JP2007223205A - Flexible laminate and its manufacturing method - Google Patents

Flexible laminate and its manufacturing method Download PDF

Info

Publication number
JP2007223205A
JP2007223205A JP2006048415A JP2006048415A JP2007223205A JP 2007223205 A JP2007223205 A JP 2007223205A JP 2006048415 A JP2006048415 A JP 2006048415A JP 2006048415 A JP2006048415 A JP 2006048415A JP 2007223205 A JP2007223205 A JP 2007223205A
Authority
JP
Japan
Prior art keywords
polyimide resin
resin layer
glass transition
transition temperature
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006048415A
Other languages
Japanese (ja)
Other versions
JP4692758B2 (en
Inventor
Shinichiro Yoshida
真一郎 吉田
Shigehiro Hoshida
繁宏 星田
Takeshi Ogino
剛 荻野
Tadashi Amano
正 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006048415A priority Critical patent/JP4692758B2/en
Publication of JP2007223205A publication Critical patent/JP2007223205A/en
Application granted granted Critical
Publication of JP4692758B2 publication Critical patent/JP4692758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible laminate in which an inexpensive polyimide resin layer least prone to heat deformation and a metal layer are laminated and its manufacturing method. <P>SOLUTION: The flexible laminate comprises polyimide layers and metal layers and is obtained by laminating (b) layers of a polyimide resin having a glass transition temperature of 200-300°C on both of the outer sides of (a) a layer of a polyimide resin having a glass transition temperature of ≥350°C, laminating (c) layers of a polyimide resin having a glass transition temperature of ≥350°C on both sides of the laminate composed of (a) and (b), laminating (d) a layer of a polyimide resin having a glass transition temperature of ≥300°C on both sides of the laminate composed of (a), (b) and (c) and laminating (e) metal layers on both sides of the laminate composed of (a), (b), (c) and (d). The manufacturing process for the laminate is also disclosed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、全7層のポリイミド樹脂層と金属層を積層したフレキシブル積層板及びその製造方法に関するものである。   The present invention relates to a flexible laminate having a total of seven polyimide resin layers and metal layers laminated, and a method for producing the same.

従来、フレキシブル積層板は、エポキシ樹脂等の接着剤を用いて、市販のポリイミドフィルムと金属箔を貼り合わせることにより製造されているため、耐熱性・耐薬品性・難燃性・電気特性等は使用される接着剤の特性に支配され、ポリイミドフィルムの優れた諸特性が十分に生かされず、特に耐熱性の点で十分なものではなかった。   Conventionally, flexible laminates are manufactured by bonding commercially available polyimide films and metal foils using adhesives such as epoxy resins, so heat resistance, chemical resistance, flame resistance, electrical properties, etc. Dominated by the properties of the adhesive used, the excellent properties of the polyimide film were not fully utilized and were not particularly satisfactory in terms of heat resistance.

この接着剤を有する従来のフレキシブル金属箔積層板の欠点を克服するために、市販のポリイミドフィルムに熱可塑性ポリイミドを塗布し、更に、その上に金属箔を積層して、これを加熱圧着することにより製造される接着層のないフレキシブル金属箔積層板が開発されている(例えば、特開平1−244841号公報、特開2000−103010号公報、特開平6−190967号公報:特許文献1〜3参照)。   In order to overcome the disadvantages of the conventional flexible metal foil laminate with this adhesive, a thermoplastic polyimide is applied to a commercially available polyimide film, and a metal foil is further laminated thereon, followed by thermocompression bonding. Have been developed (for example, JP-A-1-244484, JP-A-2000-103010, JP-A-6-190967: Patent Documents 1 to 3). reference).

しかしながら、上述した従来のフレキシブル金属箔ポリイミド積層板は、単一のPI(ポリイミド)フィルムからなるため、ポリイミド樹脂層を厚くするためには厚いPIフィルムを使用しなければならず、極めて高価なものであった。また、従来の方法では金属箔とポリイミド層の接続が加熱圧着となるため、接続層は熱可塑性ポリイミドを使用することになる。そのため、金属箔が高温では加熱変形してしまう傾向があった。   However, since the conventional flexible metal foil polyimide laminate described above consists of a single PI (polyimide) film, a thick PI film must be used to increase the thickness of the polyimide resin layer, which is extremely expensive. Met. In the conventional method, since the connection between the metal foil and the polyimide layer is thermocompression bonding, the connection layer uses thermoplastic polyimide. For this reason, the metal foil tends to be heated and deformed at a high temperature.

特開平1−244841号公報JP-A-1-2444841 特開2000−103010号公報JP 2000-103010 A 特開平6−190967号公報JP-A-6-190967

本発明は、上記事情に鑑みなされたもので、安価で熱変形の少ないポリイミド樹脂層と金属層を積層したフレキシブル積層板及びその製造方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the flexible laminated board which laminated | stacked the polyimide resin layer and metal layer which were cheap and less heat-deformed, and its manufacturing method.

本発明者は、上記目的を達成するために鋭意検討を重ねた結果、下記に示す(a)〜(e)層を用い、(a)層の両外側に(b)層を、(b)層の両外側に(c)層を、(c)層の両外側に(d)層を、(d)層の両外側に(e)層を積層してなる、全7層のポリイミド樹脂層と金属層を積層したフレキシブル積層板が、安価で、熱変形の少ないものであることを見出し、本発明をなすに至った。
(a)ガラス転移温度が350℃以上であるポリイミド樹脂層
(b)ガラス転移温度が200〜300℃であるポリイミド樹脂層
(c)ガラス転移温度が350℃以上であるポリイミド樹脂層
(d)ガラス転移温度が300℃以上であるポリイミド樹脂層
(e)金属層
As a result of intensive studies to achieve the above object, the present inventor used the following layers (a) to (e), (b) layers (b) on both outer sides of the layer (a), and (b) A total of seven polyimide resin layers comprising (c) layers on both outer sides of the layer, (d) layers on both outer sides of the (c) layer, and (e) layers on both outer sides of the (d) layer. The present invention has been accomplished by finding that a flexible laminated plate in which a metal layer and a metal layer are inexpensive and has little thermal deformation.
(A) Polyimide resin layer having a glass transition temperature of 350 ° C. or higher (b) Polyimide resin layer having a glass transition temperature of 200 to 300 ° C. (c) Polyimide resin layer (d) glass having a glass transition temperature of 350 ° C. or higher Polyimide resin layer (e) metal layer having a transition temperature of 300 ° C. or higher

従って、本発明は、ガラス転移温度が350℃以上であるポリイミド樹脂層(a)の両外側に、ガラス転移温度が200〜300℃であるポリイミド樹脂層(b)が積層され、この両外側にガラス転移温度が350℃以上であるポリイミド樹脂層(c)が積層され、この両外側にガラス転移温度が300℃以上であるポリイミド樹脂層(d)が積層され、更にこの両外側に金属層(e)が積層されてなることを特徴とするポリイミド樹脂層と金属層からなるフレキシブル積層板を提供する。   Accordingly, in the present invention, the polyimide resin layer (b) having a glass transition temperature of 200 to 300 ° C. is laminated on both outer sides of the polyimide resin layer (a) having a glass transition temperature of 350 ° C. or higher, and on both outer sides thereof. A polyimide resin layer (c) having a glass transition temperature of 350 ° C. or more is laminated, a polyimide resin layer (d) having a glass transition temperature of 300 ° C. or more is laminated on both outer sides, and a metal layer ( The flexible laminated board which consists of a polyimide resin layer and a metal layer characterized by being laminated | stacked e) is provided.

