JP2004228134A - 酸化物半導体発光素子およびその製造方法 - Google Patents

酸化物半導体発光素子およびその製造方法 Download PDF

Info

Publication number
JP2004228134A
JP2004228134A JP2003011007A JP2003011007A JP2004228134A JP 2004228134 A JP2004228134 A JP 2004228134A JP 2003011007 A JP2003011007 A JP 2003011007A JP 2003011007 A JP2003011007 A JP 2003011007A JP 2004228134 A JP2004228134 A JP 2004228134A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
ohmic electrode
type
semiconductor light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003011007A
Other languages
English (en)
Other versions
JP4241057B2 (ja
Inventor
Hajime Saito
肇 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003011007A priority Critical patent/JP4241057B2/ja
Publication of JP2004228134A publication Critical patent/JP2004228134A/ja
Application granted granted Critical
Publication of JP4241057B2 publication Critical patent/JP4241057B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】Alオーミック電極の光透過特性に応じて中間層材料を適切に選択することで優れた発光特性を実現する酸化物半導体発光素子を提供する。
【解決手段】本発明の酸化物半導体発光素子1は、n型ZnOコンタクト層3(n型酸化物半導体層)に接するように積層され、層厚が50nm以上であり非透光性を有するAlを含むn型オーミック電極10と、n型オーミック電極10上に形成されたAuパッド電極12と、n型オーミック電極10とAuパッド電極12との間に形成されたZrからなる中間層11とを備えたものである。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、信頼性と省電力性に優れ、発光効率の高い酸化物半導体発光素子およびその製造方法に関するものである。
【0002】
【従来の技術】
本発明に関連する先行技術文献としては次のものがある。
【0003】
【特許文献1】
特許第3060931号公報
【特許文献2】
特許第3154364号公報
【特許文献3】
特許第3239350号公報
【特許文献4】
国際公開第00/16411号パンフレット
【0004】
フルカラーディスプレイ等の表示素子や種々の光源として広範囲に利用される高輝度な発光素子は、その産業利用の用途や範囲が年々拡大している。中でも、青色〜紫外域のみならず、赤色を含めた可視光全域で利用可能な発光素子として、ワイドギャップ半導体であるIII族窒化物および酸化亜鉛系半導体等の酸化物半導体発光素子が多く利用されている。また、この酸化物半導体発光素子の結晶成長およびデバイス技術が急速に発展している。
【0005】
酸化亜鉛(ZnO)は、約3.4eVのバンドギャップエネルギーを有する直接遷移型半導体で、励起子結合エネルギーが60meVと極めて高く、また原材料が安価であり、環境や人体に無害、かつ成膜手法が簡便であるなどの特徴を有する。また、酸化亜鉛は、高効率・低消費電力で環境性に優れた発光デバイスを実現できる。
【0006】
なお、以下において、III族窒化物半導体とは、GaN,AlN,InNおよびこれらの混晶を含めるものとし、これを「GaN系半導体」と称する。また、酸化亜鉛系半導体とは、ZnOおよびこれを母体としたMgZnOあるいはCdZnOなどで表される混晶を含めるものとし、これを「ZnO系半導体」(酸化物半導体)と称する。
【0007】
半導体発光素子は、通常、半導体発光素子をリードフレームなどに取り付け、半導体発光素子のオーミック電極とリードフレーム間をワイヤボンディングして製造される。このとき、オーミック電極上にパッド電極(あるいは台座電極とも称する)を形成することが一般的に行われている。例えば、前記特許文献1には、GaN系半導体素子におけるボンデイング用のパッド電極として、Au,Pt,Al等を用いた例が開示されている。
【0008】
このGaN系半導体素子におけるボンデイング用のパッド電極としては、ボンディングワイヤとの密着性、低抵抗性および耐環境性を考慮するとAuが最も好ましい。特に、n型GaN系半導体に対するオーミック電極として酸化されやすいAlを含むオーミック電極を用いた場合は、オーミック電極表面が酸化されてボンディングの密着性が低下するので、これを回避するため、Auパッド電極を設けてその上にワイヤボンディング行うと好ましい(例えば、特許文献2を参照)。
【0009】
さらに、オーミック電極とパッド電極の密着性を強化させるため、Ni、TiやNbなどAlよりも高融点の金属からなる中間層を介在させる技術が、前記特許文献2および特許文献3に開示されている。
【0010】
一方、n型ZnO系半導体に対するオーミック電極としては、GaN系半導体と同様にAl、Ti、Crなどがオーミック電極材料となると考えられる。このオーミック電極のうち、TiまたはCrがn型ZnO層と接する構造を有する場合、または、Alがn型ZnO層と接しない構造を有する場合に、良好なオーミック特性が得られる(例えば、特許文献4を参照)。
【0011】
ところが、n型ZnO系半導体上にAlを含むn型オーミック電極を形成し、これに接してAuパッド電極を形成すると、Auパッド電極が設けられていない場合に比べて素子抵抗が顕著に増大するとともに、ボンディングワイヤやリードフレームとの密着性が悪化し、ボンディング時や通電中に電極が剥れやすくなるという問題が生じた。また、前記特許文献4に開示されているように、Alを含むオーミック電極がn型ZnO系半導体と接しないように電極を形成しても、Alを含むオーミック電極とAuパッド電極が接する構造であれば高い確率で発生する。これは、AlとAuが接するとその界面でAl−Au合金が形成され、このAl−Au合金が高抵抗かつ脆いために、導電性と密着性が著しく低下するためであると考えられる。
【0012】
そこで、前記特許文献2および特許文献3に開示されているように、Alオーミック電極とAuパッド電極の間に、密着性を強化するための金属からなる中間層を設けたところ、動作電圧と密着性は改善された。
【0013】
【発明が解決しようとする課題】
しかしながら、Alオーミック電極とAuパッド電極の間に中間層を介在させた場合、酸化物半導体発光素子の発光強度が低下するという問題があった。
【0014】
図5に、前記Alオーミック電極の層厚と酸化物半導体発光素子の発光強度(任意単位)との関係を示す。Alオーミック電極の層厚が50nm以上の場合、中間層の金属材料によらず酸化物半導体発光素子の発光強度は、ほぼ一定である。これは、図6に示すように、オーミック電極を構成するAlは、青色〜紫外域の発光に対する光反射率(%)が高いため、Alオーミック電極に入射した発光が、Alオーミック電極で反射されて素子外部へと取り出されるためである。
【0015】
一方、Alオーミック電極が透光性を有する程度に薄い場合、すなわちAlオーミック電極の層厚が50nm以下の場合、n型半導体と良好なオーミック接触を形成する遷移金属(Cr,Zr,Ti)からなる中間層を備えた酸化物半導体発光素子の発光強度は、いずれも低下した。これは、Alオーミック電極が透光性を有する場合、Alオーミック電極に入射した光が、Alオーミック電極を透過して中間層で吸収されるためである。
【0016】
そこで、本発明の目的は、前記従来の問題に鑑み、n型ZnO系半導体とAlオーミック電極が接する構造において、AlとAuの相互拡散を抑止する中間層を介在させると共に、Alオーミック電極の光透過特性に応じて中間層材料を適切に選択することで優れた発光特性を実現する酸化物半導体発光素子を提供することを課題とする。
【0017】
【課題を解決するための手段】
本発明に係る酸化物半導体発光素子は、前記課題を解決するための手段として、
n型酸化物半導体層に接するように積層され、層厚が50nm以上であり非透光性を有するAlを含むn型オーミック電極と、
前記n型オーミック電極上に形成されたAuを含むパッド電極と、
前記n型オーミック電極と前記パッド電極との間に形成された金属からなる中間層とを備えたものである。
【0018】
前記発明によれば、Alを含むn型オーミック電極とAuパッド電極の間に、金属からなる中間層が介在することにより、AlとAuの相互拡散による合金化を防ぐことができる。これにより、安価で低抵抗なAlオーミック電極と耐環境性・プロセス簡便性に優れたAuパッド電極からなるn型電極を備えた酸化物半導体発光素子を提供できる。また、Alは青色〜紫外域の光反射率が高いので、Alオーミック電極がn型酸化物半導体層に接し、かつ層厚が50nm以上であれば、Alオーミック電極は非透光性を有する。これにより、発光層からの発光をAlオーミック電極で反射させて光取り出し効率を向上させた酸化物半導体発光素子を提供できる。
【0019】
前記中間層は、Ni、Cu、Agを含まず、Alより融点の高い金属であることが好ましい。中間層の構成材料には、p型オーミック電極材料(Ni、Cu、Ag)を含まないことが好ましく、これらの元素の拡散による高抵抗化を防止できる。また、Alより熱的に安定な材料で中間層を構成することにより、高い相互拡散抑止効果が得られる。
【0020】
また、前記中間層は遷移金属からなることが好ましい。遷移金属は、酸化物半導体との親和性が高く高融点であるので、密着性と相互拡散抑止効果に優れる。
【0021】
前記中間層は、Ti,Cr,V,Hf,Zr,Nb,Ta,Mo,Wから選択された少なくとも1つの遷移金属を含むことが好ましい。
【0022】
また、前記中間層が前記遷移金属の酸化物からなることが好ましい。中間層が、遷移金属の酸化物からなることにより酸化物半導体との親和性および安定性がさらに向上するので、より低抵抗で信頼性の高い酸化物半導体発光素子が得られる。
【0023】
本発明に係る酸化物半導体発光素子は、前記課題を解決するための他の手段として、
n型酸化物半導体層に接するように積層され、層厚が1〜50nmの範囲内であり透光性を有するAlを含むn型オーミック電極と、
前記n型オーミック電極上に形成されたAuを含むパッド電極と、
前記n型オーミック電極と前記パッド電極との間に形成されたPtを含む中間層とを備えたものである。
【0024】
前記発明によれば、Alを含むn型オーミック電極とAuパッド電極の間に、Ptを含む中間層が介在し、Ptは拡散を抑止する効果に極めて優れているので、AlとAuの相互拡散による合金化を確実に防ぐことができる。これにより、安価で低抵抗なAlオーミック電極と耐環境性・プロセス簡便性に優れたAuパッド電極からなるn型電極を備えた酸化物半導体発光素子を提供できる。また、Alオーミック電極の層厚が1〜50nmの範囲内であれば、Alオーミック電極が透光性を有するので酸化物半導体発光素子の光取り出し効率が向上するとともに、十分な電流広がりが得られる。また、Ptを含む中間層は、青色〜紫外域に対して高い光反射率を有するので、Alオーミック電極を透過した発光もPt中間層で反射させることにより、酸化物半導体発光素子の光取り出し効率を大幅に向上させることができる。
【0025】
また、前記n型オーミック電極は、Ti,Cr,V,Hf,Zr,Nb,Ta,Mo,Wから選択された少なくとも1つの遷移金属を含むことが好ましい。前記遷移金属(Ti,Cr,V,Hf,Zr,Nb,Ta,Mo,W)は、導電性に優れ、かつn型酸化物半導体層と低抵抗なオーミック接触を形成するので、n型オーミック電極がこれら遷移金属を含むことにより、素子抵抗はさらに低減する。
【0026】
本発明に係る酸化物半導体発光素子の製造方法は、前記課題を解決するための手段として、
n型酸化物半導体層に接するように、層厚が50nm以上であり非透光性を有するAlを含むn型オーミック電極を積層し、
前記n型オーミック電極上に金属からなる中間層を形成し、
前記中間層上にAuを含むパッド電極を積層し、
酸素雰囲気中あるいは大気中で熱処理を行なうものである。
【0027】
前記発明によれば、熱処理(またはアニール処理)を行うことにより、オーミック電極の酸化物半導体に対する密着性およびオーミック特性は格段に向上する。特に、酸素雰囲気中でアニール処理を行うことにより、電極からの酸素抜けを抑止して、低いオーミック抵抗を保ったまま密着性を向上させることができる。
【0028】
本発明に係る酸化物半導体発光素子の製造方法は、前記課題を解決するための他の手段として、
n型酸化物半導体層に接するように、層厚が1〜50nmの範囲内であり透光性を有するAlを含むn型オーミック電極を積層し、
前記n型オーミック電極上にPtを含む中間層を形成し、
前記中間層上にAuを含むパッド電極を積層し、
酸素雰囲気中あるいは大気中で熱処理を行なうものである。
【0029】
前記発明によれば、熱処理(またはアニール処理)を行うことにより、オーミック電極の酸化物半導体に対する密着性およびオーミック特性は格段に向上する。特に、酸素雰囲気中でアニール処理を行うことにより、電極からの酸素抜けを抑止して、低いオーミック抵抗を保ったまま密着性を向上させることができる。
【0030】
前記熱処理温度は、300〜450℃の範囲内であることが好ましい。300℃以上であればオーミック電極の密着性およびオーミック抵抗低減効果を向上することができ、450℃以下であれば、酸化物半導体発光素子が劣化せず、特性に優れた酸化物半導体発光素子を製造できる。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に従って説明する。
【0032】
(第1実施形態)
図1は、本発明の第1実施形態に係る酸化物半導体発光素子1の断面図である。この酸化物半導体発光素子1は、c面を主面とするサファイア基板2上に、Gaを3×1018cm−3の濃度でドーピングした厚さ0.2μmのn型ZnOコンタクト層3(n型酸化物半導体層)、Gaを1×1018cm−3の濃度でドーピングした厚さ1μmのn型Mg0.1Zn0.9Oクラッド層4、厚さ0.1μmのノンドープCd0.1Zn0.9O発光層5、Nを1×1020cm−3の濃度でドーピングした厚さ1μmのp型Mg0.1Zn0.9Oクラッド層6、Nを5×1020cm−3の濃度でドーピングした厚さ0.3μmのp型ZnOコンタクト層7が積層されている。
【0033】
また、p型ZnOコンタクト層7の主表面全面には、厚さ10nmのNiOを積層した透光性を有するp型オーミック電極8が積層され、その上には直径80μmで厚さ500nmのボンディング用Auパッド電極9が積層されている。
【0034】
また、前記n型Mg0.1Zn0.9Oクラッド層4からp型ZnOコンタクト層7までのエピタキシャル層の一部がエッチングされており、前記n型ZnOコンタクト層3の一部が露出している。この露出したn型ZnOコンタクト層3の表面には、厚さ100nmのAlよりなる非透光性を有するn型オーミック電極10が積層され、その上には直径80μmで厚さ100nmのZrよりなる中間層11、および直径80μmで厚さ500nmのAuよりなるボンディング用パッド電極12が積層されている。
【0035】
次に、前記酸化物半導体発光素子1を製造する製造方法について説明する。
【0036】
本実施形態の酸化物半導体発光素子1は、図示しないレーザ分子線エピタキシー(以下レーザMBEと称する)装置で製造される。レーザMBE装置を用いたレーザMBE法では、まず、洗浄処理したサファイア基板2上に、n型ZnOコンタクト層3を厚さ0.2μmまで成長させる。次に、n型Mg0.1Zn0.9Oクラッド層4を厚さ1μmまで成長させる。続いて、ノンドープCd0.1Zn0.9O発光層5を厚さ0.1μmまで成長させ、p型Mg0.1Zn0.9Oクラッド層6を厚さ1μmまで成長させ、p型ZnOコンタクト層7を厚さ0.3μmまで成長させ、p型オーミック電極8を厚さ10nmまで形成する。また、Auパッド電極9を厚さ500nmまで積層する。
【0037】
次に、サファイア基板2をレーザMBE装置から取り出して、サファイア基板2上面の一部をレジストマスク(不図示)で覆った後、サファイア基板2をイオンミリング装置(不図示)により、n型Mg0.1Zn0.9Oクラッド層4からAuパッド電極9までの成長層の一部をエッチングし、n型ZnOコンタクト層3の一部を露出させる。
【0038】
次に、サファイア基板2をイオンミリング装置から取り出してレジストマスクを除去し、再び、レーザMBE装置に導入する。そして、n型ZnOコンタクト層3表面上に、Alからなる厚さ100nmのn型オーミック電極10、厚さ100nmのZrよりなる中間層11、および厚さ500nmのAuよりなるボンディング用パッド電極12を積層する。このとき、Zrよりなる中間層11を設けているので、Alオーミック電極10とAuパッド電極12とは互いに接触しないようになっている。
【0039】
そして、サファイア基板2をレーザMBE装置から取り出して、n型ZnOコンタクト層3の露出部以外に堆積したAl,ZrおよびAuをエッチング除去する。また、Auパッド電極9、中間層11およびAuパッド電極12を各々直径80μmに加工する。
【0040】
また、本発明の酸化物半導体発光素子1は、前記レーザMBE法に限らず、固体あるいは気体原料を用いた分子線エピタキシー(MBE)法、有機金属気相成長(MOCVD)法などの結晶成長手法で製造してもよい。また、p型オーミック電極8、Auパッド電極9、n型オーミック電極10、中間層11およびAuパッド電極12は、電子ビーム蒸着法や、スパッタリング法、レーザアブレーション法によって形成することができる。
【0041】
そして、前記酸化物半導体発光素子1を300μm角のチップ状に分割する。以上のようにして、製造された酸化物半導体発光素子1のAuパッド電極9およびAuパッド電極12をリードフレームにワイヤボンディングした後、酸化物半導体発光素子1を樹脂でモールドし、発光させたところ、発光ピーク波長410nmの青色発光が得られた。また、20mAの動作電流における動作電圧は3.6Vであった。また、100個の酸化物半導体発光素子1をリードフレームに実装したところ、ワイヤボンディングする際に電極剥れが生じた酸化物半導体発光素子1は1つもなかった。
【0042】
(比較例1)
一方、Zrよりなる中間層11を備えない100個の酸化物半導体発光素子をリードフレームに実装したところ、Auよりなるボンディング用パッド電極12へのワイヤボンディング時に電極剥れが生じた酸化物半導体発光素子が25個あった。また、動作電圧が5V以上の酸化物半導体発光素子は40個あった。
【0043】
比較例1の酸化物半導体発光素子の不良原因を調べたところ、Alオーミック電極10と接するようにして形成されたAuパッド電極12は、Alと合金化して紫色に変色していた。また、ワイヤボンディングの際の電極剥れは、全てこのAlと合金化したAuパッド電極12で発生していた。
【0044】
(比較例2)
また、中間層11をZrで構成する代りにNiで構成した100個の酸化物半導体発光素子をリードフレームに実装したところ、ワイヤボンディング時に電極剥れが生じた酸化物半導体発光素子は1つもなかったが、動作電圧は全ての酸化物半導体発光素子が5V以上であった。
【0045】
以上の結果より、中間層11を構成する材料としては、AlとAuの相互拡散を効果的に抑止し、酸化物半導体との親和性に優れる点で、Alよりも融点が高い遷移金属が好ましく、特に、n型半導体と良好なオーミック接触を形成するTi,Cr,V,Hf,Zr,Nb,Ta,Mo,Wが好ましい。また、遷移金属の中でもp型半導体に対するオーミック電極材料、特にNi、Cu、Agは、n型オーミック電極を高抵抗化させるので中間層11に含まれないことが好ましい。
【0046】
(比較例3)
また、n型オーミック電極10をAlで構成する代りにTiで構成した100個の酸化物半導体発光素子をリードフレームに実装したところ、ワイヤボンディング時に電極剥れが生じた酸化物半導体発光素子は1つもなかった。また、動作電圧は、前記第1実施形態の酸化物半導体発光素子1とほぼ同じであったが、発光強度は前記第1実施形態と比べて約30%低下した。
【0047】
すなわち、n型ZnOコンタクト層3に接するn型オーミック電極10をTi(図6に示すように、Tiは、青色〜紫外域の発光に対する光反射率(%)が低く、約50%)で構成すると、入射した光が吸収されて酸化物半導体発光素子1の発光効率が低下する。これに対し、本実施形態では光反射率の高いAlを用いてn型オーミック電極10を厚さ100nmで形成しているので、オーミック電極10に入射した光が吸収されることなく反射される。これにより、反射された光が酸化物半導体発光素子1外部へ取り出され、酸化物半導体発光素子1の発光効率が高くなる。
【0048】
また、その他の構成は任意であり、本実施形態によって限定されるものではない。
【0049】
前記実施形態の変形例として、酸化物半導体発光素子1のパッド電極9、12を形成した後で、酸化物半導体発光素子1を図示しないアニール炉に導入し、常圧酸素中で温度350℃で1分間、アニール処理(熱処理)してもよい。この300個の酸化物半導体発光素子1をリードフレームに実装したところ、ワイヤボンディングする際に電極剥れが生じた酸化物半導体発光素子1は1つもなかった。これに対して、前記実施形態の300個の酸化物半導体発光素子1をリードフレームに実装したところ、10個の酸化物半導体発光素子1に電極剥れが生じた。また、動作電圧は前記第1実施形態よりも低減し、3.3Vであった。
【0050】
このように、アニール処理(熱処理)することにより、n型ZnOコンタクト層3(酸化物半導体)とAlオーミック電極10(金属酸化物)との密着性およびオーミック特性が格段に向上する。なお、アニール処理の温度は、300℃以上であれば密着性および抵抗の低減を向上することができ、450℃以下であれば、酸化物半導体素子1が劣化しにくくなる。また、アニール処理における雰囲気は、Oあるいは大気雰囲気中が好ましく、N雰囲気中では逆に抵抗が増大する。また、酸化物半導体発光素子1のn型オーミック電極10は、表面を耐環境性の高いAuパッド電極12で覆われているため、酸素雰囲気中でアニール処理を行ってもAlの酸化などが生じにくい。また、中間層11の介在によってアニール処理時の高温下でもAlとAuが合金化せず、電極劣化が生じない。
【0051】
また、前記実施形態の変形例として、n型オーミック電極10を、Ti−Al合金から構成してもよい。この酸化物半導体発光素子1をリードフレームにワイヤボンディングした後、酸化物半導体発光素子1を樹脂でモールドし、発光させたところ、前記第1実施形態とほぼ同様の発光強度の青色発光が得られた。また、20mAの動作電流における動作電圧は、3.3Vに低減した。また、100個の酸化物半導体発光素子1をリードフレームに実装したところ、ワイヤボンディングする際に電極剥れが生じた酸化物半導体発光素子1は1つもなかった。
【0052】
このように、n型オーミック電極10は、Alを含んで構成されていれば、他の元素を含んでもよい。特に、n型ZnOコンタクト層3と良好なオーミック接触を形成するTi,Cr,V,Hf,Zr,Nb,Ta,Mo,Wを含むことにより、電極のオーミック抵抗が低減するので好ましい。このとき、これらの金属は、Alオーミック電極10がn型ZnOコンタクト層3と接していれば、多層構造を有してもよい。
【0053】
また、前記実施形態の変形例として、中間層11をZrで構成するのでなく、ZrOから構成してもよい。この酸化物半導体発光素子1をリードフレームにワイヤボンディングした後、酸化物半導体発光素子1を樹脂でモールドし、発光させたところ、前記第1実施形態とほぼ同様の発光強度の青色発光が得られた。また、20mAの動作電流における動作電圧は、3.4Vに低減した。また、この300個の酸化物半導体発光素子1をリードフレームに実装したところ、ワイヤボンディングする際に電極剥れが生じた酸化物半導体発光素子1は1つもなかった。
【0054】
以上のように、中間層11が遷移金属の酸化物で形成されていることにより、遷移金属で構成される場合に比べて酸化物半導体との親和性および安定性にさらに優れるので、信頼性の高い酸化物半導体発光素子1が得られる。特に、前述したn型ZnOコンタクト層3と良好なオーミック接触を形成するTi,Cr,V,Hf,Zr,Nb,Ta,Mo,Wは酸化物であっても良好な導電性を示すため、密着性が向上し、かつ動作電圧が低減するので好ましい。
【0055】
(第2実施形態)
図2は、本発明の第2実施形態に係る酸化物半導体発光素子1’の断面図である。この酸化物半導体発光素子1’は、前記第1実施形態と異なり、露出したn型ZnOコンタクト層3の表面に、厚さ10nmのAlよりなる透光性を有するn型オーミック電極10’が積層されている。その上には直径80μmで厚さ100nmのPtよりなる中間層11’、および直径80μmで厚さ500nmのAuよりなるボンディング用パッド電極12が積層されている。なお、前記第1実施形態と同一かつ同様の作用を有する部分には、同一符号を付して詳細な説明は省略する。
【0056】
この酸化物半導体発光素子1’を300μm角のチップ状に分離し、樹脂でモールドし発光させたところ、前記第1実施形態と同様に発光ピーク波長410nmの青色発光が得られた。また、中間層11’がPtで構成されているのでAlオーミック電極10’の層厚(10nm)によらず酸化物半導体発光素子1’は高い発光強度を有する(図5参照)。これは、図6に示すように、Ptの光反射率(%)が他の金属材料に比べて高いためと推察される。図6を参照すると、短波長域で高い光反射率を有する金属にはAgが挙げられるが、遷移金属Ni,Cu,Agのいずれかを含むとp型オーミック電極となり、これらの元素の拡散により高抵抗化するので好ましくない。一方、Ptはp型オーミック電極としても用いられるが、融点が極めて高く他の金属材料と反応しにくいため、n型オーミック電極の導電性に影響を与えない。以上の結果より、Alオーミック電極10’が透光性を有する50nm以下の場合は、中間層はPtで構成されることが好ましい。
【0057】
(第3実施形態)
図3は、本発明の第3実施形態に係る酸化物半導体発光素子30の断面図である。この酸化物半導体発光素子30は、亜鉛面を成長主面とするZnO単結晶基板2’上に、n型Mg0.1Zn0.9Oクラッド層4、Cd0.1Zn0.9O発光層5、p型Mg0.1Zn0.9Oクラッド層6、p型ZnOコンタクト層7、p型オーミック電極8、およびAuパッド電極9からなる成長層を積層したものである。また、前記第1実施形態と異なりn型ZnOコンタクト層3が、形成されていない。また、ZnO単結晶基板2’の裏面には、厚さ100nmのAlよりなる非透光性を有するn型オーミック電極10、厚さ100nmのZrよりなる中間層11、および厚さ500nmのAuよりなるボンディング用パッド電極12が積層されている。これら、n型オーミック電極10、中間層11およびAuパッド電極12は、図4に示すように、幅30μmの格子状にパターン加工されている。なお、前記第1実施形態と同一かつ同様の作用を有する部分には、同一符号を付して詳細な説明は省略する。
【0058】
前記構成からなる酸化物半導体発光素子30を製造するには、第1実施形態と同様に、レーザMBE装置を用いて基板2’上に前記成長層を形成した後、基板2’裏面に、n型オーミック電極10、中間層11およびAuパッド電極12を積層する。次に、基板2’をレーザMBE装置から取り出して、Auパッド電極9を直径80μmに加工し、n型オーミック電極10、中間層11およびAuパッド電極12を図4に示すようにエッチングによりパターン加工する。
【0059】
この酸化物半導体発光素子30を300μm角のチップ状に分離し、基板2’裏面をAgペーストでリードフレームに接着し、Auパッド電極9をリードフレームの他方にワイヤボンディングした後、樹脂でモールドし発光させたところ、前記第1実施形態と同様に発光ピーク波長410nmの青色発光が得られた。また、20mAの動作電流における動作電圧は、前記第1実施形態より低く3.2Vであった。動作電圧が低減したのは、導電性のZnO基板2’を用いたため、結晶性が改善されて発光効率が向上したことに加え、電流が流れる面積が増大して素子抵抗が低減したためであると考えられる。
【0060】
また、100個の酸化物半導体発光素子30をリードフレームに実装したところ、ワイヤボンディングする際に電極剥れが生じた酸化物半導体発光素子30は1つもなかった。また、本実施形態のように、n型基板であるZnO単結晶基板2’裏面に形成されたn型の酸化物オーミック電極10は、導電材である導電性ペースト(Ag)でリードフレームに接続されるため、ワイヤボンディング時の負荷はかからないので剥がれることがない。
【0061】
また、本実施形態において、基板2’裏面のn型オーミック電極10、中間層11およびAuパッド電極12の電極パターン形状は格子状としたが、その電極パターン形状はこれに限定されるものではなく、ドット状やストライプ状でもよい。さらに、n型オーミック電極10、中間層11およびAuパッド電極12を等しい形状で加工する必要はなく、両者のパターン形状が異っていてもよい。
【0062】
なお、本実施形態では、基板2’とn型クラッド層4との間にn型ZnOコンタクト層3を形成しなかったが、ZnOコンタクト層3を形成してバッファ層として用いてもよい。
【0063】
【発明の効果】
以上の説明から明らかなように、本発明に係る酸化物半導体発光素子は、n型酸化物半導体層に接するように積層され、層厚が50nm以上であり非透光性を有するAlを含むn型オーミック電極と、n型オーミック電極上に形成されたAuを含むパッド電極と、n型オーミック電極とパッド電極との間に形成された金属からなる中間層とを備えたことにより、AlとAuの相互拡散による合金化を防ぐとともに、Alオーミック電極が非透光性を有するので、発光層からの発光をAlオーミック電極で反射させることができる。これにより、信頼性と光取り出し効率を向上させた酸化物半導体発光素子を提供できる。
【0064】
また、本発明に係る酸化物半導体発光素子は、n型酸化物半導体層に接するように積層され、層厚が1〜50nmの範囲内であり透光性を有するAlを含むn型オーミック電極と、n型オーミック電極上に形成されたAuを含むパッド電極と、n型オーミック電極とパッド電極との間に形成されたPtを含む中間層とを備えたことにより、AlとAuの相互拡散による合金化を防ぐとともに、発光層からの発光をPt中間層で反射させることができる。また、Alオーミック電極が透光性を有するので酸化物半導体発光素子の光取り出し効率が向上するとともに、十分な電流広がりが得られるという効果をも奏する。これにより、信頼性と光取り出し効率を向上させた酸化物半導体発光素子を提供できる。
【0065】
また、本発明に係る酸化物半導体発光素子の製造方法は、n型酸化物半導体層に接するように、層厚が1〜50nmの範囲内であり透光性を有するAlを含むn型オーミック電極を積層し、n型オーミック電極上にPtを含む中間層を形成し、中間層上にAuを含むパッド電極を積層し、酸素雰囲気中あるいは大気中で熱処理を行なうので、オーミック電極の酸化物半導体に対する密着性およびオーミック特性を格段に向上できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る酸化物半導体発光素子の断面図である。
【図2】本発明の第2実施形態に係る酸化物半導体発光素子の断面図である。
【図3】本発明の第3実施形態に係る酸化物半導体発光素子の断面図である。
【図4】図3の底面図である。
【図5】Alオーミック電極層の層厚(nm)と酸化物半導体発光素子の発光強度(任意単位)の関係を示す図である。
【図6】種々の電極金属における発光発光(nm)に対する光反射率(%)の関係を示す図である。
【符号の説明】
1…酸化物半導体発光素子
3…n型ZnOコンタクト層(n型酸化物半導体層)
10…n型オーミック電極(オーミック電極)
11…中間層
12…Auパッド電極

Claims (10)

  1. n型酸化物半導体層に接するように積層され、層厚が50nm以上であり非透光性を有するAlを含むn型オーミック電極と、
    前記n型オーミック電極上に形成されたAuを含むパッド電極と、
    前記n型オーミック電極と前記パッド電極との間に形成された金属からなる中間層とを備えた酸化物半導体発光素子。
  2. 前記中間層は、Ni、Cu、Agを含まず、Alより融点の高い金属であることを特徴とする請求項1に記載の酸化物半導体発光素子。
  3. 前記中間層は遷移金属からなることを特徴とする請求項2に記載の酸化物半導体発光素子。
  4. 前記中間層は、Ti,Cr,V,Hf,Zr,Nb,Ta,Mo,Wから選択された少なくとも1つの遷移金属を含むことを特徴とする請求項3に記載の酸化物半導体発光素子。
  5. 前記中間層が前記遷移金属の酸化物からなることを特徴とする請求項3または4に記載の酸化物半導体発光素子。
  6. n型酸化物半導体層に接するように積層され、層厚が1〜50nmの範囲内であり透光性を有するAlを含むn型オーミック電極と、
    前記n型オーミック電極上に形成されたAuを含むパッド電極と、
    前記n型オーミック電極と前記パッド電極との間に形成されたPtを含む中間層とを備えた酸化物半導体発光素子。
  7. 前記n型オーミック電極は、Ti,Cr,V,Hf,Zr,Nb,Ta,Mo,Wから選択された少なくとも1つの遷移金属を含むことを特徴とする請求項1から6のいずれかに記載の酸化物半導体発光素子。
  8. n型酸化物半導体層に接するように、層厚が50nm以上であり非透光性を有するAlを含むn型オーミック電極を積層し、
    前記n型オーミック電極上に金属からなる中間層を形成し、
    前記中間層上にAuを含むパッド電極を積層し、
    酸素雰囲気中あるいは大気中で熱処理を行なう酸化物半導体発光素子の製造方法。
  9. n型酸化物半導体層に接するように、層厚が1〜50nmの範囲内であり透光性を有するAlを含むn型オーミック電極を積層し、
    前記n型オーミック電極上にPtを含む中間層を形成し、
    前記中間層上にAuを含むパッド電極を積層し、
    酸素雰囲気中あるいは大気中で熱処理を行なう酸化物半導体発光素子の製造方法。
  10. 前記熱処理温度は、300〜450℃の範囲内であることを特徴とする請求項8または9に記載の酸化物半導体発光素子の製造方法。
JP2003011007A 2003-01-20 2003-01-20 酸化物半導体発光素子およびその製造方法 Expired - Fee Related JP4241057B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011007A JP4241057B2 (ja) 2003-01-20 2003-01-20 酸化物半導体発光素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011007A JP4241057B2 (ja) 2003-01-20 2003-01-20 酸化物半導体発光素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2004228134A true JP2004228134A (ja) 2004-08-12
JP4241057B2 JP4241057B2 (ja) 2009-03-18

Family

ID=32900037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011007A Expired - Fee Related JP4241057B2 (ja) 2003-01-20 2003-01-20 酸化物半導体発光素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP4241057B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034822A (ja) * 2006-06-28 2008-02-14 Nichia Chem Ind Ltd 半導体発光素子
JP2011066061A (ja) * 2009-09-15 2011-03-31 Stanley Electric Co Ltd 酸化亜鉛系半導体発光素子の製造方法及び酸化亜鉛系半導体発光素子
JP2011082173A (ja) * 2009-10-12 2011-04-21 Samsung Mobile Display Co Ltd 有機発光素子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690018A (ja) * 1992-09-08 1994-03-29 Fujitsu Ltd 発光素子及びその製造方法
JPH08274372A (ja) * 1995-03-31 1996-10-18 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
JPH1022494A (ja) * 1996-07-03 1998-01-23 Sony Corp オーミック電極およびその形成方法
JPH11204887A (ja) * 1998-01-19 1999-07-30 Toshiba Corp 低抵抗電極を有する半導体装置
WO2000016411A1 (fr) * 1998-09-10 2000-03-23 Rohm Co., Ltd. Del a semi-conducteur et son procede de fabrication
JP2001168392A (ja) * 1999-12-10 2001-06-22 Stanley Electric Co Ltd 半導体素子及びその製造方法
JP2002016285A (ja) * 2000-06-27 2002-01-18 National Institute Of Advanced Industrial & Technology 半導体発光素子
JP2002043633A (ja) * 2000-07-25 2002-02-08 Stanley Electric Co Ltd 白色発光ダイオ−ド
JP2002246647A (ja) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd 波長変換型半導体素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690018A (ja) * 1992-09-08 1994-03-29 Fujitsu Ltd 発光素子及びその製造方法
JPH08274372A (ja) * 1995-03-31 1996-10-18 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
JPH1022494A (ja) * 1996-07-03 1998-01-23 Sony Corp オーミック電極およびその形成方法
JPH11204887A (ja) * 1998-01-19 1999-07-30 Toshiba Corp 低抵抗電極を有する半導体装置
WO2000016411A1 (fr) * 1998-09-10 2000-03-23 Rohm Co., Ltd. Del a semi-conducteur et son procede de fabrication
JP2001168392A (ja) * 1999-12-10 2001-06-22 Stanley Electric Co Ltd 半導体素子及びその製造方法
JP2002016285A (ja) * 2000-06-27 2002-01-18 National Institute Of Advanced Industrial & Technology 半導体発光素子
JP2002043633A (ja) * 2000-07-25 2002-02-08 Stanley Electric Co Ltd 白色発光ダイオ−ド
JP2002246647A (ja) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd 波長変換型半導体素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034822A (ja) * 2006-06-28 2008-02-14 Nichia Chem Ind Ltd 半導体発光素子
US7947996B2 (en) 2006-06-28 2011-05-24 Nichia Corporation Semiconductor light emitting element
JP2011066061A (ja) * 2009-09-15 2011-03-31 Stanley Electric Co Ltd 酸化亜鉛系半導体発光素子の製造方法及び酸化亜鉛系半導体発光素子
JP2011082173A (ja) * 2009-10-12 2011-04-21 Samsung Mobile Display Co Ltd 有機発光素子

Also Published As

Publication number Publication date
JP4241057B2 (ja) 2009-03-18

Similar Documents

Publication Publication Date Title
JP5522032B2 (ja) 半導体発光素子及びその製造方法
TWI287305B (en) Method for forming an electrode
JP3333356B2 (ja) 半導体装置
JP2008041866A (ja) 窒化物半導体素子
JP4449405B2 (ja) 窒化物半導体発光素子およびその製造方法
JP2005191572A (ja) 窒化物系発光素子及びその製造方法
JP5780242B2 (ja) 窒化物系半導体発光素子
WO2011055664A1 (ja) 半導体発光素子および半導体発光素子の製造方法
JP2007103689A (ja) 半導体発光装置
JP2008103674A (ja) 多層反射膜電極及びそれを備えた化合物半導体発光素子
KR20050086390A (ko) 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법
JPH11274562A (ja) 窒化ガリウム系化合物半導体発光素子およびその製造方法
JP2013008817A (ja) 半導体発光素子及びその製造方法
JP2005184001A (ja) トップエミット型窒化物系発光素子及びその製造方法
TWI260099B (en) Positive electrode structure and gallium nitride-based compound semiconductor light-emitting device
JP2005260101A (ja) Ga2O3系半導体素子
JP2006024701A (ja) 半導体発光素子及びその製造方法
JP5609607B2 (ja) 窒化物系半導体発光素子
TW201034252A (en) Light emitting device
JP2004349301A (ja) 発光ダイオード素子の電極及び発光ダイオード素子
JP2001044503A (ja) AlGaInP発光ダイオード
JP2007281476A (ja) GaN系半導体発光素子及びその製造方法
TWI281758B (en) Transparent positive electrode
JP2002016286A (ja) 半導体発光素子
JP4312504B2 (ja) 発光ダイオード素子の電極及び発光ダイオード素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees