JP2004239789A - 結露予想判定装置 - Google Patents

結露予想判定装置 Download PDF

Info

Publication number
JP2004239789A
JP2004239789A JP2003030167A JP2003030167A JP2004239789A JP 2004239789 A JP2004239789 A JP 2004239789A JP 2003030167 A JP2003030167 A JP 2003030167A JP 2003030167 A JP2003030167 A JP 2003030167A JP 2004239789 A JP2004239789 A JP 2004239789A
Authority
JP
Japan
Prior art keywords
condensation
dew
dew condensation
temperature
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003030167A
Other languages
English (en)
Inventor
Toshihiro Fuma
智弘 夫馬
Hiroyuki Kuno
碩亨 久野
Kenta Kimura
健太 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003030167A priority Critical patent/JP2004239789A/ja
Publication of JP2004239789A publication Critical patent/JP2004239789A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】窓ガラスに結露が発生する前に結露を防止する対策を促すことが可能な結露予想判定装置を提供する。
【解決手段】ガラス温度検出素子8にて検出される内表面温度Thから0℃より大きい値に設定された温度しきい値Tthを差分することで、差分値設定温度Taを算出する設定温度算出手段と、素子温度検出素子2にて検出される温度tkが差分値設定温度Taとなるように、ペルチェ素子4により結露検出素子1を冷却する冷却手段と、差分値設定温度Taまで冷却された結露検出素子1の電気的特性に基づいて、該結露検出素子1に結露が発生しているか否かを判定する素子結露判定手段と、素子結露判定手段にて結露検出素子1に結露が発生していると判定されたときに、外部に前記窓ガラスの結露の発生を通知するための結露予想信号Vhを出力する信号出力手段と、を備える結露予想判定装置10である。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の窓ガラスの内表面に結露が発生するか否かを事前に予想判定する結露予想判定装置に関する。
【0002】
【従来の技術】
自動車等の乗り物の運転中に、外気温が低下して窓ガラスの温度が低下すると、窓ガラスの内表面に結露が生じることがある。このように窓ガラスの内表面に結露が生ずると、乗員者の視界(窓ガラスを通しての視界)を妨げることになり危険である。
【0003】
そこで、従来より、窓ガラスの結露を検出する手段として、結露の有無によって電気的特性が変化する結露検出素子と、この結露検出素子を冷却する冷却素子(ペルチェ素子)と、結露検出素子の温度を検出する素子温度検出素子と、窓ガラスの内表面温度を検出するガラス温度検出素子とを備える装置が知られている(例えば、特許文献1参照)。この結露検出装置では、結露検出素子の温度が窓ガラスの内表面温度と同温度となるように、冷却素子の通電量を制御している。そして、冷却素子により冷却された状態にある結露検出素子に結露が発生したか否かを判定することによって、窓ガラスの内表面に結露が生じているか否かを判定している。
【0004】
【特許文献1】
特開昭60−67212号公報(第1図、第4図)
【0005】
【発明が解決しようとする課題】
この特許文献1に開示された結露検出装置では、結露検出素子の温度が窓ガラスの内表面温度と同温度となるようにフィードバック制御し、両者の温度が同等となったときに、結露検出素子からの出力信号を結露判定しきい値と比較している。しかし、このように結露検出素子の温度が窓ガラスの内表面と同温度になってから、結露検出素子に結露が生じているか否かを判定したのでは、結露検出素子に結露が生ずると判定された時点において、少なからず窓ガラスに結露が進行し始めている。そのため、この結露検知装置にて窓ガラスの内表面の結露発生を検出した後、結露を防止する対策(例えば、カーエアコンの除湿機能の作動、カーエアコンの空気取入を内気循環から外気導入に切り替える制御、送風吹き出し口のデフロスター側へ切り替える制御、或は熱線式ヒータの作動等の対策)を講じたのでは、結露の解消に時間が掛かってしまい、乗員者の危険性回避が十分なものとはいえなかった。
【0006】
本発明は、こうした問題を鑑みてなされたものであって、窓ガラスの内表面に結露が生ずるか否かを事前に予想判定することができ、窓ガラスに結露が発生する前に結露を防止する対策を促すことが可能な結露予想判定装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
かかる目的を達成するためになされた本発明(請求項1に記載の発明)は、結露の有無によって電気的特性が変化する結露検出素子と、結露検出素子を冷却する冷却素子と、結露検出素子の温度を検出する素子温度検出素子と、窓ガラスの内表面温度を検出するガラス温度検出素子とを備え、前記窓ガラスの結露の発生を予想する結露予想装置であって、
ガラス温度検出素子にて検出される内表面温度から0℃より大きい値に設定された温度しきい値を差分することで、差分値設定温度を算出する設定温度算出手段と、
素子温度検出素子にて検出される温度が差分値設定温度となるように、冷却素子により結露検出素子を冷却する冷却手段と、
前記素子温度検出素子が、差分値設定温度以下を満たしたときの結露検出素子の電気的特性に基づいて、該結露検出素子に結露が発生しているか否かを判定する素子結露判定手段と、
素子結露判定手段にて結露検出素子に結露が発生していると判定されたときに、外部に前記窓ガラスの結露の発生を通知するための結露予想信号を出力する信号出力手段と、
を備える結露予想判定装置である。
【0008】
本発明の結露予想判定装置では、まず窓ガラスの内表面温度をガラス温度検出素子にて検出するようにしている。そして、上記内表面温度に基づいて結露検出素子を冷却素子により強制的に冷却させて結露検出素子に結露が発生しているか否かを判定する訳だが、本発明では、内表面温度よりも低温度となるように結露検出素子を冷却させている点が注目すべき点である。
【0009】
つまり、本発明の結露予想判定装置では、設定温度算出手段にて、窓ガラスの内表面温度から0℃より大きい値に設定された温度しきい値を差分して差分値設定温度を算出し、冷却手段により、その差分値設定温度以下となるまで結露検出素子を冷却させているのである。そして、本発明では、この素子温度検出素子にて検出される温度(素子表面温度)が差分値設定温度以下を満たしたときに、素子結露判定手段にて結露検出素子に結露が発生するか否かを判定させている。その結果、窓ガラスの内表面温度より低い温度条件下での結露の発生を事前に判定することができ、ひいては窓ガラスの内表面に結露が発生するか否かを事前に予想(予測)することが可能となる。
【0010】
そして、本発明では、素子結露判定手段にて結露検出素子に結露が発生していると判定されたとき、信号出力手段によって、外部(空調制御装置や結露発生を知らせる表示ランプ等)に対し結露発生の予想判定を促す結露予想信号を出力するようにしている。このようにして、窓ガラスの結露発生を事前に予想して外部に通知することで、窓ガラスに結露が発生する前に結露の発生を防止する手段を講ずることができる。具体的に、本発明の結露予想判定装置を自動車に適用した場合には、結露予想信号をトリガにして、乗務員が結露を防止する手段を手動で講じたり、空調制御装置の除湿機能を自動的に作動させる制御、空気の取り入れを内気循環から外気導入に自動的に切り替える制御、吹き出し口を自動的にデフロスター側へ切り替える制御、或いは熱線式ヒータを自動的に通電する制御等を実行することが可能となり、窓ガラスの結露により乗務員の視界が悪くなる危険性を未然に取り除くことが可能となる。
【0011】
なお、窓ガラスの内表面温度から差分値設定温度を算出するために必要となる温度しきい値については、室内における結露検出素子の取り付け位置、ガラス温度検出素子の取り付け位置、室内の容積や空調制御装置等の結露を防止する手段による結露防止効果が現れるまでの時間等を考慮して、0℃より大きい値である最適な値を設定すればよい。
【0012】
また、上記結露予想判定装置は、請求項2に記載のように、素子結露判定手段にて結露検出素子に結露が検出された後、結露検出手段の電気的特性に基づいて結露が消滅したか否かを判定する結露消滅判定手段と、結露消滅判定手段にて結露検出素子に結露が消滅していないと判定されたときに、加熱手段を加熱する結露消滅手段と、を備えると良い。
【0013】
本発明の結露予想判定装置では、結露検出素子に意図的に結露を発生させた後に、結露検出素子に発生した結露が消滅したか否かを結露検出素子の電気的特性に基づいて判定するようにしている。そして、結露が消滅していないと判定されたときに、加熱手段を加熱することで結露検出素子に発生した結露を消滅させるようにしている。このように、結露検出素子に結露が消滅したか否かを結露消滅判定手段で判定しながら、加熱手段により結露検出素子を加熱することによって、速やかに結露検出素子を結露する前の状態に復帰させることができる。したがって、窓ガラスの内表面に結露が生ずるか否かの予想判定を速やかに繰り返すことが可能となる。
【0014】
なお、加熱手段は、別途に発熱抵抗体からなるヒータを設けることで構成しても良い。また、冷却素子自身がペルチェ素子のように供給される電流の方向の切り替えで吸熱(冷却)と発熱(加熱)を生ずる場合には、冷却素子を加熱手段として兼ねて構成しても良いし、このような冷却素子と別途に設けたヒータとの両者を加熱手段として構成しても良い。
【0015】
さらに、上記結露予想判定装置は、請求項3に記載のように、当該結露予想判定装置の起動後所定条件を満たすまでの間、結露検出素子に付着した汚染物を除去するために、加熱手段にて結露検出素子を加熱するプレヒート手段を備えると良い。
【0016】
本発明の結露予想判定装置では、当該結露予想判定装置の起動後所定条件を満たすまでの間、加熱手段にて結露検出素子を加熱する。このように結露予想判定装置の起動後に結露検出素子を加熱手段により加熱するのは、結露予想判定装置の非起動時に結露検出素子に汚染物が付着(堆積)し、起動後にこの汚染物が結露検出素子の電気的特性の検出に悪影響を及ぼすおそれがあるからである。つまり、本発明では、結露検出素子に付着した汚染物を除去するために、プレヒート手段により結露検知素子を加熱した後に、窓ガラスの結露発生を予想判定する処理を行うように構成しており、これにより高精度の結露予想判定を行うことが可能となる。
【0017】
なお、「結露予想判定装置の起動後所定条件を満たすまでの間、加熱手段にて結露検出素子を加熱する」とは、例えば結露予想判定装置の起動後一定時間経過するまで加熱手段にて結露検出素子を加熱する手法が挙げられる。その他に、結露予想判定装置の起動後に結露検出素子の温度が一定値になるまで加熱手段にて結露検出素子を加熱しても良いし、結露予想判定装置の起動後に加熱手段への電力量の積算値が一定値になるまで加熱しても良い。
【0018】
【発明の実施の形態】
(実施形態)
以下、本発明の実施の形態を、図面を参照しつつ説明する。
図1に本実施形態の結露判定予想装置10を、図1及び図2を参照して説明する。なお、本実施形態の結露判定予想装置10は、自動車のフロントガラスやリアガラスといった窓ガラスの結露発生を予想判定するために適用されるものである。
【0019】
図1に示すように、本結露判定予想装置10に使用する結露検出素子1、この結露検出素子1の温度を検出する素子温度検出素子2、結露検出素子を冷却するためのペルチェ素子(冷却素子)4、結露検出素子1を過熱するための発熱抵抗体3は、それぞれ一体に形成されている。
【0020】
具体的には、図1(a)の構造断面図(模式的に表示)に示すように、ペルチェ素子4上にシリコン基板5と第1絶縁膜7を介して発熱抵抗体3が積層する形態で形成され、さらに発熱抵抗体3上に第2絶縁膜6を介して、結露検出素子1と素子温度検出素子2が積層する形態で形成されている。また、図1(b)の平面図に示すように、結露検出素子1を構成する一対の櫛形電極(AuやPt等で形成)、及び素子温度検出素子2を構成する測温抵抗体(Pt等で形成)は、第2絶縁膜6の同一表面上に、それぞれ形成している。なお、図1では、ペルチェ素子4、結露検出素子1、素子温度検出素子2、発熱抵抗体3と接続されるリード線については図示を省略している。
【0021】
結露検出素子1は、一対の櫛形電極間にある一定量の水分付着する(換言すれば、ある程度結露が発生する)と、電気抵抗値が低下すると特性を有している。また、素子温度検出素子2は、水分の付着を防止するため(水分の付着による結露検出素子との短絡を防止するため)に、図示しない防水膜により被覆されている。ペルチェ素子4は、供給される電流の方向の切り替えで吸熱(冷却)と発熱(加熱)を生ずる公知の構成を有するものを用いている。そして、これら結露検出素子1、素子温度検出素子2、発熱抵抗体3、ペルチェ素子4が一体に形成されたものは、後述するガラス温度検出素子8が取り付けられる窓ガラス近傍(例えばフロントガラスの結露を予想する場合はダッシュボード付近)に取り付けられる。
【0022】
また、結露予想判定装置10は、図2に示すように、マイクロコンピュータ20を備える一方、自動車のうちで1つの窓ガラスの内表面における所定位置(乗員者の視界を妨げない位置)に取り付けられ、その窓ガラスの温度を検出するガラス温度検出素子8を備えて構成されている。なお、ガラス温度検出素子8は、本実施形態では熱電対により構成されるが、サーミスタで構成することもできる。
【0023】
このマイクロコンピュータ20は、詳細は図示しないが、公知の構成を有し、演算を行うマイクロプロセッサ、プログラムやデータを一時記憶しておくRAM、プログラムやデータを保持するROM、結露検出素子1からの出力信号St、素子温度検出素子2からの出力信号Sa及びガラス温度検出素子8からの出力信号SbをA/D変換するためのA/D変換入力端子21、22、23を有する3つの8bitA/D変換回路をも含む。また、マイクロコンピュータ20は、図示しない車載用電源(バッテリ)の電圧値に基づいてペルチェ素子4及び発熱抵抗体3に印加する電圧波形のデューティ比を算出する機能を有し、その算出されたデューディー比によって、ペルチェ素子4及び発熱抵抗体3への通電をPWM制御するためのPWM信号Dh、Dkを出力するためのPWM端子24、25を有している。
【0024】
さらに、このマイクロコンピュータ20の出力端子26は、電子制御アセンブリ30の出力端子31と接続されている。この電子制御アセンブリ30は、本実施形態では、カーエアコンを作動させ車室内の除温制御を行うと共に、車室内につながるダクトに二股状に接続された、内気を取り入れ循環させる内気取り入れ用ダクトと外気を取り入れる外気取り入れダクトとを切り替えるフラップを回動制御を行う。さらに、この電子制御アセンブリ30は、送風吹き出し口をデフロスター側に切り替える制御や、リアガラスに形成された熱線式ヒータの通電制御を行うものである。具体的には、マイクロコンピュータ20の出力端子26から出力される結露予想信号Vhに従って、カーエアコンのマグネットクラッチを通電しコンプレッサを起動する制御、フラップを回動させて外気取り入れダクトを閉じて内気取り入れダクトと室内につながるダクトを接続させる制御、送風吹き出し口をデフロスター側に切り替える制御、さらには熱線式ヒータへの通電制御を行うようにする。
【0025】
ついで、本実施形態の結露予想判定装置10のマイクロコンピュータ20による制御(処理)について、図3、図4を参照して説明する。図4は図3に続くフローチャートである。自動車のエンジンが駆動されると、マイクロコンピュータに電源が投入され、マイクロコンピュータ20(結露判定予想装置10自身)が所定の手順で起動し始める。その後、ステップS1において、このプログラムの初期設定を行う。その中で、プレヒート期間T1=0とする。
【0026】
そして、ステップS2に進み、バッテリの電圧値に基づいて発熱抵抗体3に印加する電圧波形のデューティ比を算出する。例えば、バッテリの電圧値とデューティ比との関係を示すテーブルまたは関数の形で用意しておき、これを参照してデューティ比を決定するようにすれば良い。ついで、ステップS3に進み、ステップS2にて算出したデューティ比に基づいて発熱抵抗体3への通電をPWM制御する。その後、ステップS4でサイクルタイムである0.4秒の経過を待ち、ステップS5でタイマ変数T1≧20秒であるか否か、つまり起動時から20秒経過したか否かを判断し、経過前の場合(No)には、ステップS2に戻る。一方、20秒経過した場合(Yes)には、ステップS6に進み、発熱抵抗体3への通電を停止する。このように、マイクロコンピュータ20(結露予想判定装置10)の起動後から20秒間経過するまでの間、発熱抵抗体3を通電して結露検出素子1を通電することによって、結露検出素子1上に付着する不純物を焼き払ったりして除去することが可能となる。
【0027】
ついで、ステップS7において、窓ガラスの内表面温度Thをガラス温度検出素子8からの出力信号SbをA/D変換した値より取得する。このとき、マイクロコンピュータ20内では、ガラス温度検出素子8の出力信号SbをA/D変換した値と温度換算値との関係を示すテーブルが用意されており、内表面温度Thが取得されるようになっている。
【0028】
ステップS8では、差分値設定温度Taを算出する。具体的には、ステップS7にて取得された内表面温度Thから0℃より大きい値(例えば3.5℃)に設定された温度しきい値Tthを差分する。
【0029】
ついで、ステップS9では、結露検出素子1の素子表面温度Tkを、素子温度検出素子2からの出力信号SaをA/D変換した値より取得する。このとき、マイクロコンピュータ20内では、素子温度検出素子2の出力信号SaをA/D変換した値と温度換算値との関係を示すテーブルが用意されており、素子表面温度Tkが取得されるようになっている。そして、ステップS10にて、素子表面温度Tkが差分値設定温度Ta以下となったか否かを判断している。そして、このステップS10にて、差分値設定温度Ta以下になった場合(Yes)には、ステップS14に進み、差分値設定温度Ta以下になっていない場合(No)には、ステップS11に進む。ついで、ステップS11において、バッテリの電圧値に基づいてペルチェ素子4に印加する電圧波形のデューティ比を算出する。例えば、バッテリの電圧値とデューティ比との関係を示すテーブルまたは関数の形で用意しておき、これを参照してデューティ比を決定するようにすれば良い。ついで、ステップS12に進み、ステップS11にて算出されたデューティ比に基づいてペルチェ素子4への通電をPWM制御する。このとき、ペルチェ素子4が通電によって吸熱(冷却)するように電流の流れる方向を制御しており、ペルチェ素子4が冷却されることによって、結露検出素子1が冷却される。その後、ステップS13でサンプルタイムである0.4秒の経過を待ちステップS9に戻る。
【0030】
ステップS14では、結露検出素子1に結露が発生したか否か、つまり結露検出素子1が結露の発生によって、抵抗値変化を生じ、結露検出素子1からの出力信号StをA/D変換した値が第1設定しきい値以下になったか否かを判断している。そして、このステップS14にて、結露が生じた場合(Yes)には、ステップS15に進み、結露予想信号Vhを出力端子26から電子制御アセンブリ30に出力し、ステップS16に進み、ペルチェ素子4の通電を停止し、ステップS18に進む。一方、ステップS14にて、結露が生じない場合(No)には、ステップS17に進み、非結露信号Vkを出力端子26から電子制御アセンブリ30に出力し、ステップS18に進む。
【0031】
そして、ステップS18で結露検出素子1の結露が消滅したか否か、つまり結露検出素子1が結露の消滅によって抵抗値変化を生じ、結露検出素子1からの出力信号StをA/D変換した値が第2設定しきい値以上になったか否かを判断している。そして、このステップS21にて、結露検出素子1の結露が消滅した場合(Yes)には、ステップS6に戻り、ステップS7以降の上記説明した処理の繰り返しをマイクロコンピュータ20への電力供給が絶たれるまで継続する。一方、結露検出素子1の結露が消滅していない場合(No)には、ステップS19に進む。ステップS19では、バッテリの電圧値に基づいて発熱抵抗体3に印加する電圧波形のデューティ比を算出する。例えば、バッテリの電圧値とデューティ比との関係を示すテーブルまたは関数の形で用意しておき、これを参照してデューティ比を決定するようにすれば良い。ついで、ステップS20に進み、ステップS18にて算出したデューティ比に基づいて発熱抵抗体3への通電をPWM制御する。その後、ステップS21でサイクルタイム0.4秒の経過を待ち、ステップS18に戻る。
【0032】
なお、ステップS15にて結露予想信号Vhが電子制御アセンブリ30に出力されると、この電子制御アセンブリ30は、上述したようなカーエアコンのマグネットクラッチを通電してコンプレッサを起動させる等の、窓ガラスの内表面への結露発生を未然に防止する対策が実行する。これによって、自動車に乗車する乗員者は、結露によって視界(窓ガラスを通しての視界)が妨げられることがなく、快適な運転を続けることが可能となる。
【0033】
以上説明したように、本実施形態の結露予想判定装置10では、マイクロコンピュータ20内の処理におけるステップS7において、窓ガラスの内表面温度Thを取得し、ステップS8にて、内表面温度Thから0℃より大きい値に設定された温度しきい値Tthを差分して差分値設定温度Taを算出する。そして、ステップS9にて、結露検出素子1の素子表面温度Tkを取得し、ステップS10にて、素子表面温度Tkが差分値設定温度Ta以下を満たしているか否かを判定し、素子表面温度Tkが差分値設定温度Ta以下を満たしている場合、ステップS14にて、結露検出素子1に結露が発生するか否かを判定している。その結果、窓ガラスの内表面温度Thより低い温度条件下での結露の発生を事前に判定することができ、ひいては窓ガラスの内表面に結露が発生するか否かを事前に予想(予測)することが可能となる。そして、本実施形態の結露予想判定装置10では、窓ガラスの結露発生を事前に予想して外部(電子制御アセンブリ30)に結露予想信号Vhを出力することで、窓ガラスに結露が発生する前に、結露の発生を防止する手段を講じることが可能となり、結露に伴う乗務員の危険性を未然に回避することが可能となる。
【0034】
なお、本実施形態においては、マイクロコンピュータ20内で処理されるステップS7〜ステップS8が特許請求の範囲における「設定温度算出手段」、ステップS11〜ステップS13が同「冷却手段」、ステップS14が同「素子結露判定手段」、ステップS15が「信号出力手段」に相当する。また、ステップS2〜ステップS5が特許請求の範囲における「プレヒート手段」、ステップS18〜ステップS21が同「結露消滅判定手段」に相当する。
【0035】
(変形形態)
上述した実施形態では、図3に示したように、マイクロコンピュータ20内における制御において、ステップS3及びステップS20の各処理を、発熱抵抗体3を用いて実行した。しかし、この結露検出素子1の加熱手段としては、発熱抵抗体3を用いずとも実行することができる。つまり、結露検出素子1を冷却するために用いるペルチェ素子4は、供給する電流の方向を切り替えることで吸熱及び発熱を生ずることが可能であるため、結露検出素子1を加熱する手段としてこのペルチェ素子4を兼用して使用するのである。
【0036】
そして、図3におけるステップS2の処理として、バッテリの電圧値に基づいてペルチェ素子4に印加する電圧波形のデューティ比を算出し、このデューティ比に基づきステップS3にてペルチェ素子4への通電をPWM制御すれば良い。同様に、ステップS19の処理でもバッテリの電圧値に基づいてペルチェ素子4に印加する電圧波形のデューティ比を算出し、このデューティ比に基づきステップS20にてペルチェ素子4への通電をPWM制御すれば良い。なお、このステップS3及びステップS20にてペルチェ素子4に流れる電流の向きと、ステップS12にて同素子4に流れる電流の向きとは、上述したように逆向きに切り替えるものとする。このように、結露検出素子1を加熱する手段として、ペルチェ素子4を兼用させることで、上記実施形態と比較して発熱抵抗体3が不要となり、低コスト化を実現することが可能となる。
【0037】
以上において、本発明を実施形態及び変形形態に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、上記実施形態では、自動車用途に結露予想判定装置10を用いたが、建物や船舶等の窓ガラスの結露予想判定に適用してもよい。また、結露検出素子として結露の発生により電気抵抗値が変化する素子を用いたが、結露の発生により静電容量値が変化する素子を用いても良い。
【図面の簡単な説明】
【図1】(a)結露検出素子、素子温度検出素子、発熱抵抗体、ペルチェ素子が一体に形成(積層)された構造を示す断面図と、(b)その構造を上面(結露検出素子が形成された側)から平面視した平面図である。
【図2】結露予想判定装置を示すブロック図である。
【図3】結露予想判定装置を構成するマイクロコンピュータで実行される制御プログラムを示したフローチャートである。
【図4】図3に続くフローチャートの説明である。
【符号の説明】
10・・・結露予想判定装置、1・・・結露検出素子、2・・・素子温度検出素子、3・・・発熱抵抗体、4・・・ペルチェ素子(冷却素子)、8・・・ガラス温度検出素子、20・・・マイクロコンピュータ、30・・・電子制御アセンブリ。

Claims (3)

  1. 結露の有無によって電気的特性が変化する結露検出素子と、
    前記結露検出素子を冷却する冷却素子と、
    前記結露検出素子の温度を検出する素子温度検出素子と、
    窓ガラスの内表面温度を検出するガラス温度検出素子とを備え、前記窓ガラスの結露の発生を予想する結露予想装置であって、
    前記ガラス温度検出素子にて検出される前記内表面温度から0℃より大きい値に設定された温度しきい値を差分することで、差分値設定温度を算出する設定温度算出手段と、
    前記素子温度検出素子にて検出される温度が前記差分値設定温度となるように、前記冷却素子により前記結露検出素子を冷却する冷却手段と、
    前記素子温度検出素子が、前記差分値設定温度以下を満たしたときの前記結露検出素子の電気的特性に基づいて、該結露検出素子に結露が発生しているか否かを判定する素子結露判定手段と、
    前記素子結露判定手段にて前記結露検出素子に結露が発生していると判定されたときに、外部に前記窓ガラスの結露の発生を通知するための結露予想信号を出力する信号出力手段と、
    を備えることを特徴とする結露予想判定装置。
  2. 請求項1に記載の結露予想判定装置であって、
    前記結露検出素子を加熱する加熱手段と、
    前記素子結露判定手段にて前記結露検出素子に結露が発生していると判定された後、該結露検出素子の電気的特性に基づいて結露が消滅したか否かを判定する結露消滅判定手段と、
    前記結露消滅判定手段にて前記結露検出素子に結露が消滅していないと判定されたときに、前記加熱手段を加熱する結露消滅手段と、を備える結露予想判定装置。
  3. 請求項2に記載の結露予想判定装置であって、
    当該結露予想判定装置の起動後所定条件を満たすまでの間、前記結露検出素子に付着した汚染物を除去するために、前記加熱手段にて前記結露検出素子を加熱するプレヒート手段を備える結露予想判定装置。
JP2003030167A 2003-02-07 2003-02-07 結露予想判定装置 Pending JP2004239789A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030167A JP2004239789A (ja) 2003-02-07 2003-02-07 結露予想判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030167A JP2004239789A (ja) 2003-02-07 2003-02-07 結露予想判定装置

Publications (1)

Publication Number Publication Date
JP2004239789A true JP2004239789A (ja) 2004-08-26

Family

ID=32957121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030167A Pending JP2004239789A (ja) 2003-02-07 2003-02-07 結露予想判定装置

Country Status (1)

Country Link
JP (1) JP2004239789A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018998A (ja) * 2010-07-07 2012-01-26 Fujitsu Telecom Networks Ltd 通信装置
JP2014183074A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 電子機器及び冷却方法
JP2016017741A (ja) * 2014-07-04 2016-02-01 富士電機株式会社 ガス検出装置およびガス検出方法
WO2018147358A1 (ja) * 2017-02-09 2018-08-16 パナソニックIpマネジメント株式会社 結露センサ、結露検知システム、および冷蔵庫

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018998A (ja) * 2010-07-07 2012-01-26 Fujitsu Telecom Networks Ltd 通信装置
JP2014183074A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 電子機器及び冷却方法
US9345175B2 (en) 2013-03-18 2016-05-17 Fujitsu Limited Electronic apparatus and cooling method
JP2016017741A (ja) * 2014-07-04 2016-02-01 富士電機株式会社 ガス検出装置およびガス検出方法
WO2018147358A1 (ja) * 2017-02-09 2018-08-16 パナソニックIpマネジメント株式会社 結露センサ、結露検知システム、および冷蔵庫

Similar Documents

Publication Publication Date Title
JPH10157445A (ja) 車両用空調装置
JP3794577B2 (ja) 空気加熱用電熱装置
JP3985365B2 (ja) 車両用空調装置
JP2003335127A (ja) 車両用電気機器制御装置
JPH11222024A (ja) 車両用空調装置
CN109563977B (zh) 汽车前照灯除雾/除霜
JP2009196400A (ja) ウインドウガラス加熱装置
US6978629B2 (en) Vehicle air conditioner
JP2004239789A (ja) 結露予想判定装置
WO2018100921A1 (ja) 車両用空調装置
JP2004239788A (ja) 結露予想判定装置
JP5017915B2 (ja) 車両用電池温度制御装置
JP4082124B2 (ja) 車両用曇り止め装置、結露推定方法
JP2001097028A (ja) 自動車用暖房装置
CN111034350A (zh) 具有智能监控的玻璃加热装置以及用于控制玻璃加热装置的方法
JP4628071B2 (ja) 車両用熱線ヒータ制御装置
EP1116612A2 (en) Airconditioning and control system for controlling the climate in a vehicle compartment
JP2006240550A (ja) 車両用遠隔始動装置および車両用遠隔始動方法
JP2009046028A (ja) 車両の負荷回路
JP4899821B2 (ja) 車両用防曇装置
JP2002324653A (ja) 電気ヒータ装置および車両用空調装置
JP2002321521A (ja) 電気負荷制御装置および車両用空調装置
JP3661294B2 (ja) 車両用空調装置
JP2002264629A (ja) 電気負荷制御装置および車両用空調装置
JPH1178489A (ja) 車両用空調装置