更に、本発明は、ガラス転移温度が350℃以上であるポリイミド樹脂層(a)の両外側に、ガラス転移温度が200〜300℃であるポリイミド樹脂層(b)を積層した部位(I)、及びガラス転移温度が350℃以上であるポリイミド樹脂層(c)と金属層(e)とをガラス転移温度が300℃以上であるポリイミド樹脂層(d)を介して積層した部位(II)をそれぞれ作製し、次いで上記ポリイミド樹脂層(a)及び(b)を積層した部位(I)の両外側に、上記ポリイミド樹脂層(c),(d)及び金属層(e)を積層した部位(II)のポリイミド樹脂層(c)側をそれぞれ貼り合わせることを特徴とするポリイミド樹脂層と金属層が積層したフレキシブル積層板の製造方法を提供する。   Furthermore, the present invention provides a portion (I) in which a polyimide resin layer (b) having a glass transition temperature of 200 to 300 ° C. is laminated on both outer sides of a polyimide resin layer (a) having a glass transition temperature of 350 ° C. or higher, And a portion (II) obtained by laminating a polyimide resin layer (c) having a glass transition temperature of 350 ° C. or higher and a metal layer (e) through a polyimide resin layer (d) having a glass transition temperature of 300 ° C. or higher. Next, the portion (II) where the polyimide resin layers (c), (d) and the metal layer (e) are laminated on both outer sides of the portion (I) where the polyimide resin layers (a) and (b) are laminated. The polyimide resin layer (c) side of each of these is bonded together, and the manufacturing method of the flexible laminated board which laminated | stacked the polyimide resin layer and the metal layer characterized by the above-mentioned is provided.

本発明によれば、安価で熱変形の少ないポリイミド樹脂層と金属層を積層したフレキシブル積層板を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the flexible laminated board which laminated | stacked the polyimide resin layer and metal layer with few thermal deformations cheaply can be obtained.

本発明のフレキシブル積層板は、図1に示すように、ガラス転移温度が350℃以上であるポリイミド樹脂層(a)の両外側に、ガラス転移温度が200〜300℃であるポリイミド樹脂層(b)が積層されてなり、このポリイミド樹脂層(b)の両外側にガラス転移温度が350℃以上であるポリイミド樹脂層(c)が積層されてなり、このポリイミド樹脂層(c)の両外側にガラス転移温度が300℃以上であるポリイミド樹脂層(d)が積層されてなり、更にこのポリイミド樹脂層(d)の両外側に金属層(e)が積層されてなるものであり、全7層のポリイミド樹脂層の両外側に金属層が積層されてなるものである。   As shown in FIG. 1, the flexible laminate of the present invention has a polyimide resin layer (b) having a glass transition temperature of 200 to 300 ° C. on both outer sides of the polyimide resin layer (a) having a glass transition temperature of 350 ° C. or higher. ) And a polyimide resin layer (c) having a glass transition temperature of 350 ° C. or higher is laminated on both outer sides of the polyimide resin layer (b), and on both outer sides of the polyimide resin layer (c). A polyimide resin layer (d) having a glass transition temperature of 300 ° C. or higher is laminated, and a metal layer (e) is further laminated on both outer sides of the polyimide resin layer (d), and a total of 7 layers. A metal layer is laminated on both outer sides of the polyimide resin layer.

以下、本発明を実施するための詳細について説明する。
本発明のフレキシブル積層板を得るための方法は特に限定されないが、下記に示すようにいくつかの部位に分けて作ることが可能であり、この方法は、製造の面からも管理しやすいために好ましい。
例えば、先ず、ポリイミド樹脂層(a)及び(b)部分を積層した部位(I)を作製し、続いてポリイミド樹脂層(c),(d)及び金属層(e)を積層した部位(II)を作製する。更に、上記部位(I)の両外側にそれぞれ部位(II)の金属層が外側となるように組み合わせて、全7層のポリイミド樹脂層と金属層が積層してなるフレキシブル積層板を得る。
Hereinafter, details for carrying out the present invention will be described.
Although the method for obtaining the flexible laminate of the present invention is not particularly limited, it can be divided into several parts as shown below, and this method is easy to manage from the viewpoint of manufacturing. preferable.
For example, first, a portion (I) in which polyimide resin layers (a) and (b) are laminated is prepared, and then a portion (II) in which polyimide resin layers (c), (d) and a metal layer (e) are laminated. ). Further, a flexible laminate is obtained by laminating all seven layers of polyimide resin layers and metal layers in combination so that the metal layer of the part (II) is on the outer side of the part (I).

ここで、ポリイミド樹脂層(a)及び(b)部分を積層した部位(I)は、ポリイミド樹脂層(a)を中心として、この両外側にポリイミド樹脂層(b)が積層されてなる3層構造のものである。   Here, the part (I) in which the polyimide resin layers (a) and (b) are laminated is a three-layer structure in which the polyimide resin layer (b) is laminated on both outer sides of the polyimide resin layer (a). Of structure.

中心にあるポリイミド樹脂層(a)は、フレキシブル積層板の耐熱性を高めるため、ガラス転移温度が350℃以上であることが必須であり、好ましくは400℃以上である。また、その厚さはフィルムとしての取り扱い性から10μm以上50μm以下であることが好ましく、更に好ましくは10μm以上25μm以下である。なお、本発明において、ガラス転移温度は熱分析計により測定することができ、また厚さは電子顕微鏡により測定することができる(以下、同様)。   In order for the polyimide resin layer (a) in the center to increase the heat resistance of the flexible laminate, it is essential that the glass transition temperature is 350 ° C. or higher, and preferably 400 ° C. or higher. Further, the thickness is preferably 10 μm or more and 50 μm or less, and more preferably 10 μm or more and 25 μm or less, from the viewpoint of handleability as a film. In the present invention, the glass transition temperature can be measured with a thermal analyzer, and the thickness can be measured with an electron microscope (hereinafter the same).

ポリイミド樹脂層(a)の両外側に組み合わせるポリイミド樹脂層(b)は、ガラス転移温度が300℃以下であることが必須であり、半田耐熱等の耐熱性の面から、好ましくは200℃以上300℃以下である。また、その厚さは、更に外側に積層されるポリイミド樹脂層(c)との貼り合わせを目的とするため厚い必要はなく、5μm以下で十分であり、特に1μm以上5μm以下であることが好ましい。   The polyimide resin layer (b) combined on both outer sides of the polyimide resin layer (a) must have a glass transition temperature of 300 ° C. or lower, and preferably 200 ° C. or higher and 300 ° C. from the viewpoint of heat resistance such as solder heat resistance. It is below ℃. Further, the thickness thereof is not required to be thick for the purpose of bonding with the polyimide resin layer (c) laminated on the outer side, and 5 μm or less is sufficient, and particularly preferably 1 μm or more and 5 μm or less. .

上述したポリイミド樹脂層(a),(b)の2種類のポリイミド樹脂層を組み合わせることで複合ポリイミドフィルムとするが、複合ポリイミドフィルムの製造は、既存の製造方法でよく、特定されない。
この場合、その積層方法はどのような方法でもよく、中心のポリイミド樹脂層(a)をフィルムに成型後、両外側に別のポリイミド樹脂層(b)を塗布もしくは貼り合わせてもよいし、中心のポリイミド樹脂層(a)と両外側のポリイミド樹脂層(b)を同時にフィルム成型してもよい。なお、ここでいう成型とは、いわゆる一般的なポリイミドフィルム成型方法でよく、キャスティング、押し出し等が利用できる。
A composite polyimide film is formed by combining the two types of polyimide resin layers (a) and (b) described above, but the manufacture of the composite polyimide film may be an existing manufacturing method and is not specified.
In this case, the lamination method may be any method, and after the central polyimide resin layer (a) is formed into a film, another polyimide resin layer (b) may be applied or bonded to both outer sides, The polyimide resin layer (a) and the outer polyimide resin layers (b) may be simultaneously formed into a film. In addition, what is called here may be a so-called general polyimide film molding method, and can use casting, extrusion, and the like.

上記ポリイミド樹脂層(a),(b)に用いられるポリイミド樹脂は、いずれも後述するような適当な酸無水物とジアミンから合成されるポリアミック酸をイミド化することにより作られたものでよい。
更に、下記に示すような一般的に市販されている熱可塑性ポリイミド樹脂層を持つ複合ポリイミドフィルムを使用することも可能である。
宇部興産社製 商品名:ユーピレックスVT
カネカ社製 商品名:ピクシオ
The polyimide resin used for the polyimide resin layers (a) and (b) may be prepared by imidizing a polyamic acid synthesized from a suitable acid anhydride and diamine as described later.
Furthermore, it is also possible to use a composite polyimide film having a thermoplastic polyimide resin layer that is generally commercially available as shown below.
Product name: Upilex VT
Product name: PIXIO

次に、ポリイミド樹脂層(c),(d)及び金属層(e)を積層した部位(II)は、ポリイミド樹脂層(c)と金属層(e)がポリイミド樹脂層(d)を介して積層されたものであり、この作製方法としては、例えば、ポリイミド樹脂層(c)を得、これと金属層(e)とを、ポリイミド樹脂層(d)を介して貼り合わせる方法を選択できる。   Next, in the portion (II) where the polyimide resin layers (c) and (d) and the metal layer (e) are laminated, the polyimide resin layer (c) and the metal layer (e) are interposed via the polyimide resin layer (d). For example, a method of obtaining a polyimide resin layer (c) and bonding the metal layer (e) to the metal layer (d) via the polyimide resin layer (d) can be selected.

ここで、ポリイミド樹脂層(c)は、適当な酸無水物とジアミンから合成されるポリアミック酸をイミド化することにより作られたものでよい。
例えば、本発明のポリイミド製造時に使用される酸無水物としては、テトラカルボン酸無水物並びにその誘導体等が挙げられる。なお、ここではテトラカルボン酸として例示するが、これらのエステル化物、酸無水物、酸塩化物も勿論使用できる。例えば、ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸、2,3,3’,4’−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、3,3’,4,4’−ジフェニルメタンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、3,4,9,10−テトラカルボキシペリレン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン、ブタンテトラカルボン酸、シクロペンタンテトラカルボン酸等が挙げられ、またトリメリット酸及びその誘導体等も挙げられる。
また、反応性官能基を有する化合物で変成し、架橋構造やラダー構造を導入することもできる。
Here, the polyimide resin layer (c) may be made by imidizing a polyamic acid synthesized from an appropriate acid anhydride and diamine.
For example, examples of acid anhydrides used in the production of the polyimide of the present invention include tetracarboxylic acid anhydrides and derivatives thereof. In addition, although illustrated as tetracarboxylic acid here, these esterified products, acid anhydrides, and acid chlorides can of course be used. For example, pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid Acid, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic acid, 2,3,3 ′, 4′-benzophenone tetracarboxylic acid, 2,3,6,7-naphthalene tetracarboxylic acid, 1,2,5 , 6-Naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-diphenylmethanetetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (3,4-di Carboxyphenyl) hexafluoropropane, 3,4,9,10-tetracarboxyperylene, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane, 2,2-bis [ - (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane, butane tetracarboxylic acid, are cyclopentane tetracarboxylic acid and the like, also may also be mentioned trimellitic acid and derivatives thereof.
Further, it can be modified with a compound having a reactive functional group to introduce a crosslinked structure or a ladder structure.

本発明のポリイミドフィルム製造時に使用されるジアミンとしては、例えば、p−フェニレンジアミン、m−フェニレンジアミン、2’−メトキシ−4,4’−ジアミノベンズアニリド、4,4’−ジアミノジフェニルエ−テル、ジアミノトルエン、4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、1,2−ビス(アニリノ)エタン、ジアミノジフェニルスルホン、ジアミノベンズアニリド、ジアミノベンゾエード、ジアミノジフェニルスルフィド、2,2−ビス(p−アミノフェニル)プロパン、2,2−ビス(p−アミノフェニル)ヘキサフルオロプロパン、1,5−ジアミノナフタレン、ジアミノトルエン、ジアミノベンゾトリフルオライド、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4’−(p−アミノフェノキシ)ビフェニル、ジアミノアントラキノン、4,4’−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、1,3−ビス(アニリノ)ヘキサフルオロプロパン、1,4−ビス(アニリノ)オクタフルオロプロパン、1,5−ビス(アニリノ)デカフルオロプロパン、1,7−ビス(アニリノ)テトラデカフルオロプロパン、2,2−ビス〔4−(p−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(2−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)−3,5−ジメチルフェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)−3,5−ジトリフルオロメチルフェニル〕ヘキサフルオロプロパン、p−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、4,4’−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ビフェニル、4,4’−ビス(4−アミノ−3−トリフルオロメチルフェノキシ)ビフェニル、4,4’−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’−ビス(4−アミノ−5−トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2−ビス〔4−(4−アミノ−3−トリフルオロメチルフェノキシ)フェニル〕ヘキサフルオロプロパン、ベンジジン、3,3’,5,5’−テトラメチルベンジジン、オクタフルオロベンジジン、3,3’−メトキシベンジジン、o−トリジン、m−トリジン、2,2’,5,5’,6,6’−ヘキサフルオロトリジン、4,4''−ジアミノターフェニル、4,4'''−ジアミノクォーターフェニル等のジアミン類、並びにこれらのジアミンとホスゲン等の反応によって得られるジイソシアネート類、更にジアミノシロキサン類等が挙げられる。   Examples of the diamine used in producing the polyimide film of the present invention include p-phenylenediamine, m-phenylenediamine, 2′-methoxy-4,4′-diaminobenzanilide, and 4,4′-diaminodiphenyl ether. , Diaminotoluene, 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,2-bis (anilino) ethane, diaminodiphenylsulfone, diaminobenzanilide, diaminobenzoate, diaminodiphenyl sulfide, 2,2-bis (p-aminophenyl) propane, 2 , 2-Bis (p-aminophenyl) hexafluoropro 1,5-diaminonaphthalene, diaminotoluene, diaminobenzotrifluoride, 1,4-bis (p-aminophenoxy) benzene, 4,4 ′-(p-aminophenoxy) biphenyl, diaminoanthraquinone, 4,4 ′ -Bis (3-aminophenoxyphenyl) diphenylsulfone, 1,3-bis (anilino) hexafluoropropane, 1,4-bis (anilino) octafluoropropane, 1,5-bis (anilino) decafluoropropane, 1, 7-bis (anilino) tetradecafluoropropane, 2,2-bis [4- (p-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (3-aminophenoxy) phenyl] hexafluoropropane 2,2-bis [4- (2-aminophenoxy) phenyl] he Safluoropropane, 2,2-bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) -3,5-ditri Fluoromethylphenyl] hexafluoropropane, p-bis (4-amino-2-trifluoromethylphenoxy) benzene, 4,4′-bis (4-amino-2-trifluoromethylphenoxy) biphenyl, 4,4′- Bis (4-amino-3-trifluoromethylphenoxy) biphenyl, 4,4′-bis (4-amino-2-trifluoromethylphenoxy) diphenylsulfone, 4,4′-bis (4-amino-5-tri Fluoromethylphenoxy) diphenylsulfone, 2,2-bis [4- (4-amino-3-trifluoromethylphenoxy) Nenyl] hexafluoropropane, benzidine, 3,3 ′, 5,5′-tetramethylbenzidine, octafluorobenzidine, 3,3′-methoxybenzidine, o-tolidine, m-tolidine, 2,2 ′, 5,5 Diamines such as ', 6,6'-hexafluorotolidine, 4,4' '-diaminoterphenyl, 4,4' ''-diaminoquaterphenyl, and diisocyanates obtained by reaction of these diamines with phosgene, etc. Furthermore, diaminosiloxanes and the like can be mentioned.

ポリイミド樹脂層(c)の製造方法は既存の方法でよく、特定されない。また、下記に示すような一般的に市販されているポリイミドフィルムを使用することも可能である。
宇部興産社製 商品名:ユーピレックス
カネカ社製 商品名:アピカル
東レ・デュポン社製 商品名:カプトン
The manufacturing method of a polyimide resin layer (c) may be an existing method, and is not specified. Moreover, it is also possible to use the polyimide film generally marketed as shown below.
Product name: Upilex Kaneka product name: Apical Toray DuPont product name: Kapton

このポリイミド樹脂層(c)は、フレキシブル金属箔ポリイミド積層板の耐熱性を高めるため、ガラス転移温度が350℃以上であることが必須であり、好ましくは360℃以上、特に400℃以上550℃以下である。また、その厚さは、フィルムとしての取り扱い性から10μm以上50μm以下であることが好ましく、更に好ましくは10μm以上40μm以下である。   This polyimide resin layer (c) must have a glass transition temperature of 350 ° C. or higher, preferably 360 ° C. or higher, particularly 400 ° C. or higher, particularly 550 ° C. or lower, in order to increase the heat resistance of the flexible metal foil polyimide laminate. It is. Further, the thickness is preferably 10 μm or more and 50 μm or less, and more preferably 10 μm or more and 40 μm or less, from the viewpoint of handleability as a film.

また、本発明で使用されるポリイミド樹脂層(d)は、ポリイミド樹脂前駆体溶液の状態にてポリイミド樹脂層(c)もしくは金属層(e)上に塗布した後、両者を貼り合わせ、イミド化することにより得ることが好適である。また、ポリイミド樹脂層(d)には、ポリイミド樹脂層(c)と同じ化学構造のものが使用できるため、上記した市販のポリイミドフィルムのポリイミド樹脂前駆体を溶液状態にて塗布し、乾燥、イミド化することも可能である。   In addition, the polyimide resin layer (d) used in the present invention is applied onto the polyimide resin layer (c) or the metal layer (e) in the state of a polyimide resin precursor solution, and then bonded together to imidize. It is suitable to obtain by doing. Moreover, since the thing of the same chemical structure as a polyimide resin layer (c) can be used for a polyimide resin layer (d), the polyimide resin precursor of the above-mentioned commercially available polyimide film is apply | coated in a solution state, dried, imide It is also possible to

ポリイミド樹脂層(d)は、フレキシブル積層板の耐熱変形性能を高めるため、ガラス転移温度が300℃以上であることが必須であり、好ましくは350℃以上550℃以下である。また、ポリイミド樹脂層(d)の厚みは、2μm以上15μm以下が好ましく、更に好ましくは2μm以上10μm以下である。   The polyimide resin layer (d) must have a glass transition temperature of 300 ° C. or higher, preferably 350 ° C. or higher and 550 ° C. or lower, in order to enhance the heat resistant deformation performance of the flexible laminate. The thickness of the polyimide resin layer (d) is preferably 2 μm or more and 15 μm or less, more preferably 2 μm or more and 10 μm or less.

なお、本発明において、上述したポリイミド樹脂層(a)とポリイミド樹脂層(c)、ポリイミド樹脂層(a)とポリイミド樹脂層(d)、ポリイミド樹脂層(c)とポリイミド樹脂層(d)とはそれぞれ同一のものでも異なったものでもよいが、ポリイミド樹脂層(b)とポリイミド樹脂層(d)とは互いに異なるものであることが好ましい。   In the present invention, the above-described polyimide resin layer (a) and polyimide resin layer (c), polyimide resin layer (a) and polyimide resin layer (d), polyimide resin layer (c) and polyimide resin layer (d) May be the same or different, but the polyimide resin layer (b) and the polyimide resin layer (d) are preferably different from each other.

本発明で使用される金属層(e)は、金属の種類に特に限定はなく、通常は銅、鉄、銀、モリブデン、亜鉛、タングスデン、クロム、ニッケル、アルミニウム、ステンレス鋼、ベリリウム銅合金等の金属箔から選択できる。プリント基板用途として印刷回路を形成するために好ましい金属層は銅箔であり、圧延銅箔、電解銅箔のいずれも使用できる。   The metal layer (e) used in the present invention is not particularly limited in the type of metal, and is usually made of copper, iron, silver, molybdenum, zinc, tungsten, chromium, nickel, aluminum, stainless steel, beryllium copper alloy, etc. You can choose from metal foil. A preferred metal layer for forming a printed circuit for use as a printed circuit board is a copper foil, and either a rolled copper foil or an electrolytic copper foil can be used.

また、金属層に直接接しているポリイミド樹脂層と金属層との接着力を高めるために、金属箔上に金属単体、その酸化物あるいは合金、例えば金属箔が銅箔の場合には、銅単体、酸化銅、ニッケル−銅合金あるいは亜鉛−銅合金等の無機物を形成させてもよく、また、無機物以外にもアミノシラン、エポキシシラン、メルカプトシラン等のカップリング剤を金属箔上に形成させてもよい。   In addition, in order to increase the adhesive force between the polyimide resin layer and the metal layer that are in direct contact with the metal layer, the metal simple substance on the metal foil, its oxide or alloy, for example, when the metal foil is a copper foil, the copper simple substance Inorganic substances such as copper oxide, nickel-copper alloy or zinc-copper alloy may be formed. In addition to inorganic substances, coupling agents such as aminosilane, epoxysilane, mercaptosilane may be formed on the metal foil. Good.

金属層(e)の厚みとしては、1μm以上50μm以下であることが好ましく、より好ましくは1μm以上36μm以下である。   The thickness of the metal layer (e) is preferably 1 μm or more and 50 μm or less, more preferably 1 μm or more and 36 μm or less.

ここで、ポリイミド樹脂層(c),(d)及び金属層(e)を積層した部位(II)とする方法としては、ポリイミド樹脂層(c)もしくは金属層(e)の上に、ポリイミド樹脂層(d)の基となるポリイミド樹脂前駆体を溶液状態にて塗布し、両者を貼り合わせてから溶剤除去、イミド化を行う方法(例えば、特開2005−14353号公報)等を選択することができる。   Here, as a method for forming the portion (II) in which the polyimide resin layers (c) and (d) and the metal layer (e) are laminated, the polyimide resin layer (c) or the metal layer (e) is coated on the polyimide resin. Select a method (for example, Japanese Patent Application Laid-Open No. 2005-14353) or the like for applying a polyimide resin precursor as a base of the layer (d) in a solution state and bonding the two together, followed by solvent removal and imidization. Can do.

次に、上記で得られたポリイミド樹脂層(a)及び(b)部分を積層した部位(I)である複合ポリイミドフィルムの両外側に、ポリイミド樹脂層(c),(d)及び金属層(e)を積層した部位(II)である片面金属層ポリイミド基板を金属層(e)が外側となるようにそれぞれ接合することにより、全7層のポリイミド樹脂層と金属層とを積層してなるフレキシブル積層板が得られるものであり、この接合方法としては、一般的な加熱圧着を選択することができる。加熱圧着の方法は、既に知られている一般的な方法でよく、例えば、特開平8−244168号、特開2003−118060号、特開平5−31869号公報等で用いられている2つの金属ロールで挟みラミネートするロールラミネート方法や、特開平9−116254号公報に示されているようなダブルベルトプレス法といわれる方法、もしくは単板プレス法を用いることができる。   Next, polyimide resin layers (c), (d) and a metal layer (on both sides of the composite polyimide film, which is the portion (I) where the polyimide resin layers (a) and (b) obtained above are laminated, are provided. A single-sided metal layer polyimide substrate, which is the part (II) where e) is laminated, is bonded so that the metal layer (e) is on the outside, thereby laminating a total of seven polyimide resin layers and metal layers. A flexible laminate can be obtained, and a general thermocompression bonding can be selected as the joining method. The thermocompression bonding method may be a known general method, for example, two metals used in JP-A-8-244168, JP-A-2003-1118060, JP-A-5-31869, and the like. A roll laminating method of laminating and laminating with rolls, a method called a double belt press method as disclosed in JP-A-9-116254, or a single plate press method can be used.

また、加熱温度は、熱可塑性ポリイミド樹脂層(b)のガラス転移温度以上の温度であればよく、好ましくは330℃以上、更に好ましくは350℃以上である。圧着時の圧力は、用いるポリイミドのフロー性によって異なるが、ロールラミネート機等では線圧にて5kg/cm以上、好ましくは10kg/cm以上であり、ベルトプレス機、単板プレス機等では面圧にて10kg/cm2以上、好ましくは20kg/cm2以上である。 Moreover, the heating temperature should just be the temperature more than the glass transition temperature of a thermoplastic polyimide resin layer (b), Preferably it is 330 degreeC or more, More preferably, it is 350 degreeC or more. The pressure at the time of crimping varies depending on the flow property of the polyimide used, but in a roll laminating machine or the like, the linear pressure is 5 kg / cm or more, preferably 10 kg / cm or more. At 10 kg / cm 2 or more, preferably 20 kg / cm 2 or more.

また、本発明においては、加熱圧着する際に、ポリイミドフィルムや金属箔に接触する装置部分はいわゆる超硬合金を使用することが好ましい。一般のステンレス鋼や、カーボンスチールの上にクロムメッキ等をしたものでも貼り合わせることは可能であるが、貼り合わせているときに金属箔が切れる現象が起きやすい。超硬合金を使用するとこの現象が少なくなる。なお、ここでいう超硬合金とは、一般的に用いられている炭化タングステンを主成分としたコバルト、ニッケル等との混合物の他にもダイヤモンド、酸化アルミニウム、炭化クロム、炭化珪素、炭化硼素等の硬度の高いもの(ビッカース硬度にて1,000以上を示す)を成分としたものでよい。   In the present invention, it is preferable to use a so-called cemented carbide for the device portion that contacts the polyimide film or the metal foil when thermocompression bonding. Although it is possible to bond even general stainless steel or carbon steel with chrome plating or the like, a phenomenon that the metal foil breaks during bonding is likely to occur. This phenomenon is reduced when cemented carbide is used. The cemented carbide here refers to diamond, aluminum oxide, chromium carbide, silicon carbide, boron carbide, etc. in addition to commonly used mixtures of tungsten carbide as the main component with cobalt, nickel, etc. A component having a high hardness (indicating a Vickers hardness of 1,000 or more) may be used.

本発明のフレキシブル積層板は、ポリイミド樹脂層の合計が50μm以上、特に50μm以上150μm以下の厚みであることが好ましい。ポリイミド樹脂層の合計厚みが50μm未満では全体としての機械的強度が不足する場合がある。   In the flexible laminate of the present invention, the total thickness of the polyimide resin layers is preferably 50 μm or more, particularly 50 μm or more and 150 μm or less. If the total thickness of the polyimide resin layer is less than 50 μm, the overall mechanical strength may be insufficient.

以下に本発明の実施例を挙げて説明するが、本発明は下記の実施の形態に限らず、本発明の要旨を逸脱することなく、その他種々の構成を採り得ることは勿論である。なお、下記例において、厚みは電子顕微鏡により測定し、またガラス転移温度は熱分析計により測定した。   Examples of the present invention will be described below, but the present invention is not limited to the following embodiments, and it is needless to say that various other configurations can be adopted without departing from the gist of the present invention. In the following examples, the thickness was measured with an electron microscope, and the glass transition temperature was measured with a thermal analyzer.

[合成例1] ポリアミック酸の合成
ピロメリット酸無水物218.5gをN,N−ジメチルアセトアミド1kgに加え、N2雰囲気下で攪拌し、10℃に保っているところへ、4,4’−ジアミノジフェニルエーテル200.5gをN,N−ジメチルアセトアミド1kgに溶解したものを、内温が15℃を越えないように除々に添加した。その後、2時間,10〜15℃で反応させた後、更に室温で6時間反応を行った。反応終了後の対数粘度は0.8dl/gであった。(ウベローデ粘度管使用 0.5g/dl濃度 30℃での粘度)
[Synthesis Example 1] Synthesis of polyamic acid 218.5 g of pyromellitic acid anhydride was added to 1 kg of N, N-dimethylacetamide, stirred under N 2 atmosphere, and kept at 10 ° C. A solution prepared by dissolving 200.5 g of diaminodiphenyl ether in 1 kg of N, N-dimethylacetamide was gradually added so that the internal temperature did not exceed 15 ° C. Then, after making it react at 10-15 degreeC for 2 hours, it reacted at room temperature for 6 hours. The logarithmic viscosity after the reaction was 0.8 dl / g. (Ubbelohde viscosity tube used 0.5 g / dl viscosity at 30 ° C)

[実施例1]
市販の電解銅箔(古河サーキットホイル社製、商品名:FI−WS、厚み12μm)に、合成例1のポリイミド樹脂前駆体を30μmになるように塗工し、送風乾燥機で乾燥した。次いで、これと市販のポリイミドフィルム(鐘淵化学工業社製、商品名:アピカルNPI、ガラス転移温度450℃、厚さ25μm)をロールラミネート機(西村マシナリー社製)を用い、加熱温度80℃、圧力15kg/cmで貼り合せた。次いで、200℃の防爆オーブンで残留溶媒を除去し、窒素ガス雰囲気下、350℃まで昇温して当該前駆体をポリイミド化して、ポリイミドフィルムとポリイミド系樹脂層、銅箔よりなるフレキシブル片面銅箔積層板を得た。これで、ポリイミド樹脂層(c),(d)及び金属層(e)が形成できた。
[Example 1]
The polyimide resin precursor of Synthesis Example 1 was applied to a commercially available electrolytic copper foil (Furukawa Circuit Foil, trade name: FI-WS, thickness 12 μm) so as to have a thickness of 30 μm, and dried with an air dryer. Next, using this and a commercially available polyimide film (manufactured by Kaneka Chemical Co., Ltd., trade name: Apical NPI, glass transition temperature 450 ° C., thickness 25 μm) using a roll laminator (manufactured by Nishimura Machinery Co., Ltd.), heating temperature 80 ° C., Bonding was performed at a pressure of 15 kg / cm. Next, the residual solvent is removed in an explosion-proof oven at 200 ° C., the temperature is raised to 350 ° C. in a nitrogen gas atmosphere, the precursor is converted into a polyimide, and a flexible single-sided copper foil comprising a polyimide film, a polyimide resin layer, and a copper foil A laminate was obtained. Thus, the polyimide resin layers (c) and (d) and the metal layer (e) were formed.

更に、熱可塑性ポリイミド樹脂層を両側に持つ市販の複合ポリイミドフィルム(つまりポリイミド樹脂層(a),(b)である、宇部興産社製、商品名:ユーピレックス25VT、中心のポリイミド樹脂層はガラス転移温度480℃、厚み20μm、両端の熱可塑性ポリイミドはガラス転移温度245℃、厚み2.5μm)の両側に、得られた片面フレキシブル銅箔積層板を銅箔が外側になるように積層し、ロールラミネート機(西村マシナリー社製)を使用して加熱温度350℃、圧力20kg/cmにて加熱圧着し、貼り合わせたものをロール状に巻き取った。ロールラミネート機の接触部は炭化タングステン系の合金を使用した。
得られたフレキシブル積層板について、各ポリイミド樹脂層の厚み、ガラス転移温度、加熱変形テスト、外観検査を行い、表1にまとめた。
Further, a commercially available composite polyimide film having thermoplastic polyimide resin layers on both sides (that is, polyimide resin layers (a) and (b), manufactured by Ube Industries, Ltd., trade name: Upilex 25VT, the central polyimide resin layer is a glass transition The temperature is 480 ° C., the thickness is 20 μm, and the thermoplastic polyimide at both ends is laminated on both sides of the glass transition temperature of 245 ° C. and the thickness of 2.5 μm) so that the copper foil is on the outside, and roll A laminating machine (manufactured by Nishimura Machinery Co., Ltd.) was used to heat and pressure-bond at a heating temperature of 350 ° C. and a pressure of 20 kg / cm, and the bonded product was wound into a roll. The contact part of the roll laminator used a tungsten carbide alloy.
About the obtained flexible laminated board, the thickness of each polyimide resin layer, the glass transition temperature, the heat deformation test, and the external appearance test were done, and it summarized in Table 1.

[実施例2]
市販の圧延銅箔(日鉱マテリアルズ社製、商品名:BHY、厚み18μm)に、合成例1のポリイミド樹脂前駆体を20μmになるように塗工し、送風乾燥機で乾燥した。更に、ポリイミドフィルム(東レデュポン社製、商品名:カプトンEN、ガラス転移温度355℃、厚み38μm)をロールラミネート機(西村マシナリー社製)を用い、加熱温度100℃、圧力10kg/cmで貼り合せた。次いで、200℃の防爆オーブンで残留溶媒を除去し、窒素ガス雰囲気下、350℃まで昇温して当該前駆体をポリイミド化して、ポリイミドフィルムとポリイミド系樹脂層、銅箔よりなるフレキシブル片面銅箔積層板を得た。これで、ポリイミド樹脂層(c),(d)及び金属層(e)が形成できた。これ以外は実施例1と同様にした。
得られたフレキシブル積層板について、各ポリイミド樹脂層の厚み、ガラス転移温度、加熱変形テスト、外観検査を行い、表1にまとめた。
[Example 2]
The commercially available rolled copper foil (manufactured by Nikko Materials Co., Ltd., trade name: BHY, thickness 18 μm) was coated with the polyimide resin precursor of Synthesis Example 1 to 20 μm and dried with a blower dryer. Furthermore, a polyimide film (manufactured by Toray DuPont, trade name: Kapton EN, glass transition temperature 355 ° C., thickness 38 μm) is bonded using a roll laminator (manufactured by Nishimura Machinery) at a heating temperature of 100 ° C. and a pressure of 10 kg / cm. It was. Next, the residual solvent is removed in an explosion-proof oven at 200 ° C., the temperature is raised to 350 ° C. in a nitrogen gas atmosphere, the precursor is converted into a polyimide, and a flexible single-sided copper foil comprising a polyimide film, a polyimide resin layer, and a copper foil A laminate was obtained. Thus, the polyimide resin layers (c) and (d) and the metal layer (e) were formed. The rest was the same as in Example 1.
About the obtained flexible laminated board, the thickness of each polyimide resin layer, the glass transition temperature, the heat deformation test, and the external appearance test were done, and it summarized in Table 1.

[実施例3]
実施例1に於いて、ポリイミド樹脂層(c)をポリイミドフィルム(東レデュポン社製、商品名:カプトンEN、ガラス転移温度355℃、厚み12.5μm)に代え、ポリイミド樹脂層(d)がイミド化終了時に厚み8μmとなるように塗布乾燥した。また、ポリイミド樹脂層(a),(b)を複合ポリイミドフィルム(宇部興産社製、商品名:ユーピレックス15VT、中心のポリイミド樹脂層はガラス転移温度480℃、厚み10μm、両端の熱可塑性ポリイミドはガラス転移温度245℃、厚み2.5μm)を用いる以外は、実施例1と同様にした。
得られたフレキシブル積層板について、各ポリイミド樹脂層の厚み、ガラス転移温度、加熱変形テスト、外観検査を行い、表1にまとめた。
[Example 3]
In Example 1, the polyimide resin layer (c) was replaced with a polyimide film (manufactured by Toray DuPont, trade name: Kapton EN, glass transition temperature 355 ° C., thickness 12.5 μm). The coating was dried to a thickness of 8 μm at the end of the conversion. The polyimide resin layers (a) and (b) are composite polyimide films (manufactured by Ube Industries, trade name: Upilex 15VT, the central polyimide resin layer has a glass transition temperature of 480 ° C., a thickness of 10 μm, and the thermoplastic polyimide at both ends is glass. Example 1 was used except that a transition temperature of 245 ° C. and a thickness of 2.5 μm was used.
About the obtained flexible laminated board, the thickness of each polyimide resin layer, the glass transition temperature, the heat deformation test, and the external appearance test were done, and it summarized in Table 1.

[実施例4]
市販の電解銅箔(古河サーキットホイル社製、商品名:FI−WS、厚み12μm)に、市販のポリイミドワニス(宇部興産社製、商品名:Uワニス、イミド化完了時のガラス転移温度350℃)を20μmになるように塗工し、送風乾燥機で乾燥した。次いで、これと市販のポリイミドフィルム(鐘淵化学工業社製、商品名:アピカルFP、ガラス転移温度370℃、厚さ9μm)をロールラミネート機(西村マシナリー社製)を用い、加熱温度80℃、圧力15kg/cmで貼り合せた。次いで、200℃の防爆オーブンで残留溶媒を除去し、窒素ガス雰囲気下、350℃まで昇温して当該前駆体をポリイミド化して、ポリイミドフィルムとポリイミド系樹脂層、銅箔よりなるフレキシブル片面銅箔積層板を得た。これで、ポリイミド樹脂層(c),(d)及び金属層(e)が形成できた。それ以外は実施例3と同様にした。
得られたフレキシブル積層板について、各ポリイミド樹脂層の厚み、ガラス転移温度、加熱変形テスト、外観検査を行い、表1にまとめた。
[Example 4]
Commercially available electrolytic copper foil (manufactured by Furukawa Circuit Foil, trade name: FI-WS, thickness 12 μm), commercially available polyimide varnish (trade name: U varnish, trade name: U varnish, glass transition temperature upon completion of imidization 350 ° C. ) Was coated to a thickness of 20 μm and dried with a blow dryer. Next, this and a commercially available polyimide film (manufactured by Kaneka Chemical Co., Ltd., trade name: Apical FP, glass transition temperature 370 ° C., thickness 9 μm) were used with a roll laminator (manufactured by Nishimura Machinery Co., Ltd.), heating temperature 80 ° C., Bonding was performed at a pressure of 15 kg / cm. Next, the residual solvent is removed in an explosion-proof oven at 200 ° C., the temperature is raised to 350 ° C. in a nitrogen gas atmosphere, the precursor is converted into a polyimide, and a flexible single-sided copper foil comprising a polyimide film, a polyimide resin layer, and a copper foil A laminate was obtained. Thus, the polyimide resin layers (c) and (d) and the metal layer (e) were formed. Other than that was carried out similarly to Example 3.
About the obtained flexible laminated board, the thickness of each polyimide resin layer, the glass transition temperature, the heat deformation test, and the external appearance test were done, and it summarized in Table 1.

[実施例5]
市販の電解銅箔(古河サーキットホイル社製、商品名:FI−WS、厚み12μm)に、市販のポリイミドワニス(宇部興産社製、商品名:Uワニス、イミド化完了時のガラス転移温度350℃)を30μmになるように塗工し、送風乾燥機で乾燥した。次いで、これと市販のポリイミドフィルム(鐘淵化学工業社製、商品名:アピカルNPI、ガラス転移温度450℃、厚さ25μm)をロールラミネート機(西村マシナリー社製)を用い、加熱温度80℃、圧力15kg/cmで貼り合せた。次いで、200℃の防爆オーブンで残留溶媒を除去し、窒素ガス雰囲気下、350℃まで昇温して当該前駆体をポリイミド化して、ポリイミドフィルムとポリイミド系樹脂層、銅箔よりなるフレキシブル片面銅箔積層板を得た。これで、ポリイミド樹脂層(c),(d)及び金属層(e)が形成できた。
[Example 5]
Commercially available electrolytic copper foil (manufactured by Furukawa Circuit Foil, trade name: FI-WS, thickness 12 μm), commercially available polyimide varnish (trade name: U varnish, trade name: U varnish, glass transition temperature upon completion of imidization 350 ° C. ) Was applied to a thickness of 30 μm and dried with a blow dryer. Next, using this and a commercially available polyimide film (manufactured by Kaneka Chemical Co., Ltd., trade name: Apical NPI, glass transition temperature 450 ° C., thickness 25 μm) using a roll laminator (manufactured by Nishimura Machinery Co., Ltd.), heating temperature 80 ° C., Bonding was performed at a pressure of 15 kg / cm. Next, the residual solvent is removed in an explosion-proof oven at 200 ° C., the temperature is raised to 350 ° C. in a nitrogen gas atmosphere, the precursor is converted into a polyimide, and a flexible single-sided copper foil comprising a polyimide film, a polyimide resin layer, and a copper foil A laminate was obtained. Thus, the polyimide resin layers (c) and (d) and the metal layer (e) were formed.

更に、ポリイミド樹脂層(a)として市販のポリイミドフィルム(カネカ社製、商品名:アピカルNPI、ガラス転移温度450℃、厚み25μm)の両側にポリイミド樹脂層(b)として市販のポリイミドワニス(ユニチカ社製、商品名:UイミドーC、イミド化完了時のガラス転移温度285℃)を13μm塗布し、200℃の防爆オーブンで残留溶媒を除去し、窒素ガス雰囲気下、280℃まで昇温して当該前駆体をポリイミド化して複合ポリイミドフィルムを得た。
その両側に、得られた片面フレキシブル銅箔積層板を銅箔が外側になるように積層し、ロールラミネート機(西村マシナリー社製)を使用して加熱温度350℃、圧力20kg/cmにて加熱圧着し、貼り合わせたものをロール状に巻き取った。ロールラミネート機の接触部は炭化タングステン系の合金を使用した。
得られたフレキシブル積層板について、各ポリイミド樹脂層の厚み、ガラス転移温度、加熱変形テスト、外観検査を行い、表1にまとめた。
Furthermore, as a polyimide resin layer (a), a commercially available polyimide film (manufactured by Kaneka Corp., trade name: Apical NPI, glass transition temperature 450 ° C., thickness 25 μm) is provided on both sides as a polyimide resin layer (b). (Product name: U-imide-C, glass transition temperature 285 ° C. at the time of completion of imidization) was applied at 13 μm, the residual solvent was removed in an explosion-proof oven at 200 ° C., and the temperature was raised to 280 ° C. in a nitrogen gas atmosphere. The precursor was converted into a polyimide to obtain a composite polyimide film.
On both sides, the obtained single-sided flexible copper foil laminate was laminated so that the copper foil was on the outside, and heated at a heating temperature of 350 ° C. and a pressure of 20 kg / cm using a roll laminating machine (manufactured by Nishimura Machinery). The bonded and bonded pieces were wound up into a roll. The contact part of the roll laminator used a tungsten carbide alloy.
About the obtained flexible laminated board, the thickness of each polyimide resin layer, the glass transition temperature, the heat deformation test, and the external appearance test were done, and it summarized in Table 1.

[比較例1]
実施例1に於いて、ポリイミド樹脂層(d)の部分の形成を合成例1の代わりに市販のポリイミドワニス(ユニチカ社製、商品名:UイミドーC、イミド化完了時のガラス転移温度285℃)を用いた以外は実施例1と同様にした。
得られたフレキシブル積層板について、各ポリイミド樹脂層の厚み、ガラス転移温度、加熱変形テスト、外観検査を行い、表1にまとめた。
[Comparative Example 1]
In Example 1, the polyimide resin layer (d) was formed in place of Synthesis Example 1 by using a commercially available polyimide varnish (manufactured by Unitika Co., Ltd., trade name: U imide-C, glass transition temperature 285 ° C. upon completion of imidization). ) Was used in the same manner as in Example 1.
About the obtained flexible laminated board, the thickness of each polyimide resin layer, the glass transition temperature, the heat deformation test, and the external appearance test were done, and it summarized in Table 1.

[比較例2]
実施例1に於いて、市販の複合ポリイミドフィルムの代わりに、ポリイミド樹脂層(a)として市販のポリイミドフィルム(鐘淵化学工業社製、商品名:アピカルNPI、ガラス転移温度450℃、厚み25μm)の両側に、ポリイミド樹脂層(b)として市販のポリイミドワニス(宇部興産社製、商品名:Uワニス、イミド化完了時のガラス転移温度350℃)を15μm塗布し、200℃の防爆オーブンで残留溶媒を除去し、窒素ガス雰囲気下、280℃まで昇温して当該前駆体をポリイミド化して得られた複合ポリイミドフィルムを用いた以外は実施例1と同様にした。
得られたフレキシブル積層板について、各ポリイミド樹脂層の厚み、ガラス転移温度、加熱変形テスト、外観検査を行い、表1にまとめた。比較例2の外観検査ではポリイミド樹脂層(b)部分での剥がれが観察された。
[Comparative Example 2]
In Example 1, instead of a commercially available composite polyimide film, a commercially available polyimide film as a polyimide resin layer (a) (manufactured by Kaneka Chemical Co., Ltd., trade name: Apical NPI, glass transition temperature 450 ° C., thickness 25 μm) 15 μm of a commercially available polyimide varnish (manufactured by Ube Industries, trade name: U varnish, glass transition temperature 350 ° C. at the time of imidization completion) is applied as a polyimide resin layer (b) on both sides of the resin, and remains in an explosion-proof oven at 200 ° C. The same procedure as in Example 1 was performed except that the solvent was removed, and the temperature was raised to 280 ° C. in a nitrogen gas atmosphere to obtain a composite polyimide film obtained by polyimidizing the precursor.
About the obtained flexible laminated board, the thickness of each polyimide resin layer, the glass transition temperature, the heat deformation test, and the external appearance test were done, and it summarized in Table 1. In the appearance inspection of Comparative Example 2, peeling at the polyimide resin layer (b) was observed.

加熱変形テスト、ガラス転移温度、ポリイミド樹脂層の厚み、外観検査の測定方法を下記に示す。   The measurement methods for the heat deformation test, glass transition temperature, polyimide resin layer thickness, and appearance inspection are shown below.

《加熱変形テスト》
得られたフレキシブル積層板を10cm×10cmの試験片にカットし、350℃の熱板を10秒押し付けて、押し付け箇所の変形を観察した。
変形有り:×
変形なし:○
《Heat deformation test》
The obtained flexible laminate was cut into a 10 cm × 10 cm test piece, a hot plate at 350 ° C. was pressed for 10 seconds, and deformation of the pressed portion was observed.
With deformation: ×
No deformation: ○

《ガラス転移温度の測定》
各部位のポリイミド樹脂層を熱分析計(レオメトリックサイエンス社製:分析装置名 RSA−III)を用いて測定して、ガラス転移温度を測定した。
<Measurement of glass transition temperature>
The polyimide resin layer in each part was measured using a thermal analyzer (manufactured by Rheometric Science Co., Ltd .: analyzer name RSA-III) to measure the glass transition temperature.

《ポリイミド樹脂層の厚さ測定》
得られたフレキシブル積層板の断面を電子顕微鏡にて観察し、厚みを測定した。
<Measurement of thickness of polyimide resin layer>
The cross section of the obtained flexible laminate was observed with an electron microscope, and the thickness was measured.

《外観検査》
得られたフレキシブル積層板の外観を観察した。
良好:○
不良:×
"Visual inspection"
The appearance of the obtained flexible laminate was observed.
Good: ○
Defect: ×

Figure 2007223205
Figure 2007223205

本発明のフレキシブル積層板の構造を示す概略図である。It is the schematic which shows the structure of the flexible laminated board of this invention.

符号の説明Explanation of symbols

a ガラス転移温度が350℃以上であるポリイミド樹脂層
b ガラス転移温度が200〜300℃であるポリイミド樹脂層
c ガラス転移温度が350℃以上であるポリイミド樹脂層
d ガラス転移温度が300℃以上であるポリイミド樹脂層
e 金属層
a polyimide resin layer having a glass transition temperature of 350 ° C. or higher b polyimide resin layer having a glass transition temperature of 200 to 300 ° C. polyimide resin layer having a glass transition temperature of 350 ° C. or higher d glass transition temperature of 300 ° C. or higher Polyimide resin layer e Metal layer

Claims (4)

ガラス転移温度が350℃以上であるポリイミド樹脂層(a)の両外側に、ガラス転移温度が200〜300℃であるポリイミド樹脂層(b)が積層され、この両外側にガラス転移温度が350℃以上であるポリイミド樹脂層(c)が積層され、この両外側にガラス転移温度が300℃以上であるポリイミド樹脂層(d)が積層され、更にこの両外側に金属層(e)が積層されてなることを特徴とするポリイミド樹脂層と金属層からなるフレキシブル積層板。   A polyimide resin layer (b) having a glass transition temperature of 200 to 300 ° C. is laminated on both outer sides of the polyimide resin layer (a) having a glass transition temperature of 350 ° C. or higher, and the glass transition temperature is 350 ° C. on both outer sides. The polyimide resin layer (c) as described above is laminated, the polyimide resin layer (d) having a glass transition temperature of 300 ° C. or more is laminated on both outer sides, and the metal layer (e) is further laminated on both outer sides. A flexible laminate comprising a polyimide resin layer and a metal layer. 金属層が銅箔であることを特徴とする請求項1に記載のフレキシブル積層板。   The flexible laminate according to claim 1, wherein the metal layer is a copper foil. ポリイミド樹脂層の合計厚みが50μm以上であることを特徴とする請求項1又は2に記載のフレキシブル積層板。   The total thickness of a polyimide resin layer is 50 micrometers or more, The flexible laminated board of Claim 1 or 2 characterized by the above-mentioned. ガラス転移温度が350℃以上であるポリイミド樹脂層(a)の両外側に、ガラス転移温度が200〜300℃であるポリイミド樹脂層(b)を積層した部位(I)、及びガラス転移温度が350℃以上であるポリイミド樹脂層(c)と金属層(e)とをガラス転移温度が300℃以上であるポリイミド樹脂層(d)を介して積層した部位(II)をそれぞれ作製し、次いで上記ポリイミド樹脂層(a)及び(b)を積層した部位(I)の両外側に、上記ポリイミド樹脂層(c),(d)及び金属層(e)を積層した部位(II)のポリイミド樹脂層(c)側をそれぞれ貼り合わせることを特徴とするポリイミド樹脂層と金属層が積層したフレキシブル積層板の製造方法。
The part (I) which laminated | stacked the polyimide resin layer (b) whose glass transition temperature is 200-300 degreeC on both the outer sides of the polyimide resin layer (a) whose glass transition temperature is 350 degreeC or more, and glass transition temperature are 350 Each part (II) was prepared by laminating a polyimide resin layer (c) having a glass transition temperature of 300 ° C. or higher through a polyimide resin layer (d) having a glass transition temperature of 300 ° C. or higher. The polyimide resin layer (II) of the part (II) where the polyimide resin layers (c), (d) and the metal layer (e) are laminated on both outer sides of the part (I) where the resin layers (a) and (b) are laminated. c) A method for producing a flexible laminate in which a polyimide resin layer and a metal layer are laminated, wherein the sides are bonded together.
JP2006048415A 2006-02-24 2006-02-24 Flexible laminate and method for manufacturing the same Expired - Fee Related JP4692758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006048415A JP4692758B2 (en) 2006-02-24 2006-02-24 Flexible laminate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048415A JP4692758B2 (en) 2006-02-24 2006-02-24 Flexible laminate and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2007223205A true JP2007223205A (en) 2007-09-06
JP4692758B2 JP4692758B2 (en) 2011-06-01

Family

ID=38545453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048415A Expired - Fee Related JP4692758B2 (en) 2006-02-24 2006-02-24 Flexible laminate and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4692758B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263202B2 (en) 2010-03-19 2012-09-11 Glenn Danny E Film based heating device and methods relating thereto
JP2012213902A (en) * 2011-03-31 2012-11-08 Nippon Steel Chem Co Ltd Metal-clad laminated board
WO2017209060A1 (en) * 2016-06-03 2017-12-07 株式会社有沢製作所 Method for producing flexible metal-clad laminate
KR20230174732A (en) 2022-06-21 2023-12-28 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate, circuit board, electronic device and electronic apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178344A (en) * 1986-01-31 1987-08-05 鐘淵化学工業株式会社 Composite polyimide film
JPH11274685A (en) * 1998-03-24 1999-10-08 Mitsui Chem Inc Method of forming printed circuit board
JP2002240193A (en) * 2001-02-16 2002-08-28 Nippon Steel Chem Co Ltd Laminate and method for manufacturing the same
JP2002317159A (en) * 2001-04-20 2002-10-31 Kanegafuchi Chem Ind Co Ltd Adhesive film, its manufacturing method and laminate of metal foil provided with the adhesive film
JP2002326280A (en) * 2001-04-27 2002-11-12 Kanegafuchi Chem Ind Co Ltd Method for producing heat resistant flexible laminated plate
JP2004079594A (en) * 2002-08-12 2004-03-11 Shin Etsu Chem Co Ltd Multilayer flexible printed wiring board
JP2004266105A (en) * 2003-03-03 2004-09-24 Sumitomo Bakelite Co Ltd Flexible printed wiring board with reinforcing board
JP2005035285A (en) * 2003-06-25 2005-02-10 Shin Etsu Chem Co Ltd Flexible metal foil polyimide laminate board
JP2005096265A (en) * 2003-09-25 2005-04-14 Mitsui Chemicals Inc Polyimide/metal laminated sheet
JP2005167006A (en) * 2003-12-03 2005-06-23 Shin Etsu Chem Co Ltd Manufacturing method of flexible metal foil polyimide substrate
JP2005319633A (en) * 2004-05-07 2005-11-17 Shin Etsu Chem Co Ltd Method for manufacturing flexible copper clad laminated sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178344A (en) * 1986-01-31 1987-08-05 鐘淵化学工業株式会社 Composite polyimide film
JPH11274685A (en) * 1998-03-24 1999-10-08 Mitsui Chem Inc Method of forming printed circuit board
JP2002240193A (en) * 2001-02-16 2002-08-28 Nippon Steel Chem Co Ltd Laminate and method for manufacturing the same
JP2002317159A (en) * 2001-04-20 2002-10-31 Kanegafuchi Chem Ind Co Ltd Adhesive film, its manufacturing method and laminate of metal foil provided with the adhesive film
JP2002326280A (en) * 2001-04-27 2002-11-12 Kanegafuchi Chem Ind Co Ltd Method for producing heat resistant flexible laminated plate
JP2004079594A (en) * 2002-08-12 2004-03-11 Shin Etsu Chem Co Ltd Multilayer flexible printed wiring board
JP2004266105A (en) * 2003-03-03 2004-09-24 Sumitomo Bakelite Co Ltd Flexible printed wiring board with reinforcing board
JP2005035285A (en) * 2003-06-25 2005-02-10 Shin Etsu Chem Co Ltd Flexible metal foil polyimide laminate board
JP2005096265A (en) * 2003-09-25 2005-04-14 Mitsui Chemicals Inc Polyimide/metal laminated sheet
JP2005167006A (en) * 2003-12-03 2005-06-23 Shin Etsu Chem Co Ltd Manufacturing method of flexible metal foil polyimide substrate
JP2005319633A (en) * 2004-05-07 2005-11-17 Shin Etsu Chem Co Ltd Method for manufacturing flexible copper clad laminated sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263202B2 (en) 2010-03-19 2012-09-11 Glenn Danny E Film based heating device and methods relating thereto
JP2012213902A (en) * 2011-03-31 2012-11-08 Nippon Steel Chem Co Ltd Metal-clad laminated board
WO2017209060A1 (en) * 2016-06-03 2017-12-07 株式会社有沢製作所 Method for producing flexible metal-clad laminate
CN109219513A (en) * 2016-06-03 2019-01-15 株式会社有泽制作所 The manufacturing method of flexible metal clad laminate plywood
JPWO2017209060A1 (en) * 2016-06-03 2019-02-21 株式会社有沢製作所 Method for producing flexible metal-clad laminate
JP2020104517A (en) * 2016-06-03 2020-07-09 株式会社有沢製作所 Method for manufacturing flexible metal-clad laminated plate
US10751977B2 (en) 2016-06-03 2020-08-25 Arisawa Mfg. Co., Ltd. Method for manufacturing flexible metal-clad laminated plate
CN109219513B (en) * 2016-06-03 2021-03-09 株式会社有泽制作所 Method for manufacturing flexible metal-clad laminate
KR20230174732A (en) 2022-06-21 2023-12-28 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate, circuit board, electronic device and electronic apparatus

Also Published As

Publication number Publication date
JP4692758B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JPWO2008004496A1 (en) Thermoplastic polyimide, laminated polyimide film using the same, and metal foil laminated polyimide film
KR20180022827A (en) METHOD AND APPARATUS FOR MANUFACTURING SINGLE-SIDED METAL LAM
JP2006068920A (en) Manufacturing method of flexible copper foil/polyimide laminate
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP4692758B2 (en) Flexible laminate and method for manufacturing the same
JP2005167006A (en) Manufacturing method of flexible metal foil polyimide substrate
JP2007098791A (en) Flexible one side copper-clad polyimide laminated plate
JP6713825B2 (en) Method for producing single-sided metal-clad laminate and method for producing double-sided metal-clad laminate
KR100620474B1 (en) Process for producing heat-resistant flexible laminate and heat-resistant flexible laminate produced thereby
JP4917745B2 (en) High frequency substrate and manufacturing method thereof
JP5023667B2 (en) Flexible heater
JP4389338B2 (en) Manufacturing method of flexible metal foil laminate
JP2007118477A (en) Double-sided metal foil lamination plate and method for manufacturing the same
JP2007062274A (en) Flexible laminated board cladded with copper layer on single site and manufacturing method of it
JP2004237596A (en) Flexible copper-clad laminated plate and its production method
JP4332739B2 (en) Method for producing flexible copper-clad laminate
JPWO2021024988A1 (en) Method of manufacturing a laminate
JP2003127276A (en) Polyimide metal foil laminated plate and its production method
JP4694142B2 (en) Manufacturing method of substrate for flexible printed wiring board
JP2009051035A (en) Laser-welded laminate and its manufacturing method
JP4841100B2 (en) Polyimide metal laminate
JP2005319633A (en) Method for manufacturing flexible copper clad laminated sheet
JP4458275B2 (en) Polyimide substrate and manufacturing method thereof
JP2007265543A (en) Method for manufacturing layered body for hdd suspension
JP2009241484A (en) Flexible metal-clad laminate board for chip on film and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees