JP2004247042A - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
JP2004247042A
JP2004247042A JP2004111150A JP2004111150A JP2004247042A JP 2004247042 A JP2004247042 A JP 2004247042A JP 2004111150 A JP2004111150 A JP 2004111150A JP 2004111150 A JP2004111150 A JP 2004111150A JP 2004247042 A JP2004247042 A JP 2004247042A
Authority
JP
Japan
Prior art keywords
voltage
circuit
data
memory cell
cell array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004111150A
Other languages
English (en)
Inventor
Yasuo Ito
寧夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004111150A priority Critical patent/JP2004247042A/ja
Publication of JP2004247042A publication Critical patent/JP2004247042A/ja
Abandoned legal-status Critical Current

Links

Images

Abstract

【課題】EEPROMにおける最適値を有するデータ書き込み用および消去用の電圧をチップ内でほぼ自動的かつ安定に発生でき、製造後におけるデータ書き込み用および消去用の電圧の設定・検査などに要する時間の短縮を図る。
【解決手段】電源電圧を昇圧し、所定の中間電位を発生する昇圧回路20と、昇圧回路20の出力電圧を制御データに基づいて任意の値に設定する電圧設定回路22と、この電圧設定回路22に、装置外部から与えられる制御データまたは装置内部に不揮発的に記憶された制御データを選択的に供給する選択回路と、浮遊ゲート及び制御ゲートを有するMOSFETからなるメモリセルが行列状に配列されたメモリセルアレイ10と、このメモリセルアレイ10のメモリセルを選択制御するための複数のワード線WLと、メモリセルアレイのメモリセルとの間でデータの授受を行うための複数のビット線BLとを具備し、メモリセルアレイ10に対するデータの書き込み時に、書き込みが行われないビット線に昇圧回路20の出力電圧が供給される。
【選択図】 図1

Description

本発明はメモリセルを含み、特にデータ書き込み用、消去用の高電圧を安定に発生する回路を含む半導体集積回路装置に関する。
EEPROMの中で高集積化が可能なものとして、メモリセルを複数個直列接続したNANDセル型のEEPROMが知られている。このEEPROMにおいて、一つのメモリセルは図11に示すように、半導体基板90にソース91とドレイン92を形成し、さらに基板90上に絶縁膜を介して浮遊ゲート93と制御ゲート94を積層したMOSFET構造を有する。そして、図12に示すように、複数個のメモリセル95が隣接するもの同士でそのソース、ドレインを共用する形で直列接続されてNANDセルを構成する。NANDセルの一端側ドレインは選択ゲート96を介してビット線BLに接続され、他端側ソースはやはり選択ゲート97を介して共通ソース線Sに接続される。そして、このようなメモリセルが複数個マトリクス状に配列されてEEPROMが構成され、各メモリセルの制御ゲートは行方向に連続的に配設されてワード線WLとなる。
次に、このようなNANDセル型のEEPROMにおける従来のデータの書き込み、消去、データの読み出しの動作について説明する。
NANDセルに対するデータの書き込みは、ビット線BLから遠い方のメモリセルから順次行われる。NANDセルのメモリセルが例えばnチャネルの場合を説明すると、選択されたメモリセルの制御ゲートには昇圧された書き込み電圧VPP(20V程度)が印加され、この選択されたメモリセルよりビット線側にある非選択メモリセルの制御ゲート及び選択ゲートには中間電圧VM (10V程度)が印加され、ビット線BLにはデータに応じて0V(例えばデータ“0”)または中間電圧VM (例えばデータ“1”)が印加される。この時、ビット線BLの電圧は非選択メモリセルを転送されて選択メモリセルのドレインまで伝わる。書き込みデータが“0”の時は、選択メモリセルの浮遊ゲート93とドレイン92との間に高電界が加わり、このドレイン92から選択メモリセルの浮遊ゲート93に電子がトンネル注入され、選択メモリセルの閾値が正方向に移動する。書き込みデータが“1”の時には選択メモリセルの閾値は変化しない。
NANDセルに対するデータの消去は、NANDセル内の全てのメモリセルに対して同時に行われる。即ち、全てのメモリセルの制御ゲート94、全ての選択ゲート96、97のゲートに0Vが印加され、図示しないp型ウェル及びn型基板に対し昇圧された消去電圧VE (20V程度)が印加される。これにより全てのメモリセルにおいて浮遊ゲート93の電子がp型ウェルに放出され、閾値が負方向に移動する。
NANDセルに対するデータの読み出しは、選択されたメモリセルの制御ゲート94に0Vの基準電圧が印加され、それ以外のメモリセルの制御ゲート94及び選択ゲート96、97のゲートには電源電圧Vcc(例えば 3.3V)が印加され、選択メモリセルで電流が流れるか否かが図示しないセンスアンプにより検出されることにより行われる。
ところで、NANDセル型のEEPROMにおいて、上記のような書き込み電圧VPP、中間電圧VM 及び消去電圧VE はそれぞれ、電源電圧Vcc( 3.3V)を昇圧して高電圧を得る高電圧発生回路によって形成される。この高電圧発生回路は、従来、図13に示すように、多段縦続接続された偶数個のチャージポンプ回路 101からなる昇圧回路 102と、この昇圧回路 102内の最終段のチャージポンプ回路に接続された電圧制限回路 103とから構成されている。
上記各チャージポンプ回路 101はそれぞれ、ソース、ドレイン間の一端及びゲートが 3.3Vの電源電圧Vccに接続されたMOSFET 104と、このMOSFET 104のソース、ドレイン間の他端にソース、ドレイン間の一端及びゲートが接続されたMOSFET 105と、上記MOSFET 104のソース、ドレイン間の他端に一端が接続されたキャパシタ 106とから構成されており、前段のMOSFET 105のソース、ドレイン間の他端が次段のMOSFET105 のソース、ドレイン間の一端に接続されることにより、複数個のチャージポンプ回路 101が縦続接続されている。また、各チャージポンプ回路 101内のキャパシタ 106の他端には、リングオシレータなどの発振回路で得られる図14に示すような2相のクロック信号φ1、φ2が交互に供給されている。
上記電圧制限回路 103は、直列接続された複数個(この例では2個)のツェナーダイオード 107で構成されている。ここで、ツェナーダイオード1個当たりのツェナーブレークダウン電圧VZ が例えば10Vであるとすれば、電圧制限回路103 の制限電圧は、図13のようにツェナーダイオードが2個設けられている場合にはVPP及び消去電圧VE 用の20Vとなり、1個の場合には中間電圧VM 用の10Vになる。
ところで、上記のようなNANDセル型のEEPROMにおいて、データの書き込みを行う場合に、使用される書き込み電圧VPPが高い程、データの書き込みに要する時間を短くすることができる。しかし、従来ではこの電圧をむやみに高くすることができず、上限があった。その理由は次の通りである。
もし、データの書き込み時にVPPを高くしすぎ、NANDセルで直列接続された複数個のメモリセルの途中のメモリセルの閾値が正方向に移動し過ぎると、データの読み出し時に、このメモリセルが非選択メモリセルであり、その制御ゲートに 3.3Vの電源電圧が印加された時でもこの非選択メモリセルがオン状態にはならず、選択メモリセルからのデータ読み出しが行えなくなるという不都合が生じる。即ち、書き込み電圧VPPを高くしすぎると、データの書き込み時にオーバーライトが生じる。
このようなオーバーライトは外部の温度変動によっても生じる。即ち、上記図13のような構成の高電圧発生回路において、ある温度の下では正規の書き込み電圧である20Vが得られていても、外部の温度が変動してツェナーダイオード107 のツェナーブレークダウン電圧が上昇すると、VPPの値も上昇する。従って、書き込み電圧VPPが20Vの時に例えば 100μ秒の書き込み時間で正規の閾値の移動量が得られていたものが、VPPが23Vに上昇することによって 100μ秒の書き込み時間では閾値の移動量が大きくなってしまう。
このようなオーバーライトの問題を解決するために、インテリジェントライト方式が開発された。この方式は、書き込み電圧VPPを小刻みに上昇させてデータの書き込みを複数回に分けて行うものであり、データの書き込み及び書き込み後の読み出し動作を繰り返し行うものである。そして読み出されたデータが書き込みデータと等しくなった時に書き込み動作を終了させる。
一方、上記のようなNANDセル型のEEPROMにおいて、書き込み電圧VPPや消去電圧VE を最適値に設定することが困難であった。即ち、EEPROMの製造時におけるメモリセルのトンネル酸化膜厚や、浮遊ゲート・制御ゲート間の層間絶縁膜の加工のバラツキ、あるいは、メモリセルトランジスタの加工バラツキ等によって、書き込み・消去時におけるトンネル酸化膜と層間絶縁膜との容量結合比が変動するので、書き込み電圧VPPや消去電圧VE の最適値は製造ロット毎、半導体ウェハ毎、さらには、半導体チップ毎に異なった状態となる。このようなVPPやVE の最適値の設定が困難になるという問題は、今後、メモリセルの微細化が進むにつれてますます顕著になるものと予想される。
なお、本願発明者らは、既に、VPPやVE の安定化を図るためにVPPやVE の温度依存性を抑制し得る回路とか、EEPROMの製造後に外部からVPPやVE を調整し得る回路を提案したが、これらの提案は前記したような問題を解決するには必ずしも十分ではない。
本発明は上記の事情に鑑みてなされたものであり、最適値を有するデータ書き込み用および消去用の電圧をチップ内でほぼ自動的かつ安定に発生でき、製造後におけるデータ書き込み用および消去用の電圧の設定・検査などに要する時間の短縮を図ることができ、必要に応じてデータ書き込み用および消去用の電圧値を容易に変更し得る半導体集積回路装置を提供することを目的とするものである。
第1の発明の半導体集積回路装置は、電源電圧を昇圧し、所定の中間電位を発生する中間電位発生手段と、上記中間電位発生手段の出力電圧を制御データに基づいて任意の値に設定する電圧設定手段と、この電圧設定手段に、装置外部から与えられる制御データまたは装置内部に不揮発的に記憶された制御データを選択的に供給する選択手段と、浮遊ゲート及び制御ゲートを有するMOSFETからなるメモリセルが行列状に配列されたメモリセルアレイと、このメモリセルアレイのメモリセルを選択制御するための複数のワード線と、上記メモリセルアレイのメモリセルとの間でデータの授受を行うための複数のビット線とを具備し、上記メモリセルアレイに対するデータの書き込み時に、書き込みが行われないビット線に前記中間電位発生手段の出力電圧が供給されることを特徴とする。
第2の発明の半導体集積回路装置は、電源電圧を昇圧し、所定の中間電位を発生する中間電位発生手段と、上記中間電位発生手段の出力電圧を制御データに基づいて任意の値に設定する電圧設定手段と、この電圧設定手段に、装置外部から与えられる制御データまたは装置内部に不揮発的に記憶された制御データを選択的に供給する選択手段と、浮遊ゲート及び制御ゲートを有するMOSFETからなるメモリセルが行列状に配列されたメモリセルアレイと、このメモリセルアレイのメモリセルを選択制御するための複数のワード線と、上記メモリセルアレイのメモリセルとの間でデータの授受を行うための複数のビット線とを具備し、上記メモリセルアレイに対するデータの書き込み時に、選択されないワード線に前記中間電位発生手段の出力電圧が供給されることを特徴とする。
第3の発明の半導体集積回路装置は、電源電圧を昇圧し、所定の中間電位を発生する中間電位発生手段と、上記中間電位発生手段の出力電圧を制御データに基づいて任意の値に設定する電圧設定手段と、この電圧設定手段に、装置外部から与えられる制御データまたは装置内部に不揮発的に記憶された制御データを選択的に供給する選択手段と、浮遊ゲート及び制御ゲートを有するMOSFETからなるメモリセルが行列状に配列されたメモリセルアレイと、このメモリセルアレイのメモリセルを選択制御するための複数のワード線と、上記メモリセルアレイのメモリセルとの間でデータの授受を行うための複数のビット線とを具備し、上記メモリセルアレイに対するデータの読み出し時に、選択されないワード線に前記中間電位発生手段の出力電圧が供給されることを特徴とする。
第1乃至第3の発明の半導体集積回路装置によれば、メモリセルアレイに対するデータの書き込み時に、書き込みが行われないビット線および選択されないワード線に供給される中間電位を最適値に設定することが可能になる。または、上記メモリセルアレイに対するデータの読み出し時に、選択されないワード線に供給される中間電位を最適値に設定することが可能になる。
本発明の半導体集積回路装置によれば、最適値を有するデータ書き込み用および消去用の電圧をチップ内でほぼ自動的かつ安定に発生でき、製造後におけるデータ書き込み用および消去用の電圧の設定・検査などに要する工数・時間を短縮し、製造コストの低減を図ることができる。また、必要に応じてデータ書き込み用および消去用の電圧値を仕様内に容易に変更でき、歩留りの向上を図ることができる。
以下、図面を参照してこの発明を実施例により説明する。
図1はこの発明をNANDセル型のEEPROMに実施したこの発明の第1の実施例の構成を示す回路図である。
図1において、メモリセルアレイ10は、図12を参照して前述したように、それぞれ浮遊ゲートと制御ゲートを有するNチャネルのMOSFETからなるメモリセル11が複数個直列に接続されてなるNANDセルと、このNANDセルの両端側に直列に接続されたNチャネルのMOSFETからなる2個の選択ゲート12とが、全体として行列状に配列されて形成されている。
複数のワード線WLは、同一行のメモリセル11の各制御ゲートに共通に1本づつ接続され、各NANDセルの一端側ドレインに接続された選択ゲート12はビット線BLに、各NANDセルの他端側ソースに接続された選択ゲート12は共通ソース線Sに接続されている。
アドレスデコード回路13は、入力アドレス信号をデコードするデコーダ14と、このデコーダ14の出力に従って上記ワード線WLに所定の電圧を供給するワード線ドライバ15とから構成されており、データの書き込み時、消去時及びデータの読み出し時にそれぞれアドレス信号に基づいて前記複数のワード線WLを選択駆動する。
上記ワード線ドライバ15には、例えば 3.3Vの電源電圧Vcc及び0Vの基準電圧のほかに、例えば20Vの書き込み電圧VPP、例えば22Vの消去電圧VE 、例えば10Vの中間電圧VM 、データの読み出し時に非選択メモリセルの制御ゲートに印加するための低い中間電位(例えば 4V)の読み出し電圧VREが供給される。ビット線ドライバ16には、電源電圧Vcc及び中間電圧VM が供給される。
4個の高電圧発生回路17、17a 、18及び18a は、それぞれ対応して前記書き込み電圧VPP、消去電圧VE 、中間電圧VM 、読み出し電圧VREを発生するものであり、これらはほぼ同様に構成されている。
ここで、上記4個の高電圧発生回路のうち書き込み電圧VPP発生用の高電圧発生回路17を代表的に説明する。この書き込み電圧VPP発生用の高電圧発生回路17は、リングオシレータ19、昇圧回路20、電圧制限回路21及び電圧設定回路22とから構成されている。
上記昇圧回路20は、電源電圧Vccを昇圧して高電圧を得るものであり、例えば図13を参照して前述したようにチャージポンプ回路を用いて構成されている。上記リングオシレータ19は、所定周期で発振し、上記昇圧回路20で使用される2相のクロック信号φ1、φ2(図14参照)をそれぞれ発生する。
上記昇圧回路20の出力端には電圧制限回路21の一端が接続されており、昇圧回路20で得られた高電圧は電圧制限回路21によって一定値に制限される。また、電圧制限回路21の他端には電圧設定回路22が接続されており、この電圧設定回路22によって電圧制限回路21の他端の電圧が任意に設定される。これにより、書き込み電圧VPPの値が自由に変えられるようになっている。
図2は、図1中の書き込み電圧VPP発生用の高電圧発生回路17内の電圧制限回路21及び電圧設定回路22の詳細な構成を示す回路図である。
電圧制限回路21は、各カソードが上記昇圧回路20の出力端側に向いた状態(逆方向の向き)で直列接続された3個のツェナーダイオード23で構成されている。なお、各ツェナーダイオード23のツェナーブレークダウン電圧VZ は、その温度特性がほとんど無い例えば5V近傍の値に設定されている。このVZ の値は、望ましくは4ないし7Vの範囲の値に設定される。従って、この電圧制限回路21におけるツェナーブレークダウン電圧は15V程度である。
電圧設定回路22は、電圧発生回路24、電圧比較回路25、参照用電圧発生回路26及び電圧降下用のNチャネルのMOSFET27とから構成されている。
上記電圧発生回路24は、上記電圧制限回路21の他端と0Vの基準電圧との間に直列接続された9個の電圧分割用の抵抗R9〜R1と、これら各抵抗の直列接続点にそれぞれの一端が接続され、他端が共通接続された8個のCMOSトランスファゲート28とから構成されている。上記8個のCMOSトランスファゲート28のNチャネル側及びPチャネル側のゲートには、それぞれ対応して相補な一対の制御信号SW0,/SW0(ただし、/は反転を意味する)〜SW7,/SW7が供給される。
即ち、上記電圧設定回路22では、上記電圧制限回路21の他端の電圧VAと基準電圧との間の電位差が9個の抵抗R9〜R1によって8通りに分割され、制御信号SW0,/SW0〜SW7,/SW7に応じていずれか一つのトランスファゲート28が導通制御されることにより、分割された8通りの電圧のいずれか一つが選択される。
上記電圧比較回路25は、PチャネルのMOSFET29,30及びNチャネルのMOSFET31,32,33からなる差動型の演算増幅回路であり、上記電圧発生回路24で選択された電圧VB が一方の駆動用MOSFETであるNチャネルのMOSFET31のゲートに供給される。そして、他方の駆動用MOSFETであるNチャネルのMOSFET32のゲートには参照用電圧発生回路26で発生される後述する参照用電圧VR が供給され、この電圧比較回路25で両電圧VB 、VR が比較される。
なお、上記電圧比較回路25内のNチャネルのMOSFET33のゲートには制御信号VONが供給され、この信号VONが“1”レベル( 3.3V)にされてMOSFET33が導通した時に、電圧比較回路25の比較動作が行われる。また、この信号VONの論理レベルは、このEEPROMにおけるデータの書き込み/読み出し制御信号R/Wに基づいて設定される。
上記参照用電圧発生回路26は、前記中間電圧VM 発生用の高電圧発生回路18から供給される中間電圧VM が直列接続された2個のツェナーダイオード34,35によって2分割され、さらにこの2分割された電圧が直列接続された2個の抵抗36,37によりその抵抗比に応じて分割されることにより、前記参照用電圧VR を安定に発生する。
上記電圧降下用のMOSFET27のドレインは上記電圧制限回路21の他端に接続され、ソースは基準電圧に接続され、そのゲートには上記電圧比較回路25の出力電圧が供給される。即ち、このMOSFET27は電圧比較回路25の出力に応じてゲート制御されることにより、そのドレイン・ソース間の導通抵抗が変化し、その導通抵抗に応じてドレイン・ソース間の降下電圧の値が変わり、この結果、上記電圧制限回路21の他端の電圧VA が設定される。
なお、上記電圧制限回路21の他端と電圧比較回路25内のMOSFET31のゲートとの間には、発振防止用のキャパシタ38が接続されている。
次に、図1、図2の回路における書き込み電圧VPP発生用の高電圧発生回路17の動作を説明する。
電源が投入された後に、リングオシレータ19が発振動作を開始し、前記クロック信号φ1、φ2が昇圧回路20に供給されることによって電源電圧Vccの昇圧が始まる。そして、昇圧回路20の出力電圧が十分に高くなった時、電圧制限回路21により、昇圧回路20の出力電圧が、1個のツェナーダイオードのツェナーブレークダウン電圧の3倍の電圧、即ち、5V×3=15Vと、この電圧制限回路21の他端の電圧であるVA との和の電圧である(15V+VA )に制限される。
いま仮に、制御信号SW3,/SW3がそれぞれ“1”レベル( 3.3V)、“0”レベル(0V)にされているとすると、図2中の電圧発生回路24内ではこの制御信号SW3,/SW3がゲートに入力されている1個のCMOSトランスファゲート28が導通する。この時、他のCMOSトランスファゲートは全て非導通になっている。この時、電圧発生回路24の出力電圧VB は次式で与えられる。
VB={(R1+R2+R3+R4+R5)/(R1+R2+…+R8+R9)}・VA …(1)
また、演算増幅回路の一般的な作用により、電圧比較回路25の両入力電圧VB 、VR は等しくなるので、R1+R2+R3+R4+R5=RA、R6+R7+R8+R9=RBとすると、VA は次式で与えられる。
VA=(1+RB/RA)・VR …(2)
上記(2)式によれば、(RB /RA )の値を変えることによりVA の電圧を変えることができ、これによりVPPの値を自由に変えることができる。また、(RB /RA )の値は、電圧発生回路24内の8個のCMOSトランスファゲート28のどれを導通させるかによって決まり、これらCMOSトランスファゲート28の導通制御は制御信号SW0,/SW0〜SW7,/SW7の論理レベルの設定に応じてなされる。
いま、参照用電圧VR が例えば 2.5Vに設定されており、(RB /RA )の値が1に設定されているとすれば、VA の値は上記(2)式より5Vになり、従ってこの場合にはVPP=(15V+VA )=(15V+5V)=20Vになる。
上記電圧制限回路21における制限電圧は、温度特性がほとんど無い3個のツェナーダイオード23で決定されるため、この電圧制限回路21におけるツェナーブレークダウン電圧である15Vは温度変動に対してほとんど変化しない。また、電圧制限回路21の他端の電圧も温度特性がほとんど無い参照用電圧VR に基づいて生成されるので、これも温度変動に対してほとんど変化しない。従って、VPPの値は温度変動に対する変化が少なく、かつある範囲内で自由にその値を変えることができる。
図3は、図1中の消去電圧VE 発生用の高電圧発生回路17a 内の電圧制限回路21及び電圧設定回路22の詳細な構成を示す回路図である。
この回路は、図2を参照して前述した回路と比べて、VE がVPPと異なれば、電圧分割用の抵抗R9〜R1及び参照電圧VR 発生用の抵抗36、37の値が異なる。そして、電圧制限回路21により、昇圧回路20の出力電圧(消去電圧VE )が、1個のツェナーダイオード23のツェナーブレークダウン電圧の3倍の電圧、即ち、5V×3=15Vと、この電圧制限回路21の他端の電圧であるVA (例えば7Vに設定される)との和の電圧である22Vに制限される。
なお、消去電圧VE の値は、制御信号SE0,/SE0〜SE7,/SE7の論理レベルの設定に応じて電圧発生回路24内の8個のCMOSトランスファゲート28のどれを導通させるかによって自由に変えることができる。
図4は、図1中の中間電圧VM 発生用の高電圧発生回路18内の電圧制限回路21及び電圧設定回路22の詳細な構成を示す回路図である。
この回路は、図2を参照して前述した回路と比べて、電圧分割用の抵抗R9〜R1及び参照電圧VR 発生用の抵抗36、37の値と、電圧制限回路21が1個のツェナーダイオード23からなる点が異なる。そして、昇圧回路20の出力電圧(中間電圧VM )が、電圧制限回路21の1個のツェナーダイオード23のツェナーブレークダウン電圧5Vと、この電圧制限回路21の他端の電圧であるVA (例えば5Vに設定される)との和の電圧である10Vに制限される。
なお、中間電圧VM の値は、制御信号SM0,/SM0〜SM7,/SM7の論理レベルの設定に応じて電圧発生回路24内の8個のCMOSトランスファゲート28のどれを導通させるかによって自由に変えることができる。
図5は、図1中の読み出し電圧VRE発生用の高電圧発生回路18a 内の電圧制限回路21及び電圧設定回路22の詳細な構成を示す回路図である。
この回路は、図2を参照して前述した回路と比べて、電圧分割用の抵抗R9〜R1及び参照電圧VR 発生用の抵抗36、37の値が異なり、さらに、電圧制限回路21が省略され、昇圧回路20の出力端側に直接に電圧降下用のMOSFET27のドレインが接続されている点が異なる。そして、VA が例えば4Vに設定されることにより、昇圧回路20の出力電圧(読み出し電圧VRE)が4Vに設定される。
なお、読み出し電圧VREの値は、制御信号SR0,/SR0〜SR7,/SR7の論理レベルの設定に応じて電圧発生回路24内の8個のCMOSトランスファゲート28のどれを導通させるかによって自由に変えることができる。
なお、図1中の4個の高電圧発生回路17、17a 、18及び18a に対してリングオシレータ19を1個のみ設け、クロック信号φ1、φ2を4個の高電圧発生回路17、17a 、18及び18a で共通に使用するようにしても良い。なお、上記実施例回路では参照電圧VR はVPP、VE 、VRE発生のためにそれぞれ別個に設ける構成としているが、参照用電圧発生回路26は1個のみ設け、VPP、VE 、VREで共用するようにしてもよい。また、図2乃至図5中の8個のCMOSトランスファゲート28に代えて、NMOSトランジスタ単独あるいはPMOSトランジスタ単独からなるトランスファゲートを用いてもよい。但し、この場合、NMOSトランジスタあるいはPMOSトランジスタの閾値電圧による転送電圧降下を防止するために、そのゲートには電源電圧Vccとは異なる電圧を加える必要がある。
次に、図1のEEPROMにおけるデータの書き込み、消去、読み出しの基本動作を説明する。
データの書き込み、消去、データの読み出しに際して、ワード線ドライバ15及びビット線ドライバ16は、ワード線WL及びビット線BLに対して所要の電圧をそれぞれ選択的に供給する。
即ち、NANDセルに対するデータの書き込みは、図12を参照して前述したように、ビット線から遠い方のメモリセルから順次行われる。選択されたメモリセルの制御ゲートには書き込み電圧VPPが印加され、これよりビット線側にある非選択メモリセルの制御ゲート及び選択ゲートには中間電圧VM が印加され、ビット線にはデータに応じて0Vまたは中間電圧VM が印加される。この時、ビット線の電圧は非選択メモリセルを転送されて選択メモリセルのドレインまで伝わり、書き込みデータが“0”の時は、選択メモリセルの浮遊ゲートとドレインとの間に高電界が加わり、ドレインから浮遊ゲートに電子がトンネル注入され、閾値が正方向に移動する。また、書き込みデータが“1”の時には、閾値は変化しない。
NANDセルに対するデータの消去は、NANDセル内の全てのメモリセルに対して同時に行われる。即ち、全ての制御ゲート、選択ゲートのゲートに0Vが印加され、図示しないp型ウェル及びn型基板に対し昇圧された消去電圧VE が印加される。これにより全てのメモリセルにおいて浮遊ゲートの電子がp型ウェルに放出され、閾値が負方向に移動する。
NANDセルに対するデータの読み出しは、選択されたメモリセルの制御ゲートに0Vの基準電圧が印加され、それ以外のメモリセル(非選択メモリセル)の制御ゲートには読み出し電圧VREが印加され、選択ゲートには電源電圧Vcc(例えば 3.3V)が印加され、選択メモリセルで電流が流れるか否かが図示しないセンスアンプにより検出されることにより行われる。
なお、従来のEEPROMにおけるデータの読み出し時には、非選択メモリセルの制御ゲートに印加される電圧は電源電圧Vccが直接に用いられていた。この非選択メモリセルの制御ゲートの印加電圧は、書き込み後のメモリセルの閾値を越える電圧でなければならない。
メモリセルの閾値の分布が0.5〜3V程度の場合、Vcc=5Vであれば、上記条件を満たすので、非選択メモリセルはトランスファゲートとしての機能を果たす。
しかし、Vccが低電圧化され、Vcc=3.3Vになれば、メモリセルの閾値の上限に対してマージンが少なくなる。マージンが少なくなると、読み出し電流が低減し、ランダムアクセスタイムが遅くなり、仕様を満足しなくなるだけでなく、閾値の上限値がVccを越えることになると完全に不良になる。
そこで、非選択メモリセルの制御ゲートに印加される電圧を、Vccを越える値に設定する必要がある。この設定値は、上限があり、あまり高くし過ぎると、長期(例えば5〜10年)のうちにメモリセル内の閾値を徐々に上昇させるように働き、誤動作を起こさせる原因(リード・リテンション;Read Retentionの劣化)となる。
従って、読み出し電圧VREには最適値が存在し、本例では、Vcc=3.3Vの場合にVRE=4Vに設定されている。
図6は、前記制御信号SW0〜SW7,SE0〜SE7,SM0〜SM7,SR0〜SR7の発生回路の一例を示している。
図6において、50は本実施例のEEPROMの動作を制御するための8ビットの制御信号が与えられる外部端子である。これら外部端子50に与えられる制御信号は8ビットのレジスタ51に供給され、記憶される。このレジスタ51に記憶された信号はコマンドデコーダ52でデコードされ、制御回路53に供給される。この制御回路53は、EEPROMの通常動作およびテスト動作を制御する。
4個のデコーダ54は、対応して設けられている4個の選択回路56を介して供給される例えば3ビットのデータ信号をデコードしてそれぞれ対応して8つの制御信号SW0〜SW7、SE0〜SE7,SM0〜SM7,SR0〜SR7を発生するものである。これら各信号の反転信号は図示しないインバータを用いて形成することができる。
上記4個の選択回路56は、制御回路53により制御され、対応して設けられている4個の記憶回路55側からの3ビットのデータ信号、あるいは、前記レジスタ51に記憶されている例えば第6ビット目乃至第8ビット目からなる3ビットのデータ信号を選択して対応するデコーダ54に供給する。
上記4個の記憶回路55は、それぞれ対応して書き込み電圧VPP、消去電圧VE 、中間電圧VM 、読み出し電圧VREを設定するための3ビットの制御データを記憶するためのものであり、それぞれ複数個の不揮発性素子が用いられて構成されている。
4個の書き込み回路77は、前記制御回路53により個別に動作が制御され、制御データの書き込み時には、それぞれ対応する上記4個の記憶回路55に対して制御データ(書き込みデータ)に応じて書き込み用の高電圧を供給する。上記制御データは、制御データ供給回路78あるいは前記レジスタ51から供給される。
即ち、上記各記憶回路55において、71、72、73はそれぞれ前記メモリセル11と同様に浮遊ゲートと制御ゲートを有するNチャネルのMOSFETであり、これら各MOSFET71、72、73のソースは0Vの基準電圧に接続され、ドレインはそれぞれ対応して負荷抵抗74、75、76を介して電源電圧Vccに接続されている。
また、上記MOSFET71、72、73の制御ゲートとドレインは前記4個の書き込み回路77のうちの対応する1つに接続されており、制御データの書き込み時に書き込み回路77から出力される書き込み用の高電圧がこれらMOSFET71、72、73の制御ゲート及びドレインに供給される。また、上記MOSFET71、72、73のドレインの信号が4個の選択回路56のうちの対応する1つに供給される。
次に、本実施例のEEPROMのテストモード時に、書き込み電圧VPP、消去電圧VE の最適値を表わすデータを設定して記憶するための制御回路の一例およびその制御動作の一例について、代表的に、書き込み電圧VPPを設定する場合を例に説明する。
図7は、書き込み電圧VPPの最適値を表わすデータを設定して記憶するための制御回路の一例を示している。
図7において、80は書き込み電圧VPPを変化させ得る書き込み電圧VPP可変回路であり、図1中に示した書き込み電圧VPP発生用の高電圧発生回路17と、図6中に示した制御信号SW0〜SW7発生用のデコーダ54およびそれに対応する記憶回路55、書き込み回路77などを含む。81は書き込み時間を規定するための例えば10μsの書き込みパルスを発生する書き込みパルス発生回路である。
10は図1中に示したNAND型セルのメモリセルアレイ、82は上記メモリセルアレイ10の各カラムに対応して設けられたビット線電位センス増幅用のセンスアンプ、83は上記各センスアンプ82に対応して接続され、カラム選択信号によりスイッチ制御されるカラムスイッチ、84は上記各カラムスイッチ83の一端側に共通に接続された入出力データ線である。さらに、上記各センスアンプ82のセンス出力が一括され、上記メモリセルアレイ10の各カラムのメモリセルからの読み出しデータがデータ比較回路85に入力するように接続されている。このデータ比較回路85は、データの書き込みに際して上記入出力データ線84に与えられる書き込みデータも入力するように接続されており、2つの入力データを比較して一致するか否かを判定し、一致する場合に出力信号YESを活性化させ、一致しない場合には出力信号NO を活性化させ、再書き込みを行わせる。
86は上記データ比較回路85の出力信号NO の発生回数(換言すれば、書き込みパルスの発生回数)を計数する書き込み回数カウンタ回路である。87は上記カウンタ回路86の出力値(計数値)nに対応して適切な書き込み電圧VPP設定用の制御データを出力するように構成され、制御データ出力を前記書き込み回路77に書き込みデータとして供給するデータテーブルである。
図8は、図7の制御回路による書き込み電圧設定のための制御動作の流れの一例を示すフローチャートである。
まず、この制御動作の概要を述べる。EEPROMをテストモードに設定し、メモリセルに対するデータの書き込みを行った後に上記メモリセルの記憶データの読み出しを行うことによりデータの書き込みが正しく行われているか否かを検証する一連の制御を行い、この一連の制御を上記書き込みが正しく行われるまで必要に応じて繰り返す。
そして、上記一連の制御の実行回数を表わす検証回数データを保持し、この検証回数データを予め設定された所定の回数を表わす設定回数データと比較し、比較結果に応じて、書き込み電圧VPP発生用の高電圧発生回路17中の昇圧回路20の出力側の電圧設定回路22を制御するための制御データを設定して上記昇圧回路20の出力電圧が最適値となるように制御すると共に、この制御データを不揮発性記憶回路55に記憶しておく。これにより、記憶した制御データを用いて、EEPROMの通常動作時における書き込み電圧VPPを最適値に設定することが可能になる。
なお、上記昇圧回路20の出力電圧を変化させる場合、検証回数が設定回数より多いと、書き込み能力を高くするために前記昇圧回路20の出力電圧が高くなるように制御し、検証回数が設定回数より少ないと、書き込み消去の能力を低くするために前記昇圧回路20の出力電圧が低くなるように制御することにより、昇圧回路20の出力電圧が最適値となるように自動的に調整することが可能となる。
これにより、製造後におけるデータ書き込み電圧の調整・検査などに要する時間の短縮を図ることが可能となる。
また、必要に応じて前記回数比較結果と制御データ出力との対応関係を変更することにより、データ書き込み電圧値を容易に変更することが可能となる。
次に、上記した書き込み電圧設定のための制御動作を詳細に説明する。
ステップS1では、外部から入力する制御データをレジスタ51に記憶させる。
ステップS2では、上記レジスタ51に記憶されたデータに基づいて、昇圧回路20から例えば18Vの初期電圧Vppw を発生させ、書き込みパルス発生回路81から10μsの書き込みパルスを発生させ、この書き込みパルスと前記初期電圧Vppw を用いてメモリセルアレイ10のメモリセルに1回目のデータの書き込みを行う。この場合、書き込みデータのパターンの設定は、通常のEEPROMと同様に行い、例えば一括書き込みパターンを設定する。
この書き込みの終了後、ベリファイのためにメモリセルからデータを読み出し、書き込む前のデータと比較する。比較出力信号NO が活性化した場合(メモリセルの中に未書き込みのものが存在する場合)には、再び前記したような10μsの書き込みパルスと初期電圧Vppw を用いてメモリセルアレイのメモリセルに2回目のデータの書き込み(上書き)を行う。
このような書き込み、読み出し、比較の一連の動作を、全てのメモリセルが正常に書き込まれるまで必要に応じて繰り返す。そして、全てのメモリセルが正常に書き込まれていれば、比較出力信号YESが活性化し、ステップS3に移る。
ステップS3では、前記比較出力信号YESを受けて、前記ステップS2で比較出力信号YESが活性化するまでに要した書き込み時間が仕様内であるか(実際には、マージンを考慮して書き込み時間の仕様よりも短い時間内であるか)否かのチェックを開始する。
この場合、書き込み回数が所定回数k以下であるか否かによってチェックするものとし、書き込み時間の仕様として、最大書き込み時間が例えば50μsであるとすると、前記ステップS2における書き込みパルスの発生回数nを計数し、計数値nが4以下であるか否かをチェックする。
計数値nが4以下である場合(書き込み時間の仕様を満たしている場合)には、この時のレジスタ51に記憶されている制御データを書き込み電圧記憶用の記憶回路55に書き込み、この段階で書き込み電圧の設定に関する制御を終了する。
これに対して、計数値nが4を越えた場合(書き込み時間の仕様を満たしていない場合)には、計数値nをデータテーブル87に入力し、ステップS4に移る。
ステップS4では、前記データテーブル87から計数値入力に対応して出力する書き込み電圧VPP設定用の制御データを書き込み電圧記憶用の記憶回路55に書き込み、この制御データに基づいて書き込み電圧VPP可変回路内のデコーダ54が書き込み電圧VPPを所定量ΔVPP(例えば0.5V)だけ上昇させるように制御信号SW0〜SW7を自動的に変化させた後、前記ステップS2における書き込みパルス発生動作に戻る。
ここで、上記データテーブル87における入力(書き込み回数の計数値n)と制御データ出力(書き込み電圧VPP設定値)との関係の一例を、図9中にo印で示している。
このデータテーブル87において、計数値nが前記書き込み回数の設定値(本例では4)に等しい場合には、前記書き込み電圧VPPの初期値VPPW を設定する制御データが出力するように作成されている。
また、計数値nが上記設定値より大きい場合には、書き込み電圧VPPを初期値VPPW よりも大きく設定する制御データが出力する。例えば計数値が5または6の場合にはVPP=VPPW +ΔVPP=18.5V、計数値が7または8の場合にはVPP=VPPW +2ΔVPP=19V、計数値が9以上の場合にはVPP=VPPW +3ΔVPP=19.5Vとなるような制御データが出力するように作成されている。
前記したようにステップS2における書き込みパルス発生動作に戻った場合には、ステップS2の計数値が4以下になるまで、ステップS4を繰り返し実行する。この結果、ステップS2の計数値が4以下になった場合の記憶回路55の記憶データは、書き込み電圧VPPを適正値に設定するデータとなっているので、この段階で書き込み電圧の設定に関する制御を終了する。
なお、上記実施例では、書き込み回数の計数値nをその許容上限値と比較し、必要に応じて書き込み電圧VPPをΔVPPだけ上昇させたが、書き込み回数の許容上限値と許容下限値を設定する場合には、書き込み回数の計数値nをその許容範囲と比較し、必要に応じて書き込み電圧VPPをΔVPPだけ上昇させたり下降させるように制御すればよい。
この場合には、例えば図9に示したような前記データテーブルを用い、書き込み回数の計数値が許容上限値より大きい場合には、書き込み電圧VPPを初期値VPPW よりも大きく設定する制御データを出力させ、計数値が許容下限値より小さい場合には、書き込み電圧VPPを初期値VPPW よりも小さく設定する制御データを出力させる。例えば計数値が1〜3の場合にはVPP=VPPW −ΔVPP=17.5Vとなるような制御データを出力させる。
また、書き込み電圧VPPの許容上限値の設定を優先させるために書き込み回数の下限値を規定する場合には、書き込み回数の計数値をその下限値と比較し、計数値が下限値より小さい時には書き込み電圧VPPをΔVPPだけ下降させるように制御すればよい。
この場合には、例えば図10に示すような書き込み回数の計数値n入力と制御データ出力に対応する書き込み電圧VPP設定値との関係を有するデータテーブルを用意しておき、これを使用する。
このデータテーブルは、計数値nが前記書き込み回数の下限の設定値(本例では4)に等しい場合には前記書き込み電圧VPPの初期値VPPW を設定する制御データが出力する。また、計数値nが上記設定値より小さい場合には、書き込み電圧VPPを初期値VPPW よりもΔVPPステップで小さく設定する制御データが出力する。例えば計数値が1〜3の場合にはVPP=VPPW −ΔVPPとなるような制御データが出力する。なお、計数値nが上記設定値より大きい場合には、書き込み電圧VPPを初期値VPPW よりもΔVPPステップで大きく設定する制御データが出力する。例えば計数値が5〜9の場合にはVPP=VPPW +ΔVPPとなるような制御データが出力する。
また、EEPROMにおいて、データの消去に際して、データの消去動作を複数回に分けて行うものとし、消去後にデータの読み出しを行い、読み出されたデータが消去データと等しくなるまでデータの消去及び消去後の読み出し動作を必要に応じて繰り返し、読み出されたデータが消去データと等しくなった時に消去動作を終了させるように制御する場合には、上記した書き込み電圧VPPの制御系に準じて消去電圧VE の制御系を構成し、上記したような書き込み電圧VPPを最適値に設定する制御に準じて消去電圧VE 制御することにより、消去電圧VE も最適値に設定することが可能である。
この場合、消去パルス発生回路、消去回数カウンタ回路、消去回数の計数値入力と消去電圧VE 設定用制御データ出力との関係を有するデータテーブルなどを用意しておき、これらを使用する。
なお、前記したようなデータテーブルの内容(書き込み回数の計数値入力と書き込み電圧VPP設定用制御データ出力との関係、消去回数の計数値n入力と消去電圧VE 設定用制御データ出力との関係)は、メモリセルのトンネル酸化膜厚、浮遊ゲート・制御ゲート間の膜厚やメモリセル構造によって変化するので、最適な関係を予め決定しておく。また、このデータテーブルは、ROMや不揮発性メモリを用いて構成することにより、メモリセルの書き込み特性、消去特性や仕様を変更した場合にもデータテーブルの内容を容易に変更することが可能である。
また、上記実施例で述べた制御動作は、全てEEPROMのチップ内部で自動的に行わせているが、制御回路をチップ内に搭載しきれない場合には、必要に応じて一部の回路を省略してチップ外部から制御するように変更してもよい。
また、上記したような制御回路の制御機能の一部は、EEPROMのチップ上にマイコンを搭載する(あるいは、マイコンが搭載されている場合には、これを利用する)ことにより、ソフトウェア的に処理させることも可能である。
次に、本実施例のEEPROMのテストモード時に、中間電位VM 、読み出し電位VREの最適値を表わすデータを設定するための制御御動作の一例について、代表的に、読み出し電位VREを設定する場合を例にとり、図6を参照しながら説明する。
記憶回路55に不揮発的に記憶されている読み出し電位VRE設定用の制御データ(初期値)に基づいて発生する制御信号SR0〜SR7により設定される読み出し電位VREを変更する必要が生じた場合、外部から所望の制御データを入力し、この制御データを前記選択ゲート56により選択させて前記デコーダ54に供給するように制御することにより、読み出し電位VREを変化させることができる。そして、データの読み出し動作および必要に応じて上記した制御データ入力を変化させる制御を、読み出し電位VREの最適値が見つかるまで繰り返す。この後、読み出し電位VREの最適値に対応する制御データ(修正データ)を前記記憶回路55に記憶させる。
このような制御を行うことにより、EEPROMの製造後においても、読み出し電位VREを容易に変更することが可能になる。
なお、上記実施例では電源電圧Vccが 3.3Vの場合を説明したが、その他の電源電圧(例えば5V等)を使用する場合にも本発明を適用することができる。
本発明の第1の実施例に係るNANDセル型のEEPROMの一部を示す回路図。 図1中の書き込み電圧発生用の高電圧発生回路の一例を示す回路図。 図1中の消去電圧発生用の高電圧発生回路の一例を示す回路図。 図1中の中間電圧発生用の高電圧発生回路の一例を示す回路図。 図1中の読み出し電圧発生用の高電圧発生回路の一例を示す回路図。 図1中の各高電圧発生回路を制御するための制御信号SW0〜SW7,SE0〜SE7,SM0〜SM7,SR0〜SR7の発生回路の一例を示す回路図。 図2の書き込み電圧発生用の高電圧発生回路で発生する書き込み電圧の最適値を表わす制御データを設定・記憶するための制御回路の一例を示すブロック図。 図7の制御回路による書き込み電圧設定のための制御動作の流れの一例を示すフローチャートの図。 図7中のデータテーブルにおける入力(書き込み回数の計数値n)と制御データ出力(書き込み電圧VPP設定値)との関係の一例を示す図。 図7中のデータテーブルにおける入力(書き込み回数の計数値n)と制御データ出力(書き込み電圧VPP設定値)との関係の他の例を示す図。 NANDセル型のEEPROMの一つのメモリセルを示す断面図。 図11のメモリセルを用いたNANDセルの回路図。 従来の高電圧発生回路の回路図。 図13の高電圧発生回路で使用される2相のクロック信号の波形図。
符号の説明
10…メモリセルアレイ、11…メモリセル、12…選択ゲート、13…アドレスデコード回路、14…デコーダ、15…ワード線ドライバ、16…ビット線ドライバ、17,17a,18,18a…高電圧発生回路、19…リングオシレータ、20…昇圧回路、21…電圧制限回路、22…電圧設定回路、50…外部端子、51…レジスタ、52…コマンドデコーダ、53…制御回路、54…デコーダ、55…記憶回路、77…書き込み回路、81…書き込みパルス発生回路、82…センスアンプ、85…データ比較回路、86…書き込み回数カウンタ回路、87…データテーブル、BL…ビット線、WL…ワード線、R9〜R1…電圧分割用の抵抗。

Claims (3)

  1. 電源電圧を昇圧し、所定の中間電位を発生する中間電位発生手段と、
    上記中間電位発生手段の出力電圧を制御データに基づいて任意の値に設定する電圧設定手段と、
    この電圧設定手段に、装置外部から与えられる制御データまたは装置内部に不揮発的に記憶された制御データを選択的に供給する選択手段と、
    浮遊ゲート及び制御ゲートを有するMOSFETからなるメモリセルが行列状に配列されたメモリセルアレイと、
    このメモリセルアレイのメモリセルを選択制御するための複数のワード線と、
    上記メモリセルアレイのメモリセルとの間でデータの授受を行うための複数のビット線
    とを具備し、上記メモリセルアレイに対するデータの書き込み時に、書き込みが行われないビット線に前記中間電位発生手段の出力電圧が供給されることを特徴とする半導体集積回路装置。
  2. 電源電圧を昇圧し、所定の中間電位を発生する中間電位発生手段と、
    上記中間電位発生手段の出力電圧を制御データに基づいて任意の値に設定する電圧設定手段と、
    この電圧設定手段に、装置外部から与えられる制御データまたは装置内部に不揮発的に記憶された制御データを選択的に供給する選択手段と、
    浮遊ゲート及び制御ゲートを有するMOSFETからなるメモリセルが行列状に配列されたメモリセルアレイと、
    このメモリセルアレイのメモリセルを選択制御するための複数のワード線と、
    上記メモリセルアレイのメモリセルとの間でデータの授受を行うための複数のビット線
    とを具備し、上記メモリセルアレイに対するデータの書き込み時に、選択されないワード線に前記中間電位発生手段の出力電圧が供給されることを特徴とする半導体集積回路装置。
  3. 電源電圧を昇圧し、所定の中間電位を発生する中間電位発生手段と、
    上記中間電位発生手段の出力電圧を制御データに基づいて任意の値に設定する電圧設定手段と、
    この電圧設定手段に、装置外部から与えられる制御データまたは装置内部に不揮発的に記憶された制御データを選択的に供給する選択手段と、
    浮遊ゲート及び制御ゲートを有するMOSFETからなるメモリセルが行列状に配列されたメモリセルアレイと、
    このメモリセルアレイのメモリセルを選択制御するための複数のワード線と、
    上記メモリセルアレイのメモリセルとの間でデータの授受を行うための複数のビット線
    とを具備し、上記メモリセルアレイに対するデータの読み出し時に、選択されないワード線に前記中間電位発生手段の出力電圧が供給されることを特徴とする半導体集積回路装置。
JP2004111150A 2004-04-05 2004-04-05 半導体集積回路装置 Abandoned JP2004247042A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004111150A JP2004247042A (ja) 2004-04-05 2004-04-05 半導体集積回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111150A JP2004247042A (ja) 2004-04-05 2004-04-05 半導体集積回路装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04093594A Division JP3737525B2 (ja) 1994-03-11 1994-03-11 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2004247042A true JP2004247042A (ja) 2004-09-02

Family

ID=33028565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111150A Abandoned JP2004247042A (ja) 2004-04-05 2004-04-05 半導体集積回路装置

Country Status (1)

Country Link
JP (1) JP2004247042A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522350A (ja) * 2008-05-28 2011-07-28 マイクロン テクノロジー, インク. ハイブリッドメモリ管理
CN102623050A (zh) * 2011-01-28 2012-08-01 株式会社东芝 半导体集成电路及存储器系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522350A (ja) * 2008-05-28 2011-07-28 マイクロン テクノロジー, インク. ハイブリッドメモリ管理
US8751733B2 (en) 2008-05-28 2014-06-10 Round Rock Research, Llc Hybrid memory management
US9390004B2 (en) 2008-05-28 2016-07-12 Round Rock Research, Llc Hybrid memory management
CN102623050A (zh) * 2011-01-28 2012-08-01 株式会社东芝 半导体集成电路及存储器系统

Similar Documents

Publication Publication Date Title
JP3737525B2 (ja) 半導体記憶装置
US5774397A (en) Non-volatile semiconductor memory device and method of programming a non-volatile memory cell to a predetermined state
US7224617B2 (en) Nonvolatile semiconductor memory
JP4427361B2 (ja) 不揮発性半導体メモリ
US7280407B2 (en) Semiconductor memory device including floating gates and control gates, control method for the same, and memory card including the same
KR100395771B1 (ko) 불휘발성 반도체 메모리 장치 및 그것의 프로그램 방법
US7433236B2 (en) Multi-voltage generator generating program voltage, read voltage and high voltage in response to operating mode of flash memory device
KR101132018B1 (ko) 전압 스위치 회로 및 이를 이용한 불휘발성 메모리 장치
JPH076593A (ja) 不揮発性半導体メモリ装置
JP2007164891A (ja) 半導体集積回路装置
JP2011008857A (ja) 不揮発性半導体記憶装置およびその書き込み方法
KR100515533B1 (ko) 반도체 장치
US7715240B2 (en) Circuit and method of generating high voltage for programming operation of flash memory device
US7697342B2 (en) Flash memory device and related high voltage generating circuit
US8406061B2 (en) Semiconductor memory apparatus
KR20030023523A (ko) 데이터 재기입이 고속인 불휘발성 반도체 기억 장치
US10083755B2 (en) Discharge circuit and semiconductor memory device
US10726927B2 (en) Semiconductor memory device
JP2021002415A (ja) 半導体装置およびその動作方法
JP2004247042A (ja) 半導体集積回路装置
JP3378478B2 (ja) 不揮発性半導体記憶装置およびその動作方法
US10861560B2 (en) Semiconductor memory device
TWI727809B (zh) 半導體存儲裝置及預充電方法
JPH1196778A (ja) 不揮発性半導体記憶装置
JP2005044439A (ja) 不揮発性半導体記憶装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060607