JP2004230000A - 血中吸光物質濃度測定装置 - Google Patents

血中吸光物質濃度測定装置 Download PDF

Info

Publication number
JP2004230000A
JP2004230000A JP2003023990A JP2003023990A JP2004230000A JP 2004230000 A JP2004230000 A JP 2004230000A JP 2003023990 A JP2003023990 A JP 2003023990A JP 2003023990 A JP2003023990 A JP 2003023990A JP 2004230000 A JP2004230000 A JP 2004230000A
Authority
JP
Japan
Prior art keywords
light intensity
blood
light
transmitted light
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003023990A
Other languages
English (en)
Other versions
JP4284674B2 (ja
JP2004230000A5 (ja
Inventor
Yoshiaki Takamura
義明 高村
Naoki Kobayashi
小林  直樹
Boku Takeda
朴 武田
Takashi Usuda
孝史 臼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP2003023990A priority Critical patent/JP4284674B2/ja
Priority to DE200410005086 priority patent/DE102004005086B4/de
Priority to US10/768,680 priority patent/US7257433B2/en
Publication of JP2004230000A publication Critical patent/JP2004230000A/ja
Publication of JP2004230000A5 publication Critical patent/JP2004230000A5/ja
Application granted granted Critical
Publication of JP4284674B2 publication Critical patent/JP4284674B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3144Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths for oxymetry

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】パルスフォトメトリーによる測定において、精度良く血中吸光物質の濃度を測定する。
【解決手段】発光素子から発し、生体組織を透過した2波長の光は電気信号に変換され、処理されて各波長の透過光強度としてCPUに至るようにされている。最初に、生体組織の代わりに減光度が既知のファントムを用いて各波長の入射光強度Ii1,Ii2 を測定し、次に生体組織の透過光を測定する。CPUは、その透過光強度It1,It2 から、血液の脈動による各波長の減光度変化分ΔA1、ΔA2の相互の比Φ12を求める。さらにCPUは、生体の透過光強度It1,It2 と先に測定した入射光強度Ii1,Ii2 に基づき直流減光度Adc1、Adc2を求める。そしてCPUはこのAdc1、Adc2と先に求めたΦ12からヘモグロビン濃度を測定する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、パルスオキシメータやパルス式色素希釈曲線測定装置のように、パルスフォトメトリーを原理とする血中吸光物質濃度測定装置の改良に関する。
【0002】
【従来の技術】
パルスフォトメトリーは、パルスオキシメータだけに留まらず、現在はパルス式色素希釈法としてインドシアニングリーン(indocyanine green:ICG)という色素を血中に投与して、その血中濃度を測定することにより、心拍出量、循環血液量、ICGの血漿消失率、クリアランスの測定を行なう装置も実用化されている(例えば、非特許文献1〜3参照)。また、一酸化炭素ヘモグロビンやメトヘモグロビンなどの異常ヘモグロビンの濃度測定や、ヘモグロビン濃度測定、血糖値測定などにも応用されている(例えば、特許文献1、特許文献2参照)。
【0003】
例えば、2波長の光を用いて、ある物質の血液中の濃度を測定する場合、従来は血液の拍動により発生する2波長間の減光度変化分の比Φ12を求めて、Φ12と物質濃度の間に、ある一定の関係が有ることに基づいて、物質濃度を計算して求めていた(例えば、特許文献3参照)。すなわち、
C=F(Φ12)
C:物質の血中濃度
F:一定の関係を示す関数
で表される。一般に、 n種の波長の光を用いた場合、各波長相互の減光度変化分の比Φは最大で n−1個用いる。たとえば、3波長であれば、第1波長と第2波長間の減光度変化分の比Φ12と、第1波長と第3波長間の減光度変化分の比Φ13を用いて、
C=F(Φ12, Φ13)
となる。
物質の血中濃度C は、パルスオキシメータの場合、動脈血酸素飽和度SpO2(ヘモグロビン濃度に対する酸化ヘモグロビン濃度の比O2Hb/Hb)であり、パルス式色素希釈曲線測定の場合、色素濃度Cdとヘモグロビン濃度Hbの比Cd/Hbである。
【0004】
しかし、このような測定方法によれば、減光度変化分比と物質濃度の間にはおおよそ一定の関係はあるものの、この関係には個体差があり、また同一個体であっても測定時点や測定部位によって変化し、測定誤差の原因になっている。例えば、パルスオキシメータでは、プローブを取付ける指を変えたり、手を上げ下げすることで、実際の動脈血酸素飽和度SpO2は一定であっても、計算値が1%程度は変化する。この測定誤差の主な原因は、次のようなことが考えられる。
(1)血液が光散乱性物質であるために、散乱により発生する減光度は、血液の厚みに依存して変化する。
(2)血液を通る光と血液を通らない光が存在する。
【0005】
【特許文献1】
特公平3−77135号公報
【特許文献2】
特開平2002−228579号公報
【特許文献3】
特公昭53−26437号公報
【特許文献4】
特許2608828号公報
【非特許文献1】
Takehiko Iijima, et al. Cardiac output and circulating blood volume analysis by pulse dye−densitometry. J Clin Monit 1997;13: 81−89
【非特許文献2】
Takasuke Imai, et al. Measurement of cardic output by pulse dye−densitometry using indocyanine green.Anesthesiology 1997;87:816−822
【非特許文献3】
Takasuke Imai, et al. Measurement of blood concentration of indocyanine green by pulse dye−densitometry−Comparison with the conventionalspectrophotometric method. J Clin Monit 1998;14: 477−484
【0006】
【発明が解決しようとする課題】
以上のようにパルスフォトメトリーを用いて血中吸光物質濃度C を求める場合、従来は、減光度変化分比Φのみを変数とする関数を用いていた。このため、散乱により発生する減光度が、血液の厚み(ここでは変化分でなく全体の厚み)に依存して変化することは考慮されず、また、血液を通る光と、血液を通らない光(血液以外の生体組織のみを通る光)が存在するので、血液を通らない光は考慮されず、このため誤差が生じていた。
本発明は、このような従来の欠点に鑑みなされたものであり、その目的は、パルスフォトメトリーによる測定において、精度良く血中吸光物質の濃度を測定することである。
【0007】
【課題を解決するための手段】
本発明では、血中吸光物質の濃度C を、関数F を用いて計算する場合、血液全体の厚みおよび血液以外の生体組織の厚みに関する、減光度の直流成分すなわち直流減光度Adc を考慮し、関数F の変数を、ΦおよびAdc とした。したがって、濃度C は次の関数F により表されるとした。
C=F(Φ,Adc)
ここで、n波長の光で測定する場合は、Φは最大n−1 個、Adc は最大n 個が用いられる。例えば、3波長で測定する場合、関数F は、各波長の直流減光度Adc1,Adc2,Adc3を用いて次のようになる。
C =F(Φ12,Φ13,Adc1,Adc2,Adc3)
直流減光度Adc は、入射光強度Iiと透過光強度Itとを用いて次のように表される。
Adc =log(Ii/It)=logIi −logIt
ここで、Itは生体を透過した光の透過光強度であって連続的に測定できるが、入射光強度Iiは予め測定して知っておく必要がある。Iiを知る方法としては、本出願人の特許の特許文献4に記載した方法がある。これによれば、既知の光吸収特性を持つファントム(生体を模擬した試料)を挟み、これの透過光強度を測定することにより入射光強度を求めることができる。
【0008】
660nm,805nm,940nmなどの波長は、ヘモグロビンに光吸収があるが、水による光吸収は殆どないので、これらの波長の光を生体組織に照射したときの直流的な減光度は、測定部位の血液量と主に関係がある。また、ヘモグロビンの光吸収が少なく水の光吸収が大きい1300nmでは、直流減光度は主に生体組織の厚み(水分量)と主に関係がある。したがって、これらの波長における直流減光度を測定し、これらを計算式に変数として組み込むことにより、上記誤差要因(1)および(2)による誤差を補正し、血中吸光物質の濃度の測定精度を向上させることができる。
【0009】
また、本発明では、直流減光度と直流透過光強度(透過光強度の直流分)は一定の関係があることから、血中吸光物質の濃度C を、直流透過光強度DC を考慮し、変数を、ΦおよびDC とした関数F1により次の式で表されるとした。
C=F1( Φ,DC)
ここで、n波長の光で測定する場合は、Φは最大n−1 個、DC は最大n 個が用いられる。例えば、3波長で測定する場合、関数F は、各波長の直流透過光強度DC1,DC2,DC3 を用いて次のようになる。
C =F1( Φ12,Φ13,DC1 ,DC2 ,DC3 )
このように、減光度変化分比Φと直流透過光強度DCを変数とする関数を用いても、同様に、血中吸光物質の濃度の測定精度を向上させることができる。
【0010】
そこで、請求項1に係る発明は、複数種の波長の光を発する光源を持ち、これらの光を生体組織に照射する光照射手段と、この光照射手段から発せられた各波長の光の生体組織への入射光強度を測定する入射光強度測定手段と、前記生体組織を透過した各波長の光を受光し、それぞれの透過光強度を測定する透過光強度測定手段と、この透過光強度測定手段が測定した透過光強度に基づいて、血液の厚み変化により発生する各波長の減光度変化分の相互の比を演算する第1の演算手段と、この第1の演算手段が求めた比と、前記入射光強度測定手段が測定した入射光強度と、前記透過光強度測定手段が測定した透過光強度とに基づいて血液中の吸光物質濃度を演算して求める第2の演算手段とを具備する。
【0011】
また、請求項2に係る発明は、請求項1に記載の血中吸光物質濃度測定装置において、前記第2の演算手段は、各波長について、前記入射光強度測定手段が測定した入射光強度と、前記透過光強度測定手段が測定した透過光強度とに基づいて前記生体組織の直流減光度を演算して求め、この直流減光度と前記第1の演算手段が求めた比とに基づいて血液中の吸光物質濃度を演算して求めることを特徴ととする。
【0012】
また、請求項3に係る発明は、請求項2に記載の血中吸光物質濃度測定装置において、前記第2の演算手段は、各波長の直流減光度の相互の比を求め、この比と前記第1の演算手段が求めた比とに基づいて血液中の吸光物質濃度を演算して求めることを特徴とする。
【0013】
また、請求項4に係る発明は、請求項1に記載の血中吸光物質濃度測定装置において、前記第2の演算手段は、各波長について、前記入射光強度測定手段が測定した入射光強度と、前記透過光強度測定手段が測定した透過光強度とに基づいて前記生体組織の直流透過光強度を演算して求め、この直流透過光強度と前記第1の演算手段が求めた比とに基づいて血液中の吸光物質濃度を演算して求めることを特徴ととする。
【0014】
また、請求項5に係る発明は、請求項4に記載の血中吸光物質濃度測定装置において、前記第2の演算手段は、各波長の直流透過光強度の相互の比を求め、この比と前記第1の演算手段が求めた比とに基づいて血液中の吸光物質濃度を演算して求めることを特徴とする。
【0015】
また、請求項6に係る発明は、請求項1乃至5のいずれか1に記載の血中吸光物質濃度測定装置において、前記光照射手段は、前記光源が発光素子から成り、この発光素子に供給する電流または印加する電圧を制御する制御部を備え、前記第2の演算手段は前記制御部により制御された電流または電圧に応じて、測定した入射光強度を補正し、この補正した入射光強度を用いて演算することを特徴とする。
【0016】
また、請求項7に係る発明は、請求項1乃至6のいずれか1に記載の血中吸光物質濃度測定装置において、前記入射光強度測定手段は、前記光照射手段と前記透過光強度測定手段との間の所定位置に、減光度が既知のファントムが配置された場合に、前記透過光強度測定手段により測定される各波長の透過光強度に基づいて入射光強度を演算して求めることを特徴とする。
【0017】
また、請求項8に係る発明は、請求項7に記載の血中吸光物質濃度測定装置において、前記入射光強度測定手段は、前記ファントムが前記所定位置に配置されたか否かを検出するセンサを有し、前記ファントムが前記所定位置に配置されたことを前記センサにより検出されると、入射光強度を演算して求めることを特徴とする。
【0018】
また、請求項9に係る発明は、n種の波長の光を発する光源を持ち、これらの光を生体組織に照射する光照射手段と、この光照射手段から発せられたn種の波長の光の生体組織への入射光強度を測定する入射光強度測定手段と、前記生体組織を透過したn種の波長の光を受光し、それぞれの透過光強度を測定する透過光強度測定手段と、この透過光強度測定手段が測定した透過光強度に基づいて、血液の厚み変化により発生する各波長の減光度変化分の相互の比のうち最大でn−1個の比を演算する第1の演算手段と、この第1の演算手段が求めた最大でn−1個の比と、前記入射光強度測定手段が求めた入射光強度と、前記透過光強度測定手段が求めた透過光強度とに基づいて、各波長に対応する最大でn個の直流減光度を演算して求め、これらの演算結果に基づいて血液中の吸光物質濃度を演算して求める第2の演算手段とを具備する。
【0019】
また、請求項10に係る発明は、n種の波長の光を発する光源を持ち、これらの光を生体組織に照射する光照射手段と、この光照射手段から発せられたn種の波長の光の生体組織への入射光強度を測定する入射光強度測定手段と、前記生体組織を透過したn種の波長の光を受光し、それぞれの透過光強度を測定する透過光強度測定手段と、この透過光強度測定手段が測定した透過光強度に基づいて、血液の厚み変化により発生する各波長の減光度変化分の相互の比のうち最大でn−1個の比を演算する第1の演算手段と、この第1の演算手段が求めた最大でn−1個の比と、前記入射光強度測定手段が求めた入射光強度と、前記透過光強度測定手段が求めた透過光強度とに基づいて、各波長に対応する最大でn個の直流透過光強度を演算して求め、これらの演算結果に基づいて血液中の吸光物質濃度を演算して求める第2の演算手段とを具備する。
【0020】
また、請求項11に係る発明は、請求項1乃至11のいずれか1に記載の血中吸光物質濃度測定装置において、前記光源は、血液に光吸収がある波長の光および/または血液以外の生体組織に光吸収がある波長の光を発することを特徴とする。
【0021】
【発明の実施の形態】
[第1の実施の形態:ヘモグロビン濃度測定装置]
次に、本発明の第1の実施の形態を説明する。この第1の実施の形態は、ヘモグロビン濃度測定装置である。
【0022】
図2は、本実施の形態の装置の全体構成を示すブロック図である。発光部1は相異なる2つの波長の光を発生するLED2,3とこれらを駆動する駆動回路4とから成る。LED2から発生する光の波長を第1の波長とし、LED3から発生する光の波長を第2の波長とする。本装置において、第1の波長は1300nm、第2の波長は805nmである。
【0023】
受光部5は、LED2およびLED3に対向して配置されたフォトダイオード6とこのフォトダイオード6の出力電流を電圧信号に変換する電流−電圧変換器7とアンプ8から成る。
【0024】
マルチプレクサ9は、アンプ8から与えられる信号をフィルタ10とフィルタ11に振り分ける回路である。フィルタ10とフィルタ11は、各波長の透過光強度に対応する信号のノイズを除去する回路であり、これらの出力信号は、マルチプレクサ12でそれぞれの出力のタイミングを制御されA/Dコンバータ13に至るようにされている。A/Dコンバータ13はマルチプレクサ12から与えられる信号をデジタル信号に変換する回路である。
【0025】
CPU14は駆動回路4、マルチプレクサ9およびマルチプレクサ12を制御すると共に、A/Dコンバータ13から与えられる信号に基づいて演算を行なう回路である。
【0026】
メモリ15は、CPU14が行なう処理のためのプログラムを格納されており、またCPU14から与えられるデータを格納するものである。
【0027】
表示部16はCPU14から与えられるデータを表示するものであり、入力部17は複数のスイッチ(後述する校正スイッチおよび測定スイッチを含む)、複数のキーを備え、操作者の操作に応じた信号をCPU14に出力するものである。
【0028】
生体に装着される本装置のプローブは、LED2,3とフォトダイオード6を備え、これらのLED2,3とフォトダイオード6の間で生体(例えば指先、耳朶など)30を挟持するようになっている。
次に、本装置の動作を図1を参照して説明する。
【0029】
<ステップ1A :プローブの入射光強度の測定(校正)>
このステップ1A では、生体への入射光強度を測定する。すなわち、プローブのLED2,3から生体に照射される光の強度を求める。本例では、既知の光吸収特性を持つファントム30Aを用いてこの入射光強度を求める。ファントム30Aとしては、例えば、乳白色のアクリル板が好適である。
【0030】
操作者は、まず、ファントム30AをプローブのLED2,3とフォトダイオード6の間の所定位置に配置し、本装置の入力部17の校正スイッチを操作して入射光強度の測定開始をCPU14に指示する。これによりLED2,3はそれぞれの波長の光を発生し、それらの光は上記のファントム30Aを透過してフォトダイオード6に至り、電気信号にされる。この信号は、以後、電流−電圧変換器7、アンプ8、マルチプレクサ9、フィルタ10、11、マルチプレクサ12およびA/Dコンバータ13により処理されて、CPU14に至り、ここで各波長の透過光強度Itcal1、Itcal2としてメモリ15に格納される。そしてCPU14は、測定されたItcal1、Itcal2を次式に代入して計算し、ファントム30Aに対する入射光強度Iical1、Iical2を求める。
Iical1=Itcal1×exp(Af1) (1)
Iical2=Itcal2×exp(Af2) (2)
【0031】
式中、Af1 、Af2 はファントム30Aの各波長における既知の減光度であり、予めメモリ15に格納されている。また、上記の計算結果もメモリ15に格納される。計算結果のIical1、Iical2は、メモリ15内の所定のエリアに書き込まれ、前回測定された値Iical1、Iical2があればこれらを書き替えるようにされている。そして、後述のステップ3A における計算では、最新のIical1、Iical2が用いられるようになっている。したがってこのステップ1は、入射光強度Iical を校正するステップである。
【0032】
なお、入射光強度Iical の計算は、操作者がファントム30Aにプローブを取り付け、校正スイッチを押すことによって行なうようにしたが、プローブに光または機械的センサを設け、プローブをファントム30Aに取り付けると、そのセンサが感知し、これによってCPU14は上記のような処理を開始して入射光強度Iical の計算を行なうようにしても良い。
【0033】
また、ファントム30A自体が、プローブを収納しておくホルダーにされていて、このホルダーに上記のようなセンサを設け、プローブがそのホルダーに収納されると(もちろんファントム30Aの一部はLED2,3とフォトダイオード6の間に挟持されるようになっている)、センサがその収納を感知し、これによってCPU14は入射光強度Iical の計算を行なうようにしても良い。
【0034】
LEDなどの発光素子は長期間使用すると発光強度が低下するし、プローブ表面の汚れなどによっても発光強度は変化するので、出荷時に決めたプローブの発光強度を継続して使うのは困難であり、測定の直前に入射光強度Iical を校正するのが良い。
【0035】
<ステップ2A :脈波の測定と減光度変化分比Φの計算>
次にステップ2A では、プローブを生体30に取り付け、血液の脈動による各波長の減光度変化分を測定し、それら相互の比Φを求める。
【0036】
このステップは、操作者が入力部17の測定スイッチを操作することにより開始する。このときCPU14は、A/Dコンバータ13から与えられる透過光強度It1,It2 を示す信号に基づいて、各波長の減光度A1,A2 の変化分ΔA1,ΔA2の比Φ12を求める。すなわち、次式を計算し、その結果をメモリ15に格納する。
Φ12=ΔA1/ΔA2= (AC1 /DC1)/ (AC2 /DC2) (3)
【0037】
ここで、DC1,DC2 は、脈動する透過光強度It1,It2 のうちの直流分であって、直流透過光強度と称する。また、AC1,AC2 は脈動する透過光強度It1,It2 のうちの交流分であって、交流透過光強度と称する。
【0038】
この式(3)は次のようにして得られるものである。図3(a)に示すように生体は、動脈血、静脈血、血液以外の組織、の各層からなると考えることができる。生体に入射光強度Iiの光を照射すると、透過光強度Itの光が測定される。このとき、生体による減光度A は、ランバート・ベールの法則に基づき、次式で表される。
A =log(Ii/It) =logIi −logIt (4)
【0039】
次に、図3(b)に示すように、動脈血の層の厚さが変化したとき、透過光強度は、変化分をΔItとすると、It−ΔItとなる。このとき、生体による減光度は、その変化分ΔA が加えられ、次式で表される。
A +ΔA =log{Ii/(It −ΔIt)}=logIi −log(It−ΔIt) (5)
【0040】
式(4)と式(5)からA を消去して、ΔA を求めると、ΔA は次のように入射光強度Iiを用いない式で表される。
ΔA =logIt −log(It−ΔIt) =log{It/(It −ΔIt)} (6)
この式(6)は、変形すれば、
Figure 2004230000
となる。ここで (ΔIt/It) は1よりかなり小さい値をとるので(生体の動脈血層の脈動による透過光強度Itの変化分ΔItは、透過光強度Itに対し極めて小さいので)、式(7)は次の式で近似することができる。
ΔA =ΔIt/It (8)
したがって、Φ12の定義式であるΦ12=ΔA1/ΔA2と、式(8)より次式が得られる。
Φ12=ΔA1/ΔA2= (ΔIt1 /It1)/ (ΔIt2 /It2) (9)
これによれば対数計算が不要となる。この式(9)は、透過光強度がIt1,It2 を基準にしてΔIt1,ΔIt2 だけ変化した場合の式と考えられる。
【0041】
一方、図4(a)に示すように、脈動する透過光強度Itのうちピーク値を直流透過光強度DCとし、ピーク値とボトム値の差(最大の変化分)の値を交流透過光強度ACとすると、この場合、透過光強度がDCを基準にしてACだけ変化したと考えられるから、ΔIt/It=AC/DCとなり、式(9)は次のようになる。
Φ12=ΔA1/ΔA2= (AC1 /DC1)/ (AC2 /DC2) (3)
すなわち、上記の式(3)が得られる。
【0042】
なお、ここでは、透過光強度のうちピーク値を直流透過光強度DCとしたが、ACはDCに対し極めて小さいので、図4(b)に示すように、直流透過光強度DCを、脈動する透過光強度Itのボトム値としても式(3)は成り立ち、また、図4(c)に示すように、ピーク値とボトム値の平均値(ピーク値とボトム値の中間点の値)としても式(3)は成り立つ。
【0043】
このように、直流透過光強度DCは、ピーク値からボトム値の間のどこを採っても良いので、交流透過光強度の測定時点またはその周辺時点の透過光強度Itをそのまま使っても良い。
【0044】
このステップにおいて、Φ12の計算は、脈動する透過光強度It1,It2 の波の1つずつについて、すなわち心拍の一拍ずつについて行なう。
【0045】
<ステップ3A :直流減光度の計算>
次にステップ3A では、各波長の直流減光度Adc1, Adc2を求める。ここで、CPU14は、ステップ1A で求めた入射光強度Iical1、Iical2と、ステップ2A で求めた直流透過光強度DC1,DC2 を次式に代入して、各波長の直流減光度Adc1, Adc2を計算する。
Adc1= log(Iical1 /DC1)=logIical1 −logDC1 (10)
Adc2= log(Iical2 /DC2)=logIical2 −logDC2 (11)
【0046】
本装置が、発光素子(LED2,3)に流す電流を変化させない回路構成を持つ場合は、ステップ1A で求めた入射光強度Iical1、Iical2をそのまま用いる。
【0047】
しかし、本装置が、発光素子の電流を変化させて最適の透過光強度が得られるように調整する回路構成を持つ場合、ファントム30Aを用いて入射光強度測定を行なった時(校正時)の発光素子への電流値 Ccal1, Ccal2 と、生体の減光度測定を行なった時(測定時)の発光素子への電流値 Cmeas1, Cmeas2 が違うことがある。その場合CPU14は、入射光強度として、
IiA1 =Ical1 × Cmeas1 /Ccal1 (12)
IiA2 =Ical2 × Cmeas2 /Ccal2 (13)
のように、発光素子への通電電流に応じて補正した値IiA1,IiA2 を用いる。
【0048】
このステップにおいても、直流減光度Adc1, Adc2の計算は、脈動する透過光強度It1,It2 の波の1つずつについて、すなわち心拍の一拍ずつについて行なう。
【0049】
<ステップ4A :ヘモグロビン濃度の計算>
次にステップ4A では、CPU14は、ステップ2A で求めたΦ12とステップ3A で求めた直流減光度Adc1、Adc2を変数とする次式を用いてヘモグロビン濃度Hbdcを計算する。
Hbdc=a1×Φ12+b1+c1×Adc2/Adc1 (14)
【0050】
この式(14)の係数a1,b1,c1は、ある母集団(例えばある選択された10人のデータ)において式(14)を計算した結果のHbdcと、採血してシアンメトヘモグロビン法などによって測定した正確なヘモグロビン濃度Hbs の差が最小になるように最小二乗法で予め決めた値である。
【0051】
ここで、本装置の効果を示すため、ヘモグロビン濃度を、脈波の減光度変化分比Φ12だけを使って計算した場合と、本装置によってΦ12とAdc1,Adc2 を使って計算した場合とを、それぞれ採血法によって求めた場合とを比較する。
Φ12だけを使う場合、
Hbp =a2×Φ12+b2 (15)
により計算する。この場合の係数a2,b2も、上記母集団のデータにより上記と同様にして最小二乗法で予め決定されたものである。式(15)を用いて計算したヘモグロビン濃度Hbp と、採血法により測定したヘモグロビン濃度Hbs との相関を図5(a)に示す。
【0052】
これに対し、直流減光度を使い、式(14)により計算した本装置によるヘモグロビン濃度Hbdcと、採血法により測定したヘモグロビン濃度Hbs との相関を図5(b)に示す。これらの図を比較すると分かるように、計算式に直流減光度を入れることによって、採血法との一致が改善される。
【0053】
また、上記の式(14)の代わりに、次式を用いても良い。
Hbdc=a3×Φ12+b3+c3×Adc2+d3×Adc1 (16)
この式の係数a3〜d3も上記と同様にして予め決定しておく。
【0054】
ところで、直流減光度Adc1,Adc2 と直流透過光強度 DC1,DC2との間には逆相関の一定の関係があるので、直流減光度を用いて計算しなくとも、直流透過光強度をそのまま使って計算すれば同様の効果が得られる。この場合、直流透過光強度はプローブの入射光強度に比例するので、入射光強度 Iical1,Iical2を、発光素子(LED2,3)の特定の通電電流値で規格化した状態で補正する必要が有る。補正した各波長の直流透過光強度Itcomp1,Itcomp2 は次式により計算する。
Itcomp1 =DC1 ×(Iical1 /Istd1)×(Cmeas1 /Ccal1) (17)
Itcomp2 =DC2 ×(Iical2 /Istd2)×(Cmeas2 /Ccal2) (18)
DC1,DC2:測定した直流透過光強度
Iical1,Iical2:校正時に計算した入射光強度
Istd1,Istd2:標準とする入射光強度
Cmeas1,Cmeas2:生体を測定したときの発光素子の通電電流
Ccal1,Ccal2:入射光強度校正時の発光素子の通電電流
【0055】
したがって上記の式(14)、(16)の代わりに、次式を用いても良い。
Hbdc=a4×Φ12+b4+c4× Itcomp1/Itcomp2 (19)
Hbdc=a5×Φ12+b5+c5× Itcomp1+d5×Itcomp2 (20)
ここで、式(19)における係数a4〜c4、式(20)における係数a5〜d5は、それぞれ上記式(14)の係数の決定方法と同様の方法で、予め決定されるものである。
【0056】
このステップにおいても、Hbdcの計算は、脈動する透過光強度It1,It2 の波の1つづつについて、すなわち心拍の一拍づつについて行なう。そして、CPU14は、求めたHbdcをメモリ15に格納すると共に、表示部16に表示する。
【0057】
本実施の形態の装置によれば、血液以外の生体組織に光吸収がある第1波長1300nmの直流減光度または直流透過光強度と、血液に光吸収がある第2波長805nm直流減光度または直流透過光強度を用いて計算したので、測定部位における血液と血液以外の組織からなる生体組織全体の厚さが考慮され、精度良くヘモグロビン濃度を測定することができる。
なお、本実施の形態において、第1の波長を赤色光(例えば660nm)、第2の波長を赤外光(例えば940nm)とし、酸化ヘモグロビン濃度を求めることで動脈血酸素飽和度測定に適用することができる。
【0058】
[第2の実施の形態:一酸化炭素ヘモグロビン濃度測定装置]
次に、本発明の第2の実施の形態を説明する。この第2の実施の形態は、一酸化炭素ヘモグロビン濃度測定装置である。
【0059】
図6は、本実施の形態の装置の全体構成を示すブロック図である。発光部100は相異なる3つの波長の光を発生するLED20a,20b,20cとこれらを駆動する駆動回路40とから成る。
【0060】
LED20aから発生する光の波長を第1の波長とし、LED20bから発生する光の波長を第2の波長とし、LED20cから発生する光の波長を第3の波長とする。本装置において、第1の波長は940nm、第2の波長は660nm、第3の波長は620nmである。
【0061】
受光部50は、LED20a,20b,20cに対向して配置されたフォトダイオード60とこのフォトダイオード60の出力電流を電圧信号に変換する電流−電圧変換器70とアンプ80から成る。
【0062】
マルチプレクサ90は、アンプ80から与えられる信号を3個のフィルタ10a,10b,10cに振り分ける回路である。フィルタ10a,10b,10cは、各波長の透過光強度に対応する信号のノイズを除去する回路であり、これらの出力信号は、マルチプレクサ120でそれぞれの出力のタイミングを制御されA/Dコンバータ130に至るようにされている。A/Dコンバータ130はマルチプレクサ120から与えられる信号をデジタル信号に変換する回路である。
【0063】
CPU140は駆動回路40、マルチプレクサ90およびマルチプレクサ120に制御信号を出力してそれらを制御すると共に、A/Dコンバータ130から与えられる信号に基づいて演算を行なう回路である。
【0064】
メモリ150は、CPU140が行なう処理のためのプログラムを格納されており、またCPU140から与えられるデータを格納するものである。
【0065】
表示部160はCPU140から与えられるデータを表示するものであり、入力部170は複数のスイッチ(後述する校正スイッチおよび測定スイッチを含む)、複数のキーを備え、操作者の操作に応じた信号をCPU140に出力するものである。本装置のプローブは、LED20a,20b,20cとフォトダイオード60を備え、これらのLED20a,20b,20cとフォトダイオード60の間で生体30を挟持するようになっている。
次に、本装置の動作を図7を参照して説明する。
【0066】
<ステップ1B :プローブの入射光強度の測定>
このステップ1B では、生体30への入射光強度を測定する。ここではプローブの3個のLED20a,20b,20cからそれぞれ生体30に照射される光の強度、すなわち生体30への入射光強度を求める。上記の第1の実施の形態の装置におけるステップ1A と同様にして、操作者は、減光度が既知のファントム30AをプローブのLED20a,20b,20cとフォトダイオード60との間の所定位置に配置し、次に校正スイッチを操作して入射光強度測定開始をCPU140に指示する。これによりCPU140は、ファントム30Aを透過した各波長の光強度Itcal1,Itcal2,Itcal3から次式を計算して、3波長の入射光強度Iical1、Iical2、Iical3を求め、これらをメモリ150に格納する。
Iical1=Itcal1×exp(Af1)
Iical2=Itcal2×exp(Af2)
Iical3=Itcal2×exp(Af3)
ここで、Af1,Af2,Af3 はファントム30Aの各波長の既知の減光度であり、予めメモリ150に格納されている。
【0067】
<ステップ2B :脈波の測定と減光度比Φの計算>
次にステップ2B では、操作者は、プローブを生体30に取り付け、測定スイッチを操作する。これによりCPU140は、生体30の血液の脈動による各波長の減光度変化分を測定し、それらの相互の比Φを求める。
【0068】
すなわちこのステップでは、CPU140は上記第1の実施の形態におけるステップ2A と同様にして各波長の直流透過光強度と交流透過光強度を求め、これらを用いて各波長の減光度の変化分の相互の比を求めるのであるが、ここでは、3波長の光を用いるので、次の式を計算してΦ12、Φ13を求め、その結果をメモリ150に格納する。
Φ12=ΔA1/ΔA2= (AC1 /DC1)/ (AC2 /DC2) (21)
Φ13=ΔA1/ΔA3= (AC1 /DC1)/ (AC3 /DC3) (22)
Φ12:第1波長と第2波長の減光度A1,A2 の変化分ΔA1, ΔA2の相互比
Φ13:第1波長と第3波長の減光度A1,A3 の変化分ΔA1, ΔA3の相互比
DC1,DC2,DC3:第1〜3波長の透過光強度It1,It2,It3 における直流透過光強度
AC1,AC2,AC3:第1〜3波長の透過光強度It1,It2,It3 における交流透過光強度
【0069】
このステップにおいて、Φ12、Φ13の計算は、脈動する透過光強度It1,It2,Ii3 の波の1つずつについて、すなわち心拍の一拍ずつについて行なう。
【0070】
<ステップ3B :直流減光度の計算>
次にステップ3B では、各波長の直流減光度Adc1,Adc2,Adc3を求める。ここで、CPU140は、ステップ1B で求めた入射光強度Iical1,Iical2,Iical3と、ステップ2B で求めた直流透過光強度DC1,DC2,DC3 を次式に代入して、各波長の直流減光度Adc1, Adc2を求め、その結果をメモリ150に格納する。
Adc1= log(Iical1 /DC1)=logIical1 −logDC1 (23)
Adc2= log(Iical2 /DC2)=logIical2 −logDC2 (24)
Adc3= log(Iical3 /DC3)=logIical3 −logDC3 (25)
【0071】
本装置が、発光素子(LED20a,20b,20c)に流す電流を変化させない回路構成を持つ場合は、上記のようにステップ1B で求めた入射光強度Iical1,Iical2,Iical3をそのまま用いる。
【0072】
しかし、本装置が、発光素子の電流を変化させて最適の透過光強度が得られるように調整する回路構成を持つ場合、ファントム30Aを用いて入射光強度測定を行なった時(校正時)の発光素子への電流値 Ccal1, Ccal2 ,Ccal3と生体の減光度測定を行なった時(測定時)の発光素子への電流値 Cmeas1, Cmeas2, Cmeas3 が違うことがある。その場合入射光強度IiA1,IiA2 は、
IiA1 =Ical1 × Cmeas1 /Ccal1 (26)
IiA2 =Ical2 × Cmeas2 /Ccal2 (27)
IiA3 =Ical3 × Cmeas3 /Ccal3 (28)
のように、発光素子への通電電流に応じて補正した値を用いる。
【0073】
このステップにおいても、直流減光度Adc1,Adc2,Adc3の計算は、脈動する透過光強度It1,It2,It3 の波の1つずつについて、すなわち心拍の一拍ずつについて行なう。
【0074】
<ステップ4B :一酸化炭素ヘモグロビン濃度の計算>
次にステップ4B では、CPU140は、ステップ2B で求めたΦ12、Φ13とステップ3B で求めた直流減光度Adc1、Adc2、Adc3を変数とする次式を用いて一酸化炭素ヘモグロビン濃度COHbdcを計算する。
Figure 2004230000
【0075】
この式(29)の係数a6〜e6はある母集団(例えばある選択された10人のデータ)において、式(29)を計算した結果のCOHbdcと、採血して測定した正確な一酸化炭素ヘモグロビン値COHbs の差が最小になるように最小二乗法で予め決めた値である。
【0076】
ここで、本装置の効果を示すため、一酸化炭素ヘモグロビン濃度を、脈波の減光度変化分比Φ12、Φ13だけを使って計算した場合と、本装置により、Φ12、Φ13と直流減光度Adc1,Adc2,Adc3を使って計算した場合とを、それぞれ採血法によって求めた場合とを比較する。
【0077】
Φ12、Φ13だけを使う場合、
COHbp =a7×Φ12+b7×Φ13+c7 (30)
により計算する。この場合の係数a7,b7,c7も、上記母集団のデータを用いて上記と同様にして予め決定されたものである。式(30)を用いて計算した一酸化炭素ヘモグロビン濃度COHbp と、採血法により測定した一酸化炭素ヘモグロビン濃度COHbs との相関を図8(a)に示す。
【0078】
これに対し、直流減光度を使い、式(29)により計算した本装置による一酸化炭素ヘモグロビン濃度C0Hbdcと、採血法により測定したCOHbs との相関を図8(b)に示す。
【0079】
これらの図を比較すると分かるように、計算式に直流減光度を入れることによって、採血法との一致が改善される。
【0080】
また、上記の式(29)の代わりに、次式を用いても良い。
Figure 2004230000
この式の係数a8〜f8も上記と同様にして予め決定しておく。
【0081】
ところで、直流減光度Adc1,Adc2,Adc3と直流透過光強度 DC1,DC2,DC3との間には逆相関の一定の関係があるので、減光度で計算しなくても、直流透過光強度をそのまま使って計算すれば同様の効果が得られる。この場合、直流透過光強度はプローブの入射光強度に比例するので、入射光強度を、発光素子(LED20a,20b,20c)の特定の通電電流値で規格化した状態で補正する必要が有る。補正した各波長の直流透過光強度Itcomp1,Itcomp2,Itcomp3 は次式により計算する。
Itcomp1 =DC1 ×(Iical1 /Istd1)×(Cmeas1 /Ccal1) (32)
Itcomp2 =DC2 ×(Iical2 /Istd2)×(Cmeas2 /Ccal2) (33)
Itcomp3 =DC3 ×(Iical3 /Istd3)×(Cmeas3 /Ccal3) (34)
DC1,DC2,DC3:測定した透過光強度
Iical1,Iical2,Iical3: 校正時に計算した入射光強度
Istd1,Istd2,Istd3:標準とする入射光強度
Cmeas1,Cmeas2,Cmeas3: 生体を測定したときの発光素子の通電電流
Ccal1,Ccal2,Ccal3:入射光強度校正時の発光素子の通電電流
【0082】
したがって、上記の式(29)、(31)の代わりに、次式を用いても良い。
COHbdc=a9×Φ12+b9×Φ13+c9+d9×Itcomp1 /Itcomp2 +e9×Itcomp1 /Itcomp3 (35)
COHbdc=a10 ×Φ12+b10 ×Φ13+ c10+ d8 ×Itcomp1 +e10 ×Itcomp2 +f10 ×Itcomp3 (36)
式(35)における係数a9〜e9、式(36)における係数a10 〜f10 は、それぞれ上記と同様の母集団のデータを用いて、上記と同様にして予め決定されるものである。
【0083】
このステップにおいても、COHbdcの計算は、脈動する透過光強度It1,It2,It3 の波の1つずつについて、すなわち心拍の一拍ずつについて行なう。そして、CPU140は、求めたCOHbdcをメモリ150に格納すると共に、表示部160に表示する。
【0084】
本実施の形態の装置によれば、血液に光吸収がある第1波長940nm、第2波長660nmおよび第3波長620nmの直流減光度または直流透過光強度を用いて計算したので、測定部位の血液層全体の厚さが考慮され、精度良くヘモグロビン濃度を測定することができる。
【0085】
[第3の実施の形態:色素濃度測定装置]
次に、本発明の第3の実施の形態を説明する。この第3の実施の形態は、色素濃度測定装置である。この装置は、第2の実施の形態と同様に3波長の光を用いるので、装置の構成ブロック図は図6と同じである。このため、本装置の構成ブロック図は省略し、以下の説明では図6を利用する。しかし、CPU140が行なう処理のプログラムは、図9に示すように第2の実施の形態と異なる。また、第1の波長は940nm、第2の波長は660nm、第3の波長は805nmである。以下、図9を参照して本装置の動作を説明する。
【0086】
<ステップ1C :プローブの入射光強度の測定(校正)>
このステップ1C では、生体30への入射光強度を測定する。上記の第2の実施の形態の装置におけるステップ1B と同様にして、ファントム30Aを用い、3波長の入射光強度Iical1、Iical2、Iical3を求め、これらをメモリ150に格納する。
【0087】
<ステップ2C :脈波の測定と減光度変化分比Φの計算>
次にステップ2C では、操作者は、プローブを生体30に装着した後、色素を注入する。色素として例えばインドシアニングリーンを用いる。そして、上記第2の実施の形態におけるステップ2B と同様にして各波長の減光度の変化分の相互の比を求める。すなわち、次の式を計算してΦ12、Φ13を求め、その結果をメモリ150に格納する。
Φ12=ΔA1/ΔA2= (AC1 /DC1)/ (AC2 /DC2) (21)
Φ13=ΔA1/ΔA3= (AC1 /DC1)/ (AC3 /DC3) (22)
Φ12:第1波長と第2波長の減光度A1,A2 の変化分ΔA1, ΔA2の相互比
Φ13:第1波長と第3波長の減光度A1,A3 の変化分ΔA1, ΔA3の相互比
DC1,DC2,DC3:第1〜3波長の透過光強度It1,It2,It3 における直流透過光強度
AC1,AC2,AC3:第1〜3波長の透過光強度It1,It2,It3 における交流透過光強度
【0088】
このステップにおいて、Φ12、Φ13の計算は、脈動する透過光強度It1,It2,Ii3 の波の1つずつについて、すなわち心拍の一拍ずつについて行なう。
【0089】
<ステップ3C :直流減光度の計算>
次にステップ3C では、各波長の直流減光度Adc1,Adc2,Adc3を求める。ここで、CPU140は、第2の実施の形態のステップ3B と同様にして、各波長の入射光強度Iical1,Iical2,Iical3と、各波長の直流透過光強度DC1,DC2,DC3 と次式により、各波長の直流減光度Adc1, Adc2を求め、その結果をメモリ150に格納する。
Adc1= log(Iical1 /DC1)=logIical1 −logDC1 (23)
Adc2= log(Iical2 /DC2)=logIical2 −logDC2 (24)
Adc3= log(Iical3 /DC3)=logIical3 −logDC3 (25)
【0090】
本装置が、発光素子(LED20a,20b,20c)に流す電流を変化させない回路構成を持つ場合、上記のようにステップ1C で求めた入射光強度Iical1,Iical2,Iical3をそのまま用いる。
【0091】
しかし、本装置が、発光素子の電流を変化させて最適の透過光強度が得られるように調整する回路構成を持つ場合、ファントム30Aを用いて入射光強度測定を行なった時(校正時)の発光素子への電流値 Ccal1, Ccal2 ,Ccal3と生体の減光度測定を行なった時(測定時)の発光素子への電流値 Cmeas1, Cmeas2, Cmeas3 が違うことがある。その場合入射光強度IiA1,IiA2 は、
IiA1 =Ical1 × Cmeas1 /Ccal1 (26)
IiA2 =Ical2 × Cmeas2 /Ccal2 (27)
IiA3 =Ical3 × Cmeas3 /Ccal3 (28)
のように、発光素子への通電電流に応じて補正した値を用いる。
【0092】
このステップにおいても、直流減光度Adc1,Adc2,Adc3の計算は、脈動する透過光強度It1,It2,It3 の波の1つずつについて、すなわち心拍の一拍ずつについて行なう。
【0093】
<ステップ4C :色素濃度の計算>
次にステップ4C では、CPU140は、上記ステップ2C で求めたΦ12、Φ13と上記ステップ3C で求めた直流減光度Adc1、Adc2、Adc3を変数とする次式を用いて色素濃度Cdを計算する。
Figure 2004230000
【0094】
この式(37)の係数a11 〜e11 はある母集団(例えばある選択された10人のデータ)において、式(37)を計算した結果であるCddcと、採血して測定した正確なCds 値の差が最小になるように最小二乗法で予め決めた値である。
ここで、本装置の効果を示すため、色素濃度を、脈波の減光度変化分比Φ12、Φ13だけを使って計算した場合と、本装置によるΦ12、Φ13とAdc1,Adc2,Adc3を使って計算した場合とを、それぞれ採血法によって求めた場合とを比較する。
【0095】
Φ12、Φ13だけを使う場合、
Cdp =a12 ×Φ12+b12 ×Φ13+c12 (38)
により計算する。この場合の係数a12,b12,c12 も、上記母集団のデータを用いて上記と同様にして予め決定されたものである。式(38)を用いて計算した色素濃度Cdp と、採血法により測定した色素濃度Cds との相関を図10(a)に示す。これに対し、直流減光度を使い、式(37)により計算した本装置による色素濃度Cddcと、採血法により測定した色素濃度Cds との相関を図10(b)に示す。
【0096】
これらの図を比較すると分かるように、計算式に直流減光度を入れることによって、採血法との一致が改善される。
また、上記の式(37)の代わりに、次式を用いても良い。
Figure 2004230000
この式の係数a13 〜f13 も上記と同様にして予め決定しておく。
【0097】
ところで、直流減光度Adc1,Adc2,Adc3と直流透過光強度 DC1,DC2,DC3との間には逆相関の一定の関係があるので、減光度で計算しなくても、直流透過光強度をそのまま使っても同様の効果が得られる。この場合、直流透過光強度はプローブの入射光強度に比例するので、入射光強度を、発光素子(LED20a,20b,20c)の特定の通電電流値で規格化した状態で補正する必要が有る。補正した各波長の直流透過光強度Itcompは次式により計算する。
Itcomp1 =DC1 ×(Iical1 /Istd1)×(Cmeas1 /Ccal1) (40)
Itcomp2 =DC2 ×(Iical2 /Istd2)×(Cmeas2 /Ccal2) (41)
Itcomp3 =DC3 ×(Iical3 /Istd3)×(Cmeas3 /Ccal3) (42)
DC1,DC2,DC3:測定した透過光強度
Iical1,Iical2,Iical3: 校正時に計算した入射光強度
Istd1,Istd2,Istd3:標準とする入射光強度
Cmeas1,Cmeas2,Cmeas3: 生体を測定したときの発光素子の通電電流
Ccal1,Ccal2,Ccal3:入射光強度校正時の発光素子の通電電流
【0098】
したがって、上記の式(37)、(39)の代わりに、次式を用いても良い。
Figure 2004230000
【0099】
ここで、式(43)における係数a14 〜e14 、式(44)における係数a15 〜f15 は、それぞれ上記と同様の母集団のデータを用いて、上記と同様にして予め決定されるものである。
【0100】
このステップにおいても、Cddcの計算は、脈動する透過光強度It1,It2,It3 の波の1つずつについて、すなわち心拍の一拍ずつについて行なう。そして、CPU140は、求めたCddcをメモリ150に格納すると共に、表示部160に表示する。
【0101】
本実施の形態の装置によれば、血液に光吸収がある第1波長940nm、第2波長805nmおよび第3波長660nmの直流減光度または直流透過光強度を用いて計算したので、測定部位の血液層全体の厚さが考慮され、精度良く色素濃度を測定することができる。
【0102】
なお、以上の説明においては、発光素子に流れる電流を制御して生体に照射する光強度を変える場合について説明したが、これは、発光素子に印加する電圧を制御して発光素子の光強度を変え、測定される入射光強度や直流透過光強度をその電圧値に応じて補正するようにしても良い。
【0103】
【発明の効果】
本発明によれば、パルスフォトメトリーを原理とする血中吸光物質濃度測定において、精度良く測定することができる。
【図面の簡単な説明】
【図1】第1の実施の形態のヘモグロビン濃度測定装置の動作を説明するための図。
【図2】第1の実施の形態のヘモグロビン濃度測定装置のブロック構成図。
【図3】生体へ光を照射したときの入射光強度と透過光強度との関係を説明する図。
【図4】直流透過光強度を説明する図。
【図5】第1の実施の形態のヘモグロビン濃度測定装置の効果を説明する図。
【図6】第2の実施の形態の一酸化炭素ヘモグロビン濃度測定装置のブロック構成図。
【図7】第2の実施の形態の一酸化炭素ヘモグロビン濃度測定装置の動作を説明するための図。
【図8】第2の実施の形態の一酸化炭素ヘモグロビン濃度測定装置の効果を説明する図。
【図9】第3の実施の形態の色素濃度測定装置の動作を説明するための図。
【図10】第3の実施の形態の色素濃度測定装置の効果を説明する図。
【符号の説明】
1、100 発光部
5、50 受光部
14、140 CPU

Claims (11)

  1. 複数種の波長の光を発する光源を持ち、これらの光を生体組織に照射する光照射手段と、
    この光照射手段から発せられた各波長の光の生体組織への入射光強度を測定する入射光強度測定手段と、
    前記生体組織を透過した各波長の光を受光し、それぞれの透過光強度を測定する透過光強度測定手段と、
    この透過光強度測定手段が測定した透過光強度に基づいて、血液の厚み変化により発生する各波長の減光度変化分の相互の比を演算する第1の演算手段と、
    この第1の演算手段が求めた比と、前記入射光強度測定手段が測定した入射光強度と、前記透過光強度測定手段が測定した透過光強度とに基づいて血液中の吸光物質濃度を演算して求める第2の演算手段と
    を具備する血中吸光物質濃度測定装置。
  2. 前記第2の演算手段は、
    各波長について、前記入射光強度測定手段が測定した入射光強度と、前記透過光強度測定手段が測定した透過光強度とに基づいて前記生体組織の直流減光度を演算して求め、この直流減光度と前記第1の演算手段が求めた比とに基づいて血液中の吸光物質濃度を演算して求めることを特徴ととする請求項1に記載の血中吸光物質濃度測定装置。
  3. 前記第2の演算手段は、各波長の直流減光度の相互の比を求め、この比と前記第1の演算手段が求めた比とに基づいて血液中の吸光物質濃度を演算して求めることを特徴とする請求項2に記載の血中吸光物質濃度測定装置。
  4. 前記第2の演算手段は、
    各波長について、前記入射光強度測定手段が測定した入射光強度と、前記透過光強度測定手段が測定した透過光強度とに基づいて前記生体組織の直流透過光強度を演算して求め、この直流透過光強度と前記第1の演算手段が求めた比とに基づいて血液中の吸光物質濃度を演算して求めることを特徴ととする請求項1に記載の血中吸光物質濃度測定装置。
  5. 前記第2の演算手段は、各波長の直流透過光強度の相互の比を求め、この比と前記第1の演算手段が求めた比とに基づいて血液中の吸光物質濃度を演算して求めることを特徴とする請求項4に記載の血中吸光物質濃度測定装置。
  6. 前記光照射手段は、前記光源が発光素子から成り、この発光素子に供給する電流または印加する電圧を制御する制御部を備え、
    前記第2の演算手段は前記制御部により制御された電流または電圧に応じて、測定した入射光強度を補正し、この補正した入射光強度を用いて演算することを特徴とする請求項1乃至5のいずれか1に記載の血中吸光物質濃度測定装置。
  7. 前記入射光強度測定手段は、前記光照射手段と前記透過光強度測定手段との間の所定位置に、減光度が既知のファントムが配置された場合に、前記透過光強度測定手段により測定される各波長の透過光強度に基づいて入射光強度を演算して求めることを特徴とする請求項1乃至6のいずれか1に記載の血中吸光物質濃度測定装置。
  8. 前記入射光強度測定手段は、前記ファントムが前記所定位置に配置されたか否かを検出するセンサを有し、前記ファントムが前記所定位置に配置されたことを前記センサにより検出されると、入射光強度を演算して求めることを特徴とする請求項7に記載の血中吸光物質濃度測定装置。
  9. n種の波長の光を発する光源を持ち、これらの光を生体組織に照射する光照射手段と、
    この光照射手段から発せられたn種の波長の光の生体組織への入射光強度を測定する入射光強度測定手段と、
    前記生体組織を透過したn種の波長の光を受光し、それぞれの透過光強度を測定する透過光強度測定手段と、
    この透過光強度測定手段が測定した透過光強度に基づいて、血液の厚み変化により発生する各波長の減光度変化分の相互の比のうち最大でn−1個の比を演算する第1の演算手段と、
    この第1の演算手段が求めた最大でn−1個の比と、前記入射光強度測定手段が求めた入射光強度と、前記透過光強度測定手段が求めた透過光強度とに基づいて、各波長に対応する最大でn個の直流減光度を演算して求め、これらの演算結果に基づいて血液中の吸光物質濃度を演算して求める第2の演算手段とを具備する血中吸光物質濃度測定装置。
  10. n種の波長の光を発する光源を持ち、これらの光を生体組織に照射する光照射手段と、
    この光照射手段から発せられたn種の波長の光の生体組織への入射光強度を測定する入射光強度測定手段と、
    前記生体組織を透過したn種の波長の光を受光し、それぞれの透過光強度を測定する透過光強度測定手段と、
    この透過光強度測定手段が測定した透過光強度に基づいて、血液の厚み変化により発生する各波長の減光度変化分の相互の比のうち最大でn−1個の比を演算する第1の演算手段と、
    この第1の演算手段が求めた最大でn−1個の比と、前記入射光強度測定手段が求めた入射光強度と、前記透過光強度測定手段が求めた透過光強度とに基づいて、各波長に対応する最大でn個の直流透過光強度を演算して求め、これらの演算結果に基づいて血液中の吸光物質濃度を演算して求める第2の演算手段とを具備する血中吸光物質濃度測定装置。
  11. 前記光源は、血液に光吸収がある波長の光および/または血液以外の生体組織に光吸収がある波長の光を発することを特徴とする請求項1乃至11のいずれか1に記載の血中吸光物質濃度測定装置。
JP2003023990A 2003-01-31 2003-01-31 血中吸光物質濃度測定装置 Expired - Fee Related JP4284674B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003023990A JP4284674B2 (ja) 2003-01-31 2003-01-31 血中吸光物質濃度測定装置
DE200410005086 DE102004005086B4 (de) 2003-01-31 2004-02-02 Vorrichtung zum Messen der Konzentration einer lichtabsorbierenden Substanz in Blut
US10/768,680 US7257433B2 (en) 2003-01-31 2004-02-02 Apparatus for measuring concentration of light-absorbing substance in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023990A JP4284674B2 (ja) 2003-01-31 2003-01-31 血中吸光物質濃度測定装置

Publications (3)

Publication Number Publication Date
JP2004230000A true JP2004230000A (ja) 2004-08-19
JP2004230000A5 JP2004230000A5 (ja) 2006-02-23
JP4284674B2 JP4284674B2 (ja) 2009-06-24

Family

ID=32709270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023990A Expired - Fee Related JP4284674B2 (ja) 2003-01-31 2003-01-31 血中吸光物質濃度測定装置

Country Status (3)

Country Link
US (1) US7257433B2 (ja)
JP (1) JP4284674B2 (ja)
DE (1) DE102004005086B4 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2070469A1 (en) 2007-12-10 2009-06-17 FUJIFILM Corporation Image processing system, image processing method, and program
WO2015137151A1 (ja) * 2014-03-11 2015-09-17 公立大学法人横浜市立大学 支援用具、および生体情報取得システム
JP2016187539A (ja) * 2015-03-30 2016-11-04 日本光電工業株式会社 生体情報測定システム
KR20190006494A (ko) * 2016-05-11 2019-01-18 노바 바이오메디컬 코포레이션 전혈용 so2 센서

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018673A (en) 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US20070191697A1 (en) 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US7239902B2 (en) * 2001-03-16 2007-07-03 Nellor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
US8135448B2 (en) * 2001-03-16 2012-03-13 Nellcor Puritan Bennett Llc Systems and methods to assess one or more body fluid metrics
US6591122B2 (en) * 2001-03-16 2003-07-08 Nellcor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
US7657292B2 (en) * 2001-03-16 2010-02-02 Nellcor Puritan Bennett Llc Method for evaluating extracellular water concentration in tissue
US6757554B2 (en) * 2001-05-22 2004-06-29 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Measurement of cardiac output and blood volume by non-invasive detection of indicator dilution
US6754516B2 (en) 2001-07-19 2004-06-22 Nellcor Puritan Bennett Incorporated Nuisance alarm reductions in a physiological monitor
US7006856B2 (en) 2003-01-10 2006-02-28 Nellcor Puritan Bennett Incorporated Signal quality metrics design for qualifying data for a physiological monitor
US7016715B2 (en) 2003-01-13 2006-03-21 Nellcorpuritan Bennett Incorporated Selection of preset filter parameters based on signal quality
US7190985B2 (en) 2004-02-25 2007-03-13 Nellcor Puritan Bennett Inc. Oximeter ambient light cancellation
US7120479B2 (en) 2004-02-25 2006-10-10 Nellcor Puritan Bennett Inc. Switch-mode oximeter LED drive with a single inductor
US7534212B2 (en) 2004-03-08 2009-05-19 Nellcor Puritan Bennett Llc Pulse oximeter with alternate heart-rate determination
US7194293B2 (en) 2004-03-08 2007-03-20 Nellcor Puritan Bennett Incorporated Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US7277741B2 (en) 2004-03-09 2007-10-02 Nellcor Puritan Bennett Incorporated Pulse oximetry motion artifact rejection using near infrared absorption by water
US7937128B2 (en) * 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
EP2286721B1 (en) 2005-03-01 2018-10-24 Masimo Laboratories, Inc. Physiological Parameter Confidence Measure
US7392075B2 (en) 2005-03-03 2008-06-24 Nellcor Puritan Bennett Incorporated Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US20070106126A1 (en) 2005-09-30 2007-05-10 Mannheimer Paul D Patient monitoring alarm escalation system and method
US8929973B1 (en) * 2005-10-24 2015-01-06 Lockheed Martin Corporation Apparatus and method for characterizing optical sources used with human and animal tissues
EP1981401A4 (en) * 2006-01-20 2010-07-21 Alfred E Mann Inst Biomed Eng MEASURING CARDIAC FLOW AND BLOOD VOLUME BY NON-INVASIVE DETERMINATION OF INDICATOR DILUTION
US7668579B2 (en) 2006-02-10 2010-02-23 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US7830519B2 (en) 2006-02-22 2010-11-09 Vivum Nexus Llc Method and device for analyte measurement
US8702606B2 (en) 2006-03-21 2014-04-22 Covidien Lp Patient monitoring help video system and method
US8380271B2 (en) 2006-06-15 2013-02-19 Covidien Lp System and method for generating customizable audible beep tones and alarms
US8064975B2 (en) 2006-09-20 2011-11-22 Nellcor Puritan Bennett Llc System and method for probability based determination of estimated oxygen saturation
US8696593B2 (en) 2006-09-27 2014-04-15 Covidien Lp Method and system for monitoring intracranial pressure
US7922665B2 (en) 2006-09-28 2011-04-12 Nellcor Puritan Bennett Llc System and method for pulse rate calculation using a scheme for alternate weighting
US7698002B2 (en) 2006-09-29 2010-04-13 Nellcor Puritan Bennett Llc Systems and methods for user interface and identification in a medical device
US8068890B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Pulse oximetry sensor switchover
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7848891B2 (en) 2006-09-29 2010-12-07 Nellcor Puritan Bennett Llc Modulation ratio determination with accommodation of uncertainty
US20080097175A1 (en) * 2006-09-29 2008-04-24 Boyce Robin S System and method for display control of patient monitor
US8728059B2 (en) 2006-09-29 2014-05-20 Covidien Lp System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US8160668B2 (en) 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc Pathological condition detector using kernel methods and oximeters
US7925511B2 (en) 2006-09-29 2011-04-12 Nellcor Puritan Bennett Llc System and method for secure voice identification in a medical device
US7706896B2 (en) 2006-09-29 2010-04-27 Nellcor Puritan Bennett Llc User interface and identification in a medical device system and method
US20080081956A1 (en) 2006-09-29 2008-04-03 Jayesh Shah System and method for integrating voice with a medical device
US8116852B2 (en) * 2006-09-29 2012-02-14 Nellcor Puritan Bennett Llc System and method for detection of skin wounds and compartment syndromes
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
US20080221416A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc System and method for detection of macular degeneration using spectrophotometry
US8175665B2 (en) * 2007-03-09 2012-05-08 Nellcor Puritan Bennett Llc Method and apparatus for spectroscopic tissue analyte measurement
US20080221418A1 (en) * 2007-03-09 2008-09-11 Masimo Corporation Noninvasive multi-parameter patient monitor
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
EP2139383B1 (en) 2007-03-27 2013-02-13 Masimo Laboratories, Inc. Multiple wavelength optical sensor
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
JP4569615B2 (ja) * 2007-09-25 2010-10-27 ブラザー工業株式会社 印刷装置
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US20090171174A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for maintaining battery life
US8275553B2 (en) 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8140272B2 (en) 2008-03-27 2012-03-20 Nellcor Puritan Bennett Llc System and method for unmixing spectroscopic observations with nonnegative matrix factorization
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
CA2722773C (en) 2008-05-07 2015-07-21 Lawrence A. Lynn Medical failure pattern search engine
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
US8862194B2 (en) 2008-06-30 2014-10-14 Covidien Lp Method for improved oxygen saturation estimation in the presence of noise
US20100016731A1 (en) * 2008-07-15 2010-01-21 Cardiox Corporation Hemodynamic Detection of Circulatory Anomalies
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US9078609B2 (en) * 2008-10-02 2015-07-14 Nellcor Puritan Bennett Ireland Extraction of physiological measurements from a photoplethysmograph (PPG) signal
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US8494606B2 (en) 2009-08-19 2013-07-23 Covidien Lp Photoplethysmography with controlled application of sensor pressure
US8704666B2 (en) 2009-09-21 2014-04-22 Covidien Lp Medical device interface customization systems and methods
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8376955B2 (en) 2009-09-29 2013-02-19 Covidien Lp Spectroscopic method and system for assessing tissue temperature
US9554739B2 (en) 2009-09-29 2017-01-31 Covidien Lp Smart cable for coupling a medical sensor to an electronic patient monitor
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
DE112010004682T5 (de) 2009-12-04 2013-03-28 Masimo Corporation Kalibrierung für mehrstufige physiologische Monitore
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
WO2012032536A2 (en) * 2010-09-06 2012-03-15 Abhishek Sen System and method for non-invasive determination of hemoglobin concentration in blood
CN111610138B (zh) 2011-04-15 2023-06-09 罗氏血液诊断股份有限公司 测量细胞体积和成份
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
JP6385865B2 (ja) 2014-03-28 2018-09-05 日本光電工業株式会社 パルスフォトメータ
CN104068865B (zh) * 2014-04-24 2017-05-31 辛勤 一种测量血氧饱和度的方法以及便携式设备
EP3064137B1 (en) * 2015-03-04 2020-12-23 Nihon Kohden Corporation Pulse photometer and method for calculating concentration of light absorber in blood
JPWO2016181743A1 (ja) * 2015-05-12 2018-03-01 コニカミノルタ株式会社 植物生育指標測定装置および該方法ならびに植物生育指標測定システム
WO2019158385A1 (en) 2018-02-13 2019-08-22 Robert Bosch Gmbh A controller and method to determine incident intensity of a light source and total hemoglobin
WO2020260365A1 (en) 2019-06-24 2020-12-30 Robert Bosch Gmbh A bioanalyte monitoring device
WO2021008933A1 (en) 2019-07-16 2021-01-21 Robert Bosch Gmbh A bioanalyte monitoring device
CN113456067B (zh) * 2021-06-24 2023-06-23 江西科莱富健康科技有限公司 体外血红蛋白浓度测量方法、系统及计算机设备
CN113588579B (zh) * 2021-08-23 2024-03-01 重庆山外山血液净化技术股份有限公司 血液离子浓度探测装置和方法、钙离子浓度探测方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326437B2 (ja) 1974-03-29 1978-08-02
JPH02164341A (ja) 1988-12-19 1990-06-25 Nippon Koden Corp ヘモグロビン濃度測定装置
JP2608828B2 (ja) 1992-02-06 1997-05-14 日本光電工業株式会社 非観血式オキシメータ
US5385143A (en) 1992-02-06 1995-01-31 Nihon Kohden Corporation Apparatus for measuring predetermined data of living tissue
JP3116252B2 (ja) * 1992-07-09 2000-12-11 日本光電工業株式会社 パルスオキシメータ
US5490523A (en) * 1994-06-29 1996-02-13 Nonin Medical Inc. Finger clip pulse oximeter
DE19612425C2 (de) * 1995-03-31 2000-08-31 Nihon Kohden Corp Apparat zur Messung von Hämoglobinkonzentration
US6070093A (en) * 1997-12-02 2000-05-30 Abbott Laboratories Multiplex sensor and method of use
JP2002228579A (ja) 1999-11-30 2002-08-14 Nippon Koden Corp ヘモグロビン濃度測定装置
US6415236B2 (en) 1999-11-30 2002-07-02 Nihon Kohden Corporation Apparatus for determining concentrations of hemoglobins
KR100612827B1 (ko) * 2001-04-19 2006-08-14 삼성전자주식회사 비 침습적인 헤모글로빈 농도와 산소 포화도 모니터링방법 및 장치
JP4603718B2 (ja) 2001-04-26 2010-12-22 株式会社日立メディコ 生体光計測装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2070469A1 (en) 2007-12-10 2009-06-17 FUJIFILM Corporation Image processing system, image processing method, and program
US8260016B2 (en) 2007-12-10 2012-09-04 Fujifilm Corporation Image processing system, image processing method, and computer readable medium
WO2015137151A1 (ja) * 2014-03-11 2015-09-17 公立大学法人横浜市立大学 支援用具、および生体情報取得システム
JPWO2015137151A1 (ja) * 2014-03-11 2017-04-06 公立大学法人横浜市立大学 支援用具、および生体情報取得システム
JP2016187539A (ja) * 2015-03-30 2016-11-04 日本光電工業株式会社 生体情報測定システム
US10548493B2 (en) 2015-03-30 2020-02-04 Nihon Kohden Corporation Biological information measurement system
JP2019522777A (ja) * 2016-05-11 2019-08-15 ノヴァ バイオメディカル コーポレイション 全血so2センサ
KR20190006494A (ko) * 2016-05-11 2019-01-18 노바 바이오메디컬 코포레이션 전혈용 so2 센서
KR20210018545A (ko) * 2016-05-11 2021-02-17 노바 바이오메디컬 코포레이션 전혈용 so2 센서
US10942166B2 (en) 2016-05-11 2021-03-09 Nova Biomedical Corporation Whole blood SO2 sensor
KR102235823B1 (ko) 2016-05-11 2021-04-02 노바 바이오메디컬 코포레이션 전혈용 so2 센서
JP2021165742A (ja) * 2016-05-11 2021-10-14 ノヴァ バイオメディカル コーポレイション 全血試料内のパーセント酸素飽和度を測定する方法
KR102339446B1 (ko) 2016-05-11 2021-12-14 노바 바이오메디컬 코포레이션 전혈용 so2 센서
JP7295167B2 (ja) 2016-05-11 2023-06-20 ノヴァ バイオメディカル コーポレイション 全血試料内のパーセント酸素飽和度を測定する方法

Also Published As

Publication number Publication date
DE102004005086B4 (de) 2013-04-11
DE102004005086A1 (de) 2004-08-12
JP4284674B2 (ja) 2009-06-24
US20040176670A1 (en) 2004-09-09
US7257433B2 (en) 2007-08-14

Similar Documents

Publication Publication Date Title
JP4284674B2 (ja) 血中吸光物質濃度測定装置
US8606342B2 (en) Pulse and active pulse spectraphotometry
KR100612827B1 (ko) 비 침습적인 헤모글로빈 농도와 산소 포화도 모니터링방법 및 장치
US7254432B2 (en) Method and device for non-invasive measurements of blood parameters
CA2558643C (en) Pulse oximetry motion artifact rejection using near infrared absorption by water
JP3925945B2 (ja) 検体を傷つけずに、血液が供給されている組織の酸素飽和量を測定する方法
US8515514B2 (en) Compensation of human variability in pulse oximetry
US8123695B2 (en) Method and apparatus for detection of venous pulsation
US9380969B2 (en) Systems and methods for varying a sampling rate of a signal
CN1255077C (zh) 血液成分的无创伤性光学测量
JP3566277B1 (ja) 血糖値測定装置
US8369914B2 (en) Optical measuring apparatus, optical measuring method, and storage medium that stores optical measuring program
JP2004135854A (ja) 反射型光電脈波検出装置および反射型オキシメータ
JP2004290544A (ja) 血液分析装置
US20220117525A1 (en) Sensor and system for neonatal jaundice monitoring and management
JP2004290412A (ja) 血液分析装置
JP4399847B2 (ja) パルスオキシメータ
JP6741485B2 (ja) パルスフォトメータ、および血中吸光物質濃度の算出値の信頼性評価方法
JP2019058210A (ja) 酸素飽和度推定装置、酸素飽和度測定装置、酸素飽和度推定プログラム、及び酸素飽和度推定方法
JP3635331B2 (ja) 物質計測装置
US20240049996A1 (en) Nirs / tissue oximetry based method to measure arterial blood oxygen saturation from pulsatile hemoglobin waveforms
JPH0628655B2 (ja) 酸素飽和度測定装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4284674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees