JP2004191381A - Circuit pattern inspection device and circuit pattern inspection method - Google Patents

Circuit pattern inspection device and circuit pattern inspection method Download PDF

Info

Publication number
JP2004191381A
JP2004191381A JP2003436043A JP2003436043A JP2004191381A JP 2004191381 A JP2004191381 A JP 2004191381A JP 2003436043 A JP2003436043 A JP 2003436043A JP 2003436043 A JP2003436043 A JP 2003436043A JP 2004191381 A JP2004191381 A JP 2004191381A
Authority
JP
Japan
Prior art keywords
pattern
inspection
electrode
detection
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003436043A
Other languages
Japanese (ja)
Other versions
JP3978178B2 (en
Inventor
Hideji Yamaoka
秀嗣 山岡
Hiroshi Hamori
寛 羽森
Seigo Ishioka
聖悟 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OHT Inc
Original Assignee
OHT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OHT Inc filed Critical OHT Inc
Priority to TW92133778A priority Critical patent/TWI247904B/en
Priority to JP2003436043A priority patent/JP3978178B2/en
Priority to AU2003302525A priority patent/AU2003302525A1/en
Priority to KR1020057009601A priority patent/KR101013243B1/en
Priority to PCT/JP2003/015290 priority patent/WO2004051290A1/en
Priority to CN200380104631.8A priority patent/CN1720458B/en
Publication of JP2004191381A publication Critical patent/JP2004191381A/en
Application granted granted Critical
Publication of JP3978178B2 publication Critical patent/JP3978178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit inspection device capable of surely and easily detecting defects of a circuit board. <P>SOLUTION: When inspecting an inspection target pattern on which at least their ends are arranged in a line, the inspection target pattern is moved so as to cross an inspection current feed electrode 35 and an inspection signal detection sensor electrode 25 with maintaining both the ends of the inspection target pattern 15 spaced from the pattern with a predetermined distance, the inspection signal fed from the feed electrode 35 to the inspection target pattern 15 by capacity coupling is detected by the sensor electrode similarly capacity-coupled to the inspection target pattern, and when the detection signal value is below a predetermined range, it is determined to be a pattern disconnection and when the detection signal value is above the predetermined range, it is determined to be a pattern short circuit. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、基板上に形成された導電パターンの良否を検査可能な回路パターン検査装置及び回路パターン検査方法に関するものである。  The present invention relates to a circuit pattern inspection apparatus and a circuit pattern inspection method capable of inspecting the quality of a conductive pattern formed on a substrate.

基板上に導電パターンを形成してなる回路基板を製造する際には、基板上に形成した導電パターンに断線や、短絡がないかを検査する必要があった。  When manufacturing a circuit board having a conductive pattern formed on a substrate, it is necessary to inspect the conductive pattern formed on the substrate for disconnection or short circuit.

従来から、導電パターンの検査手法としては、例えば、特許文献1のように、導電パターンの両端にピンを接触させて一端側のピンから導電パターンに電気信号を給電し、他端側のピンからその電気信号を受電することにより、導電パターンの導通テスト等を行う接触式の検査手法(ピンコンタクト方式)が知られている。電気信号の給電は、金属プローブを全端子に立ててここから導電パターンに電流を流すことにより行われる。  Conventionally, as a conductive pattern inspection method, for example, as in Patent Document 1, a pin is contacted at both ends of a conductive pattern, an electric signal is supplied from the pin on one end to the conductive pattern, and the pin on the other end is A contact-type inspection method (a pin-contact method) for performing a conduction test or the like of a conductive pattern by receiving the electric signal is known. The supply of the electric signal is performed by setting the metal probe on all the terminals and supplying a current to the conductive pattern from the terminals.

このピンコンタクト方式は、直接ピンプローブを接触させるために、S/N比が高いという長所を有する。  This pin contact method has an advantage that the S / N ratio is high because the pin probe is brought into direct contact.

しかしながら、近年では、導電パターンの高密度化により、接続用配線ピッチも細密化しており、50μmを下回るものも登場してきている。狭ピッチ多本数のプローブで構成されるプローブカードは製造コストが高い。  However, in recent years, due to the increase in the density of conductive patterns, the wiring pitch for connection has also become finer, and those having a pitch of less than 50 μm have appeared. A probe card composed of a large number of narrow-pitch probes has a high manufacturing cost.

また同時に、配線パターンが異なるごとに(検査対象ごとに)使用に応じた新たなプローブカードを製作しなければならなかった。このため、検査コストが高くなり電子部品の低コスト化に対して大きな障害となっていた。  At the same time, a new probe card must be manufactured for each use of a different wiring pattern (for each test object). For this reason, the inspection cost becomes high, which has been a major obstacle to the cost reduction of electronic components.

また、微細な構造上プローブカードは脆弱であり、実際の使用に当たっては常に破損の危険性を考慮する必要があった。  Further, the probe card is fragile due to its fine structure, and it is necessary to always consider the risk of breakage in actual use.

このため、特許文献2に示すような、検査対象の導体パターンの一端にピンプローブを直接接触させて交流成分を含む検査信号を印加し、他端のプローブでは導体パターンに接触させずに所定の間隔離反させた状態に位置決めし、容量結合を介して前記検査信号を検出する接触−非接触併用方式も提案されていた。  For this reason, as shown in Patent Document 2, a pin probe is brought into direct contact with one end of a conductor pattern to be inspected to apply an inspection signal containing an AC component, and a probe at the other end has a predetermined contact without contacting the conductor pattern. A combined contact / non-contact method has been proposed in which the test signal is detected through capacitive coupling by positioning the electrodes in a state where they are separated from each other.

この接触−非接触併用方式は、パターン線の他端のプローブはピンプローブにようにパターンに直接接触させる必要がないので、位置決め精度を粗くできる。更に、非接触部を複数のパターン線について共通化できるので、プローブの本数を削減できる。そのために導電パターンの間隔が微細な場合にも対応可能である。  In this combined use of contact and non-contact method, since the probe at the other end of the pattern line does not need to directly contact the pattern like a pin probe, positioning accuracy can be reduced. Further, since the non-contact portion can be shared for a plurality of pattern lines, the number of probes can be reduced. Therefore, it is possible to cope with the case where the distance between the conductive patterns is fine.

特開昭62−269075号  JP-A-62-269075 特開平11−72524号公報  JP-A-11-72524

しかしながら、上記接触−非接触併用方式は、導電パターンの両端部位置に配設するプローブやプローブからの検出信号処理などは、導電性パターンの配設間隔に従って設けられているため、導電パターンの形状はあらかじめ決められた一種類であり、導電パターンが異なれば治具もまたパターンに合わせて製作する必要があった。  However, in the contact / non-contact combination method, since the probes disposed at both end positions of the conductive pattern and detection signal processing from the probes are provided in accordance with the intervals at which the conductive patterns are disposed, the shape of the conductive pattern Is a predetermined type, and if the conductive pattern is different, the jig also had to be manufactured according to the pattern.

また、上記接触−非接触併用方式で、ピンプローブを直接接触させる検査対象の導体パターンの一端も細密化しており、ピンプローブが接触させることが困難になってきている。また、ピンプローブを接触させることでの検査対象の導体パターンが破損する危険性も避けられなかった。  In addition, in the contact-non-contact method, one end of the conductor pattern to be inspected for directly contacting the pin probe is also made finer, which makes it difficult for the pin probe to make contact. In addition, the risk of damage to the conductor pattern to be inspected due to contact with the pin probe has been unavoidable.

本発明は上記従来技術の課題を解決することを目的としてなされたもので、精細な配線パターンを、簡単な構成で、かつ配線パターンの変更にも対応できる検査装置及び検査方法を提供することにある。係る目的を達成する一手段として、例えば本発明に係る一発明の実施の形態例は以下の構成を備える。  SUMMARY An advantage of some aspects of the invention is to provide an inspection apparatus and an inspection method capable of refining a fine wiring pattern with a simple configuration and capable of coping with a change in the wiring pattern. is there. As one means for achieving the object, for example, an embodiment of the present invention has the following configuration.

即ち、検査対象領域の両端近傍が列状に形成されている検査対象パターンの前記検査対象領域の一方より交流の検査信号を供給し、他方から前記検査対象パターンよりの信号を検出して前記検査対象パターンを検査する回路パターン検査装置であって、前記検査対象パターンの検査対象領域の一方より前記検査信号を前記検査対象パターンに供給する供給電極を有する供給手段と、前記検査対象パターンよりの信号を検出する検出電極を有する検出手段と、前記供給手段の供給電極と前記検出手段の検出電極とを前記検査対象パターンから離間させつつ前記検査対象領域の両端近傍の列状パターン部を横切り移動させる移動手段とを備えることを特徴とする。  That is, an AC inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the vicinity of both ends of the inspection target area is formed in a row, and a signal from the inspection target pattern is detected from the other to perform the inspection. A circuit pattern inspection apparatus for inspecting a target pattern, comprising: a supply unit having a supply electrode for supplying the inspection signal to the inspection target pattern from one of inspection target regions of the inspection target pattern; and a signal from the inspection target pattern. Detecting means having a detecting electrode for detecting the pattern, and moving the supply electrode of the supplying means and the detecting electrode of the detecting means across the row pattern portion near both ends of the inspection target area while separating the detection electrode from the inspection target pattern. Moving means.

そして例えば、前記検査対象パターンは基板上に所定幅でほぼ棒状に形成された導電性パターンであることを特徴とする。  For example, the pattern to be inspected is a conductive pattern formed in a substantially bar shape with a predetermined width on a substrate.

また例えば、前記検出電極の幅は、少なくとも検査対象パターンの2列分の幅であることを特徴とする。  Further, for example, the width of the detection electrode is at least a width of two rows of the pattern to be inspected.

更に例えば、前記検出手段は、一方端部位置で前記供給電極により検査信号を供給される検査対象パターンの他方端部位置に配設された第一の検出電極と、一方端部位置で前記供給電極により検査信号を供給される検査対象パターンに隣接する検査対象パターンの他方端部位置に配設された第二の検出電極とを備えることを特徴とする。  Further, for example, the detection means may include a first detection electrode provided at the other end position of the inspection target pattern to which an inspection signal is supplied by the supply electrode at one end position, and the supply electrode at one end position. A second detection electrode disposed at the other end of the test pattern adjacent to the test pattern supplied with the test signal by the electrode.

また例えば、 前記第一の検出電極の幅は、検査対象パターンのパターン幅以下であることを特徴とする。  Further, for example, the width of the first detection electrode is equal to or smaller than the pattern width of the pattern to be inspected.

また例えば、更に、前記第二の検出電極の幅は、検査対象パターンのパターン幅以下であることを特徴とする。  Further, for example, the width of the second detection electrode is not more than the pattern width of the pattern to be inspected.

更に例えば、前記移動手段は、前記供給手段の供給電極面及び前記検出手段の検出電極面を前記検査対象パターンと容量結合させた状態で前記検査対象領域の両端近傍の列状部分を横切り移動させることを特徴とする。  Further, for example, the moving means traverses a row-like portion near both ends of the inspection target area in a state where the supply electrode surface of the supply means and the detection electrode surface of the detection means are capacitively coupled to the inspection target pattern. It is characterized by the following.

また例えば、更に、前記検出手段による検出結果が所定範囲にある場合に検査対象パターンの正常と、検出結果が所定の範囲より外れる場合に検査対象パターンの不良と判断する判断手段を備えることを特徴とする。  Further, for example, the apparatus further comprises a judging means for judging that the pattern to be inspected is normal when the detection result by the detecting means is within a predetermined range, and determining that the pattern to be inspected is defective when the detection result is out of the predetermined range. And

更に例えば、前記判断手段が不良と判断した検査対象パターンの両端に、前記供給手段の供給電極と前記検出手段の検出電極とを移動させ、前記供給手段の供給電極又は前記検出手段の検出電極のいずれか一方を他方に向かってパターンに沿って移動させる第2の移動手段と、前記検出手段の検出結果に基づき検出変化位置を検出する位置検出手段とを備えることを特徴とする。  Further, for example, the supply electrode of the supply unit and the detection electrode of the detection unit are moved to both ends of the pattern to be inspected determined by the determination unit to be defective, and the supply electrode of the supply unit or the detection electrode of the detection unit is moved. A second moving means for moving one of them along the pattern toward the other, and a position detecting means for detecting a detected change position based on a detection result of the detecting means are provided.

また例えば、前記供給手段の供給電極又は前記検出手段の検出電極のいずれか他方を検査対象パターンに接触させる接触手段を備えることを特徴とする。  Further, for example, a contact unit is provided for bringing one of the supply electrode of the supply unit and the detection electrode of the detection unit into contact with the pattern to be inspected.

更に例えば、前記第2の移動手段により移動される前記供給電極及び前記検出電極の少なくとも一方に撮像手段を備えることを特徴とする。  Further, for example, an imaging unit is provided on at least one of the supply electrode and the detection electrode moved by the second moving unit.

又は、前記第2の移動手段により移動される前記供給電極及び前記検出電極の少なくとも一方と、検査対象パターンとの距離がほぼ一定になるように位置決め制御する離間制御手段を備えることを特徴とする。  Alternatively, there is provided separation control means for performing positioning control so that a distance between at least one of the supply electrode and the detection electrode moved by the second moving means and the pattern to be inspected is substantially constant. .

そして例えば、前記移動手段により移動される前記供給電極及び前記検出電極の少なくとも一方と検査対象パターンとの離間距離がほぼ一定になるように位置決め制御する離間距離制御手段を備えることを特徴とする。  For example, a separation distance control means is provided for performing positioning control so that a separation distance between at least one of the supply electrode and the detection electrode moved by the movement means and the pattern to be inspected is substantially constant.

また例えば、前記離間処理制御手段は、前記検出電極あるいは供給電極近傍位置に前記検出電極あるいは前記供給電極と共に移動する変位計を備え、前記変位計の検出結果に従って前記検出電極あるいは供給電極と検査対象との離間距離がほぼ一定になるように前記検査対象に直交する方向に位置決め制御することを特徴とする。  Further, for example, the separation processing control means includes a displacement meter that moves together with the detection electrode or the supply electrode at a position near the detection electrode or the supply electrode, and the detection electrode or the supply electrode and the object to be inspected according to a detection result of the displacement meter. The positioning control is performed in a direction orthogonal to the inspection object so that the distance from the inspection object becomes substantially constant.

更に例えば、前記離間処理制御手段は、前記検査対象パターンの複数ピッチ間の前記変位計の検出結果の平均変位を前記検出電極あるいは前記供給電極と検査対象との離間距離として前記検査対象に直交する方向に位置決め制御することを特徴とする。  Further, for example, the separation processing control means sets an average displacement of a detection result of the displacement meter between a plurality of pitches of the test pattern as a separation distance between the detection electrode or the supply electrode and the test object, and is orthogonal to the test object. It is characterized by performing positioning control in the direction.

また例えば、検査対象領域の両端近傍が列状に形成されている検査対象パターンの検査対象領域の一方より検査信号を前記検査対象パターンに供給する供給電極を有する供給手段と、前記前記検査対象パターンよりの信号を検出する検出電極を有する検出手段とを有する回路パターン検査装置におけるパターン検査方法であって、前記供給手段の供給電極と前記検出手段の検出電極とを前記供給手段の供給電極面及び前記検出手段の検出電極面を前記検査対象パターン表面と離間させた状態を維持しつつ前記供給電極及び前記検出電極と前記検査対象パターンとを前記検査対象領域の両端近傍の列状パターン部を横切り移動させ、前記検査対象パターンの前記検査対象領域の一方より交流の検査信号を供給し他方から前記検査対象パターンよりの信号を検出して前記検査対象パターンを検査することを特徴とする回路パターン検査方法。  Also, for example, a supply unit having a supply electrode for supplying an inspection signal to the inspection target pattern from one of the inspection target regions of the inspection target pattern in which the vicinity of both ends of the inspection target region is formed in a row, and the inspection target pattern A detection means having a detection electrode for detecting a signal from the circuit pattern inspection apparatus, wherein the supply electrode of the supply means and the detection electrode of the detection means, the supply electrode surface of the supply means and The supply electrode, the detection electrode, and the pattern to be inspected are traversed across the row pattern portion near both ends of the inspection area while maintaining the state in which the detection electrode surface of the detection means is separated from the surface of the pattern to be inspected. The inspection pattern is moved to supply an AC inspection signal from one of the inspection target areas of the inspection target pattern, and the other is supplied from the other. Circuit pattern inspection method characterized by inspecting said inspection object pattern by detecting the signal.

更に例えば、前記回路パターンは、基板上に所定幅でほぼ棒状に形成された導電性パターンであることを特徴とする。  Further, for example, the circuit pattern is a conductive pattern formed in a substantially bar shape with a predetermined width on a substrate.

また例えば、前記検出電極の幅は、少なくとも検査対象パターンの2列分の幅とし、検査信号を供給している導電パターンに隣接する導電パターンからの信号を検出して隣接する導電パターン間の短絡を検出可能とすることを特徴とする。  Further, for example, the width of the detection electrode is at least two columns of the pattern to be inspected, and a signal from the conductive pattern adjacent to the conductive pattern supplying the inspection signal is detected to short-circuit between the adjacent conductive patterns. Is detectable.

更に例えば、前記検出電極から検査信号を供給している導電パターンからの信号を前記検出手段の第一の検出電極で検出して導電パターン間の断線を検出可能とし、前記検出電極から検査信号を供給している導電パターンに隣接する導電パターンからの信号を前記検出手段の第二の検出電極で検出して隣接する導電パターン間の短絡を検査可能とすることを特徴とする。  Further, for example, a signal from a conductive pattern supplying an inspection signal from the detection electrode can be detected by a first detection electrode of the detection means to detect a disconnection between the conductive patterns, and an inspection signal is output from the detection electrode. A signal from a conductive pattern adjacent to the supplied conductive pattern is detected by a second detection electrode of the detection means, so that a short circuit between the adjacent conductive patterns can be inspected.

また例えば、前記検出手段で非検出となる検出手段位置から導電パターンの概略断線箇所位置を検出することを特徴とする。  Also, for example, the position of the roughly broken portion of the conductive pattern is detected from the position of the detecting means which is not detected by the detecting means.

また例えば、更に、前記検出手段による検出結果が所定範囲にある場合に検査対象パターンの正常と、検出結果が所定の範囲より外れる場合に検査対象パターンの不良と判断することを特徴とする。  Further, for example, when the detection result by the detection means is within a predetermined range, the inspection target pattern is determined to be normal, and when the detection result is out of the predetermined range, the inspection target pattern is determined to be defective.

更に例えば、前記判断手段が不良と判断した検査対象パターン位置を識別して保持し、前記識別した不良と判断した検査対象パターンの両端部に前記供給手段の供給電極と前記検出手段の検出電極を移動させ、前記供給電極又は前記検出電極のいずれか一方を他方に向かってパターンに沿って移動させ、前記検出手段の検出結果に基づき変化位置を検査対象パターンの不良位置とすることを特徴とする。  Further, for example, the position of the inspection target pattern determined to be defective by the determination unit is identified and held, and the supply electrodes of the supply unit and the detection electrodes of the detection unit are provided at both ends of the inspection target pattern determined to be defective. And moving one of the supply electrode and the detection electrode along the pattern toward the other, and setting a change position as a defective position of the inspection target pattern based on a detection result of the detection unit. .

また例えば、前記供給手段の供給電極又は前記検出手段の検出電極のいずれか他方を検査対象パターンに接触させることを特徴とする。  Further, for example, the other of the supply electrode of the supply unit and the detection electrode of the detection unit is brought into contact with the pattern to be inspected.

更に例えば、前記供給電極又は前記検出電極のいずれか一方に備えられた撮像手段を他方に向かってパターンに沿って移動させ、検査対象パターンの不良位置の不良状態を撮像することを特徴とする。  Further, for example, an imaging unit provided on one of the supply electrode and the detection electrode is moved along the pattern toward the other, and an image of a defect state at a defect position of the inspection target pattern is taken.

また例えば、 前記検出電極あるいは前記供給電極近傍位置に前記検出電極あるいは供給電極と共に移動する変位計を配置し、前記変位計の検出結果に従って前記検出電極あるいは供給電極と検査対象との離間距離がほぼ一定になるように前記検査対象に直交する方向に位置決め制御して前記検出電極の結果を一定化することを特徴とする。  Further, for example, a displacement meter that moves together with the detection electrode or the supply electrode is disposed at a position near the detection electrode or the supply electrode, and a separation distance between the detection electrode or the supply electrode and the test object is approximately equal to a detection result of the displacement meter. Positioning control is performed in a direction orthogonal to the inspection object so as to be constant, and the result of the detection electrode is made constant.

更に例えば、前記検査対象パターン複数ピッチ間の前記変位計の検出結果の平均変位を前記検出電極あるいは前記供給電極と検査対象との離間距離として前記検査対象との位置決め制御をすることを特徴とする請求項25に記載の回路パターン検査方法。    Further, for example, the positioning of the test object is controlled by setting the average displacement of the detection result of the displacement meter between the plurality of pitches of the test pattern as the separation distance between the detection electrode or the supply electrode and the test object. A circuit pattern inspection method according to claim 25.

以上説明したように本発明によれば、確実に検査対象パターンの不良を検出することができる。  As described above, according to the present invention, it is possible to reliably detect a defect in a pattern to be inspected.

更に、パターン不良状況も容易に認識することが可能となり、具体的な不良箇所の特定も可能となる。  Further, it is possible to easily recognize the pattern defect status, and it is also possible to specify a specific defective portion.

更に、検査対象表面に凹凸があってもパターンを損傷することなく確実に検査することができる。  Further, even if the surface to be inspected has irregularities, the inspection can be surely performed without damaging the pattern.

以下、図面を参照して本発明に係る一発明の実施の形態例を詳細に説明する。以下の説明は、検査するべきパターンとして液晶表示パネルを形成するドットマトリクス表示用パネルにおける張り合わせ前のドットマトリクスパターンの良否を検査する回路パターン検査装置を例として行う。  Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following description, a circuit pattern inspection apparatus for inspecting the quality of a dot matrix pattern before bonding in a dot matrix display panel forming a liquid crystal display panel as a pattern to be inspected will be described as an example.

しかし、本発明は以下に説明する例に限定されるものではなく、少なくとも検査対象領域の両端近傍が列状に形成されている検査対象パターンであればなんら限定されるものではない。  However, the present invention is not limited to the example described below, and is not limited in any way as long as at least the vicinity of both ends of the inspection target area is formed in a row.

〔第1の発明の実施の形態例〕  [First Embodiment of the Invention]

図1は本発明に係る一発明の実施の形態例のパターン検査原理を説明するための図である。  FIG. 1 is a view for explaining the principle of pattern inspection according to an embodiment of the present invention.

図1において、10が本実施の形態例の検査するべき導電性パターンの配設されている基板であり、本実施の形態例では液晶表示パネルに用いるガラス製の基板を用いている。  In FIG. 1, reference numeral 10 denotes a substrate provided with a conductive pattern to be inspected according to the present embodiment. In the present embodiment, a glass substrate used for a liquid crystal display panel is used.

ガラス製基板10の表面には本実施の形態例の回路パターン検査装置で検査するドットマトリクス表示パネルを形成するための導電パターン15が一定間隔で列状に配設されている。図1に示す導電パターン例では各パターン15の幅がほぼ同一であり、各パターン間隔もほぼ等間隔となっている。しかし、本実施の形態例では、各パターン間隔が等間隔でなくとも同様に検査を行うことができる。  On the surface of the glass substrate 10, conductive patterns 15 for forming a dot matrix display panel to be inspected by the circuit pattern inspection apparatus of the present embodiment are arranged in rows at regular intervals. In the example of the conductive pattern shown in FIG. 1, the width of each pattern 15 is substantially the same, and the intervals between the patterns are also substantially equal. However, in the present embodiment, the inspection can be performed in the same manner even if the pattern intervals are not equal.

