JPH08279684A - Metal base multilayered circuit board - Google Patents

Metal base multilayered circuit board

Info

Publication number
JPH08279684A
JPH08279684A JP8004095A JP8004095A JPH08279684A JP H08279684 A JPH08279684 A JP H08279684A JP 8004095 A JP8004095 A JP 8004095A JP 8004095 A JP8004095 A JP 8004095A JP H08279684 A JPH08279684 A JP H08279684A
Authority
JP
Japan
Prior art keywords
wiring board
thermoplastic polyimide
metal
layer
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8004095A
Other languages
Japanese (ja)
Inventor
Seiichi Takahashi
清一 高橋
Takayuki Ishikawa
孝幸 石川
Naoshi Mineta
直志 峯田
Kinichi Kanemitsu
均一 金光
Kunihiro Nagamine
邦浩 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP8004095A priority Critical patent/JPH08279684A/en
Publication of JPH08279684A publication Critical patent/JPH08279684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE: To improve reliability of resistance to heat, by using thermoplastic polyimide for multilayer lamination wherein the glass transition temperature is higher than that of thermoplastic polyimide for bonding a multilayered flexible wiring board to a metal plate. CONSTITUTION: A four-layered flexible board is bonded to the single surface of a metal board 100, via thermosetting polylmide 201. Wiring conductors 301-304 are formed by circuit-working a double-sided FCL board, and interlayer-coupled by insulator wherein thermosetting polyimide 203 is formed on both surfaces of a heat-resisting film 202. Through holes 401, 402 are formed for continuity. The thermosetting polyimide 203 whose glass transition temperature is higher than that of the thermosettting polyimide 201 for bonding the metal plate to the multilayered flexible wiring board is used between layers. Thereby through hole breakdown and disconnection which are to be generated in the bonding process can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品の実装に用い
られる印刷基板に関し、特に、金属ベース上に多層配線
構造を形成された金属ベース多層配線基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed board used for mounting electronic parts, and more particularly to a metal-based multi-layer wiring board having a multi-layer wiring structure formed on a metal base.

【0002】[0002]

【従来技術】配線基板は、搭載される電子機器の、軽薄
短小化やその動作速度の高速化に伴って、配線基板事態
の高密度配線化や高多層配線化が進んでいる。この配線
基板に電子部品を高密度実装を行い、高速動作を行った
場合、一般には消費電力が増加して電子回路の発熱量が
増すことから、これら高速動作、高密度実装には放熱性
を考慮した構造が必要である。従来、配線基板材料とし
ては、ガラスエポキシ等を代表とする、樹脂ベースプリ
ント配線板がコストパホーマンスから使用されてきてい
る。しかし前述のように、近年の実装技術の発展から、
電子部品を搭載する配線基板に対して、放熱性、機械的
強度、シールド性、信頼性等の特性が要求されてきてい
る。これらの要望に対して、アルミ、銅、ステンレス等
の、金属をベース材料とする金属ベース配線基板が注目
されてきている。金属ベース基板は、放熱性、機械的強
度、寸法安定性等が良好な事が特徴として挙げられる。
2. Description of the Related Art Wiring boards are becoming denser, thinner, smaller and smaller, and operating speeds of electronic equipment mounted on the wiring boards are becoming higher. When electronic parts are mounted on this wiring board with high density and operate at high speed, power consumption generally increases and the amount of heat generated by electronic circuits increases. Therefore, heat dissipation is required for high speed operation and high density mounting. Considered structure is required. Conventionally, as a wiring board material, a resin-based printed wiring board typified by glass epoxy has been used from a cost performance standpoint. However, as mentioned above, due to the recent development of packaging technology,
Characteristics such as heat dissipation, mechanical strength, shielding, and reliability have been demanded for wiring boards on which electronic components are mounted. In response to these demands, attention has been paid to a metal-based wiring board using a metal such as aluminum, copper, and stainless as a base material. The metal base substrate is characterized by good heat dissipation, mechanical strength, dimensional stability and the like.

【0003】これら金属ベース基板の多層配線方法とし
ては、ガラスエポキシ基板の多層回路基板や、ポリイミ
ドベースの多層フレキシブル基板を、エポキシ樹脂系の
接着剤により金属ベースに貼る方法や、エポキシ樹脂を
絶縁層として、複数の導体層を形成する、ビルドアップ
法が知られている。
[0003] As a method of multi-layer wiring of these metal base boards, a method of sticking a multi-layer circuit board of a glass epoxy board or a multi-layer flexible board of polyimide base to a metal base with an epoxy resin adhesive, or an epoxy resin insulating layer As the above, a build-up method is known in which a plurality of conductor layers are formed.

【0004】しかし、近年、自動車のエンジン周り等
の、比較的使用環境温度が高い用途に於ける耐熱性が要
求されてきているなかで、従来のエポキシ樹脂を中心と
する基板では、耐熱性には限界があり、又、ポリイミド
の多層配線板をエポキシ樹脂等の接着剤で、金属基板に
貼る方法においても、接着剤の耐熱性が不十分であり、
耐熱性、熱に対する信頼性に問題があった。
However, in recent years, heat resistance has been required in applications where the ambient temperature of use is relatively high, such as around the engine of an automobile. There is a limit, and the heat resistance of the adhesive is insufficient even in the method of sticking the polyimide multilayer wiring board to the metal substrate with the adhesive such as epoxy resin,
There was a problem in heat resistance and heat reliability.

【0005】[0005]

【発明が解決しようとする課題】上述した様に、従来技
術の問題点としては、金属板上に多層配線基板が形成さ
れ、電子部品搭載後、比較的使用温度が高い環境での信
頼性が、不十分な事にある。一般に、エポキシ樹脂を絶
縁層、接着層に使用した場合、樹脂特性からその使用可
能温度範囲は、150℃以下が限界である。以上の問題
点を鑑み、本発明は、金属ベース基板の放熱性、機械強
度、寸法安定性の特徴を生かし、更に耐熱性に対する信
頼性を向上できる、金属ベース多層配線基板を得ること
を目的とするものである。
As described above, as a problem of the prior art, a multilayer wiring board is formed on a metal plate, and after mounting electronic parts, reliability in an environment where the operating temperature is relatively high is high. , Inadequate. Generally, when an epoxy resin is used for an insulating layer and an adhesive layer, the usable temperature range of the epoxy resin is 150 ° C. or lower due to the resin characteristics. In view of the above problems, it is an object of the present invention to obtain a metal-based multi-layer wiring board that makes use of the characteristics of heat dissipation, mechanical strength, and dimensional stability of a metal-based board, and can further improve reliability with respect to heat resistance. To do.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の問
題点を解決するために、鋭意検討した結果、層間の接着
を熱可塑性のポリイミドを用いて行った、スルーホール
を有する多層フレキシブル配線基板を、フレキシブル基
板の層間の接着に用いた熱可塑性ポリイミドと、異なる
ガラス転移温度(Tg)の熱可塑性ポリイミドを用い
て、該多層フレキシブル基板を金属ベースに接合する事
で、目的を達成する事を見いだし、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and as a result, carried out a multilayer flexible structure having a through hole in which interlayer adhesion was performed using a thermoplastic polyimide. The object is achieved by joining the wiring board to the metal base by using the thermoplastic polyimide used for adhesion between layers of the flexible board and the thermoplastic polyimide having different glass transition temperatures (Tg). I found things and completed the present invention.

【0007】すなわち、本発明は、(1)スルーホール
を有する、フレキシブル多層配線基板が、金属板に接合
されている、片面、或いは両面に多層配線層を有する、
金属ベース多層配線基板に於いて、多層積層に用いる熱
可塑性ポリイミドのガラス転移温度が、多層フレキシブ
ル配線基板を金属板に接合するための、熱可塑性ポリイ
ミドのガラス転移温度より高い熱可塑性ポリイミドを用
いて、積層することを特徴とする、金属ベース多層配線
基板であり、また、(2)ポリイミドを絶縁層とする、
スルーホールを有する、オールポリイミド多層フレキシ
ブル配線基板が金属板に接合されている、片面、或いは
両面に多層配線層を有する、金属ベース多層配線基板に
於いて、多層積層に用いる熱可塑性ポリイミドのガラス
転移温度が、多層フレキシブル配線基板を金属板に接合
するための、熱可塑性ポリイミドのガラス転移温度より
高い熱可塑性ポリイミドを用いて、積層することを特徴
とする、金属ベース多層配線基板であり、また、(3)
多層積層に用いる熱可塑性ポリイミドのガラス転移温度
が、多層フレキシブル配線基板を金属板に接合するため
の、熱可塑性ポリイミドのガラス転移温度よりも、20
℃以上高いものを用いることを特徴とする、(1)また
は(2)に記載の金属ベース多層配線基板であり、ま
た、(4)多層フレキシブル基板を金属板に接合するた
めに用いる、熱可塑性ポリイミドのガラス転移温度が1
60℃以上のものを用いることを特徴とする、(1)〜
(3)のいずれかに記載の金属ベース多層配線基板に関
するものである。
That is, according to the present invention, (1) a flexible multilayer wiring board having through holes is bonded to a metal plate and has a multilayer wiring layer on one side or both sides.
In a metal-based multilayer wiring board, the glass transition temperature of the thermoplastic polyimide used for multilayer lamination is higher than the glass transition temperature of the thermoplastic polyimide for joining the multilayer flexible wiring board to the metal plate. A metal-based multi-layer wiring board, characterized by being laminated, and (2) using polyimide as an insulating layer,
Glass transition of thermoplastic polyimide used for multi-layer lamination in a metal-based multi-layer wiring board having through-holes, an all-polyimide multi-layer flexible wiring board bonded to a metal plate, and having a multi-layer wiring layer on one side or both sides Temperature is for joining a multilayer flexible wiring board to a metal plate, using a thermoplastic polyimide higher than the glass transition temperature of the thermoplastic polyimide, characterized by laminating, a metal-based multilayer wiring board, also, (3)
The glass transition temperature of the thermoplastic polyimide used for the multi-layer lamination is 20 than the glass transition temperature of the thermoplastic polyimide for joining the multi-layer flexible wiring board to the metal plate.
A thermoplastic resin which is a metal-based multilayer wiring board according to (1) or (2), characterized by using a material having a temperature higher than or equal to ℃, and (4) used for bonding a multilayer flexible board to a metal plate. The glass transition temperature of polyimide is 1
(1) to characterized by using one having a temperature of 60 ° C. or higher.
The present invention relates to the metal-based multilayer wiring board according to any one of (3).

【0008】本発明の要旨は、要するに、耐熱性の高い
高分子を絶縁層とする、好ましくは、ポリイミド等の高
分子を絶縁層とする、スルーホールを有する多層フレキ
シブル配線基板が金属板に接合されている、片面、或い
は両面に多層配線層を有する、金属ベース多層配線基板
に於いて、多層積層(の接着層)に用いる熱可塑性ポリ
イミドのガラス転移温度が、多層フレキシブル配線基板
を金属板に接合するための(接着層として用いる)、熱
可塑性ポリイミドのガラス転移温度よりも高い、好まし
くは、20℃以上高いものを用いることが大きな特徴で
あり、このことによって、該スルーホールを有する多層
フレキシブル配線基板を金属板に接合するときに、必要
とする温度が低減することによって、多層配線の層間接
合に用いた、熱可塑性ポリイミドが再度軟化することに
よって発生する、層間の電気的導通を目的としたスルー
ホールの破壊、断線の防止がはかれ、非常に信頼性の高
い、金属ベース多層配線基板を、得ることができること
にある。
The gist of the present invention is, in short, that a multilayer flexible wiring board having through holes, in which a polymer having high heat resistance is used as an insulating layer, preferably a polymer such as polyimide is used as an insulating layer, is bonded to a metal plate. In a metal-based multi-layer wiring board having one or both sides of a multi-layer wiring layer, the glass transition temperature of the thermoplastic polyimide used for (adhesive layer of) the multi-layer is One of the major characteristics is to use one having a glass transition temperature higher than that of the thermoplastic polyimide, preferably 20 ° C. or higher, for bonding (used as an adhesive layer). When the wiring board is joined to a metal plate, the required temperature is reduced, so that the heat Of a highly reliable metal-based multi-layer wiring board, which prevents the breakage of a through-hole for the purpose of electrical conduction between layers and disconnection caused by the softening of the conductive polyimide again. It is in.

【0009】また、好ましくはポリイミド等の耐熱性高
分子を絶縁層とする、多層フレキシブル配線基板の、す
べての層間の接合に用いる接着剤、また、多層フレキシ
ブル配線基板を金属板に接合に用いる接着剤ともに、ガ
ラス転移温度が160℃以上の熱可塑性ポリイミドを用
いる事によって、金属ベース多層配線基板の、放熱性、
機械強度等の特徴に、更に耐熱性を向上させることも、
特徴である。以下、本発明を詳細に説明する。
[0009] Further, preferably, an adhesive used for joining all layers of a multilayer flexible wiring board having a heat-resistant polymer such as polyimide as an insulating layer, or an adhesive used for joining the multilayer flexible wiring board to a metal plate. By using a thermoplastic polyimide having a glass transition temperature of 160 ° C. or higher as the agent, the heat dissipation of the metal-based multilayer wiring board
To further improve heat resistance due to features such as mechanical strength,
It is a feature. Hereinafter, the present invention will be described in detail.

【0010】まず、添付図面について説明するに、図1
は、本発明の一例を示す金属ベース片面多層配線基板の
断面図(両面FCL2枚を接合し、形成したもの)であ
る。金属基板100の片面に、熱可塑性ポリイミド20
1を介して、4層のフレキシブル基板が接合されてい
る。配線導体301,302,303,304は、両面
FCL基板を回路加工して形成され、耐熱性フィルム2
02の両面に、熱可塑性ポリイミド203が形成された
絶縁体で層間接合されている。また、配線導体301,
302,303,304を電気的に導通させることを目
的とした、スルーホール401,402が形成されてい
る。
First, referring to the attached drawings, FIG.
FIG. 3 is a cross-sectional view of a metal-based single-sided multilayer wiring board showing an example of the present invention (formed by joining two double-sided FCLs). On one surface of the metal substrate 100, the thermoplastic polyimide 20
The four layers of flexible substrates are bonded to each other through 1. The wiring conductors 301, 302, 303, 304 are formed by processing a circuit on a double-sided FCL substrate,
On both sides of No. 02, interlayer bonding is performed with an insulator having a thermoplastic polyimide 203 formed thereon. In addition, the wiring conductor 301,
Through holes 401 and 402 are formed for the purpose of electrically connecting 302, 303 and 304.

【0011】図2は、本発明の一例を示す金属ベース片
面多層配線基板の断面図(両面FCLの両面に銅箔を接
合し、形成したもの)である。配線導体305、306
は両面FCL基板を回路加工して形成され、導体層30
7、308は銅箔の片面に、熱可塑性ポリイミド204
を形成した片面銅フレキシブル基板を、配線導体30
5、306の両面に接合して、回路加工され形成されて
いる。その後、金属板100に、耐熱性フィルム202
の両面に、熱可塑性ポリイミド203を形成した、接着
シートを用いて、接合している。
FIG. 2 is a cross-sectional view of a metal-based single-sided multilayer wiring board showing an example of the present invention (formed by joining copper foils on both sides of a double-sided FCL). Wiring conductors 305, 306
Is formed by processing a circuit on a double-sided FCL substrate,
7 and 308 are thermoplastic polyimide 204 on one side of the copper foil.
The single-sided copper flexible substrate on which the
5, 306 are joined to both surfaces and processed by a circuit. Then, the heat resistant film 202 is formed on the metal plate 100.
Adhesive sheets having thermoplastic polyimide 203 formed on both surfaces are joined together.

【0012】ここで、図1においては、多層フレキシブ
ル配線基板の多層積層(層間の接合)に用いる、熱可塑
性ポリイミド203のガラス転移温度が、金属板と該多
層フレキシブル配線基板を接合する、熱可塑性ポリイミ
ド201のガラス転移温度より高いものを用いてある。
このことが、接合プロセスで発生する、スルーホール破
壊、断線の防止に有効であり、信頼性の高い金属ベース
多層配線基板を可能とするものである。
Here, in FIG. 1, the glass transition temperature of the thermoplastic polyimide 203 used for multi-layer stacking (joining between layers) of the multi-layer flexible wiring board is such that the thermoplastic resin for joining the metal plate and the multi-layer flexible wiring board is thermoplastic. A material having a glass transition temperature higher than that of the polyimide 201 is used.
This is effective in preventing through-hole breakage and wire breakage that occur in the bonding process, and enables a highly reliable metal-based multilayer wiring board.

【0013】この金属ベース多層配線基板に用いられ
る、金属板100としては、特に、限定されるものでは
ないが、厚さ0.05〜3.0mm程度の物が使用さ
れ、好ましくは0.1〜1.0mmのアルミニウム、洋
白やシンチュウ等の銅合金、銅、銅クラッドインバー、
ステンレス鋼、鉄、珪素鋼、電解酸化処理されたアルミ
ニウム等を用いることができる。放熱、機械強度、熱膨
張による寸法安定性、耐酸化性等の目的に合わせて、厚
み、材質を選択することができる。金属の表面に、熱可
塑性ポリイミドとの接着性に有効な、機械的な粗化処
理、クロメート処理、電解粗化処理等の表面処理を行っ
た金属板も利用できる。
The metal plate 100 used in this metal-based multilayer wiring board is not particularly limited, but a material having a thickness of about 0.05 to 3.0 mm is used, and preferably 0.1. ~ 1.0 mm aluminum, copper alloy such as nickel silver and cinnamon, copper, copper clad invar,
Stainless steel, iron, silicon steel, electrolytically oxidized aluminum, or the like can be used. The thickness and material can be selected according to the purposes such as heat radiation, mechanical strength, dimensional stability due to thermal expansion, and oxidation resistance. It is also possible to use a metal plate which has been subjected to a surface treatment such as mechanical roughening treatment, chromate treatment or electrolytic roughening treatment, which is effective for adhesion to the thermoplastic polyimide, on the surface of the metal.

【0014】本発明に用いられる、多層フレキシブル配
線基板を製造する方法としては、まず、耐熱性絶縁性フ
ィルムの両面に、銅箔が接合された、両面FCL基板を
複数枚回路加工した、フレキシブル基板を、熱可塑性ポ
リイミドのフィルム、あるいは、ポリイミド等の耐熱性
フィルムの両面に、熱可塑性ポリイミドワニスをコーテ
ィング乾燥して得られる、フィルムを用いて、該回路加
工された複数のフレキシブル配線板を、接合する方法、
または、回路加工を行った、フレキシブル基板の両面
に、銅箔の片面に熱可塑性ポリイミドワニスをコーティ
ング乾燥し、得られた片面銅箔フレキシブル基板を、該
両面回路加工がなされたフレキシブル基板の、両面に接
合し、多層フレキシブル配線基板を製造する方法などが
挙げられる。
As a method for producing a multilayer flexible wiring board used in the present invention, first, a flexible board is prepared by circuit-processing a plurality of double-sided FCL boards in which copper foils are bonded to both surfaces of a heat-resistant insulating film. A film of a thermoplastic polyimide, or both sides of a heat-resistant film such as polyimide, obtained by coating and drying a thermoplastic polyimide varnish, using a film, a plurality of flexible wiring board processed circuit, joined how to,
Alternatively, the circuit-processed, both sides of the flexible substrate, one side of the copper foil is coated and dried with a thermoplastic polyimide varnish, the obtained single-sided copper foil flexible substrate, the double-sided circuit board of the flexible substrate, both sides And a method of manufacturing a multilayer flexible wiring board.

【0015】耐熱性フィルム202としては、例えばポ
リイミド、ポリアミドイミド、アラミド、ポリエーテル
スルホン、ポリエーテルエーテルケトン等が使用でき
る。接合に用いる熱可塑性ポリイミド層の形成方法とし
ては、前記フィルムの両面に、熱可塑性ポリイミドの前
駆体であるポリアミド酸ワニスを、加熱イミド化して得
られるものも使用でき、また、有機溶媒に可溶な熱可塑
性ポリイミドの場合であれば、熱可塑性ワニスを上述の
フィルム形成方法と同様にキャスト、あるいはコート乾
燥して得られるフィルム、または熱可塑性ポリイミドの
押しだし成形フィルムあるいはシートも使用できる。さ
らには、使用する導体層形成に用いる銅箔の裏面に、ポ
リイミド酸ワニス、あるいは熱可塑性ポリイミドを塗布
し乾燥し、形成させてもかまわない。
As the heat resistant film 202, for example, polyimide, polyamideimide, aramid, polyether sulfone, polyether ether ketone, etc. can be used. As a method for forming a thermoplastic polyimide layer used for bonding, on both surfaces of the film, a polyamic acid varnish that is a precursor of a thermoplastic polyimide, a product obtained by heating and imidizing can also be used, and is also soluble in an organic solvent. In the case of such a thermoplastic polyimide, a film obtained by casting or coating and drying a thermoplastic varnish in the same manner as in the above-mentioned film forming method, or an extrusion molded film or sheet of a thermoplastic polyimide can also be used. Further, a polyimide acid varnish or a thermoplastic polyimide may be applied to the back surface of the copper foil used for forming the conductor layer to be used and dried to form it.

【0016】熱可塑性ポリイミドを介して、層間の接合
を行い、多層フレキシブル基板を形成する方法として
は、熱ロールを用いた熱ラミネート法、ホットプレス等
の公知の方法で行うことができる。この場合の加熱条件
としては、用いられる熱可塑性ポリイミドのガラス転移
温度より高い温度設定が好ましい。より好ましくは、該
ガラス転移温度よりも10℃程度又はそれ以上高い設定
が望まれる。加圧条件としては、20〜100kg/c
2 の範囲が用いられる。
As a method for forming a multilayer flexible substrate by joining layers through a thermoplastic polyimide, a known method such as a heat laminating method using a heat roll or a hot press can be used. In this case, the heating conditions are preferably set to a temperature higher than the glass transition temperature of the thermoplastic polyimide used. More preferably, a setting higher than the glass transition temperature by about 10 ° C. or more is desired. The pressurizing condition is 20 to 100 kg / c
A range of m 2 is used.

【0017】その後、層間の接合が完成した、多層フレ
キシブル基板の、外層の回路加工、多層回路間を電気的
導通を行うためのスルーホールを、通常プリント配線板
の技術で形成し、多層フレキシブル配線基板が完成させ
る。
After that, through-holes for circuit processing of outer layers and electrical connection between the multi-layer circuits of the multi-layer flexible substrate in which the joining between the layers is completed are usually formed by the technique of the printed wiring board, and the multi-layer flexible wiring is formed. The board is completed.

【0018】次に、該多層フレキシブル配線基板を、目
的の金属板に、ポリイミド等の耐熱性フィルムの両面
に、熱可塑性ポリイミドワニスをコーティング乾燥して
得られる、フィルムを用いるか、または、キャスティン
グ、押し出し成形等で得られる、熱可塑性ポリイミドフ
ィルムを用いて、接合する。金属板と、該多層フレキシ
ブル配線板を接合する方法としては、熱ロールを用いた
熱ラミネート法、ホットプレス等の公知の方法で同様に
行うことができる。この場合の加熱条件としては、用い
られる熱可塑性ポリイミドのガラス転移温度より高い温
度設定が好ましい。より好ましくは、ガラス転移温度よ
りも10℃程度又はそれ以上高い設定が望まれる。加圧
条件としては、20〜100kg/cm2 の範囲が用い
られる。これによって、金属ベース多層配線基板が完成
する。
Next, using the film obtained by coating the multilayer flexible wiring board on a target metal plate with thermoplastic polyimide varnish on both surfaces of a heat-resistant film such as polyimide, or by drying, Bonding is performed using a thermoplastic polyimide film obtained by extrusion molding or the like. As a method for joining the metal plate and the multilayer flexible wiring board, a known method such as a heat laminating method using a heat roll or a hot press can be similarly used. In this case, the heating conditions are preferably set to a temperature higher than the glass transition temperature of the thermoplastic polyimide used. More preferably, it is desired to set the temperature higher than the glass transition temperature by about 10 ° C. or more. As the pressurizing condition, a range of 20 to 100 kg / cm 2 is used. This completes the metal-based multilayer wiring board.

【0019】本発明における、熱可塑性ポリイミドと
は、主鎖にイミド構造を有するポリマーであって、ガラ
ス転移温度が、160℃以上のものであり、このガラス
転移温度以上の温度領域では、急激に弾性率が低下する
ものを言う。ガラス転移温度が160℃未満の場合、出
来上がった金属ベース多層配線基板の、耐熱性が不十分
であり好ましくない。熱可塑性ポリイミドの、ガラス転
移温度の上限としては特に制約は無いが、加熱ラミネー
ション工程の効率から考えれば、350℃程度までの、
熱可塑性ポリイミドが好ましい。
The thermoplastic polyimide in the present invention is a polymer having an imide structure in the main chain and has a glass transition temperature of 160 ° C. or higher. It means that the elastic modulus decreases. When the glass transition temperature is less than 160 ° C, the heat resistance of the finished metal-based multilayer wiring board is insufficient, which is not preferable. The upper limit of the glass transition temperature of the thermoplastic polyimide is not particularly limited, but considering the efficiency of the heating lamination step, up to about 350 ° C,
Thermoplastic polyimide is preferred.

【0020】本発明において重要な事は、多層フレキシ
ブル基板の層間接合に用いる熱可塑性ポリイミドと、多
層フレキシブル配線基板を、金属板に接合するために用
いる熱可塑性ポリイミドのガラス転移温度が、異なるも
のであり、前者のガラス転移温度が、後者のガラス転移
温度より高いものを使用することにある。好ましくは、
多層フレキシブル基板の、層間接合に用いる熱可塑性ポ
リイミドのガラス転移温度が、該多層フレキシブル基板
を、金属板に接合するために用いる熱可塑性ポリイミド
の、ガラス転移温度よりも、20℃又はこれ以上高い熱
可塑性ポリイミドを用いることが望ましい。
What is important in the present invention is that the thermoplastic polyimide used for the interlayer bonding of the multilayer flexible substrate and the thermoplastic polyimide used for bonding the multilayer flexible wiring substrate to the metal plate have different glass transition temperatures. Yes, the glass transition temperature of the former is higher than that of the latter. Preferably,
The glass transition temperature of the thermoplastic polyimide used for interlayer bonding of the multilayer flexible substrate is 20 ° C. or higher than the glass transition temperature of the thermoplastic polyimide used for bonding the multilayer flexible substrate to the metal plate. It is desirable to use a plastic polyimide.

【0021】このことによって、熱可塑性ポリイミドを
用いて、多層フレキシブル基板を、金属板に接合すると
きに、多層フレキシブル配線基板の接合に用いた、熱可
塑性ポリイミドの弾性率が大きく低下することはないの
で、該多層フレキシブル配線基板に設けられた、層間の
電気的導通を目的としたスルーホールは、多層フレキシ
ブル配線基板の、層間の接合に用いた熱可塑性ポリイミ
ドの、大きな弾性率低下による破壊、断線が防止でき、
信頼性の高い、金属ベース多層配線板が製造できる。多
層フレキシブル基板の、層間接合に用いる熱可塑性ポリ
イミドのガラス転移温度と、該多層フレキシブル基板
を、金属板に接合するために用いる熱可塑性ポリイミド
の、ガラス転移温度の差が、20℃未満の場合には、該
多層フレキシブル基板を、金属板に接合するための加熱
接合工程において、層間の電気的導通を目的として形成
された、スルホールの破壊、断線が発生する事があり好
ましくない。
Thus, when the thermoplastic polyimide is used to bond the multilayer flexible substrate to the metal plate, the elastic modulus of the thermoplastic polyimide used for bonding the multilayer flexible wiring substrate is not significantly reduced. Therefore, the through-holes provided in the multilayer flexible wiring board for the purpose of electrical conduction between the layers are broken or broken due to a large decrease in elastic modulus of the thermoplastic polyimide used for joining the layers of the multilayer flexible wiring board. Can be prevented
A highly reliable metal-based multilayer wiring board can be manufactured. When the difference between the glass transition temperature of the thermoplastic polyimide used for interlayer bonding of the multilayer flexible substrate and the glass transition temperature of the thermoplastic polyimide used for bonding the multilayer flexible substrate to the metal plate is less than 20 ° C. In the heating and joining process for joining the multi-layer flexible substrate to the metal plate, breakage or disconnection of a through hole formed for the purpose of electrical conduction between layers may occur, which is not preferable.

【0022】[0022]

【実施例】次に本発明の実施例について図面を参照して
説明する。 〔実施例1〕図1を参照すると、配線導体301、30
2、303及び304は電解銅箔からなり、両面FCL
基板(三井東圧化学製ネオフレックス)を回路加工して
形成され、耐熱性フィルム(鐘淵化学工業製アピカルA
H)202の両面に、ガラス転移温度210℃の熱可塑
性ポリイミド(三井東圧化学製PI−A)203が塗布
乾燥形成された、フィルムで層間熱接合されている。ま
た、配線導体、301,302,303,304を電気
的に導通させる為に、スルーホール401,402が形
成されている。ここで、多層フレキシブル基板の層間熱
接合は、ピンラミ法により位置合わせを行い、真空下で
加熱温度220℃、圧力40kg/cm 2 、1時間のプ
レスで熱接合した。
Embodiments of the present invention will now be described with reference to the drawings.
explain. [Embodiment 1] Referring to FIG. 1, wiring conductors 301, 30
2, 303 and 304 are made of electrolytic copper foil, double-sided FCL
Circuit processing of the board (Mitsui Toatsu Chemical Neoflex)
Formed, heat-resistant film (Kanefuchi Chemical Co., Ltd. Apical A
H) Thermoplastic with glass transition temperature of 210 ℃ on both sides of 202
-Resistant polyimide (PI-A manufactured by Mitsui Toatsu Chemicals) 203 is applied.
Dry-formed, film-to-layer thermal bonded. Well
In addition, the wiring conductors 301, 302, 303, 304 are electrically connected.
Through-holes 401 and 402 are formed
Has been established. Where the interlayer heat of the multilayer flexible substrate
Joining is performed by the pin laminating method, and under vacuum
Heating temperature 220 ℃, pressure 40kg / cm 2One hour
Heat-bonded with less.

【0023】次に、アルミニウム金属板100の片面
に、ガラス転移温度190℃の熱可塑性ポリイミド(三
井東圧化学製PI−Ah)201を介して、4層のフレ
キシブル基板が熱接合形成してある。多層フレキシブル
配線基板を、アルミニウム金属板に接合する条件として
は、真空下で加熱温度210℃、圧力40kg/c
2、1時間のプレスで熱接合した。この金属ベース多
層配線基板を、温度−65℃〜+170℃の条件下で2
00回の温度サイクル試験を行ったが、スルホールの導
通性に何等変化は見られず、耐熱信頼性は、良好であっ
た。
Next, on one surface of the aluminum metal plate 100, a four-layer flexible substrate is formed by thermal bonding via a thermoplastic polyimide (PI-Ah manufactured by Mitsui Toatsu Chemicals) 201 having a glass transition temperature of 190 ° C. . The conditions for joining the multilayer flexible wiring board to the aluminum metal plate are heating temperature of 210 ° C. and pressure of 40 kg / c under vacuum.
Thermal bonding was performed with a m 2 press for 1 hour. This metal-based multi-layer wiring board is used under the condition of temperature of -65 ° C to + 170 ° C.
A temperature cycle test was performed 00 times, but no change was observed in the conductivity of the through holes, and the heat resistance reliability was good.

【0024】〔実施例2〕図2を参照すると、配線導体
305、306は両面FCL基板(三井東圧化学製ネオ
フレックス)を回路加工して形成され、導体層307、
308は圧延銅箔(ジャパーンエナジー製BHY−02
BT)の片面に、ガラス転移温度230℃の熱可塑性ポ
リイミド(三井東圧製LARC−TPI)204を形成
した、片面銅フレキシブル基板を、配線導体305、3
06の両面に接合して、回路加工され形成されている。
ここで、多層フレキシブル基板の層間熱接合は、ピンラ
ミ法により位置合わせを行い、真空下で加熱温度250
℃、圧力40kg/cm2 、1時間のプレスで熱接合し
た。
[Embodiment 2] Referring to FIG. 2, the wiring conductors 305 and 306 are formed by circuit-processing a double-sided FCL substrate (Neoflex manufactured by Mitsui Toatsu Kagaku).
308 is a rolled copper foil (BHY-02 manufactured by Japan Energy)
BT) has a glass transition temperature of 230 ° C. and a thermoplastic polyimide (LAC-TPI made by Mitsui Toatsu Co., Ltd.) 204 formed on one side thereof.
It is formed by being joined to both sides of 06 and processed into a circuit.
Here, in the interlayer thermal bonding of the multilayer flexible substrate, alignment is performed by a pin laminating method, and a heating temperature of 250 is set under vacuum.
Thermal bonding was performed by pressing at a temperature of 40 ° C. and a pressure of 40 kg / cm 2 for 1 hour.

【0025】その後、耐熱性フィルム(鐘淵化学工業製
アピカルAH)202の両面に、ガラス転移温度210
℃の熱可塑性ポリイミド(三井東圧化学製PI−A)2
03を形成した、接着シートを用いて、金属板100
と、多層フレキシブル配線基板とを接合した。多層フレ
キシブル配線基板を、アルミニウム金属板に接合する条
件としては、真空下で加熱温度210℃、圧力40kg
/cm2 、1時間のプレスで熱接合した。この金属ベー
ス多層配線基板も、同様に温度−65℃〜+170℃の
条件下で200回の温度サイクル試験を行ったが、スル
ホールの導通性に何等変化は見られず、耐熱信頼性は同
様に良好であった。
Then, a glass transition temperature of 210 is applied to both surfaces of the heat-resistant film (apical AH manufactured by Kanegafuchi Chemical Co., Ltd.).
℃ thermoplastic polyimide (Mitsui Toatsu Chemicals PI-A) 2
03, the metal sheet 100 is formed by using the adhesive sheet.
And the multilayer flexible wiring board. The conditions for joining the multilayer flexible wiring board to the aluminum metal plate are heating temperature of 210 ° C. and pressure of 40 kg under vacuum.
/ Cm 2 , and heat bonded by pressing for 1 hour. This metal-based multilayer wiring board was also subjected to a temperature cycle test of 200 times under the condition of a temperature of −65 ° C. to + 170 ° C. However, no change was observed in the conductivity of the through hole, and the heat resistance reliability was the same. It was good.

【0026】〔比較例1〕実施例1、図1で説明した構
成において、まず、多層フレキシブル基板の層間接合に
は、実施例1と同様に、ガラス転移温度210℃の熱可
塑性ポリイミド(三井東圧化学製PI−A)で塗布乾燥
形成された、フィルムで層間熱接合されている。ここ
で、多層フレキシブル基板の層間熱接合は、実施例1と
同様にピンラミ法により位置合わせを行い、真空下で加
熱温度220℃、圧力40kg/cm 2 、1時間のプレ
スで熱接合した。次に、多層フレキシブル回路基板をア
ルミニウム金属板に熱接合する方法として、多層フレキ
シブル基板の層間接合に用いた、ガラス転移温度210
℃の熱可塑性ポリイミド(三井東圧化学製PI−A)を
介して接合した。多層フレキシブル配線基板を、アルミ
ニウム金属板に接合する条件としても、真空下で加熱温
度220℃、圧力40kg/cm2 、1時間の同条件の
プレスで熱接合した。
[Comparative Example 1] The structure described in Example 1 and FIG.
First of all, in the bonding,
In the same manner as in Example 1, a glass transition temperature of 210 ° C.
Coating and drying with plastic polyimide (PI-A manufactured by Mitsui Toatsu Chemicals)
The formed film is thermally bonded between layers. here
Then, the interlayer thermal bonding of the multilayer flexible substrate is the same as in Example 1.
Similarly, perform alignment using the pin-lamination method and apply under vacuum.
Heat temperature 220 ℃, pressure 40kg / cm 21 hour pre
It was heat-bonded. Next, the multilayer flexible circuit board is
As a method of heat bonding to a aluminum metal plate, a multilayer flexible
Glass transition temperature of 210 used for interlayer bonding of the sible substrate
℃ thermoplastic polyimide (Mitsui Toatsu Chemicals PI-A)
Joined through. Aluminum multilayer wiring board
The heating temperature under vacuum is also used as the condition for joining the aluminum metal plate.
220 ℃, pressure 40kg / cm2Under the same conditions for 1 hour
Heat-bonded with a press.

【0027】この金属ベース多層配線基板は、スルホー
ルの電気抵抗が実施例と比較して、やや高い値を示し
た。スルーホール部の断面観察を行った結果、スルーホ
ール部に、多層フレキシブル基板の層間接合に用いた、
熱可塑性ポリイミドの軟化によって発生したと思われ
る、クラックが観察された。更に、温度−65℃〜+1
70℃の条件下で200回の温度サイクル試験を行った
が、更にスルホール部の電気抵抗値が増加してしまい、
信頼性が不十分な結果になっている。
In this metal-based multilayer wiring board, the electrical resistance of the through hole was slightly higher than that of the example. As a result of observing the cross-section of the through-hole part, the through-hole part was used for interlayer bonding of the multilayer flexible substrate,
Cracks were observed, which are believed to be caused by the softening of the thermoplastic polyimide. Further, the temperature is -65 ° C to +1
A temperature cycle test was conducted 200 times under the condition of 70 ° C., but the electric resistance value of the through hole portion further increased,
The result is insufficient reliability.

【0028】[0028]

【発明の効果】本発明に従えば、金属ベース多層配線基
板として、放熱性、機械強度性等の特徴に加え、耐熱
性、また耐熱信頼性が向上した金属ベース多層配線基板
を得ることができる。更に、層間接合に用いる熱可塑性
ポリイミドを、ガラス転移温度の異なる熱可塑性ポリイ
ミドを使用することにより、スルーホールを有する多層
フレキシブル配線基板の層間の接合に用いた熱可塑性ポ
リイミドの、大きな弾性率低下による破壊、断線が防止
でき、信頼性の高い、金属ベース多層配線板を得ること
ができる。
According to the present invention, as a metal-based multilayer wiring board, a metal-based multilayer wiring board having improved heat resistance and heat resistance reliability in addition to features such as heat dissipation and mechanical strength can be obtained. . Further, by using a thermoplastic polyimide used for interlayer bonding as a thermoplastic polyimide having a different glass transition temperature, a large decrease in elastic modulus of the thermoplastic polyimide used for bonding between layers of a multilayer flexible wiring board having a through hole is caused. It is possible to obtain a highly reliable metal-based multilayer wiring board that can prevent breakage and disconnection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例を示す金属ベース多層配線基板の
断面図(両面FCL2枚を接合し形成したもの)
FIG. 1 is a sectional view of a metal-based multilayer wiring board showing an example of the present invention (formed by joining two double-sided FCLs).

【図2】本発明の一例を示す金属ベース多層配線基板の
断面図(両面FCLの両面に、銅箔を接合し形成したも
の)
FIG. 2 is a cross-sectional view of a metal-based multilayer wiring board showing an example of the present invention (one formed by joining copper foils on both sides of a double-sided FCL).

【符号の説明】[Explanation of symbols]

100 金属板 201 熱可塑性ポリイミド層(Tg190℃) 202 耐熱性フィルム層 203 熱可塑性ポリイミド層(Tg210℃) 204 熱可塑性ポリイミド層(Tg230℃) 301、302、303、304 導体層 305、306、307、308 導体層 401、402 スルーホール部 100 metal plate 201 thermoplastic polyimide layer (Tg 190 ° C) 202 heat resistant film layer 203 thermoplastic polyimide layer (Tg 210 ° C) 204 thermoplastic polyimide layer (Tg 230 ° C) 301, 302, 303, 304 conductor layer 305, 306, 307, 308 Conductor layers 401, 402 Through holes

フロントページの続き (72)発明者 金光 均一 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 (72)発明者 永峰 邦浩 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内Front page continuation (72) Inventor Hikaru Kanemitsu 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd. (72) Kunihiro Nagamine 1190, Kasama-cho, Sakae-ku, Yokohama, Kanagawa Mitsui Toatsu Chem., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 スルーホールを有する、フレキシブル多
層配線基板が、金属板に接合されている、片面、或いは
両面に多層配線層を有する、金属ベース多層配線基板に
於いて、多層積層に用いる熱可塑性ポリイミドのガラス
転移温度が、多層フレキシブル配線基板を金属板に接合
するための、熱可塑性ポリイミドのガラス転移温度より
高い熱可塑性ポリイミドを用いて、積層することを特徴
とする、金属ベース多層配線基板。
1. A thermoplastic resin used for multi-layer lamination in a metal-based multi-layer wiring board, wherein a flexible multi-layer wiring board having through holes is bonded to a metal plate and has multi-layer wiring layers on one side or both sides. A metal-based multilayer wiring board, characterized by being laminated using a thermoplastic polyimide having a glass transition temperature of polyimide higher than that of thermoplastic polyimide for joining the multilayer flexible wiring board to a metal plate.
【請求項2】 ポリイミドを絶縁層とする、スルーホー
ルを有する、オールポリイミド多層フレキシブル配線基
板が金属板に接合されている、片面、或いは両面に多層
配線層を有する、金属ベース多層配線基板に於いて、多
層積層に用いる熱可塑性ポリイミドのガラス転移温度
が、多層フレキシブル配線基板を金属板に接合するため
の、熱可塑性ポリイミドのガラス転移温度より高い熱可
塑性ポリイミドを用いて、積層することを特徴とする、
金属ベース多層配線基板。
2. A metal-based multi-layer wiring board having a through hole, which has polyimide as an insulating layer, and which is bonded to a metal plate, and which has a multi-layer wiring layer on one side or both sides. The glass transition temperature of the thermoplastic polyimide used in the multilayer lamination, for joining the multilayer flexible wiring substrate to the metal plate, using a thermoplastic polyimide higher than the glass transition temperature of the thermoplastic polyimide, characterized by laminating To do
Metal-based multilayer wiring board.
【請求項3】 多層積層に用いる熱可塑性ポリイミドの
ガラス転移温度が、多層フレキシブル配線基板を金属板
に接合するための、熱可塑性ポリイミドのガラス転移温
度よりも、20℃以上高いものを用いることを特徴とす
る、請求項1または2に記載の金属ベース多層配線基
板。
3. A glass transition temperature of a thermoplastic polyimide used for multi-layer lamination is 20 ° C. or more higher than a glass transition temperature of a thermoplastic polyimide for bonding a multi-layer flexible wiring board to a metal plate. The metal-based multilayer wiring board according to claim 1 or 2, which is characterized in that.
【請求項4】多層フレキシブル基板を金属板に接合する
ために用いる、熱可塑性ポリイミドのガラス転移温度が
160℃以上のものを用いることを特徴とする、請求項
1〜3のいずれかに記載の金属ベース多層配線基板。
4. A thermoplastic polyimide having a glass transition temperature of 160 ° C. or higher, which is used for bonding a multilayer flexible substrate to a metal plate, is used. Metal-based multilayer wiring board.
JP8004095A 1995-04-05 1995-04-05 Metal base multilayered circuit board Pending JPH08279684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8004095A JPH08279684A (en) 1995-04-05 1995-04-05 Metal base multilayered circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8004095A JPH08279684A (en) 1995-04-05 1995-04-05 Metal base multilayered circuit board

Publications (1)

Publication Number Publication Date
JPH08279684A true JPH08279684A (en) 1996-10-22

Family

ID=13707143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8004095A Pending JPH08279684A (en) 1995-04-05 1995-04-05 Metal base multilayered circuit board

Country Status (1)

Country Link
JP (1) JPH08279684A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150728A (en) * 2003-11-12 2005-06-09 E I Du Pont De Nemours & Co Multilayer substrate having at least two dissimilar polyimide layers and conductive layer, useful for electronics-type applications, and compositions relating thereto
JP2006521708A (en) * 2003-03-28 2006-09-21 ジョージア テック リサーチ コーポレーション Method for making a three-dimensional all-organic interconnect structure
JP2007190692A (en) * 2006-01-17 2007-08-02 Nippon Steel Chem Co Ltd Laminate for printed wiring board
US7328505B2 (en) 2001-07-06 2008-02-12 Denso Corporation Method for manufacturing multilayer circuit board
CN108282960A (en) * 2018-01-08 2018-07-13 苏州群策科技有限公司 A kind of manufacturing method of ultra thin plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328505B2 (en) 2001-07-06 2008-02-12 Denso Corporation Method for manufacturing multilayer circuit board
JP2006521708A (en) * 2003-03-28 2006-09-21 ジョージア テック リサーチ コーポレーション Method for making a three-dimensional all-organic interconnect structure
JP2005150728A (en) * 2003-11-12 2005-06-09 E I Du Pont De Nemours & Co Multilayer substrate having at least two dissimilar polyimide layers and conductive layer, useful for electronics-type applications, and compositions relating thereto
JP4528093B2 (en) * 2003-11-12 2010-08-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multilayer substrate having at least two dissimilar polyamide layers and a conductive layer and useful for electronics-type applications, and compositions related thereto
JP2007190692A (en) * 2006-01-17 2007-08-02 Nippon Steel Chem Co Ltd Laminate for printed wiring board
JP4642664B2 (en) * 2006-01-17 2011-03-02 新日鐵化学株式会社 Laminate for wiring board
CN108282960A (en) * 2018-01-08 2018-07-13 苏州群策科技有限公司 A kind of manufacturing method of ultra thin plate

Similar Documents

Publication Publication Date Title
JP3059568B2 (en) Method of manufacturing multilayer printed circuit board
WO2007052799A1 (en) Multilayer printed wiring board and process for producing the same
WO2007046459A1 (en) Multilayer printed wiring board and its manufacturing method
JP2001007468A (en) Wiring board, multilayered wiring board, and their manufacture
KR20000006037A (en) Low-thermal expansion circuit board and multilayer circuitboard
JP2857237B2 (en) Method for manufacturing multilayer circuit board
JP3207663B2 (en) Printed wiring board and method of manufacturing the same
JP4691763B2 (en) Method for manufacturing printed wiring board
JP2002043752A (en) Wiring board, multilayer wiring board, and their manufacturing method
JPS6227558B2 (en)
JPH08279684A (en) Metal base multilayered circuit board
JP3724061B2 (en) Metal substrate and manufacturing method thereof
JP3356298B2 (en) Printed wiring board and method of manufacturing the same
JP3926064B2 (en) Printed wiring board and method for manufacturing printed wiring board
JPH07231165A (en) Multilayer wiring board and its manufacture
JPH11251703A (en) Circuit board, both-sided circuit board, multilayered circuit board, and manufacture of circuit board
JP3329756B2 (en) Multilayer wiring board and method of manufacturing the same
JPH0342714B2 (en)
JP2000133943A (en) Manufacture of multilayered board
JPH01313998A (en) Manufacture of metal composite laminated board
JP2003198086A (en) Circuit board and laminated circuit board as well as their manufacturing method
JPS63246897A (en) Manufacture of metal base double-layer interconnection board
JP3102326U (en) Multilayer flexible printed wiring board connected between layers
JP2001144445A (en) Method for producing multilayer printed wiring board
JP2003060354A (en) Printed circuit board with built-in component and manufacturing method therefor