JP2004219772A - 光走査装置及び画像形成装置 - Google Patents
光走査装置及び画像形成装置 Download PDFInfo
- Publication number
- JP2004219772A JP2004219772A JP2003007689A JP2003007689A JP2004219772A JP 2004219772 A JP2004219772 A JP 2004219772A JP 2003007689 A JP2003007689 A JP 2003007689A JP 2003007689 A JP2003007689 A JP 2003007689A JP 2004219772 A JP2004219772 A JP 2004219772A
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- lens
- light beam
- thickness
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Laser Beam Printer (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
- Facsimile Heads (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
【課題】走査レンズの材料として高屈折率で複屈折が少ない樹脂あるいは透過性セラミックスを用い偏肉を抑えつつ、シェーディングの問題を解決する光走査装置、画像形成装置を提供することを目的とする。
【解決手段】光源より放射された光ビームを光偏向器により偏向する光偏向手段と、偏向した光ビームを走査レンズにより被走査面上に収束させて走査線を形成する走査線形成手段とを有する光走査装置であって、前記走査レンズは、D線による測定時の屈折率が1.6以上である樹脂により成形し、前記走査レンズの光ビーム透過方向の厚みと、前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑える。
【選択図】 図1
【解決手段】光源より放射された光ビームを光偏向器により偏向する光偏向手段と、偏向した光ビームを走査レンズにより被走査面上に収束させて走査線を形成する走査線形成手段とを有する光走査装置であって、前記走査レンズは、D線による測定時の屈折率が1.6以上である樹脂により成形し、前記走査レンズの光ビーム透過方向の厚みと、前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑える。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、光ビームを収束させて走査線を形成する手段を有する光走査装置および画像形成装置に関する。
【0002】
【従来の技術】
従来、光走査装置に用いられる走査レンズは、成形のしやすさや廉価性の点から、樹脂により成形することが主流となりつつある。
【0003】
しかし、一般に走査レンズの成形に使われる樹脂は種類が少ない上、ガラスに比べて屈折率が低く、そのため走査レンズの光ビーム透過方向の厚みが厚くなったり、その厚みが周辺部では極端に薄くなるいわゆる偏肉が発生するなどの問題があった。
【0004】
偏肉が大きい走査レンズを成形すると、各レンズ部分で冷却の際の温度分布が異なり、好ましくない屈折率分布を発生させる。屈折率分布は、像面上に収束するべき光ビームの収束位置を像面から大きくずらしてしまう効果を及ぼす。屈折率分布によっては、この光ビームの結像位置ずれは不規則となり、これを補正するのは非常に困難である。
【0005】
また、樹脂によっては複屈折を発生するものもあり、この場合には像面上に収束する光ビームのスポット径を大きくする効果を及ぼす。この指摘は、特許文献2や特許文献3においてもされている。
【0006】
従って、屈折率が高く、複屈折の影響が小さい材料がこれまで望まれていたが、近年新しい樹脂が相次いで開発されてきた。特に、1.6以上の屈折率を有する樹脂や、1.9以上の屈折率を有する透過性セラミックスなどは、これまで不可避的だった走査レンズの偏肉を抑えるのに非常に有望な材料である。
【0007】
また、特許文献1では、走査結像レンズや走査結像レンズ系内のレンズに屈折率の不均一が存在しても、その不均一の範囲がある範囲内に収まるものは実使用ができることから、走査結像レンズや走査結像レンズ系の歩留まりを向上させ、プラスチック成形の差異の冷却時間の短縮を図り、走査結像レンズや走査結像レンズ系の製造効率を向上させて、これらのコストひいては光走査装置のコストの低減化を図ることのできる技術が開示されている。
【0008】
ここで、従来の走査レンズの一実施例について説明する。光源の波長は655nmであり、カップリングレンズの焦点距離は15mm、カップリング作用は収束作用であるとし、シリンドリカルレンズの副走査方向の焦点距離は、71.9mm、ポリゴンミラーの偏向反射面数は6とし、内接円半径を16mm、光源側からのビームの入射角と走査光学系の光軸とがなす角を60度とする。
【0009】
ポリゴンミラーと被走査面との間にある光学系のデータは、データの表記の記号につき説明すると、曲率半径を、主走査方向につきRm、副走査方向につきRs、屈折率をnで表す。なお、以下のデータにおけるRm、Rsは、近軸曲率半径である。
【0010】
【表1】
【0011】
実施の形態は図20に示すとおりである。また、入射面1の非円弧成分を表2に、射出面2の非円弧成分を表3に挙げる。
【0012】
【表2】
【0013】
【表3】
【0014】
走査レンズ6は被走査面上で±110mmを書き込むために、主走査方向の有効径を±47mmとしている。このときの、肉厚変化を図21に示す。1からレンズ中心部の肉厚と周辺部の肉厚の比を引いたものを偏肉度と呼びτとすると、従来の走査レンズのτは0.531であり、偏肉度は大きかった。なお、図22に従来例の像面湾曲(実線は副走査方向、破線は主走査方向)を示す。
【0015】
【特許文献1】
特開平11−316350号公報
【特許文献2】
特開平9−49976号公報
【特許文献3】
特開2002−174787号公報
【0016】
【発明が解決しようとする課題】
しかし、これらの材料を用いて走査レンズを成形する場合に光走査装置全体として考慮すべき課題として被走査面上の光量むら、すなわちシェーディングが大きくなることが挙げられる。
【0017】
光量むらは画像濃度に影響を与え、これは著しい画像再現性の劣化を招くことになる。
【0018】
本発明は、上記事情に鑑みてなされたものであり、走査レンズの材料として高屈折率で複屈折が少ない樹脂あるいは透過性セラミックスを用い偏肉を抑えつつ、シェーディングの問題を解決する光走査装置、画像形成装置を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、光源より放射された光ビームを光偏向器により偏向する光偏向手段と、偏向した光ビームを走査レンズにより被走査面上に収束させて走査線を形成する走査線形成手段とを有する光走査装置であって、前記走査レンズは、D線による測定時の屈折率が1.6以上である樹脂により成形し、前記走査レンズの光ビーム透過方向の厚みと、前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴としている。
【0020】
請求項2記載の発明は、請求項1記載の発明において、前記走査レンズは、主走査断面の形状が、偏向器側に凹面を向けたメニスカス形状で構成することを特徴としている。
【0021】
請求項3記載の発明は、請求項1記載の発明において、前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴としている。
【0022】
請求項4記載の発明は、光源より放射された光ビームを光偏向器により偏向する手段と、該偏向光ビームを走査レンズにより被走査面上に収束させて走査線を形成する手段とを有する光走査装置であって、前記走査レンズは、D線による測定時の屈折率が1.9以上である透過性セラミックスにより成形し、前記走査レンズの光ビーム透過方向の厚みと、前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴としている。
【0023】
請求項5記載の発明は、請求項4記載の発明において、前記走査レンズは、主走査断面の形状は偏向器側に凹面を向けたメニスカス形状で構成することを特徴としている。
【0024】
請求項6記載の発明は、請求項4記載の発明において、前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴としている。
【0025】
請求項7記載の発明は、光源より放射された光ビームを光偏向器により偏向し、偏向した光ビームを走査レンズにより被走査面上に収束させて走査線を形成する光走査装置を有する画像形成装置であって、前記走査レンズは、D線による測定時の屈折率が1.6以上である樹脂により成形し、前記走査レンズの光ビーム透過方向の厚みと、前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴としている。
【0026】
請求項8記載の発明は、請求項7記載の発明において、前記走査レンズは、主走査断面の形状が、偏向器側に凹面を向けたメニスカス形状で構成することを特徴としている。
【0027】
請求項9記載の発明は、請求項7記載の発明において、前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴としている。
【0028】
請求項10記載の発明は、光源より放射された光ビームを光偏向器により偏向し、該偏向光ビームを走査レンズにより被走査面上に収束させて走査線を形成する光走査装置を有する画像形成装置であって、前記走査レンズは、D線による測定時の屈折率が1.9以上である透過性セラミックスにより成形し、前記走査レンズの光ビーム透過方向の厚みと、前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴としている。
【0029】
請求項11記載の発明は、請求項10記載の発明において、前記走査レンズは、主走査断面の形状は偏向器側に凹面を向けたメニスカス形状で構成することを特徴としている。
【0030】
請求項12記載の発明は、請求項10記載の発明において、前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴としている。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照しながら詳細に説明する。
【0032】
図1は、本発明の光走査装置の一実施例を示す図である。図1は、光源1と、カップリングレンズ2と、アパーチャ3と、シリンドリカルレンズ4と、ポリゴンミラー5と、レンズ6と、折り曲げミラー7と、感光体8と、ミラー9と、レンズ10と、受光素子11とを有し構成されている。
【0033】
図1に示す光走査装置は、シングルビーム方式のものである。半導体レーザである光源1から放射された光ビームは発散性の光束で構成され、カップリングレンズ2により、以後の光学系にカップリングされる。カップリングされた光ビームの形態は、以後の光学系の光学特性に応じ、弱い発散性の光束や弱い集束性の光束となることもでき、平行光束となることもできる。カップリングレンズ2を透過した光ビームは、アパーチャ3の開口部を通過する際に光束周辺部を遮断されてビーム整形され、線像結像光学系であるシリンドリカルレンズ4に入射する。シリンドリカルレンズ4は、パワーのない方向を主走査方向に向け、副走査方向には正のパワーを有し、入射してくる光ビームを副走査方向に集束させて、光偏向器であるポリゴンミラー5の偏向反射面近傍に集光させる。
【0034】
偏向反射面により反射された光ビームは、ポリゴンミラー5の等速回転に伴って等角速度的に偏向しつつ、走査光学系をなす1枚のレンズ6を透過し、折り曲げミラー7により光路を折り曲げられ、被走査面の実体をなす光導電性の感光体8上に光スポットとして集光し、被走査面を光走査する。
【0035】
なお、光ビームは光走査に先立ってミラー9に入射し、レンズ10により受光素子11に集光される。受光素子11の出力に基づき、光走査の書込開始タイミングが決定される。
【0036】
走査光学系は、光偏向器5により偏向されるビームを、被走査面8上に光スポットとして集光させる光学系である。レンズ枚数は本実施例では1枚であるが、もちろん何枚で構成しようとも構わない。
【0037】
このとき用いられるレンズ6は、D線による測定時で屈折率が1.6以上である樹脂、あるいはD線による測定時で屈折率が1.9以上である透過性セラミックスにより成形されたものである。また、主走査断面の形状は求められる光学性能から任意に決めて構わないが、被走査面上のシェーディングを軽減するために、例えば偏向器側に凹面を向けたメニスカス形状とすることもできるし、レンズ面に入射する光線と、レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが0°≦φ≦35°を満足する形状とすることもできる。このように主走査断面の形状を設定することによって、光量むらを抑え、被走査面上のビームスポットを良好に保つことができ、また波面収差の劣化を抑え、被走査面上のビームスポットを良好に保つことができる。
【0038】
また、任意の形状に対しては、被走査面上でのシェーディングを補正する補正手段を有するようにしてもよい。
【0039】
図2は、マルチビーム方式の光走査装置の一実施例を示す図である。マルチビーム方式の光走査装置は、複数の発光源ch1〜ch4からの光ビームを共通のカップリングレンズ2により以後の光学系にカップリングし、カップリングされた複数の光ビームを共通の線像結像光学系4により光偏向器5の偏向反射面近傍に主走査方向に長く、副走査方向に分離した複数の線像として結像させ、光偏向器5により同時に等角速度的に偏向させ、偏向ビームを共通の走査光学系6により被走査面8上に副走査方向に分離した複数の光スポットとして集光し、これら複数の光スポットにより複数走査線を同時走査するマルチビーム走査装置である。
【0040】
図3は、本発明のマルチビーム方式の光走査装置一実施例を示す図である。図3の光走査装置は、光源としてビーム合成方式のものを用いるものである。光源1−1、1−2は半導体レーザであって、それぞれ単一の発光源を有する。光源1−1、1−2から放射された各光ビームは、カップリングレンズ2−1、2−2によりカップリングされる。カップリングされた各光ビームの形態は、以後の光学系の光学特性に応じ、弱い発散性の光束や弱い集束性の光束となることもでき、平行光束となることもできる。
【0041】
カップリングレンズ2−1、2−2を透過した各光ビームは、アパーチャ3−1、3−2によりビーム整形され、ビーム合成プリズム20に入射する。ビーム合成プリズム20は、反射面と、偏光分離膜と1/2波長板とを有する。光源1−2からの光ビームは、ビーム合成プリズム20の反射面と、偏光分離膜とに反射されてビーム合成プリズム20を射出する。光源1−1からのビームは1/2波長板により偏光面を90度旋回され、偏光分離膜を透過してビーム合成プリズム20から射出する。このようにして、2ビームが合成される。カップリングレンズ2−1、2−2の光軸に対する光源1−1、1−2の発光部の位置関係の調整により、ビーム合成された2ビームは互いに副走査方向に微小角をなしている。
【0042】
ビーム合成された2ビームは、共通の線像結像光学系であるシリンドリカルレンズ4の作用により、光偏向器であるポリゴンミラー5の偏向反射面近傍に、それぞれが主走査方向に長い線像として、互いに副走査方向に分離して結像する。
【0043】
偏向反射面により等角速度的に偏向された2ビームは、走査光学系をなす1枚のレンズ6を透過し、折り曲げミラー7により光路を折り曲げられ、被走査面の実体をなす感光体8上に、副走査方向に分離した2つの光スポットとして集光し、被走査面の2走査線を同時に光走査する。
【0044】
なお、ビームの1つは、光走査に先立って受光素子11に集光される。受光素子11の出力に基づき、2ビームの光走査の書込開始タイミングが決定される。あるいは、2つの光ビームの各々が、光走査に先立って受光素子11に集光される。受光素子11の出力に基づき、2ビームの光走査の書込開始タイミングが各々個別に決定される。
【0045】
以下、具体的な走査レンズの実施例を挙げて説明する。主走査断面内における非円弧形状は、主走査断面内の近軸曲率半径Rm、光軸からの主走査方向の距離Y、円錐定数K、高次の係数をA1、A2、A3、A4、A5、A6、…として、光軸方向のデプスをXとして数1で表す。数1において、奇数次のA1、A3、A5、…にゼロ以外の数値を代入したとき、主走査方向に非対称形状となる。
【0046】
【数1】
【0047】
副走査断面における曲率半径は、副走査断面内で曲率半径が主走査方向(光軸位置を原点とする座標Yで示す)に変化する場合、次の数2で表す。Rs(0)は、副走査断面内における光軸上の曲率半径を表す。数2において、Yの奇数次係数:B1、B3、B5、…にゼロ以外の数値を代入したとき、副走査断面内の曲率半径の変化が主走査方向に非対称となる。
【0048】
【数2】
【0049】
なお、上記の解析表現は、上に挙げたものに限らず、種々のものが可能であり、この発明における面形状が上記式による表現に限定されるものではない。
【0050】
<実施例1>
光源の波長は655nmであり、カップリングレンズの焦点距離は15mm、カップリング作用は収束作用であるとし、シリンドリカルレンズの副走査方向の焦点距離は、71.9mm、ポリゴンミラーの偏向反射面数は6とし、内接円半径を16mm、光源側からのビームの入射角と走査光学系の光軸とがなす角を60度とする。
【0051】
ポリゴンミラーと被走査面との間にある光学系のデータを表4に示す。
【0052】
【表4】
【0053】
実施の形態は図4に示すとおりである。また、入射面1の非円弧成分を表5に、射出面2の非円弧成分を表6に挙げる。
【0054】
【表5】
【0055】
【表6】
【0056】
走査レンズ6は、被走査面上で±110mmを書き込むために、主走査方向の有効径を±45mmとしている。このときの、肉厚変化を図5に示す。偏肉度は、τ=0.475で、偏肉度は0.5よりも小さくなっており、従来例と比較すると、成形しやすい条件を満足している。
【0057】
このように、高屈折率の材質を用いて走査レンズを成形すると従来例に比べ偏肉度を抑えることができるが、この場合の走査レンズの形状が主走査断面で見ると両凸形状をしている。そのため、図6に示す入射光線とそれに対応するレンズ面の法線とのなす角θの変化を見ると(左側のグラフが入射面を、右側のグラフが射出面を示す)、入射面1が、0°≦φ≦35°を満足せず、シェーディング変化は、図7に示すように15%と悪くなっている。一般に、シェーディングは10%以下とするのが好ましく、これよりも大きくなると画像の濃淡むらが目に見える形で発生してしまう。なお、図8に、実施例1の像面湾曲を示す。実線は副走査方向を示し、破線は主走査方向を示している。
【0058】
<実施例2>
光源の波長は655nmであり、カップリングレンズの焦点距離は15mm、カップリング作用は収束作用であるとし、シリンドリカルレンズの副走査方向の焦点距離は、71.9mm、ポリゴンミラーの偏向反射面数は6とし、内接円半径を16mm、光源側からのビームの入射角と走査光学系の光軸とがなす角を60度とする。
【0059】
ポリゴンミラーと被走査面との間にある光学系のデータを表7に示す。
【0060】
【表7】
【0061】
実施の形態は図9に示すとおりである。また、入射面1の非円弧成分を表8に、射出面2の非円弧成分を表9に挙げる。
【0062】
【表8】
【0063】
【表9】
【0064】
走査レンズ6は被走査面上で±110mmを書き込むために、主走査方向の有効径を±31mmとしている。このときの、肉厚変化を図10に示す。偏肉度は、τ=0.269となり、偏肉度は0.5よりも小さくななるので成形しやすい条件を満足している。
【0065】
入射光線とそれに対応するレンズ面の法線とのなす角θの変化を図11に示す。図11の左側のグラフが入射面を、右側のグラフが射出面を示す。入射面1、射出面2ともに0°≦φ≦35°を満足している。従って、シェーディングも5.5%と良好である。図12に、シェーディング変化を示す。なお、図13に、実施例2の像面湾曲を示す。実線は副走査方向を示し、破線は主走査方向を示している。
【0066】
<実施例3>
光源の波長は655nmであり、カップリングレンズの焦点距離は15mm、カップリング作用は収束作用であるとし、シリンドリカルレンズの副走査方向の焦点距離は、71.9mm、ポリゴンミラーの偏向反射面数は6とし、内接円半径を16mm、光源側からのビームの入射角と走査光学系の光軸とがなす角を60度とする。
【0067】
ポリゴンミラーと被走査面との間にある光学系のデータを表10に示す。
【0068】
【表10】
【0069】
実施の形態は図14に示すとおりである。入射面1の非円弧成分を表11に、射出面2の非円弧成分を表12に挙げる。
【0070】
【表11】
【0071】
【表12】
【0072】
走査レンズ6は被走査面上で±110mmを書き込むために、主走査方向の有効径を±40mmとしている。このときの、肉厚変化を図15に示す。偏肉度は、τ=0.308となり、偏肉度は0.5よりも小さくなるので成形しやすい条件を満足している。
【0073】
入射光線とそれに対応するレンズ面の法線とのなす角θの変化を図16に示す。左側のグラフが入射面を、右側のグラフが射出面を示す。入射面1、射出面2ともに0°≦φ≦35°を満足している。従って、シェーディングも7.6%と良好である。図17に、シェーディング変化を示す。なお、図18に、実施例3の像面湾曲を示す。実線は副走査方向を示し、破線は主走査方向を示している。
【0074】
<実施例4>
この画像形成装置はレーザプリンタである。図19は、本発明の画像形成装置の一実施例を示す図である。図19は、レーザプリンタ1000と、潜像担持体1110と、帯電ローラ1121と、現像装置1131と、転写ローラ1141と、クリーニング装置1151と、定着装置1161と、光走査装置1171と、カセット1181と、レジストローラ対1191と、給紙コロ1201と、搬送路1211と、排紙ローラ対1221と、トレイ1231と、記録媒体としての転写紙Pとを有し構成されている。
【0075】
レーザプリンタ1000は潜像担持体1110として円筒状に形成された光導電性の感光体を有している。潜像担持体1110の周囲には、帯電手段としての帯電ローラ1121、現像装置1131、転写ローラ1141、クリーニング装置1151が配備されている。帯電手段としてはコロナチャージャを用いることもできる。更に、レーザビームLBにより光走査を行う光走査装置1171が設けられ、帯電ローラ1121と現像装置1131との間で光書込による露光を行うようになっている。
【0076】
画像形成を行うときは、光導電性の感光体である像担持体1110が時計回りに等速回転され、その表面が帯電ローラ1121により均一帯電され、光走査装置1171のレーザビームLBの光書込による露光を受けて静電潜像が形成される。形成された静電潜像はいわゆるネガ潜像であって画像部が露光されている。この静電潜像は現像装置1131により反転現像され、像担持体1110上にトナー画像が形成される。
【0077】
転写紙Pを収納したカセット1181は、画像形成装置1000本体に脱着可能であり、図のごとく装着された状態において、収納された転写紙Pの最上位の1枚が給紙コロ1201により給紙され、給紙された転写紙Pは、その先端部をレジストローラ対1191に銜えられる。レジストローラ対1191は、像担持体1110上のトナー画像が転写位置へ移動するのにタイミングを合わせて、転写紙Pを転写部へ送り込む。送り込まれた転写紙Pは、転写部においてトナー画像と重ね合わせられ転写ローラ1141の作用によりトナー画像を静電転写される。トナー画像を転写された転写紙Pは定着装置1161へ送られ、定着装置1161においてトナー画像を定着され、搬送路1211を通り、排紙ローラ対1221によりトレイ1231上に排出される。
【0078】
トナー画像が転写された後の像担持体1110の表面は、クリーニング装置1151によりクリーニングされ、残留トナーや紙粉等が除去される。
【0079】
光走査装置1171として、図9、14のごとき光走査装置を用いることにより、極めて良好な画像形成を実行することができる。
【0080】
【発明の効果】
以上の説明から明らかなように、本発明によれば、偏肉度の小さい走査レンズを用いることで、シェーディングの補正された光走査装置を実現することができる。
【0081】
また、本発明によれば、主走査断面の形状を設定することにより、光量むらを抑え、シェーディングを良好に保つことができる。
【0082】
また、本発明によれば、主走査断面の形状を設定することにより、波面収差の劣化を抑え、被走査面上のビームスポットを良好に保つことができる。
【0083】
また、本発明によれば、上述した光走査装置を用いる画像形成装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の光走査装置の一実施例を示す図である。
【図2】マルチビーム方式の光走査装置の一実施例を示す図である。
【図3】本発明のマルチビーム方式の光走査装置一実施例を示す図である。
【図4】実施例1の実施の形態を示す図である。
【図5】実施例1の肉厚変化を示す図である。
【図6】実施例1の入射光線とそれに対応するレンズ面の法線とのなす角θの変化を示す図である。
【図7】実施例1のシェーディング変化を示す図である。
【図8】実施例1の像面湾曲(実線は副走査方向、破線は主走査方向)を示す。
【図9】実施例2の実施の形態を示す図である。
【図10】実施例2の肉厚変化を示す図である。
【図11】実施例2の入射光線とそれに対応するレンズ面の法線とのなす角θの変化を示す図である。
【図12】実施例2のシェーディング変化を示す図である。
【図13】実施例2の像面湾曲(実線は副走査方向、破線は主走査方向)を示す図である。
【図14】実施例3の実施の形態を示す図である。
【図15】実施例3の肉厚変化を示す図である。
【図16】実施例3の入射光線とそれに対応するレンズ面の法線とのなす角θの変化を示す図である。
【図17】実施例3のシェーディング変化を示す図である。
【図18】実施例3の像面湾曲(実線は副走査方向、破線は主走査方向)を示す図である。
【図19】実施例4のレーザープリンタの一実施例を示す図である。
【図20】従来の光走査装置の実施の形態を示す図である。
【図21】従来の肉厚変化を示す図である。
【図22】従来例の像面湾曲(実線は副走査方向、破線は主走査方向)を示す図である。
【符号の説明】
1 光源
4 シリンドリカルレンズ
8 感光体
10 レンズ
11 受光素子
1000 レーザプリンタ
1110 潜像担持体
1171 光走査装置
P 転写紙
【発明の属する技術分野】
本発明は、光ビームを収束させて走査線を形成する手段を有する光走査装置および画像形成装置に関する。
【0002】
【従来の技術】
従来、光走査装置に用いられる走査レンズは、成形のしやすさや廉価性の点から、樹脂により成形することが主流となりつつある。
【0003】
しかし、一般に走査レンズの成形に使われる樹脂は種類が少ない上、ガラスに比べて屈折率が低く、そのため走査レンズの光ビーム透過方向の厚みが厚くなったり、その厚みが周辺部では極端に薄くなるいわゆる偏肉が発生するなどの問題があった。
【0004】
偏肉が大きい走査レンズを成形すると、各レンズ部分で冷却の際の温度分布が異なり、好ましくない屈折率分布を発生させる。屈折率分布は、像面上に収束するべき光ビームの収束位置を像面から大きくずらしてしまう効果を及ぼす。屈折率分布によっては、この光ビームの結像位置ずれは不規則となり、これを補正するのは非常に困難である。
【0005】
また、樹脂によっては複屈折を発生するものもあり、この場合には像面上に収束する光ビームのスポット径を大きくする効果を及ぼす。この指摘は、特許文献2や特許文献3においてもされている。
【0006】
従って、屈折率が高く、複屈折の影響が小さい材料がこれまで望まれていたが、近年新しい樹脂が相次いで開発されてきた。特に、1.6以上の屈折率を有する樹脂や、1.9以上の屈折率を有する透過性セラミックスなどは、これまで不可避的だった走査レンズの偏肉を抑えるのに非常に有望な材料である。
【0007】
また、特許文献1では、走査結像レンズや走査結像レンズ系内のレンズに屈折率の不均一が存在しても、その不均一の範囲がある範囲内に収まるものは実使用ができることから、走査結像レンズや走査結像レンズ系の歩留まりを向上させ、プラスチック成形の差異の冷却時間の短縮を図り、走査結像レンズや走査結像レンズ系の製造効率を向上させて、これらのコストひいては光走査装置のコストの低減化を図ることのできる技術が開示されている。
【0008】
ここで、従来の走査レンズの一実施例について説明する。光源の波長は655nmであり、カップリングレンズの焦点距離は15mm、カップリング作用は収束作用であるとし、シリンドリカルレンズの副走査方向の焦点距離は、71.9mm、ポリゴンミラーの偏向反射面数は6とし、内接円半径を16mm、光源側からのビームの入射角と走査光学系の光軸とがなす角を60度とする。
【0009】
ポリゴンミラーと被走査面との間にある光学系のデータは、データの表記の記号につき説明すると、曲率半径を、主走査方向につきRm、副走査方向につきRs、屈折率をnで表す。なお、以下のデータにおけるRm、Rsは、近軸曲率半径である。
【0010】
【表1】
【0011】
実施の形態は図20に示すとおりである。また、入射面1の非円弧成分を表2に、射出面2の非円弧成分を表3に挙げる。
【0012】
【表2】
【0013】
【表3】
【0014】
走査レンズ6は被走査面上で±110mmを書き込むために、主走査方向の有効径を±47mmとしている。このときの、肉厚変化を図21に示す。1からレンズ中心部の肉厚と周辺部の肉厚の比を引いたものを偏肉度と呼びτとすると、従来の走査レンズのτは0.531であり、偏肉度は大きかった。なお、図22に従来例の像面湾曲(実線は副走査方向、破線は主走査方向)を示す。
【0015】
【特許文献1】
特開平11−316350号公報
【特許文献2】
特開平9−49976号公報
【特許文献3】
特開2002−174787号公報
【0016】
【発明が解決しようとする課題】
しかし、これらの材料を用いて走査レンズを成形する場合に光走査装置全体として考慮すべき課題として被走査面上の光量むら、すなわちシェーディングが大きくなることが挙げられる。
【0017】
光量むらは画像濃度に影響を与え、これは著しい画像再現性の劣化を招くことになる。
【0018】
本発明は、上記事情に鑑みてなされたものであり、走査レンズの材料として高屈折率で複屈折が少ない樹脂あるいは透過性セラミックスを用い偏肉を抑えつつ、シェーディングの問題を解決する光走査装置、画像形成装置を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、光源より放射された光ビームを光偏向器により偏向する光偏向手段と、偏向した光ビームを走査レンズにより被走査面上に収束させて走査線を形成する走査線形成手段とを有する光走査装置であって、前記走査レンズは、D線による測定時の屈折率が1.6以上である樹脂により成形し、前記走査レンズの光ビーム透過方向の厚みと、前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴としている。
【0020】
請求項2記載の発明は、請求項1記載の発明において、前記走査レンズは、主走査断面の形状が、偏向器側に凹面を向けたメニスカス形状で構成することを特徴としている。
【0021】
請求項3記載の発明は、請求項1記載の発明において、前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴としている。
【0022】
請求項4記載の発明は、光源より放射された光ビームを光偏向器により偏向する手段と、該偏向光ビームを走査レンズにより被走査面上に収束させて走査線を形成する手段とを有する光走査装置であって、前記走査レンズは、D線による測定時の屈折率が1.9以上である透過性セラミックスにより成形し、前記走査レンズの光ビーム透過方向の厚みと、前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴としている。
【0023】
請求項5記載の発明は、請求項4記載の発明において、前記走査レンズは、主走査断面の形状は偏向器側に凹面を向けたメニスカス形状で構成することを特徴としている。
【0024】
請求項6記載の発明は、請求項4記載の発明において、前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴としている。
【0025】
請求項7記載の発明は、光源より放射された光ビームを光偏向器により偏向し、偏向した光ビームを走査レンズにより被走査面上に収束させて走査線を形成する光走査装置を有する画像形成装置であって、前記走査レンズは、D線による測定時の屈折率が1.6以上である樹脂により成形し、前記走査レンズの光ビーム透過方向の厚みと、前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴としている。
【0026】
請求項8記載の発明は、請求項7記載の発明において、前記走査レンズは、主走査断面の形状が、偏向器側に凹面を向けたメニスカス形状で構成することを特徴としている。
【0027】
請求項9記載の発明は、請求項7記載の発明において、前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴としている。
【0028】
請求項10記載の発明は、光源より放射された光ビームを光偏向器により偏向し、該偏向光ビームを走査レンズにより被走査面上に収束させて走査線を形成する光走査装置を有する画像形成装置であって、前記走査レンズは、D線による測定時の屈折率が1.9以上である透過性セラミックスにより成形し、前記走査レンズの光ビーム透過方向の厚みと、前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴としている。
【0029】
請求項11記載の発明は、請求項10記載の発明において、前記走査レンズは、主走査断面の形状は偏向器側に凹面を向けたメニスカス形状で構成することを特徴としている。
【0030】
請求項12記載の発明は、請求項10記載の発明において、前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴としている。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照しながら詳細に説明する。
【0032】
図1は、本発明の光走査装置の一実施例を示す図である。図1は、光源1と、カップリングレンズ2と、アパーチャ3と、シリンドリカルレンズ4と、ポリゴンミラー5と、レンズ6と、折り曲げミラー7と、感光体8と、ミラー9と、レンズ10と、受光素子11とを有し構成されている。
【0033】
図1に示す光走査装置は、シングルビーム方式のものである。半導体レーザである光源1から放射された光ビームは発散性の光束で構成され、カップリングレンズ2により、以後の光学系にカップリングされる。カップリングされた光ビームの形態は、以後の光学系の光学特性に応じ、弱い発散性の光束や弱い集束性の光束となることもでき、平行光束となることもできる。カップリングレンズ2を透過した光ビームは、アパーチャ3の開口部を通過する際に光束周辺部を遮断されてビーム整形され、線像結像光学系であるシリンドリカルレンズ4に入射する。シリンドリカルレンズ4は、パワーのない方向を主走査方向に向け、副走査方向には正のパワーを有し、入射してくる光ビームを副走査方向に集束させて、光偏向器であるポリゴンミラー5の偏向反射面近傍に集光させる。
【0034】
偏向反射面により反射された光ビームは、ポリゴンミラー5の等速回転に伴って等角速度的に偏向しつつ、走査光学系をなす1枚のレンズ6を透過し、折り曲げミラー7により光路を折り曲げられ、被走査面の実体をなす光導電性の感光体8上に光スポットとして集光し、被走査面を光走査する。
【0035】
なお、光ビームは光走査に先立ってミラー9に入射し、レンズ10により受光素子11に集光される。受光素子11の出力に基づき、光走査の書込開始タイミングが決定される。
【0036】
走査光学系は、光偏向器5により偏向されるビームを、被走査面8上に光スポットとして集光させる光学系である。レンズ枚数は本実施例では1枚であるが、もちろん何枚で構成しようとも構わない。
【0037】
このとき用いられるレンズ6は、D線による測定時で屈折率が1.6以上である樹脂、あるいはD線による測定時で屈折率が1.9以上である透過性セラミックスにより成形されたものである。また、主走査断面の形状は求められる光学性能から任意に決めて構わないが、被走査面上のシェーディングを軽減するために、例えば偏向器側に凹面を向けたメニスカス形状とすることもできるし、レンズ面に入射する光線と、レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが0°≦φ≦35°を満足する形状とすることもできる。このように主走査断面の形状を設定することによって、光量むらを抑え、被走査面上のビームスポットを良好に保つことができ、また波面収差の劣化を抑え、被走査面上のビームスポットを良好に保つことができる。
【0038】
また、任意の形状に対しては、被走査面上でのシェーディングを補正する補正手段を有するようにしてもよい。
【0039】
図2は、マルチビーム方式の光走査装置の一実施例を示す図である。マルチビーム方式の光走査装置は、複数の発光源ch1〜ch4からの光ビームを共通のカップリングレンズ2により以後の光学系にカップリングし、カップリングされた複数の光ビームを共通の線像結像光学系4により光偏向器5の偏向反射面近傍に主走査方向に長く、副走査方向に分離した複数の線像として結像させ、光偏向器5により同時に等角速度的に偏向させ、偏向ビームを共通の走査光学系6により被走査面8上に副走査方向に分離した複数の光スポットとして集光し、これら複数の光スポットにより複数走査線を同時走査するマルチビーム走査装置である。
【0040】
図3は、本発明のマルチビーム方式の光走査装置一実施例を示す図である。図3の光走査装置は、光源としてビーム合成方式のものを用いるものである。光源1−1、1−2は半導体レーザであって、それぞれ単一の発光源を有する。光源1−1、1−2から放射された各光ビームは、カップリングレンズ2−1、2−2によりカップリングされる。カップリングされた各光ビームの形態は、以後の光学系の光学特性に応じ、弱い発散性の光束や弱い集束性の光束となることもでき、平行光束となることもできる。
【0041】
カップリングレンズ2−1、2−2を透過した各光ビームは、アパーチャ3−1、3−2によりビーム整形され、ビーム合成プリズム20に入射する。ビーム合成プリズム20は、反射面と、偏光分離膜と1/2波長板とを有する。光源1−2からの光ビームは、ビーム合成プリズム20の反射面と、偏光分離膜とに反射されてビーム合成プリズム20を射出する。光源1−1からのビームは1/2波長板により偏光面を90度旋回され、偏光分離膜を透過してビーム合成プリズム20から射出する。このようにして、2ビームが合成される。カップリングレンズ2−1、2−2の光軸に対する光源1−1、1−2の発光部の位置関係の調整により、ビーム合成された2ビームは互いに副走査方向に微小角をなしている。
【0042】
ビーム合成された2ビームは、共通の線像結像光学系であるシリンドリカルレンズ4の作用により、光偏向器であるポリゴンミラー5の偏向反射面近傍に、それぞれが主走査方向に長い線像として、互いに副走査方向に分離して結像する。
【0043】
偏向反射面により等角速度的に偏向された2ビームは、走査光学系をなす1枚のレンズ6を透過し、折り曲げミラー7により光路を折り曲げられ、被走査面の実体をなす感光体8上に、副走査方向に分離した2つの光スポットとして集光し、被走査面の2走査線を同時に光走査する。
【0044】
なお、ビームの1つは、光走査に先立って受光素子11に集光される。受光素子11の出力に基づき、2ビームの光走査の書込開始タイミングが決定される。あるいは、2つの光ビームの各々が、光走査に先立って受光素子11に集光される。受光素子11の出力に基づき、2ビームの光走査の書込開始タイミングが各々個別に決定される。
【0045】
以下、具体的な走査レンズの実施例を挙げて説明する。主走査断面内における非円弧形状は、主走査断面内の近軸曲率半径Rm、光軸からの主走査方向の距離Y、円錐定数K、高次の係数をA1、A2、A3、A4、A5、A6、…として、光軸方向のデプスをXとして数1で表す。数1において、奇数次のA1、A3、A5、…にゼロ以外の数値を代入したとき、主走査方向に非対称形状となる。
【0046】
【数1】
【0047】
副走査断面における曲率半径は、副走査断面内で曲率半径が主走査方向(光軸位置を原点とする座標Yで示す)に変化する場合、次の数2で表す。Rs(0)は、副走査断面内における光軸上の曲率半径を表す。数2において、Yの奇数次係数:B1、B3、B5、…にゼロ以外の数値を代入したとき、副走査断面内の曲率半径の変化が主走査方向に非対称となる。
【0048】
【数2】
【0049】
なお、上記の解析表現は、上に挙げたものに限らず、種々のものが可能であり、この発明における面形状が上記式による表現に限定されるものではない。
【0050】
<実施例1>
光源の波長は655nmであり、カップリングレンズの焦点距離は15mm、カップリング作用は収束作用であるとし、シリンドリカルレンズの副走査方向の焦点距離は、71.9mm、ポリゴンミラーの偏向反射面数は6とし、内接円半径を16mm、光源側からのビームの入射角と走査光学系の光軸とがなす角を60度とする。
【0051】
ポリゴンミラーと被走査面との間にある光学系のデータを表4に示す。
【0052】
【表4】
【0053】
実施の形態は図4に示すとおりである。また、入射面1の非円弧成分を表5に、射出面2の非円弧成分を表6に挙げる。
【0054】
【表5】
【0055】
【表6】
【0056】
走査レンズ6は、被走査面上で±110mmを書き込むために、主走査方向の有効径を±45mmとしている。このときの、肉厚変化を図5に示す。偏肉度は、τ=0.475で、偏肉度は0.5よりも小さくなっており、従来例と比較すると、成形しやすい条件を満足している。
【0057】
このように、高屈折率の材質を用いて走査レンズを成形すると従来例に比べ偏肉度を抑えることができるが、この場合の走査レンズの形状が主走査断面で見ると両凸形状をしている。そのため、図6に示す入射光線とそれに対応するレンズ面の法線とのなす角θの変化を見ると(左側のグラフが入射面を、右側のグラフが射出面を示す)、入射面1が、0°≦φ≦35°を満足せず、シェーディング変化は、図7に示すように15%と悪くなっている。一般に、シェーディングは10%以下とするのが好ましく、これよりも大きくなると画像の濃淡むらが目に見える形で発生してしまう。なお、図8に、実施例1の像面湾曲を示す。実線は副走査方向を示し、破線は主走査方向を示している。
【0058】
<実施例2>
光源の波長は655nmであり、カップリングレンズの焦点距離は15mm、カップリング作用は収束作用であるとし、シリンドリカルレンズの副走査方向の焦点距離は、71.9mm、ポリゴンミラーの偏向反射面数は6とし、内接円半径を16mm、光源側からのビームの入射角と走査光学系の光軸とがなす角を60度とする。
【0059】
ポリゴンミラーと被走査面との間にある光学系のデータを表7に示す。
【0060】
【表7】
【0061】
実施の形態は図9に示すとおりである。また、入射面1の非円弧成分を表8に、射出面2の非円弧成分を表9に挙げる。
【0062】
【表8】
【0063】
【表9】
【0064】
走査レンズ6は被走査面上で±110mmを書き込むために、主走査方向の有効径を±31mmとしている。このときの、肉厚変化を図10に示す。偏肉度は、τ=0.269となり、偏肉度は0.5よりも小さくななるので成形しやすい条件を満足している。
【0065】
入射光線とそれに対応するレンズ面の法線とのなす角θの変化を図11に示す。図11の左側のグラフが入射面を、右側のグラフが射出面を示す。入射面1、射出面2ともに0°≦φ≦35°を満足している。従って、シェーディングも5.5%と良好である。図12に、シェーディング変化を示す。なお、図13に、実施例2の像面湾曲を示す。実線は副走査方向を示し、破線は主走査方向を示している。
【0066】
<実施例3>
光源の波長は655nmであり、カップリングレンズの焦点距離は15mm、カップリング作用は収束作用であるとし、シリンドリカルレンズの副走査方向の焦点距離は、71.9mm、ポリゴンミラーの偏向反射面数は6とし、内接円半径を16mm、光源側からのビームの入射角と走査光学系の光軸とがなす角を60度とする。
【0067】
ポリゴンミラーと被走査面との間にある光学系のデータを表10に示す。
【0068】
【表10】
【0069】
実施の形態は図14に示すとおりである。入射面1の非円弧成分を表11に、射出面2の非円弧成分を表12に挙げる。
【0070】
【表11】
【0071】
【表12】
【0072】
走査レンズ6は被走査面上で±110mmを書き込むために、主走査方向の有効径を±40mmとしている。このときの、肉厚変化を図15に示す。偏肉度は、τ=0.308となり、偏肉度は0.5よりも小さくなるので成形しやすい条件を満足している。
【0073】
入射光線とそれに対応するレンズ面の法線とのなす角θの変化を図16に示す。左側のグラフが入射面を、右側のグラフが射出面を示す。入射面1、射出面2ともに0°≦φ≦35°を満足している。従って、シェーディングも7.6%と良好である。図17に、シェーディング変化を示す。なお、図18に、実施例3の像面湾曲を示す。実線は副走査方向を示し、破線は主走査方向を示している。
【0074】
<実施例4>
この画像形成装置はレーザプリンタである。図19は、本発明の画像形成装置の一実施例を示す図である。図19は、レーザプリンタ1000と、潜像担持体1110と、帯電ローラ1121と、現像装置1131と、転写ローラ1141と、クリーニング装置1151と、定着装置1161と、光走査装置1171と、カセット1181と、レジストローラ対1191と、給紙コロ1201と、搬送路1211と、排紙ローラ対1221と、トレイ1231と、記録媒体としての転写紙Pとを有し構成されている。
【0075】
レーザプリンタ1000は潜像担持体1110として円筒状に形成された光導電性の感光体を有している。潜像担持体1110の周囲には、帯電手段としての帯電ローラ1121、現像装置1131、転写ローラ1141、クリーニング装置1151が配備されている。帯電手段としてはコロナチャージャを用いることもできる。更に、レーザビームLBにより光走査を行う光走査装置1171が設けられ、帯電ローラ1121と現像装置1131との間で光書込による露光を行うようになっている。
【0076】
画像形成を行うときは、光導電性の感光体である像担持体1110が時計回りに等速回転され、その表面が帯電ローラ1121により均一帯電され、光走査装置1171のレーザビームLBの光書込による露光を受けて静電潜像が形成される。形成された静電潜像はいわゆるネガ潜像であって画像部が露光されている。この静電潜像は現像装置1131により反転現像され、像担持体1110上にトナー画像が形成される。
【0077】
転写紙Pを収納したカセット1181は、画像形成装置1000本体に脱着可能であり、図のごとく装着された状態において、収納された転写紙Pの最上位の1枚が給紙コロ1201により給紙され、給紙された転写紙Pは、その先端部をレジストローラ対1191に銜えられる。レジストローラ対1191は、像担持体1110上のトナー画像が転写位置へ移動するのにタイミングを合わせて、転写紙Pを転写部へ送り込む。送り込まれた転写紙Pは、転写部においてトナー画像と重ね合わせられ転写ローラ1141の作用によりトナー画像を静電転写される。トナー画像を転写された転写紙Pは定着装置1161へ送られ、定着装置1161においてトナー画像を定着され、搬送路1211を通り、排紙ローラ対1221によりトレイ1231上に排出される。
【0078】
トナー画像が転写された後の像担持体1110の表面は、クリーニング装置1151によりクリーニングされ、残留トナーや紙粉等が除去される。
【0079】
光走査装置1171として、図9、14のごとき光走査装置を用いることにより、極めて良好な画像形成を実行することができる。
【0080】
【発明の効果】
以上の説明から明らかなように、本発明によれば、偏肉度の小さい走査レンズを用いることで、シェーディングの補正された光走査装置を実現することができる。
【0081】
また、本発明によれば、主走査断面の形状を設定することにより、光量むらを抑え、シェーディングを良好に保つことができる。
【0082】
また、本発明によれば、主走査断面の形状を設定することにより、波面収差の劣化を抑え、被走査面上のビームスポットを良好に保つことができる。
【0083】
また、本発明によれば、上述した光走査装置を用いる画像形成装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の光走査装置の一実施例を示す図である。
【図2】マルチビーム方式の光走査装置の一実施例を示す図である。
【図3】本発明のマルチビーム方式の光走査装置一実施例を示す図である。
【図4】実施例1の実施の形態を示す図である。
【図5】実施例1の肉厚変化を示す図である。
【図6】実施例1の入射光線とそれに対応するレンズ面の法線とのなす角θの変化を示す図である。
【図7】実施例1のシェーディング変化を示す図である。
【図8】実施例1の像面湾曲(実線は副走査方向、破線は主走査方向)を示す。
【図9】実施例2の実施の形態を示す図である。
【図10】実施例2の肉厚変化を示す図である。
【図11】実施例2の入射光線とそれに対応するレンズ面の法線とのなす角θの変化を示す図である。
【図12】実施例2のシェーディング変化を示す図である。
【図13】実施例2の像面湾曲(実線は副走査方向、破線は主走査方向)を示す図である。
【図14】実施例3の実施の形態を示す図である。
【図15】実施例3の肉厚変化を示す図である。
【図16】実施例3の入射光線とそれに対応するレンズ面の法線とのなす角θの変化を示す図である。
【図17】実施例3のシェーディング変化を示す図である。
【図18】実施例3の像面湾曲(実線は副走査方向、破線は主走査方向)を示す図である。
【図19】実施例4のレーザープリンタの一実施例を示す図である。
【図20】従来の光走査装置の実施の形態を示す図である。
【図21】従来の肉厚変化を示す図である。
【図22】従来例の像面湾曲(実線は副走査方向、破線は主走査方向)を示す図である。
【符号の説明】
1 光源
4 シリンドリカルレンズ
8 感光体
10 レンズ
11 受光素子
1000 レーザプリンタ
1110 潜像担持体
1171 光走査装置
P 転写紙
Claims (12)
- 光源より放射された光ビームを光偏向器により偏向する光偏向手段と、
偏向した光ビームを走査レンズにより被走査面上に収束させて走査線を形成する走査線形成手段とを有する光走査装置であって、
前記走査レンズは、D線による測定時の屈折率が1.6以上である樹脂により成形し、
前記走査レンズの光ビーム透過方向の厚みと、
前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴とする光走査装置。 - 前記走査レンズは、主走査断面の形状が、偏向器側に凹面を向けたメニスカス形状で構成することを特徴とする請求項1記載の光走査装置。
- 前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、
レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴とする請求項1記載の光走査装置。 - 光源より放射された光ビームを光偏向器により偏向する手段と、
該偏向光ビームを走査レンズにより被走査面上に収束させて走査線を形成する手段とを有する光走査装置であって、
前記走査レンズは、D線による測定時の屈折率が1.9以上である透過性セラミックスにより成形し、
前記走査レンズの光ビーム透過方向の厚みと、
前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴とする光走査装置。 - 前記走査レンズは、主走査断面の形状は偏向器側に凹面を向けたメニスカス形状で構成することを特徴とする請求項4記載の光走査装置。
- 前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、
レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴とする請求項4記載の光走査装置。 - 光源より放射された光ビームを光偏向器により偏向し、
偏向した光ビームを走査レンズにより被走査面上に収束させて走査線を形成する光走査装置を有する画像形成装置であって、
前記走査レンズは、D線による測定時の屈折率が1.6以上である樹脂により成形し、
前記走査レンズの光ビーム透過方向の厚みと、
前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴とする画像形成装置。 - 前記走査レンズは、主走査断面の形状が、偏向器側に凹面を向けたメニスカス形状で構成することを特徴とする請求項7記載の画像形成装置。
- 前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、
レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴とする請求項7記載の画像形成装置。 - 光源より放射された光ビームを光偏向器により偏向し、
該偏向光ビームを走査レンズにより被走査面上に収束させて走査線を形成する光走査装置を有する画像形成装置であって、
前記走査レンズは、D線による測定時の屈折率が1.9以上である透過性セラミックスにより成形し、
前記走査レンズの光ビーム透過方向の厚みと、
前記走査レンズの周辺部の厚みとの差を小さくすることで、偏肉を抑えることを特徴とする画像形成装置。 - 前記走査レンズは、主走査断面の形状は偏向器側に凹面を向けたメニスカス形状で構成することを特徴とする請求項10記載の画像形成装置。
- 前記走査レンズは、主走査断面の形状が、レンズ面に入射する光線と、
レンズ面と入射光線の交点におけるレンズ面の法線とのなす角φが、条件0°≦φ≦35°を満たすことを特徴とする請求項10記載の画像形成装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003007689A JP2004219772A (ja) | 2003-01-15 | 2003-01-15 | 光走査装置及び画像形成装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003007689A JP2004219772A (ja) | 2003-01-15 | 2003-01-15 | 光走査装置及び画像形成装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004219772A true JP2004219772A (ja) | 2004-08-05 |
Family
ID=32897707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003007689A Withdrawn JP2004219772A (ja) | 2003-01-15 | 2003-01-15 | 光走査装置及び画像形成装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004219772A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006091082A (ja) * | 2004-09-21 | 2006-04-06 | Casio Comput Co Ltd | ズームレンズ |
EP1956409A3 (en) * | 2007-02-06 | 2012-01-04 | Samsung Electronics Co., Ltd | Light scanning unit and image forming apparatus employing the same |
JP2013174788A (ja) * | 2012-02-27 | 2013-09-05 | Kyocera Document Solutions Inc | 光走査装置及びこれを用いた画像形成装置 |
-
2003
- 2003-01-15 JP JP2003007689A patent/JP2004219772A/ja not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006091082A (ja) * | 2004-09-21 | 2006-04-06 | Casio Comput Co Ltd | ズームレンズ |
JP4645112B2 (ja) * | 2004-09-21 | 2011-03-09 | カシオ計算機株式会社 | ズームレンズ |
EP1956409A3 (en) * | 2007-02-06 | 2012-01-04 | Samsung Electronics Co., Ltd | Light scanning unit and image forming apparatus employing the same |
JP2013174788A (ja) * | 2012-02-27 | 2013-09-05 | Kyocera Document Solutions Inc | 光走査装置及びこれを用いた画像形成装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3671025B2 (ja) | 光走査装置及び画像形成装置 | |
US6791729B2 (en) | Adjusting imaging position of optical beam spot in main and sub-scanning directions by individually and/or collectively adjusting position(s) of temperature-compensating lens(es) | |
JP2001021824A (ja) | 光走査装置および画像形成装置 | |
US6829104B2 (en) | Resin-made non-spherical optical element, optical scanning device using the optical element, and image forming apparatus using the optical scanning device | |
US6683707B2 (en) | Scanning optical apparatus and image forming apparatus using the same | |
JP2008026410A (ja) | 光走査装置、及びその光走査装置を備える光書込装置、並びにその光走査装置またはその光書込装置を備える画像形成装置 | |
JP4617004B2 (ja) | 走査光学装置及びそれを用いた画像形成装置 | |
JP2001343602A (ja) | 光走査光学系及びそれを用いた画像形成装置 | |
JP3854779B2 (ja) | 光走査装置及びそれを用いた画像形成装置 | |
JP4298222B2 (ja) | 走査光学系および光走査装置および画像形成装置 | |
JP4850331B2 (ja) | 走査光学装置及びそれを用いたカラー画像形成装置 | |
JP2006221118A (ja) | レーザ走査装置および画像形成装置 | |
JP2004219772A (ja) | 光走査装置及び画像形成装置 | |
JP4298213B2 (ja) | 走査光学系および光走査装置および画像形成装置 | |
JP4201315B2 (ja) | 走査光学系および光走査装置および画像形成装置 | |
JP4489852B2 (ja) | 露光装置ならびに画像形成装置 | |
JP2005049535A (ja) | 光走査装置および画像形成装置 | |
JP4280748B2 (ja) | 光走査装置及びそれを用いた画像形成装置 | |
JP3784591B2 (ja) | 走査結像光学系・光走査装置および画像形成装置 | |
JP4298218B2 (ja) | 走査光学系および光走査装置および画像形成装置 | |
JP3945954B2 (ja) | 書き込み光学系およびこれを用いた画像形成装置 | |
JP2002323665A (ja) | 光走査装置及びそれを用いた画像形成装置 | |
JP4592923B2 (ja) | 走査結像レンズ・光走査装置・画像形成装置 | |
JP4298214B2 (ja) | 走査光学系および光走査装置および画像形成装置 | |
JP2003066355A (ja) | 走査光学装置及びそれを用いた画像形成装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060404 |