmである。18μmを超えると耐屈曲性に悪影響を及ぼすことから本発明の効果が十分に得られなくなる。
本発明におけるカバーレイフィルムの接着剤層の厚さは10μm〜25μmが好ましく、より好ましくは10μm〜20μmである。10μm未満では銅回路の埋め込み性に問題を生じ、25μmを超えると耐屈曲性に悪影響を及ぼすことから本発明の効果が十分に得られなくなる。
本発明における接着シートの接着剤層の厚さは5μm〜25μmが好ましく、より好ましくは10μm〜20μmである。5μm未満では取り扱い時の作業性、密着性、埋め込み性等に問題を生じ、25μmを超えると耐屈曲性に悪影響を及ぼすことから本発明の効果が十分に得られなくなる。
特に接着シートに孔開け加工を施す多層フレキシブル印刷配線板では、接着シートの接着剤層の厚さは重要で、25μmを超えると、接着シートがある部分とない部分の段差が大きくなるため、回路の変形、断線が生じやすくなる。
それぞれの厚さの範囲を超えると耐屈曲性に悪影響を及ぼすので、本発明の特徴が十分に得られなくなる。また、この段差部分が大きいと屈曲時の応力がここに集中し、耐屈曲性が著しく低下する。
【0011】
【実施例】
次に、実施例により本発明を更に詳しく説明するが、本発明はこれら実施例によって限定されるものではない。
【0012】
《物性評価用サンプルの作製方法》
サンプルA
長さ160mm(MD方向)、幅100mm(TD方向)に切断した2枚の片面フレキシブル印刷配線用基板aの電気絶縁性フィルム面と、長さ50mm、幅100mmに切断した2枚の接着シート▲4▼とを160℃、4.9MPa、30分の条件で加熱、圧着して、図3に示す断面構造を有する多層板を作製する。この多層板の銅箔面の両面に、表裏が同位置になるように、図5に示す回路を常法により作製する。更に、長さ160mm、幅100mmに切断した2枚のカバーレイフィルムbを160℃、4.9MPa、30分の条件で加熱、圧着し、これを所定の形状に切断し、図6に示す評価用サンプルAを作製する。
【0013】
サンプルB
長さ160mm(MD方向)、幅100mm(TD方向)に切断した2枚の片面フレキシブル印刷配線用基板aの電気絶縁性フィルム面と、長さ160mm、幅100mmに切断した1枚の接着シート▲4▼とを160℃、4.9MPa、30分の条件で加熱、圧着して、図4に示す断面構造を有する多層板を作製する。この多層板の銅箔面の両面に、サンプルAと同様にして、表裏が同位置になるように、図5に示す回路を常法により作製する。更に、長さ160mm、幅100mmに切断した2枚のカバーレイフィルムbを160℃、4.9MPa、30分の条件で加熱、圧着し、これを所定の形状に切断し、図7に示す評価用サンプルBを作製する。
【0014】
《耐屈曲性評価方法》
以下の方法で耐屈曲性を評価する。
IPCFC241に準拠し、評価用のサンプルA及びサンプルBの屈曲部について、下記の条件で耐屈曲性の評価を行う。なお、表面もしくは裏面回路のどちらかの電気抵抗が初期抵抗に比して、10%上昇した時点で測定を終了する。
屈曲半径:2mm
屈曲速度:2、000rpm
ストローク:20mm
測定方向:MDのみ
【0015】
(実施例1)
厚さ25μmのカプトンフィルム/100H(東レ・デュポン社製ポリイミドフィルムの商品名)と厚さ10μmのエポキシ/NBR系接着剤層及び厚さ18μmの圧延銅箔/BHY22BT(ジャパンエナジー社製圧延銅箔の商品名)からなる片面フレキシブル印刷配線用基板、厚さ25μmのカプトンフィルム/100H(前出)と厚さ25μmのエポキシ/NBR系接着剤層からなるカバーレイフィルム、離型材と厚さ15μmのエポキシ/NBR系接着剤層からなる接着シートを用いて物性評価用サンプルをA,Bを作製した。これについて耐屈曲性を測定し、その結果を表1に示した。
【0016】
(実施例2〜4、比較例1〜3)
表1に示すような各種基材を使用し、実施例1と全く同じ方法で作製したサンプルについて、実施例1と同様の方法で評価し、その結果を表1に示した。
【0017】
【表1】
【0018】
【発明の効果】
本発明によって、優れた耐屈曲性を有するフレキシブル印刷配線板を提供することが可能となり、これによりフレキシブル印刷配線板の信頼性がより高くなる。
【図面の簡単な説明】
【図1】本発明の多層フレキシブル印刷配線板の一例の断面説明図である。
【図2】本発明の多層フレキシブル印刷配線板の一例であって、所定の位置に孔開け加工を施してない接着シートを使用したものの断面説明図である。
【図3】2枚の片面フレキシブル印刷配線用基板の電気絶縁性フィルム面と、2枚の接着シートとを加熱、圧着して得られた多層板の断面説明図である。
【図4】2枚の片面フレキシブル印刷配線用基板の電気絶縁性フィルム面と、1枚の接着シートとを加熱、圧着して得られた多層板の断面説明図である。
【図5】銅箔面上に常法により作製される回路の平面説明図である。
【図6】実施例で使用するサンプルAの(1)断面説明図及び(2)平面説明図である。
【図7】実施例で使用するサンプルBの(1)断面説明図及び(2)平面説明図である。
【符号の説明】
▲1▼ 銅箔または銅回路(銅箔上に回路を形成したもの)、
▲2▼ カバーレイフィルムの接着剤層、
▲3▼ フレキシブル印刷配線用基板の接着剤層、
▲4▼ 接着シート、
▲5▼ 電気絶縁性フィルム
a 片面フレキシブル印刷配線用基板、
b カバーレイフィルム。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer flexible printed wiring board having excellent bending resistance and punching properties.
[0002]
[Prior art]
In recent years, the development of the electronics field has been remarkable, and in particular, electronic devices for communication and consumer use have been reduced in size, weight, and density, and demands for these performances have been increasingly high. In response to such demands, flexible printed wiring boards are flexible and can be mounted three-dimensionally and with high density in a narrow space to withstand repeated bending, and can perform wiring, cable, or connector functions for electronic devices. The use as a composite part provided with is increasing.
In particular, recently, with the miniaturization and high performance of electronic devices, there is a tendency to increase the number of flexible printed wiring boards in order to increase the density of circuits. This multi-layer flexible printed wiring board is a circuit that is prepared by a conventional method on a substrate for single-sided or double-sided flexible printed wiring, a coverlay film for protecting the circuit is laminated, and a multilayer is formed using an adhesive sheet. The continuity of the circuit laminated by through-hole processing is performed as necessary. Multilayer flexible printed wiring boards obtained through such complicated shapes and complicated processes tend to have slightly lower yield and reliability than single-sided flexible printed wiring boards.
[0003]
Conventionally, we have responded to the demand for better bending resistance for such multilayer flexible printed wiring boards from the viewpoint of circuit structure, manufacturing and design, but to meet the recent demand for higher bending resistance. There was nothing that could respond adequately.
In particular, recently, with the miniaturization and high performance of electronic devices, there has been a tendency to increase the number of layers of flexible printed wiring boards. This multilayer flexible printed wiring board has two or more circuit layers, and when using this, requires more complicated processing steps such as drilling and through-hole plating than ordinary single-sided products. In addition, since the base material is thick, there is a problem in the punching property in the outer shape processing step, and this is one of the factors that reduce the yield of the multilayer flexible printed wiring board. In order to solve this problem, improvement of the die used for external processing and study of circuit design have been carried out, and some effects have been obtained, but many require complicated procedures, making it easier to use. There has been no method for improving the punching performance.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a multilayer flexible printed wiring board having high bending resistance and excellent punching properties.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve such problems, and as a result, have found that by specifying the range of the thickness of the adhesive layer used for each base material, a high degree of bending resistance can be obtained. The present invention has been completed.
That is, the present invention relates to a multi-layer flexible printed wiring board in which two single-sided flexible printed wiring boards are laminated via an adhesive sheet and a coverlay film is further laminated on a circuit of the single-sided flexible printed wiring board. Wherein the thickness of the adhesive layer is within the following range:
The thickness of the adhesive layer of the coverlay film is 10 μm to 25 μm,
The thickness of the adhesive layer of the flexible printed wiring board is 3 μm to 18 μm,
The thickness of the adhesive layer of the adhesive sheet is 5 μm to 25 μm.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
One example of the multilayer flexible printed wiring board of the present invention will be described with reference to FIG. The (1) copper foil, (3) adhesive layer, and (5) two-sided flexible printed wiring board a composed of an electrically insulating film in FIG. The perforated (4) adhesive sheet and (4) the adhesive sheet are sandwiched, sandwiched, laminated, heated and pressed, and a predetermined circuit is formed on the (1) copper foil surface of the obtained multilayer board by a conventional method. Formed into a copper circuit, and on the two copper circuit surfaces, (2) adhesive layer of coverlay film b (consisting of (2) adhesive layer and (5) electrical insulating film in FIG. 1) Are heat-pressed to obtain the multilayer flexible printed wiring board of the present invention. Also, the effect of the present invention can be obtained in a multilayer flexible printed wiring board (FIG. 2) using an adhesive sheet in which a predetermined position is not perforated.
[0007]
The cover lay film in the present invention is obtained by applying an adhesive to one surface of an electrically insulating film to be in a semi-cured state, and is generally supplied in a state of being bonded to a release material. In use, the release material is peeled off and used in the state of an electrically insulating film with an adhesive.
The adhesive sheet in the present invention is a material obtained by applying an adhesive to both surfaces of the release material and bonding the release material to a semi-cured state, and a flexible printed wiring board and a flexible printed wiring board or a substrate for flexible printed wiring. It is used as an adhesive material when a flexible printed wiring board is bonded to a flexible printed wiring board to produce a multilayer flexible printed wiring board, or when a flexible printed wiring board is bonded to a reinforcing plate.
[0008]
Examples of the electrically insulating film in the present invention include a polyimide film, a PET (polyethylene terephthalate) film, a polyester film, a polyparabanic acid film, a polyetheretherketone film, a polyphenylene sulfide film, an aramid film, and the like. Polyimide films are preferred because of their excellent dimensional stability and mechanical properties.
The thickness of this film is preferably as thin as possible, and is preferably in the range of 12.5 μm to 25 μm in order to sufficiently obtain the effects of the present invention. It is difficult to produce a film having a thickness of less than 12.5 μm, and if it exceeds 25 μm, the bending resistance is adversely affected, and the effect of the present invention cannot be sufficiently obtained.
[0009]
Generally, examples of the metal foil used for the flexible printed wiring board include an electrolytic copper foil, a rolled copper foil, an aluminum foil, a tungsten foil, an iron foil, and the like. Electrolytic copper foil or rolled copper foil is used because of its excellent conductivity. The thickness of the copper foil is preferably as thin as possible. In order to sufficiently obtain the effects of the present invention, the thickness is preferably in the range of 9 μm to 35 μm, and more preferably in the range of 9 μm to 18 μm. It is difficult to produce a copper foil having a thickness of less than 9 μm, and if it exceeds 35 μm, the bending resistance is adversely affected, and the effect of the present invention cannot be sufficiently obtained.
[0010]
The adhesive in the present invention includes nylon / epoxy type, NBR / phenol type, NBR / epoxy type, polyester / epoxy type, imide / epoxy type and the like, and is generally used as a material of a flexible printed wiring board. If so, there is no particular limitation. The thickness of the adhesive varies depending on the application, and is preferably 3 μm or more and 18 μm or less, more preferably 5 μm to 13 μm for a substrate for flexible printed wiring. If the thickness exceeds 18 μm, the bending resistance is adversely affected, so that the effects of the present invention cannot be sufficiently obtained.
The thickness of the adhesive layer of the cover lay film in the present invention is preferably from 10 μm to 25 μm, more preferably from 10 μm to 20 μm. If the thickness is less than 10 μm, there is a problem in the embedding property of the copper circuit, and if it exceeds 25 μm, the bending resistance is adversely affected, so that the effects of the present invention cannot be sufficiently obtained.
The thickness of the adhesive layer of the adhesive sheet in the present invention is preferably 5 μm to 25 μm, and more preferably 10 μm to 20 μm. If it is less than 5 μm, problems will occur in workability, adhesion, embedding, and the like during handling, and if it exceeds 25 μm, the bending resistance will be adversely affected, and the effect of the present invention will not be sufficiently obtained.
In particular, in a multilayer flexible printed wiring board in which a hole is formed in an adhesive sheet, the thickness of the adhesive layer of the adhesive sheet is important. Deformation and disconnection are likely to occur.
Exceeding the respective thickness ranges adversely affects the bending resistance, so that the features of the present invention cannot be sufficiently obtained. If the step is large, the stress at the time of bending is concentrated here, and the bending resistance is significantly reduced.
[0011]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0012]
<< Method of preparing samples for physical property evaluation >>
Sample A
The two electrically-insulating film surfaces of the single-sided flexible printed wiring board a cut to a length of 160 mm (MD direction) and a width of 100 mm (TD direction), and two adhesive sheets cut to a length of 50 mm and a width of 100 mm 4) is heated and pressed at 160 ° C. and 4.9 MPa for 30 minutes to produce a multilayer board having a cross-sectional structure shown in FIG. The circuit shown in FIG. 5 is manufactured by a conventional method so that the front and back surfaces are at the same position on both sides of the copper foil surface of the multilayer board. Further, the two coverlay films b cut into a length of 160 mm and a width of 100 mm were heated and pressed at 160 ° C. and 4.9 MPa for 30 minutes, cut into predetermined shapes, and evaluated as shown in FIG. Sample A is prepared.
[0013]
Sample B
An electrically insulating film surface of two single-sided flexible printed wiring boards a cut to a length of 160 mm (MD direction) and a width of 100 mm (TD direction), and one adhesive sheet cut to a length of 160 mm and a width of 100 mm 4) is heated and pressed at 160 ° C. and 4.9 MPa for 30 minutes to produce a multilayer board having a sectional structure shown in FIG. The circuit shown in FIG. 5 is produced on both sides of the copper foil surface of this multilayer board in the same manner as in Sample A so that the front and back are at the same position by a conventional method. Further, the two coverlay films b cut to a length of 160 mm and a width of 100 mm were heated and pressed at 160 ° C. and 4.9 MPa for 30 minutes, cut into predetermined shapes, and evaluated as shown in FIG. Sample B is prepared.
[0014]
《Bending resistance evaluation method》
The bending resistance is evaluated by the following method.
In accordance with IPCFC241, the bending resistance of the bent portions of Sample A and Sample B for evaluation is evaluated under the following conditions. The measurement is terminated when the electric resistance of either the front surface circuit or the back surface circuit increases by 10% compared to the initial resistance.
Bending radius: 2mm
Bending speed: 2,000 rpm
Stroke: 20mm
Measuring direction: MD only [0015]
(Example 1)
25 μm thick Kapton film / 100H (trade name of polyimide film manufactured by Toray DuPont), 10 μm thick epoxy / NBR-based adhesive layer, and 18 μm thick rolled copper foil / BHY22BT (Japan Energy rolled copper foil) For single-sided flexible printed wiring, a coverlay film composed of a 25 μm-thick Kapton film / 100H (described above) and a 25 μm-thick epoxy / NBR-based adhesive layer, a release material and a 15 μm-thick Samples A and B for evaluating physical properties were prepared using an adhesive sheet comprising an epoxy / NBR-based adhesive layer. The bending resistance was measured, and the results are shown in Table 1.
[0016]
(Examples 2 to 4, Comparative Examples 1 to 3)
Using the various base materials shown in Table 1, samples prepared in exactly the same manner as in Example 1 were evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0017]
[Table 1]
[0018]
【The invention's effect】
According to the present invention, it is possible to provide a flexible printed wiring board having excellent bending resistance, and thereby the reliability of the flexible printed wiring board is further increased.
[Brief description of the drawings]
FIG. 1 is an explanatory sectional view of an example of a multilayer flexible printed wiring board of the present invention.
FIG. 2 is an explanatory cross-sectional view of an example of the multilayer flexible printed wiring board according to the present invention, which uses an adhesive sheet which is not subjected to a perforating process at a predetermined position.
FIG. 3 is a cross-sectional explanatory view of a multilayer board obtained by heating and pressing two electrically insulating film surfaces of a single-sided flexible printed wiring board and two adhesive sheets.
FIG. 4 is an explanatory cross-sectional view of a multilayer board obtained by heating and pressure bonding two electrically insulating film surfaces of a single-sided flexible printed wiring board and one adhesive sheet.
FIG. 5 is an explanatory plan view of a circuit formed on a copper foil surface by a conventional method.
FIG. 6 is a (1) cross-sectional explanatory view and (2) a plan explanatory view of a sample A used in the examples.
FIG. 7 is a (1) cross-sectional explanatory view and (2) a plan explanatory view of a sample B used in Examples.
[Explanation of symbols]
(1) Copper foil or copper circuit (a circuit formed on copper foil),
(2) adhesive layer of coverlay film,
(3) Adhesive layer of flexible printed wiring board,
(4) Adhesive sheet,
(5) Electrically insulating film a Single-sided flexible printed wiring board,
b Coverlay film.