20はセンサ部、30は検査信号供給部、50はセンサ部20よりの検出信号を処理して制御部60に出力するアナログ信号処理回路、60は本実施の形態例の検査装置全体の制御を司る制御部、70はスカラーロボット80を制御するロボットコントローラ、80は液晶パネル10を検査位置に位置決めしてホールドすると共にロボットコントローラ70の制御に従ってセンサ部20のセンサ電極及び検査信号供給部30の供給電極が液晶パネル10の検査対象の導電パターンのすべての接続端子を順次横断するように走査するスカラーロボットである。  Reference numeral 20 denotes a sensor unit, reference numeral 30 denotes an inspection signal supply unit, reference numeral 50 denotes an analog signal processing circuit that processes a detection signal from the sensor unit 20 and outputs the processed signal to a control unit 60, and reference numeral 60 denotes control of the entire inspection apparatus of the present embodiment. And a control unit 70 for controlling the scalar robot 80. A control unit 70 controls the scalar robot 80 to position and hold the liquid crystal panel 10 at the inspection position and supplies the sensor electrodes of the sensor unit 20 and the inspection signal supply unit 30 under the control of the robot controller 70. This is a scalar robot that scans so that electrodes sequentially cross all connection terminals of the conductive pattern to be inspected on the liquid crystal panel 10.

本実施の形態例ではスカラーロボット80は、検査対象基板(液晶パネル)10を所定に検査位置に位置決めするために、三次元位置決め可能に構成されている。同様に、センサ部20、検査信号供給部30を検査対象基板10の表面と所定の距離に保ちつつ検査対象パターン上を移動させるよう三次元位置決め制御が可能に構成されている。  In the present embodiment, the scalar robot 80 is configured to be three-dimensionally positionable in order to position the inspection target substrate (liquid crystal panel) 10 at a predetermined inspection position. Similarly, three-dimensional positioning control is possible so that the sensor unit 20 and the inspection signal supply unit 30 are moved on the inspection target pattern while maintaining a predetermined distance from the surface of the inspection target substrate 10.

なお、以上の説明はスカラーロボット80でセンサ部20、検査信号供給部30を検査対象基板10の表面と所定の距離に保ちつつ検査対象パターン上を移動させる例を説明した。しかし、本実施の形態例は以上の例に限定されるものではなく、センサ部20、検査信号供給部30を固定とし、検査対象基板10をセンサ部20、検査信号供給部30の先端電極25,35の表面と所定の距離に保ちつつ基板を移動させるように制御しても良い。このように制御しても全く同様の作用効果が得られる。  In the above description, an example has been described in which the sensor unit 20 and the inspection signal supply unit 30 are moved on the inspection target pattern by the scalar robot 80 while maintaining the sensor unit 20 and the inspection signal supply unit 30 at a predetermined distance from the surface of the inspection target substrate 10. However, the present embodiment is not limited to the above example. The sensor unit 20 and the inspection signal supply unit 30 are fixed, and the inspection target substrate 10 is connected to the sensor unit 20 and the tip electrode 25 of the inspection signal supply unit 30. , 35 may be controlled so as to move the substrate while maintaining a predetermined distance from the surface. Even with such control, exactly the same operation and effect can be obtained.

なお、実際の検査制御においては、各パターン間隔が等間隔でない場合や双端部のパターンピッチが異なっていた場合に、センサ電極25の移動距離と供給電極35の移動距離とを互いに同期させ、少なくともセンサ電極25の一部を必ず供給電極35が実際に検査信号を供給しているパターンの他方端部位置となるように制御する必要がある。この様に制御すれば、例え各パターン間隔が等間隔でなかったり、双端部のパターンピッチが異なっていたとしても、単にスカラーロボットの両電極移動速度の制御で対応することができる。  In the actual inspection control, when the pattern intervals are not equal or when the pattern pitches at the two ends are different, the moving distance of the sensor electrode 25 and the moving distance of the supply electrode 35 are synchronized with each other, It is necessary to control at least a part of the sensor electrode 25 so that the supply electrode 35 is at the other end position of the pattern to which the test signal is actually supplied. With this control, even if the pattern intervals are not equal or the pattern pitches at the two ends are different, it is possible to respond simply by controlling the moving speed of both electrodes of the scalar robot.

本実施の形態例に係るセンサ部20及び検査信号供給部30の少なくとも先端部表面には、それぞれセンサ電極25及び供給電極35が配設されている。センサ電極25及び供給電極35は、金属、例えば銅(Cu)や金(Au)で形成されている。なお、各電極を保護のため絶縁材で被覆してもよい。また、例えば半導体を電極として使用してもよいが、金属により電極を形成しているのは、導電パターンとの間の静電容量を大きくできるからである。  A sensor electrode 25 and a supply electrode 35 are provided on at least the distal end surfaces of the sensor unit 20 and the test signal supply unit 30 according to the present embodiment, respectively. The sensor electrode 25 and the supply electrode 35 are formed of metal, for example, copper (Cu) or gold (Au). Each electrode may be covered with an insulating material for protection. Further, for example, a semiconductor may be used as the electrode, but the reason why the electrode is formed of metal is that the capacitance between the electrode and the conductive pattern can be increased.

検査信号供給部30は、スカラーロボット80により液晶パネル10などの検査対象パターンの一方端子部などを横断するように移動し、各検査対象パターンに容量結合を介して順次検査信号を供給するものであり、先端部の供給電極35の幅は、例えば検査対象パターンのパターンピッチ以下(検査パターンのパターン幅及びパターン間隙以下の大きさ)とすることが望ましい。  The inspection signal supply unit 30 is moved by the scalar robot 80 so as to traverse one terminal of the pattern to be inspected such as the liquid crystal panel 10 and sequentially supplies an inspection signal to each pattern to be inspected via capacitive coupling. It is desirable that the width of the supply electrode 35 at the tip is, for example, equal to or smaller than the pattern pitch of the pattern to be inspected (the pattern width and the pattern gap of the inspection pattern).

これは、供給電極35の幅が検査対象パターンのパターンピッチより大きいと、センサ部20のセンサ電極25が検査信号を検出する際に、検査対象パターン以外の検査対象パターンからの検査信号を検出してしまうからである。  This is because when the width of the supply electrode 35 is larger than the pattern pitch of the inspection target pattern, when the sensor electrode 25 of the sensor unit 20 detects the inspection signal, the inspection signal from the inspection target pattern other than the inspection target pattern is detected. It is because.

但し、供給電極35の幅を、必ず検査対象パターンのパターンピッチ以下としなければならないわけではなく、複数の検査対象パターンとこのパターンに隣接するパターンさえ把握できれば、詳細を後述する本実施の形態例の検査方法で検査を行うことができる。  However, the width of the supply electrode 35 does not necessarily have to be equal to or less than the pattern pitch of the pattern to be inspected. If only a plurality of patterns to be inspected and the pattern adjacent to this pattern can be grasped, the present embodiment described later in detail Inspection can be performed by the inspection method described above.

センサ部20は、スカラーロボット80により液晶パネル10などの検査対象パターンの一方端子部などを横断するように移動し、各検査対象パターンに容量結合を介して順次検査信号供給部30により供給された検査信号の検出を行うものであり、先端部のセンサ電極25の幅は、例えば供給電極35の幅より少なくとも検査対象パターンの1ピッチ以上、幅広であることが望ましい。  The sensor unit 20 is moved by the scalar robot 80 so as to cross one terminal of the pattern to be inspected, such as the liquid crystal panel 10, and is sequentially supplied to each pattern to be inspected by the inspection signal supply unit 30 via capacitive coupling. It is for detecting an inspection signal, and it is desirable that the width of the sensor electrode 25 at the tip is wider than the width of the supply electrode 35 by at least one pitch of the pattern to be inspected.

センサ部20よりの検出信号はアナログ信号処理回路50に送られアナログ信号処理される。アナログ信号処理処理回路50でアナログ信号処理されたアナログ信号は、制御部60に送られ液晶パネル10の検査信号供給部30が接触している検査対象パターンの良否が判断される。また制御部60は検査信号を検査信号供給部30に供給する制御も行う。  The detection signal from the sensor unit 20 is sent to the analog signal processing circuit 50 and subjected to analog signal processing. The analog signal subjected to the analog signal processing by the analog signal processing circuit 50 is sent to the control unit 60, and the quality of the pattern to be inspected with which the inspection signal supply unit 30 of the liquid crystal panel 10 is in contact is determined. Further, the control unit 60 also performs control of supplying the inspection signal to the inspection signal supply unit 30.

アナログ信号処理回路50は、センサ部20よりの検出信号を増幅する増幅器51、増幅器51で増幅した検出信号の雑音成分を除去し検出信号を通過させるためのバンドパスフィルタ52、バンドパスフィルタ52よりの信号を全波整流する整流回路53、整流回路53により全波整流された検出信号を平滑する平滑回路54を有している。なお、全波整流を行う整流回路53及び検出信号を平滑する平滑回路54は必ずしも備える必要はない。  The analog signal processing circuit 50 includes an amplifier 51 for amplifying a detection signal from the sensor unit 20, a band-pass filter 52 for removing a noise component of the detection signal amplified by the amplifier 51, and passing the detection signal. And a smoothing circuit 54 for smoothing the detection signal which has been full-wave rectified by the rectifier circuit 53. Note that the rectifier circuit 53 for performing full-wave rectification and the smoothing circuit 54 for smoothing the detection signal are not necessarily provided.

制御部60は、本実施の形態例検査装置全体の制御を司っており、コンピュータ(CPU)61、CPU61の制御手順などを記憶するROM62、CPU61の処理経過情報や検出信号などを一時的に記憶するRAM63、アナログ信号処理回路50よりのアナログ信号を対応するデジタル信号に変換するA/Dコンバータ64、検査信号供給部30に供給するべき検査信号を供給する信号供給部65、検査結果や操作指示ガイダンスなどを表示する表示部66を備えている。  The control unit 60 controls the entire inspection apparatus of the present embodiment, and temporarily stores a computer (CPU) 61, a ROM 62 that stores a control procedure of the CPU 61, processing progress information of the CPU 61, a detection signal, and the like. RAM 63 for storing, A / D converter 64 for converting an analog signal from analog signal processing circuit 50 into a corresponding digital signal, signal supply unit 65 for supplying an inspection signal to be supplied to inspection signal supply unit 30, inspection result and operation A display unit 66 for displaying instruction guidance and the like is provided.

信号供給部65は、例えば、検査信号として例えば交流200KHz、200Vの正弦波信号を生成し、検査信号供給部30に供給する。この場合には、バンドパスフィルタ52はこの検査信号である200KHzを通過させるバンドパスフィルタとする。なお、検査信号は正弦波信号に限らず、交流信号であれば矩形波やパルス波であっても良いことは言うまでもない。  The signal supply unit 65 generates, for example, a sine wave signal of, for example, AC 200 KHz and 200 V as a test signal, and supplies the signal to the test signal supply unit 30. In this case, the band-pass filter 52 is a band-pass filter that passes the test signal of 200 KHz. It is needless to say that the inspection signal is not limited to the sine wave signal, and may be a rectangular wave or a pulse wave as long as it is an AC signal.

以上の構成を備える本実施の形態例の導電パターンの検査制御を図2のフローチャートを参照して以下に説明する。図2は本実施の形態例の検査装置の検査制御を説明するためのフローチャートである。  Inspection control of the conductive pattern of the present embodiment having the above configuration will be described below with reference to the flowchart of FIG. FIG. 2 is a flowchart for explaining inspection control of the inspection apparatus of the present embodiment.

本実施の形態例の検査装置により検査を行う際には、検査対象導電パターンの形成されたガラス基板が不図示の搬送路上を本実施の形態例の回路パターン検査装置位置(ワーク位置)に搬送されてくる。このため、まず、ステップS1において、検査対象である液晶パネル10を検査装置にセットする。これは、自動的に搬送されてきた検査対象基板を不図示の搬送ロボットにより検査装置にセットしても、あるいは操作者が直接セットしても良い。制御部60は、検査装置に検査対象がセットされると、ロボットコントローラ70を起動してスカラーロボット80を制御し、検査対象を検査位置に位置決めする。  When the inspection is performed by the inspection apparatus of the present embodiment, the glass substrate on which the conductive pattern to be inspected is formed is transported on a transport path (not shown) to the circuit pattern inspection apparatus position (work position) of the present embodiment. Will be. Therefore, first, in step S1, the liquid crystal panel 10 to be inspected is set in the inspection device. In this case, the substrate to be inspected that has been automatically transported may be set in the inspection apparatus by a transport robot (not shown), or may be directly set by an operator. When the inspection target is set in the inspection device, the control unit 60 activates the robot controller 70 to control the scalar robot 80, and positions the inspection target at the inspection position.

続いてステップS3において、検査対象(液晶パネル)10の検査対象検査対象パターン15の一方端部側の初期位置(所定距離離反する一番端の検査対象パターン位置)に検査信号供給部30の供給電極35を位置決めすると共に、検査対象パターンの他方端部側の初期位置(所定距離離反する一番端の検査対象パターン位置)にセンサ部20のセンサ電極25を搬送位置決めする。  Subsequently, in step S3, the inspection signal supply unit 30 supplies the initial position on the one end side of the inspection target pattern 15 of the inspection target (liquid crystal panel) 10 (the endmost inspection target pattern position separated by a predetermined distance). The electrode 35 is positioned, and the sensor electrode 25 of the sensor unit 20 is transported and positioned at an initial position on the other end side of the inspection target pattern (the position of the endmost inspection target pattern separated by a predetermined distance).

なお、本実施の形態例ではギャップ(検査対象パターンと電極間の距離)は例えば100μm〜200μmの範囲に保たれている。しかしながら、ギャップは以上の例に限定されるものではなく、本実施の形態例でのギャップは、検査対象パターンのサイズに応じて決まり、パターンのサイズが大きければギャップも広くとれ、パターンのサイズが小さい場合にはギャップも狭くなる。  In the present embodiment, the gap (distance between the pattern to be inspected and the electrode) is kept in a range of, for example, 100 μm to 200 μm. However, the gap is not limited to the above example, and the gap in the present embodiment is determined according to the size of the pattern to be inspected. If the size of the pattern is large, the gap can be widened and the size of the pattern is small. If it is small, the gap will be narrow.

また、パターンサイズが非常に小さな場合には電極表面に絶縁材で被覆を形成し、パターンと電極が直接接触することがないように形成し、絶縁材を介してセンサ部20あるいは検査信号供給部30を直接基板上に密着させてギャップをほぼ絶縁材厚さとなるように制御することにより、検査対象パターンと電極との間の距離を容易かつ正確に一定距離にして検査を行うことができる。  When the pattern size is very small, a coating is formed on the surface of the electrode with an insulating material so that the pattern and the electrode do not come into direct contact with each other. By controlling the gap so as to be substantially equal to the thickness of the insulating material by bringing the 30 directly into contact with the substrate, the distance between the pattern to be inspected and the electrode can be easily and accurately set to a fixed distance for the inspection.

これにより、非常に精細なパターンであっても簡単な構造で、容易且つ正確な検査結果が得られる。  As a result, even with a very fine pattern, an easy and accurate inspection result can be obtained with a simple structure.

そして続くステップS5において、信号供給部65に指示して検査供給部30の供給電極35に検査信号の供給を開始する。  In step S5, the signal supply unit 65 is instructed to start supplying the test signal to the supply electrode 35 of the test supply unit 30.

次にステップS7に進み、パターンと電極間の距離を一定に保ち、センサ部20と検査信号供給部30の各電極25,35を同期させて検査対象パターンを横切るように、かつ検査対象パターン表面との離間距離を一定に保つように制御しつつ移動させる制御を開始する。これにより、以後センサ電極25は、供給電極35との容量結合により検査信号の供給された検査対象パターンよりの信号電位を検出していくことになる。  Next, in step S7, the distance between the pattern and the electrodes is kept constant, the electrodes 25 and 35 of the sensor unit 20 and the inspection signal supply unit 30 are synchronized so as to cross the pattern to be inspected, and the surface of the pattern to be inspected. Then, the control for moving while controlling to keep the separation distance from the camera at a constant value is started. As a result, the sensor electrode 25 detects the signal potential from the pattern to be inspected to which the inspection signal is supplied by capacitive coupling with the supply electrode 35 thereafter.

即ち、供給電極35が検査信号を供給したパターンの位置にある場合に、センサ電極25の少なくとも一部は当該検査信号の供給された検査対象パターンの他方端部位置にあり、共に供給電極35が一方端部の検査対象パターンの1ピッチ移動する間に他方端部のセンサ電極25も検査対象パターンの1ピッチ分移動するように制御される。  That is, when the supply electrode 35 is at the position of the pattern to which the inspection signal is supplied, at least a part of the sensor electrode 25 is at the other end position of the inspection target pattern to which the inspection signal is supplied, and the supply electrode 35 is The sensor electrode 25 at the other end is controlled to move by one pitch of the pattern to be inspected while the pattern to be inspected at one end is moved by one pitch.

このため、ステップS10において信号処理回路50を起動し、センサ電極25よりの検出信号を処理して制御部60に出力するように制御する。信号処理回路50では、上述したように、センサ部20のセンサ電極25よりの検出信号を増幅器51で必要レベルまで増幅し、増幅器51で増幅した検出信号を検査信号周波数の信号を通過させるバンドパスフィルタ52に送って雑音成分を除去し、その後バンドパスフィルタ52よりの信号を整流回路53で全波整流し、全波整流された検出信号を平滑回路54で平滑して制御部60のA/D変換部64に送る。  For this reason, in step S10, the signal processing circuit 50 is started, and control is performed so that the detection signal from the sensor electrode 25 is processed and output to the control unit 60. In the signal processing circuit 50, as described above, the detection signal from the sensor electrode 25 of the sensor section 20 is amplified to a required level by the amplifier 51, and the detection signal amplified by the amplifier 51 is passed through the bandpass signal for passing the signal of the inspection signal frequency. The signal from the band-pass filter 52 is sent to the filter 52 to remove the noise component. Thereafter, the signal from the band-pass filter 52 is full-wave rectified by the rectifier circuit 53, and the detection signal that has been subjected to the full-wave rectification is smoothed by the smoothing circuit 54. It is sent to the D conversion unit 64.

CPU61は、A/D変換部64を起動して入力されたアナログ信号を対応するデジタル信号に変換させ、センサ電極25で検出した検出信号をデジタル値として読み取る。  The CPU 61 activates the A / D converter 64 to convert the input analog signal into a corresponding digital signal, and reads a detection signal detected by the sensor electrode 25 as a digital value.

CPU61は、続くステップS12において、読み取った検出信号をRAM63に送る。RAM63は送られてきた検出信号を順次保存する。なお、この読み取った検出信号には、正常な検査対象パターンからの検出信号、断線した検査対象パターンからの検出信号や検査対象パターンと短絡した隣接する検査対象パターンからの検出信号の全てが含まれる。  The CPU 61 sends the read detection signal to the RAM 63 in the following step S12. The RAM 63 sequentially stores the sent detection signals. The read detection signals include all of the detection signals from the normal inspection target patterns, the detection signals from the disconnected inspection target patterns, and the detection signals from the adjacent inspection target patterns short-circuited with the inspection target patterns. .

ステップS14では、当該検査対象パターンの検査が終了したか否か、例えばセンサ電極25が検査対象パターンの一番最後のパターンを超えた位置まで移動したか否かを判断する(当該検査対象パターンの検査が終了したか否かを調べる)。  In step S14, it is determined whether or not the inspection of the inspection target pattern has been completed, for example, whether or not the sensor electrode 25 has moved to a position beyond the last pattern of the inspection target pattern. Check to see if the test is complete).

当該検査対象パターンの途中までしか検査が終了していない場合にはステップS16に進み、電極の走査を続行して次のパターンへの検査信号の供給を行う。そしてステップS10に戻り、読み取り処理を続行する。  If the inspection has been completed only halfway through the pattern to be inspected, the process proceeds to step S16, where scanning of the electrodes is continued to supply an inspection signal to the next pattern. Then, the process returns to step S10 to continue the reading process.

一方、ステップS14において、すべての検査対象パターンに対する検査が終了した場合にはステップS20に進み、信号供給部65に指示して検査信号の供給を停止させると共に、信号処理回路50、A/D変換部64の動作を停止させる。  On the other hand, in step S14, when the inspection for all the inspection target patterns is completed, the process proceeds to step S20, instructs the signal supply unit 65 to stop the supply of the inspection signal, and the signal processing circuit 50, the A / D converter. The operation of the unit 64 is stopped.

そして最後にステップS22において、検査対象を検査位置より外し、次の搬送位置に位置決め搬送され、必要な後処理が行われる。  Finally, in step S22, the inspection target is removed from the inspection position, and is positioned and transported to the next transport position, and necessary post-processing is performed.

以上の様に制御することにより、センサ電極25と供給電極35との両方が検査対象パターンに全く接触などすることなくパターンの検査が行える。このため、検査対象パターンの強度が少ない基板であっても、検査対象パターンに傷をつける等の問題をおこさずに検査を行うことができる。  By performing control as described above, pattern inspection can be performed without both the sensor electrode 25 and the supply electrode 35 contacting the inspection target pattern at all. For this reason, even if the substrate has a low strength, the inspection can be performed without causing a problem such as scratching the inspection target pattern.

このため、パターン強度が十分にとれない小型携帯電話用液晶表示パネルに用いる液晶表示パネル用ガラス基板であっても、配線パターンを損傷することなく確実に検査することができる。  For this reason, even for a glass substrate for a liquid crystal display panel used for a liquid crystal display panel for a small mobile phone that does not have sufficient pattern strength, it is possible to reliably inspect the wiring pattern without damaging the wiring pattern.

また、本実施の形態例の導電パターンの検査制御では、センサ電極25と供給電極35とを検査対象パターンを横切るように移動させながら、供給電極35から連続信号である交流正弦波信号を検査対象パターンに供給し、検査対象パターンからの信号電位をセンサ電極25により検出していくので、センサ電極25より得られる信号電位である検出信号は、ある程度一定の連続した検出信号値として検出される。  In the inspection control of the conductive pattern according to the present embodiment, while the sensor electrode 25 and the supply electrode 35 are moved across the pattern to be inspected, the AC sine wave signal which is a continuous signal from the supply electrode 35 is inspected. Since the signal is supplied to the pattern and the signal potential from the pattern to be inspected is detected by the sensor electrode 25, the detection signal, which is the signal potential obtained from the sensor electrode 25, is detected as a constant detection signal value to some extent.

このため、検査対象基板に設けられた複数の検査対象パターン中に、オープン(断線した検査対象パターン)やショート(隣の検査対象パターンと短絡した検査対象パターン)の不良検査対象パターンがある場合、オープンやショートのない正常な検査対象パターンが連続する範囲で検出されるある程度一定の連続した検出信号値と、オープンやショートがある不良検査対象パターン位置で検出される不良の検出信号値との間に数値差ができる。  For this reason, when a plurality of inspection target patterns provided on the inspection target substrate include an open (disconnection inspection target pattern) or short (an adjacent inspection target pattern and a short-circuited inspection target pattern) defective inspection target pattern, Between a certain constant continuous detection signal value that is detected in a continuous range of a normal inspection target pattern without open or short, and a failure detection signal value detected at the defect inspection target pattern position with open or short There is a numerical difference.

このように、ある程度一定の連続した検出信号値の中にオープンやショートによる不良の検出信号値が数値差、即ち数値の変化として現れるので、例えば検出信号検出結果を、詳細を後述する、図3や図4に示すようなグラフにすることにより、検査対象基板の不良の判断やオープンやショートがある不良検査対象パターン位置の特定を容易に行うことができる。  As described above, a detection signal value of a failure due to an open or a short circuit appears as a numerical value difference, that is, a change in a numerical value, among continuous detection signal values of a certain degree, and for example, the detection signal detection result is described in detail in FIG. 4 or a graph as shown in FIG. 4, it is possible to easily determine the defect of the inspection target substrate and to specify the position of the defect inspection target pattern having an open or short circuit.

さらに、検査装置が検査対象基板を順次替えながら検査していく際に毎回変化する、センサ電極25と検査対象パターンとのギャップの変化や供給電極35と検査対象パターンとのギャップの変化等により、ある程度一定の連続した検出信号値は検査対象基板を替えるたびに絶対値として違う数値になる。  Further, the inspection apparatus changes each time when inspecting while sequentially changing the inspection target substrate, such as a change in the gap between the sensor electrode 25 and the inspection target pattern, a change in the gap between the supply electrode 35 and the inspection target pattern, and the like. The detection signal value which is constant to some extent becomes a different numerical value as an absolute value every time the inspection target substrate is changed.

しかし本実施の形態例の導電パターンの検査制御による、検査対象基板の不良の判断やオープンやショートがある不良検査対象パターン位置の特定は、ある程度一定の連続した検出信号値の中に現れるオープンやショートによる不良の検出信号値の数値差、即ち検出信号の相対的な数値の変化を利用することが可能である。  However, according to the conductive pattern inspection control of the present embodiment, the determination of the defect of the inspection target substrate and the identification of the position of the defect inspection target pattern having an open or a short circuit are performed based on the open or appearing in a certain constant continuous detection signal value. It is possible to use the numerical value difference of the detection signal value of the defect due to the short circuit, that is, the change of the relative numerical value of the detection signal.

このため、不良の判断や不良位置特定を行うための閾値に、連続した検出信号値に対する不良の検出信号値の割合や不良の検出信号値の変化の割合等の相対値を利用することができ、絶対値としてのある程度一定の連続した検出信号値を使用しなくとも、検査装置が検査対象基板を順次替えながら検査しても、確実に不良の判断や不良位置特定を行うことができる。  Therefore, a relative value such as a ratio of a defective detection signal value to a continuous detection signal value or a ratio of a change in the defective detection signal value can be used as a threshold value for determining a defect and specifying a defect position. Even if the inspection apparatus performs inspection while sequentially changing the substrate to be inspected without using a certain constant continuous detection signal value as an absolute value, it is possible to reliably determine a defect and specify a defective position.

なお、本実施の形態例の導電パターンの検査制御は、以上の例に限定されるものではなく、ステップS12とステップS14との間に、ステップS12で読み取った検出信号を上記の相対値による閾値範囲内であるか否かを調べ、検出結果が閾値範囲内であればステップS14に進み、閾値範囲内でなければ検査信号を供給している検査対象パターンがオープンまたはショートした不良検査対象パターンであると判断して当該検査対象パターンの位置や状態を記憶するステップを設けても良い。  Note that the inspection control of the conductive pattern according to the present embodiment is not limited to the above example, and the detection signal read in step S12 is set to the threshold value based on the above relative value between step S12 and step S14. It is checked whether it is within the range. If the detection result is within the threshold range, the process proceeds to step S14. If the detection result is not within the threshold range, the test pattern supplying the test signal is the open or short-circuited defect test pattern. There may be provided a step of determining that there is a pattern and storing the position and state of the pattern to be inspected.

以上の制御によるセンサ電極25による検査信号検出結果を図3及び図4に示す。図3は本実施の形態例の検査装置における検査対象パターンの3箇所が断線(オープン)した場合の検査信号検出例を示す図、図4は本実施の形態例における検査対象パターンの1箇所が途中で短絡(ショート)した場合の検査信号検出例を示す図である。  FIGS. 3 and 4 show results of detection of an inspection signal by the sensor electrode 25 under the above control. FIG. 3 is a diagram illustrating an example of detection of an inspection signal when three locations of the inspection target pattern in the inspection apparatus according to the present embodiment are disconnected (open). FIG. 4 is a diagram illustrating one example of the inspection target pattern according to the present embodiment. It is a figure which shows the example of a test signal detection at the time of short circuit (short circuit) in the middle.

検査対象パターンが正常である場合には、信号供給部65より供給電極35に供給された検査信号(交流信号)は、容量結合されている検査対象パターンに供給され、当該検査対象パターンを介してセンサ電極25下部に到達し、センサ電極25との容量結合によりセンサ電極25で検出され、制御部60に出力される。  When the pattern to be inspected is normal, the inspection signal (AC signal) supplied to the supply electrode 35 from the signal supply unit 65 is supplied to the pattern to be inspected that is capacitively coupled, and passes through the pattern to be inspected. The light reaches the lower part of the sensor electrode 25, is detected by the sensor electrode 25 by capacitive coupling with the sensor electrode 25, and is output to the control unit 60.

このように供給電極35とセンサ電極25とは検査対象パターンを横断しながら検査信号(交流信号)を供給・検出するため、検出信号はある程度一定した検出信号値として連続的に検出される。  As described above, since the supply electrode 35 and the sensor electrode 25 supply and detect the inspection signal (AC signal) while traversing the pattern to be inspected, the detection signal is continuously detected as a somewhat constant detection signal value.

検査対象パターンの少なくとも一部が断線している場合には、信号供給部65より供給電極35に供給された検査信号(交流電力)の少なくとも一部が検査対象パターンの断線部によりセンサ電極25側に到達しないため、検出信号値は小さくなる。このため図3に示されるように、断線した検査対象パターン箇所の検出信号値は、正常な検査対象パターンから検出される連続的な一定値と比べて小さくなる。  When at least a part of the inspection target pattern is disconnected, at least a part of the inspection signal (AC power) supplied from the signal supply unit 65 to the supply electrode 35 is caused by the disconnection of the inspection target pattern on the sensor electrode 25 side. , The detection signal value becomes small. Therefore, as shown in FIG. 3, the detection signal value at the disconnected inspection target pattern portion is smaller than a continuous constant value detected from the normal inspection target pattern.

一方、検査対象パターンが隣接する検査対象パターンと短絡している場合には、信号供給部65より供給電極35に供給された検査信号(交流電力)は隣接する検査対象パターンとの短絡部を通じて隣接検査対象パターンにも流れるため、センサ電極25よりの検出信号は隣接検査対象パターンの検出信号と重畳され検出信号値は大きくなる。このため図4に示されるように、短絡した検査対象パターン箇所の検出信号値は、正常な検査対象パターンから検出される連続的な一定値と比べて大きくなる。  On the other hand, when the inspection target pattern is short-circuited with the adjacent inspection target pattern, the inspection signal (AC power) supplied to the supply electrode 35 from the signal supply unit 65 is adjacent to the adjacent inspection target pattern through the short-circuited portion. Since the detection signal from the sensor electrode 25 is also superimposed on the detection signal of the adjacent inspection target pattern, the detection signal value increases because the detection signal also flows to the inspection target pattern. For this reason, as shown in FIG. 4, the detection signal value of the short-circuited inspection target pattern portion is larger than a continuous constant value detected from the normal inspection target pattern.

上記のような、検出対象パターンの断線と短絡を1つのセンサ電極25で行えるのは、センサ電極25の幅が供給電極35の幅より、少なくとも検査対象パターンの1ピッチ以上幅広に設定されているからである。  The disconnection and short circuit of the detection target pattern can be performed by one sensor electrode 25 as described above because the width of the sensor electrode 25 is set to be at least one pitch wider than the width of the supply electrode 35 of the inspection target pattern. Because.

但し、必ずセンサ電極25の幅を供給電極35の幅より、検査対象パターンの1ピッチ以上としなければならないわけではなく、断線した検査対象パターンの検査や隣の検査対象パターンと短絡した検査対象パターンの検査を行うことができれば、例えば詳細を後述する第二の実施の形態例の構成としても良い。  However, the width of the sensor electrode 25 does not necessarily have to be equal to or more than one pitch of the inspection target pattern from the width of the supply electrode 35, and the inspection of the disconnected inspection target pattern or the inspection target pattern short-circuited with the adjacent inspection target pattern is not necessarily required. If the inspection can be performed, for example, the configuration of the second embodiment described in detail later may be adopted.

この際、絶対値としてのある程度一定の連続した検出信号値に、ある程度の範囲内で閾値を設定すれば、検出信号値が閾値より小さい場合には検査対象パターンの断線、検出信号値が閾値より大きい場合には検査対象パターンの短絡と判定できる。例えば、図4において、ある程度一定の連続した検出信号値0.60Vppに対して閾値を0.02Vppとすれば、0.58Vpp以下となっているセンサ移動距離約22mm、42mm、78mmの位置にある検査対象パターンは断線していると判定する。  At this time, if a threshold value is set within a certain range to a certain constant continuous detection signal value as an absolute value, when the detection signal value is smaller than the threshold value, the disconnection of the inspection target pattern, the detection signal value is smaller than the threshold value. If it is larger, it can be determined that the inspection target pattern is short-circuited. For example, in FIG. 4, if the threshold value is set to 0.02 Vpp with respect to a constant detection signal value of 0.60 Vpp which is constant to some extent, the sensor is located at a position of about 22 mm, 42 mm, and 78 mm, which is 0.58 Vpp or less. It is determined that the inspection target pattern is disconnected.

また、不良の判断や不良位置特定を行うための閾値に、連続した検出信号値に対する不良の検出信号値の割合や不良の検出信号値の変化の割合等の相対値を利用して、例えば連続した検出信号値が3%以上低下した場合には検査対象パターンの断線、連続した検出信号値が3%以上上昇した場合には検査対象パターンの短絡と判定できる。  In addition, for a threshold value for determining a defect or specifying a defect position, using a relative value such as a ratio of a defective detection signal value to a continuous detection signal value or a ratio of a change in the defective detection signal value, for example, a continuous value. If the detected signal value decreases by 3% or more, it can be determined that the inspection pattern is broken, and if the continuous detection signal value increases by 3% or more, it can be determined that the inspection pattern is short-circuited.

このように、本実施の形態例では、パターンの良否判定に絶対値を閾値として利用可能であることはもちろん、正常パターンの検出信号値に対する不良パターンの検出信号値の相対的な変化の割合を閾値として利用可能であるため、検査装置が検査対象基板を順次替えながら検査しても検出結果に応じた最適な閾値を設定でき、検査ごとに検出信号値にばらつきがあっても、また検出信号値が低い場合であっても、これらの影響を完全に防止することができ、正確な検査結果が得られる。  As described above, in the present embodiment, not only the absolute value can be used as the threshold value for determining the quality of the pattern, but also the relative change ratio of the detection signal value of the defective pattern to the detection signal value of the normal pattern can be determined. Since it can be used as a threshold value, even if the inspection device sequentially inspects the substrate to be inspected, the optimal threshold value can be set according to the detection result. Even if the value is low, these effects can be completely prevented, and accurate test results can be obtained.

このように、センサ部及び検査信号供給部が両方とも非接触であるために検出信号値が微小となる検査方式であっても、本実施の形態例の検査装置を使用することにより、その差異を確実に認識することができ、容易且つ確実なパターン状態の検査が行える。  As described above, even if the inspection method is such that the detection signal value is minute because both the sensor unit and the inspection signal supply unit are non-contact, the difference is obtained by using the inspection apparatus of the present embodiment. Can be reliably recognized, and an easy and reliable inspection of the pattern state can be performed.

このため、検出信号値の絶対値を閾値として良否を判定する従来の方法に比べ、非常に正確且つ容易にパターンの良否を検出できる。また、非接触であるため、正確な位置決め精度が不要であり、検査対象パターンピッチが非常に細かい基板であっても、精度良く検査を行うことができる。  For this reason, the quality of the pattern can be detected very accurately and easily compared to the conventional method of determining the quality using the absolute value of the detection signal value as a threshold. In addition, since there is no contact, accurate positioning accuracy is not required, and an inspection can be performed with high accuracy even on a substrate having a very fine pattern pitch to be inspected.

〔第2の発明の実施の形態例〕
以上の説明では、少なくともセンサ電極25の一部を必ず供給電極35が実際に検査信号を供給しているパターンの他方端部位置となるように制御する例を説明した。しかし、本発明は以上の例に限定されるものではなく、例えば、センサ電極25を複数設け、複数設けたセンサ電極25のうちの1つは供給電極35が実際に検査信号を供給しているパターンの他方端部位置となるように設け、複数設けたセンサ電極25のその他の少なくとも1つは供給電極35が実際に検査信号を供給しているパターンに隣接するパターンの他方端部位置に設ける構成にしても良い。
[Embodiment of Second Embodiment]
In the above description, an example has been described in which at least a part of the sensor electrode 25 is controlled such that the supply electrode 35 is always at the other end position of the pattern to which the test signal is actually supplied. However, the present invention is not limited to the above example. For example, a plurality of sensor electrodes 25 are provided, and one of the plurality of sensor electrodes 25 is actually supplied with a test signal by the supply electrode 35. At least one of the plurality of sensor electrodes 25 is provided at the other end of the pattern adjacent to the pattern to which the supply electrode 35 is actually supplying the inspection signal. It may be configured.

このように構成した本発明に係る第2の実施の形態例を以下図5を参照して以下に説明する。図5は本発明に係る第2の実施の形態例の検査装置の構成を説明するための図である。  A second embodiment according to the present invention configured as described above will be described below with reference to FIG. FIG. 5 is a diagram for explaining the configuration of the inspection apparatus according to the second embodiment of the present invention.

図5において、上述した第1の実施の形態例の図1に示す構成と同様の構成部には同一番号を付し詳細説明を省略する。  In FIG. 5, the same components as those shown in FIG. 1 of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof will be omitted.

図5において、センサ部20の少なくとも先端部表面には、第一のセンサ電極22と第二のセンサ電極24が設けられている。この第一のセンサ電極22と第二のセンサ電極24は検査対象パターンのパターンピッチ分だけ離間配置されており、また、第一のセンサ電極22は供給電極35が実際に検査信号を供給している受給検査対象パターンの他方端部位置となるように設け、第二のセンサ電極24は供給電極35が実際に検査信号を供給している受給査対象パターンに隣接する隣接検査対象パターンの他方端部位置にオフセットされた状態で設けられている。  In FIG. 5, a first sensor electrode 22 and a second sensor electrode 24 are provided on at least the front end surface of the sensor unit 20. The first sensor electrode 22 and the second sensor electrode 24 are spaced apart by the pattern pitch of the pattern to be inspected, and the supply electrode 35 of the first sensor electrode 22 actually supplies an inspection signal. The second sensor electrode 24 is provided at the other end position of the received inspection target pattern, and the other end of the adjacent inspection target pattern adjacent to the received inspection target pattern to which the supply electrode 35 is actually supplying the inspection signal. It is provided in a state where it is offset to the part position.

これら第一のセンサ電極22及び第二のセンサ電極24の幅は検査対象パターンのパターン幅以下とすることが望ましい。これは、受給検査対象パターンの断線の検査を第一のセンサ電極22が行い、受給検査対象パターンと隣接検査対象パターンとの短絡の検査を第二のセンサ電極24が行うことにより、非常に精度の高い検査を実現するためである。  It is desirable that the width of the first sensor electrode 22 and the second sensor electrode 24 be equal to or smaller than the pattern width of the pattern to be inspected. This is because the first sensor electrode 22 inspects the disconnection of the pattern to be inspected by the first sensor electrode 22 and the second sensor electrode 24 inspects the short circuit between the pattern to be inspected and the adjacent pattern to be inspected. This is to realize a high inspection.

具体的には、第一のセンサ電極22の幅が検査対象パターンのパターン幅以下であると、受給検査対象パターンが断線し、受給検査対象パターンと隣接検査対象パターンとが短絡しているような場合であっても、第一のセンサ電極22は、受給検査対象パターンから短絡部を通じて隣接検査対象パターンに流れ込んだ、隣接検査対象パターンからの検査信号からの検出信号の影響を受けにくくなる。また、第二のセンサ電極24の幅が検査対象パターンのパターン幅以下であると、検査対象パターンに断線や短絡がない場合や、受給検査対象パターンに断線はないが受給検査対象パターンと隣接検査対象パターンが短絡している場合であっても、第二のセンサ電極24は、受給検査対象パターンからの検査信号の影響を受けにくくなる。  Specifically, when the width of the first sensor electrode 22 is equal to or smaller than the pattern width of the inspection target pattern, the received inspection target pattern is disconnected, and the received inspection target pattern and the adjacent inspection target pattern are short-circuited. Even in this case, the first sensor electrode 22 is less likely to be affected by the detection signal from the test signal from the adjacent test pattern, which has flowed into the adjacent test pattern from the received test pattern through the short circuit. If the width of the second sensor electrode 24 is equal to or smaller than the pattern width of the pattern to be inspected, there is no disconnection or short circuit in the pattern to be inspected. Even when the target pattern is short-circuited, the second sensor electrode 24 is less likely to be affected by the inspection signal from the received inspection target pattern.

このように、第一のセンサ電極22と第二のセンサ電極24とによる断線・短絡の検査は、受給検査対象パターンの断線の有無と隣接検査対象パターンの短絡の有無がどのように存在していても非常に精度の高い検査を実現することができる。  As described above, in the inspection for disconnection / short circuit by the first sensor electrode 22 and the second sensor electrode 24, it is determined how the presence / absence of disconnection of the received inspection target pattern and the presence / absence of short circuit of the adjacent inspection target pattern exist. However, very accurate inspection can be realized.

但し、第一のセンサ電極22及び第二のセンサ電極24の幅を必ず検査対象パターンのパターン幅以下にしなくても良いことは、第1の実施の形態例におけるセンサ電極25により明らかである。  However, it is clear from the sensor electrodes 25 in the first embodiment that the widths of the first sensor electrode 22 and the second sensor electrode 24 do not necessarily have to be smaller than the pattern width of the pattern to be inspected.

さらにまた、以上詳細に説明した第2の実施の形態例では、オフセットされたセンサ電極は第二のセンサ電極24であると説明したが、受給査対象パターンに隣接する隣接検査対象パターンとは反対側で隣接する第二の隣接検査対象パターンからの検査信号を検出する、第三のセンサ電極を設けることで、受電検査対象パターンの両隣に隣接する2つの隣接検査対象パターンとの短絡を同時に検査することも可能である。  Furthermore, in the second embodiment described in detail above, the offset sensor electrode is described as the second sensor electrode 24, but is opposite to the adjacent inspection target pattern adjacent to the received inspection target pattern. By detecting a test signal from a second adjacent test pattern adjacent on the side, a third sensor electrode is provided to simultaneously detect a short circuit with two adjacent test patterns adjacent to both sides of the power receiving test pattern. It is also possible.

また、センサ部20に設けられるセンサ電極は、第一のセンサ電極22のみや第二のセンサ電極24のみでも問題がないことや、オフセットされた3つ以上のセンサ電極を設けても良いことは言うまでもない。  Further, the sensor electrodes provided in the sensor unit 20 have no problem even if only the first sensor electrode 22 or only the second sensor electrode 24 is provided, and three or more offset sensor electrodes may be provided. Needless to say.

〔第3の発明の実施の形態例〕
以上の説明は、センサ電極25及び供給電極35を検査対象パターンの端部を横断するように移動させて不良パターンを検出する例を説明した。しかし、本発明は以上の例に限定されるものではなく、例えば、センサ電極25又は供給電極35の一方を検査対象パターンに沿っても移動制御可能に構成し、上述した制御で不良パターンを特定した後に、不良パターン位置に両電極を位置決めし一方の電極を不良パターンに沿ってパターン上を移動させ、センサ電極25での検出信号値を読み込み、検出信号値の変化位置を検出してパターン不良発生箇所として特定可能に構成しても良い。
[Third Embodiment of the Invention]
In the above description, an example of detecting a defective pattern by moving the sensor electrode 25 and the supply electrode 35 so as to cross the end of the pattern to be inspected has been described. However, the present invention is not limited to the above example. For example, one of the sensor electrode 25 and the supply electrode 35 can be controlled to move along the pattern to be inspected, and the defective pattern is identified by the above-described control. After that, both electrodes are positioned at the defective pattern position, one electrode is moved on the pattern along the defective pattern, the detection signal value at the sensor electrode 25 is read, and the change position of the detection signal value is detected to detect a pattern defect. You may comprise so that it can be specified as an occurrence location.

このように構成した本発明に係る第2の実施の形態例を以下図6乃至図10を参照して以下に説明する。図6は本発明に係る第2の実施の形態例の検査装置、図7は本発明に係る第2の実施の形態例の検査装置における電極移動制御を説明するための図、図8は第2の実施の形態例のパターン不良箇所特定制御を説明するためのフローチャート、図9は第2の実施の形態例装置におけるセンサ電極25での不良パターン検出信号波形の例を示す図、図10は不良パターンにおけるセンサ電極25の検出信号波形の例を示す図である。  A second embodiment according to the present invention configured as described above will be described below with reference to FIGS. FIG. 6 is a diagram for explaining the electrode movement control in the inspection device of the second embodiment according to the present invention, FIG. 7 is a diagram for explaining the electrode movement control in the inspection device of the second embodiment according to the present invention, and FIG. FIG. 9 is a flowchart for explaining the pattern defect location specifying control of the second embodiment, FIG. 9 is a diagram showing an example of a defect pattern detection signal waveform at the sensor electrode 25 in the device of the second embodiment, and FIG. FIG. 4 is a diagram illustrating an example of a detection signal waveform of a sensor electrode 25 in a defective pattern.

図6において、上述した第1の実施の形態例の図1に示す構成と同様の構成部には同一番号を付し詳細説明を省略する。  6, the same components as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

図6においては、検出部20にはカメラ26が取り付けてられている。このカメラ26は、撮影した映像を表示するために、例えば制御部60の表示部66に接続されており、パターン不良発生箇所の不良発生状態を観察するために使用される。また、検査信号供給部30には検査信号を供給する検査信号供給プローブが取り付けられたプローブ接触手段32が設けられている。このプローブ接触手段32と検査信号供給プローブは、パターン不良発生箇所の特定を確実に行うために使用される。  In FIG. 6, a camera 26 is attached to the detection unit 20. The camera 26 is connected to, for example, a display unit 66 of the control unit 60 in order to display a captured image, and is used to observe a failure occurrence state at a pattern failure occurrence location. In addition, the inspection signal supply unit 30 is provided with probe contact means 32 to which an inspection signal supply probe for supplying an inspection signal is attached. The probe contacting means 32 and the inspection signal supply probe are used to reliably specify the location where the pattern failure has occurred.

第2の実施の形態例においては、スカラーロボットは図1の矢印方向のみではなく、電極を図1のパターン長手方向にも移動制御可能に構成する。  In the second embodiment, the scalar robot is configured to be able to control the movement of the electrodes not only in the direction of the arrow in FIG. 1 but also in the longitudinal direction of the pattern in FIG.

そして、まず上述した第1の実施の形態例の図2に示す検査制御を行い、検査対象パターンに不良があるか否かを検査する。検査の結果、例えばパターン断線であるとされた検査対象パターンについて当該検査対象パターン位置を例えばRAM63などに保持する。  Then, first, the inspection control shown in FIG. 2 of the first embodiment described above is performed to inspect whether or not the inspection target pattern has a defect. As a result of the inspection, for example, the inspection target pattern position of the inspection target pattern which is determined to be the pattern disconnection is held in the RAM 63 or the like.

このようにして不良パターンが検出され、不良パターン位置が特定されると不良箇所特定処理に移行する。第2の実施の形態例の不良箇所特定処理では、図7の▲1▼で示すように、最初に供給電極35とセンサ電極25とを同期させて不良と判断されたパターン位置まで移動させる。  When the defective pattern is detected and the position of the defective pattern is specified in this manner, the process proceeds to the defective portion specifying process. In the defective portion specifying process according to the second embodiment, as shown by (1) in FIG. 7, the supply electrode 35 and the sensor electrode 25 are first synchronized and moved to the pattern position determined to be defective.

続いて図7の▲2▼で示す様に、センサ電極25をパターン端部より他方端部方向に移動させながら順次検査信号を読み取り、読み取り信号が急激に変化する位置(検出信号が検出されなくなる、あるいは低レベルに変化する位置)を求め、当該位置をパターン不良箇所と特定する。  Subsequently, as shown by (2) in FIG. 7, the inspection signal is sequentially read while moving the sensor electrode 25 from the pattern end toward the other end, and the position where the read signal changes rapidly (the detection signal is not detected) , Or a position that changes to a low level), and the position is specified as a pattern defective portion.

以下、図8のフローチャートを参照して詳細に説明する。第2の実施の形態例では、上述した第1の実施の形態例におけるステップS14の処理に続いて、RAM63に保存された検出信号を確認し、不良パターンが検出されたか否かを調べ、不良パターンが検出されていない場合にはステップS20の処理に移行する。  Hereinafter, this will be described in detail with reference to the flowchart of FIG. In the second embodiment, following the processing in step S14 in the first embodiment described above, the detection signal stored in the RAM 63 is checked, and it is checked whether a defective pattern is detected. If no pattern has been detected, the process moves to step S20.

一方、検査の結果不良パターンが検出された場合には信号供給部65を消勢すると共に、ステップS3と同様に電極を初期位置に位置決めして図8に示す処理に移行する。そして図8に示す処理の終了後ステップS20の処理に移行すればよい。  On the other hand, if a defective pattern is detected as a result of the inspection, the signal supply unit 65 is deenergized, and the electrodes are positioned at the initial position as in step S3, and the process proceeds to the process shown in FIG. Then, after the processing shown in FIG. 8 is completed, the processing may be shifted to the processing in step S20.

第2の実施の形態例では最初に図8のステップS31に示す様に、図2に示すステップS1乃至ステップS16の処理で検出した不良パターン位置を特定する。例えば一部パターンが断線していた場合の検出信号波形を図9に示す。図9に示す例では、アナログ信号処理回路50での信号処理を行う前の信号を示している。丸印で示した箇所がパターンのオープン(2本のパターンが断線している場合)と検出された信号波形である。  In the second embodiment, first, as shown in step S31 of FIG. 8, a defective pattern position detected in the processing of steps S1 to S16 shown in FIG. 2 is specified. For example, FIG. 9 shows a detection signal waveform when a part of the pattern is disconnected. In the example shown in FIG. 9, a signal before signal processing in the analog signal processing circuit 50 is shown. A portion indicated by a circle is a signal waveform detected as an open pattern (when two patterns are disconnected).

続いてステップS33において、ロボットコントローラ70を起動し、スカラーロボット80を制御してセンサ電極25及び供給電極35を互いに同期させながら不良パターン位置に移動させる。このとき、高感度での検出を行うため、不良パターンの幅方向ほぼ中央位置にセンサ電極25及び供給電極35の幅方向の中心がくるように位置決めする(図7における▲1▼の制御)。  Subsequently, in step S33, the robot controller 70 is activated to control the scalar robot 80 to move the sensor electrode 25 and the supply electrode 35 to the defective pattern position while synchronizing with each other. At this time, in order to perform detection with high sensitivity, positioning is performed such that the center in the width direction of the sensor electrode 25 and the supply electrode 35 is substantially at the center of the width of the defective pattern (control (1) in FIG. 7).

続いてステップS35に進み、信号供給部65を起動して供給電極35に検査信号を印加して不良パターンに検査信号を供給する。そしてロボットコントローラ70を起動してセンサ電極25をパターンに沿って供給電極35方向に移動させる(図7における▲2▼の制御)。  Subsequently, the process proceeds to step S35, in which the signal supply unit 65 is activated to apply the inspection signal to the supply electrode 35 and supply the inspection signal to the defective pattern. Then, the robot controller 70 is activated to move the sensor electrode 25 in the direction of the supply electrode 35 along the pattern (control (2) in FIG. 7).

同時にステップS40に示すようにセンサ電極25よりの検出信号を読み取る。そして続くステップS42でセンサ電極25よりの検出信号値が大きく変化したか否かを調べる。大きく変化していない場合にはステップS37に戻りセンサ電極25の移動を続ける。  At the same time, the detection signal from the sensor electrode 25 is read as shown in step S40. Then, in the subsequent step S42, it is checked whether or not the detection signal value from the sensor electrode 25 has changed significantly. If not, the process returns to step S37 to continue the movement of the sensor electrode 25.

一方、ステップS42でセンサ電極25よりの検出信号値が大きく変化した場合には変化ステップS44に進み、センサ電極25からの検出信号が、大きく変化し始めた位置と大きな変化がなくなった位置とを求め、それらの位置の中間位置をパターン不良箇所として特定する。  On the other hand, if the value of the detection signal from the sensor electrode 25 has changed significantly in step S42, the process proceeds to change step S44, in which the position where the detection signal from the sensor electrode 25 has started to change significantly and the position at which no significant change has ceased are determined. Then, an intermediate position between these positions is specified as a pattern defective portion.

センサ電極25における検出信号波形の例を図10に示す。図10に示すように、断線箇所までは供給電極35により供給された検査信号がセンサ電極25に到達しておらず、検出信号値も低かったが、断線箇所を超えると供給された検査信号が到達するので検出信号値が上昇する。例えば、センサ電極25からの検出信号が、大きく変化し始めた位置と大きな変化がなくなった位置との中間位置をパターン不良箇所として特定するとしたので、この傾斜部分のほぼ中間の場所がパターンの不良箇所として特定される。  FIG. 10 shows an example of a detection signal waveform at the sensor electrode 25. As shown in FIG. 10, the inspection signal supplied by the supply electrode 35 did not reach the sensor electrode 25 up to the disconnection point, and the detection signal value was also low. Since it reaches, the detection signal value increases. For example, since the detection signal from the sensor electrode 25 specifies an intermediate position between a position where the detection signal starts to change greatly and a position where the detection signal does not change significantly, a substantially middle position of the inclined portion is determined to be a pattern defect. Specified as a location.

なお、以上の説明はセンサ電極25を供給電極方向に移動させたが、センサ電極25ではなく、供給電極35をセンサ電極25方向に移動させても良い。  In the above description, the sensor electrode 25 is moved in the direction of the supply electrode. However, instead of the sensor electrode 25, the supply electrode 35 may be moved in the direction of the sensor electrode 25.

以上説明した様に第2の実施の形態例によれば、上述した第1の実施の形態例と同様に高精度でのパターンの良否検査を非接触で行うことができると共に、センサ電極をX−Yの2方向に移動制御することで、単に不良パターンがあるか否かの検査にとどまらず、具体的不良箇所も特定できる。このため、例えば必要に応じて不良箇所の修復も短時間で可能となる。  As described above, according to the second embodiment, a high-precision pattern inspection can be performed in a non-contact manner as in the first embodiment described above, and the sensor electrode can be connected to the X-axis. By controlling the movement in the two directions of -Y, it is possible to specify not only the inspection of whether there is a defective pattern but also a specific defective portion. For this reason, for example, a defective portion can be repaired in a short time as needed.

また、上記の不良箇所の修復において、修復が可能であるかを判断するためには、パターン不良発生箇所の不良発生状態を観察できることが望ましい。例えばパターン不良発生箇所にゴミ等が付着しているだけであることがわかればその場での修復が可能であることが判断でき、また、致命的な不良であれば修復を行わない判断をすることができる。このパターン不良発生箇所の不良発生状態を観察には、検出部20に取り付けてられているカメラ26を使用する。このカメラ26は、検出部20に取り付けられているので、上記ステップS35でカメラ26の撮影を開始し、ステップS40及びステップS42が行われている間は撮影を継続し、ステップS42でのパターン不良箇所の特定後まで撮影を続行する。このように撮影されたパターン不良発生箇所の映像は、撮影の続行中及びパターン不良発生箇所の特定後も表示部66に表示され、パターン不良発生箇所の不良発生状態を観察するために使用される。  In the repair of the above-mentioned defective portion, in order to determine whether or not the repair can be performed, it is desirable to be able to observe the defect occurrence state of the pattern defect occurrence portion. For example, if it is found that only dust or the like has adhered to the location where the pattern failure has occurred, it can be determined that the repair can be performed on the spot, and if the failure is fatal, it is determined that the repair is not performed. be able to. The camera 26 attached to the detection unit 20 is used for observing the failure occurrence state at the pattern failure occurrence location. Since the camera 26 is attached to the detection unit 20, the photographing of the camera 26 is started in step S35, the photographing is continued while steps S40 and S42 are performed, and the pattern failure in step S42 is performed. Shooting is continued until after the location is specified. The image of the pattern defect occurrence location photographed in this manner is displayed on the display unit 66 during the continuation of the photographing and after the pattern defect occurrence location is specified, and is used to observe the defect occurrence state of the pattern defect occurrence location. .

また、パターンの不良箇所の状態は、完全に断線や短絡している状態から一部断線やゴミ等の付着物による一部短絡の状態まで様々である。この一部断線や一部短絡の状態においては、センサ電極25と供給電極35との両方が非接触での検査では、図10のような検出信号波形が得られない場合がある。このような場合には、プローブ接触手段32を動作させて検査信号供給プローブを不良パターンの一方端部に接触させてからセンサ電極25を不良パターンに沿ってパターン上を移動させると、確実にパターン不良発生箇所を特定することができる。  In addition, the state of a defective portion of the pattern varies from a completely disconnected state or a short-circuited state to a partially disconnected state or a partially short-circuited state due to a deposit such as dust. In this partially disconnected or partially short-circuited state, a detection signal waveform as shown in FIG. 10 may not be obtained in an inspection in which both the sensor electrode 25 and the supply electrode 35 are not in contact. In such a case, if the probe contact means 32 is operated to bring the inspection signal supply probe into contact with one end of the defective pattern, and then the sensor electrode 25 is moved on the pattern along the defective pattern, the pattern can be reliably removed. It is possible to specify a failure occurrence location.

尚、不良パターンの他方端部のセンサ電極25の代わりに接触型のセンサプローブを使用し、このセンサプローブを他方端部に接触させて非接触の供給電極35を不良パターンの他方端部のセンサプローブ方向に移動させても良い。  Note that a contact-type sensor probe is used instead of the sensor electrode 25 at the other end of the defective pattern, and the non-contact supply electrode 35 is brought into contact with the sensor at the other end of the defective pattern by bringing the sensor probe into contact with the other end. It may be moved in the direction of the probe.

〔第4の発明の実施の形態例〕
以上の説明では、スカラーロボット80によりセンサ電極25及び供給電極35移動制御を主にX−Y方向に2次元制御する例を説明した。これは、検査対象基板が液晶パネルであり、ガラス基板で平滑度は高かったからである。パターン厚さが厚かったり、検査基板が大型で表面の凹凸がさけられないような基板を検査する場合には、以上の2次元制御のみならず、上下方向(Z方向)にも制御するように構成して、検査対象基板の凹凸があっても良好か検査結果が得られる様に構成すればよい。
[Embodiment of the fourth invention]
In the above description, an example in which the scalar robot 80 controls the movement of the sensor electrode 25 and the supply electrode 35 two-dimensionally mainly in the XY directions has been described. This is because the substrate to be inspected was a liquid crystal panel, and the glass substrate had high smoothness. When inspecting a substrate having a large pattern thickness or a large inspection substrate in which unevenness on the surface cannot be avoided, not only the above two-dimensional control but also control in the vertical direction (Z direction). What is necessary is just to comprise, so that even if there is unevenness of the board | substrate to be inspected, it may be good so that an inspection result may be obtained.

2次元制御のみならず、上下方向(Z方向)にも制御するように構成した本発明に係る第3の実施の形態例を図11を参照して以下に説明する。図11は本発明に係る第3の実施の形態例の検査装置の構成を説明するための図である。図11において、上述した第1の実施の形態例の図1に示す構成と同様構成には同一番号を付し詳細説明を省略する。  A third embodiment according to the present invention configured to control not only two-dimensional control but also the vertical direction (Z direction) will be described below with reference to FIG. FIG. 11 is a diagram for explaining the configuration of the inspection apparatus according to the third embodiment of the present invention. 11, the same components as those shown in FIG. 1 of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof will be omitted.

図11においては、検出部20にはレーザ変位計28が、検査信号供給部30にはレーザ変位計38が取り付けられており、両変位計28、38よりの検出結果から検出部20、検査信号供給部30と検査対象基板の表面までの距離を測定する距離測定部90が備えられている。  In FIG. 11, a laser displacement meter 28 is attached to the detection unit 20 and a laser displacement meter 38 is attached to the inspection signal supply unit 30. The detection unit 20 and the inspection signal A distance measuring unit 90 for measuring the distance between the supply unit 30 and the surface of the substrate to be inspected is provided.

また、スカラーロボット80は、検出部20、検査信号供給部30とを2次元制御可能であるほか、図に直交する方向(上下方向)にも位置決め制御可能に構成されている。  In addition, the scalar robot 80 is configured to be capable of two-dimensionally controlling the detection unit 20 and the inspection signal supply unit 30 and to be capable of positioning control in a direction (vertical direction) orthogonal to the drawing.

そして、以上の構成を備える第3の実施の形態例では、電極の移動と同時に距離測定部90はレーザ変位計28、38を起動して、各電極と検査対象基板表面との距離を測定し、測定結果を制御部60に出力する。また、制御部60は、距離測定部90からの電極が一定距離移動する間の測定距離の測定結果を平均化し、平均化した距離が一定となるように電極とパターン間の距離を制御している。  In the third embodiment having the above configuration, the distance measuring unit 90 activates the laser displacement meters 28 and 38 simultaneously with the movement of the electrodes, and measures the distance between each electrode and the surface of the substrate to be inspected. , And outputs the measurement result to the control unit 60. Further, the control unit 60 averages the measurement results of the measurement distances while the electrodes from the distance measurement unit 90 move by a certain distance, and controls the distance between the electrodes and the pattern so that the averaged distances are constant. I have.

例えば、検査対象パターンの3本分の距離の平均に従って電極、基板表面間の距離を制御する。  For example, the distance between the electrode and the substrate surface is controlled according to the average of the distances of three inspection target patterns.

このように距離を平均化するのは、急激なZ方向制御を防いで緩やかな制御とすると共に、ノイズ、測定誤差などの影響を軽減するためである。  The reason for averaging the distances in this way is to prevent abrupt Z-direction control and to make the control gentle, and to reduce the effects of noise, measurement errors, and the like.

このようにX−Y方向のみでなくZ方向制御を行うのは、特に大型基板の検査に有効である。例えば大型フラットディスプレイパネル表面の検査対象パターンの検査などにおいては、どうしても基板の表面の湾曲がさけられず、このような場合でも電極とパターンが接触してしまうのを有効に防止できる。  Performing not only the X-Y direction but also the Z-direction control in this way is particularly effective for inspection of large substrates. For example, in the inspection of a pattern to be inspected on the surface of a large flat display panel, the curvature of the substrate surface cannot be avoided, and even in such a case, it is possible to effectively prevent the electrode from being in contact with the pattern.

また、パターンの厚さが厚いような場合には、平均化する測定距離の範囲を狭くしてより高感度の検出を可能とすれば良い。  When the pattern is thick, the range of the measurement distance to be averaged may be narrowed to enable more sensitive detection.

本発明に係る一発明の実施の形態例のパターン検査原理を説明するための図である。  FIG. 2 is a diagram for explaining a pattern inspection principle according to an embodiment of the present invention. 本実施の形態例である検査装置の検査制御を説明するためのフローチャートである。  5 is a flowchart for explaining inspection control of the inspection apparatus according to the embodiment. 本実施の形態例である検査装置における隣接検査対象パターンが3本短絡(ショート)した場合の検出信号例を示す図である。  FIG. 5 is a diagram illustrating an example of a detection signal when three adjacent test target patterns are short-circuited (short-circuited) in the test apparatus according to the present embodiment; 本実施の形態例である検査装置における検査対象パターンの1本が途中で断線(オープン)状態となっている場合の検出波形例を示す図である。  FIG. 7 is a diagram illustrating an example of a detected waveform when one of the inspection target patterns in the inspection apparatus according to the present embodiment is disconnected (open) in the middle. 本発明に係る第2の実施の形態例の検査装置の構成を示す図である。  It is a figure showing the composition of the inspection device of a 2nd embodiment concerning the present invention. 本発明に係る第3の実施の形態例の検査装置の構成を示す図である。  It is a figure showing the composition of the inspection device of a 3rd embodiment concerning the present invention. 第3の実施の形態例の検査装置における電極移動制御を説明するための図である。  It is a figure for explaining electrode movement control in the inspection device of a 3rd embodiment. 第3の実施の形態例のパターン不良箇所特定制御を説明するためのフローチャートである。  13 is a flowchart for explaining pattern defect location identification control according to the third embodiment. 第3の実施の形態例の装置におけるセンサ電極での不良パターン検出信号波形の例を示す図である。  FIG. 13 is a diagram illustrating an example of a defective pattern detection signal waveform at a sensor electrode in the device according to the third embodiment. 不良パターンにおけるセンサ電極の検出信号波形の例を示す図である。  FIG. 7 is a diagram illustrating an example of a detection signal waveform of a sensor electrode in a defective pattern. 本発明に係る第4の実施の形態例の検査装置の構成を説明するための図である。  It is a figure for explaining the composition of the inspection device of a 4th embodiment concerning the present invention.

符号の説明Explanation of reference numerals

10 ガラス製基板
15 導電パターン
20 センサ部
22 第一のセンサ電極
24 第二のセンサ電極
25 センサ電極
26 カメラ
28 レーザ変位計
30 検査信号供給部
32 プローブ接触手段
35 供給電極
38 レーザ変位計
50 アナログ信号処理回路
51 増幅器
52 バンドパスフィルタ
53 整流回路
54 平滑回路
60 制御部
70 ロボットコントローラ
80 スカラーロボット
61 CPU
62 ROM
63 RAM
64 A/Dコンバータ
65 信号供給部
66 表示部
Reference Signs List 10 Glass substrate 15 Conductive pattern 20 Sensor unit 22 First sensor electrode 24 Second sensor electrode 25 Sensor electrode 26 Camera 28 Laser displacement meter 30 Inspection signal supply unit 32 Probe contact means 35 Supply electrode 38 Laser displacement meter 50 Analog signal Processing circuit 51 Amplifier 52 Band pass filter 53 Rectifier circuit 54 Smoothing circuit 60 Control unit 70 Robot controller 80 Scalar robot 61 CPU
62 ROM
63 RAM
64 A / D converter 65 Signal supply unit 66 Display unit

Claims (26)

検査対象領域の両端近傍が列状に形成されている検査対象パターンの前記検査対象領域の一方より交流の検査信号を供給し、他方から前記検査対象パターンよりの信号を検出して前記検査対象パターンを検査する回路パターン検査装置であって、
前記検査対象パターンの検査対象領域の一方より前記検査信号を前記検査対象パターンに供給する供給電極を有する供給手段と、
前記検査対象パターンよりの信号を検出する検出電極を有する検出手段と、
前記供給手段の供給電極と前記検出手段の検出電極とを前記検査対象パターンから離間させつつ前記検査対象領域の両端近傍の列状パターン部を横切り移動させる移動手段とを備えることを特徴とする回路パターン検査装置。
An inspection signal of alternating current is supplied from one of the inspection target regions of the inspection target pattern in which the vicinity of both ends of the inspection target region is formed in a row, and a signal from the inspection target pattern is detected from the other to detect the inspection target pattern. A circuit pattern inspection apparatus for inspecting
Supply means having a supply electrode for supplying the inspection signal to the inspection target pattern from one of the inspection target areas of the inspection target pattern,
Detecting means having a detecting electrode for detecting a signal from the pattern to be inspected,
Moving means for moving the supply electrode of the supply means and the detection electrode of the detection means apart from the pattern to be inspected and moving across the row pattern portion near both ends of the inspection area. Pattern inspection device.
前記検査対象パターンは基板上に所定幅でほぼ棒状に形成された導電性パターンであることを特徴とする請求項1記載の回路パターン検査装置。  2. The circuit pattern inspection apparatus according to claim 1, wherein the inspection target pattern is a conductive pattern formed in a substantially bar shape with a predetermined width on the substrate. 前記検出電極の幅は、少なくとも検査対象パターンの2列分の幅であることを特徴とする請求項1又は請求項2に記載の回路パターン検査装置。  3. The circuit pattern inspection apparatus according to claim 1, wherein the width of the detection electrode is at least a width of two rows of the pattern to be inspected. 前記検出手段は、一方端部位置で前記供給電極により検査信号を供給される検査対象パターンの他方端部位置に配設された第一の検出電極と、一方端部位置で前記供給電極により検査信号を供給される検査対象パターンに隣接する検査対象パターンの他方端部位置に配設された第二の検出電極とを備えることを特徴とする請求項1又は請求項2に記載の回路パターン検査装置。  The detection means includes a first detection electrode disposed at the other end position of the inspection target pattern to which the inspection signal is supplied by the supply electrode at one end position, and an inspection performed by the supply electrode at one end position. 3. The circuit pattern inspection according to claim 1, further comprising a second detection electrode disposed at the other end position of the inspection target pattern adjacent to the inspection target pattern to which a signal is supplied. 4. apparatus. 前記第一の検出電極の幅は、検査対象パターンのパターン幅以下であることを特徴とする請求項4に記載の回路パターン検査装置。  The circuit pattern inspection apparatus according to claim 4, wherein the width of the first detection electrode is equal to or smaller than the pattern width of the pattern to be inspected. 前記第二の検出電極の幅は、検査対象パターンのパターン幅以下であることを特徴とする請求項4又は請求項5に記載の回路パターン検査装置。  The circuit pattern inspection device according to claim 4, wherein a width of the second detection electrode is equal to or smaller than a pattern width of a pattern to be inspected. 前記移動手段は、前記供給手段の供給電極面及び前記検出手段の検出電極面を前記検査対象パターンと容量結合させた状態で前記検査対象領域の両端近傍の列状部分を横切り移動させることを特徴とする請求項1乃至請求項6のいずれかに記載の回路パターン検査装置。  The moving means is configured to move across a row portion near both ends of the inspection target area in a state where a supply electrode surface of the supply means and a detection electrode surface of the detection means are capacitively coupled to the inspection target pattern. 7. The circuit pattern inspection apparatus according to claim 1, wherein: 更に、前記検出手段による検出結果が所定範囲にある場合に検査対象パターンの正常と、検出結果が所定の範囲より外れる場合に検査対象パターンの不良と判断する判断手段を備えることを特徴とする請求項1乃至請求項7のいずれかに記載の回路パターン検査装置。  The apparatus further comprises a judging means for judging that the pattern to be inspected is normal when the result of detection by the detecting means is within a predetermined range, and determining that the pattern to be inspected is defective when the result of detection is out of the predetermined range. The circuit pattern inspection device according to any one of claims 1 to 7. 前記判断手段が不良と判断した検査対象パターンの両端に、前記供給手段の供給電極と前記検出手段の検出電極とを移動させ、前記供給手段の供給電極又は前記検出手段の検出電極のいずれか一方を他方に向かってパターンに沿って移動させる第2の移動手段と、前記検出手段の検出結果に基づき検出変化位置を検出する位置検出手段とを備えることを特徴とする請求項8に記載の回路パターン検査装置。  The supply electrode of the supply unit and the detection electrode of the detection unit are moved to both ends of the pattern to be inspected determined by the determination unit to be defective, and either one of the supply electrode of the supply unit or the detection electrode of the detection unit is moved. 9. The circuit according to claim 8, further comprising: a second moving unit that moves the second line along the pattern toward the other, and a position detecting unit that detects a detected change position based on a detection result of the detecting unit. Pattern inspection device. 前記供給手段の供給電極又は前記検出手段の検出電極のいずれか他方を検査対象パターンに接触させる接触手段を備えることを特徴とする請求項9に記載の回路パターン検査装置。  The circuit pattern inspection apparatus according to claim 9, further comprising: a contact unit configured to contact one of a supply electrode of the supply unit and a detection electrode of the detection unit with a pattern to be inspected. 前記第2の移動手段により移動される前記供給電極及び前記検出電極の少なくとも一方に撮像手段を備えることを特徴とする請求項9又は請求項10に記載の回路パターン検査装置。  The circuit pattern inspection apparatus according to claim 9, wherein at least one of the supply electrode and the detection electrode moved by the second moving unit includes an imaging unit. 前記第2の移動手段により移動される前記供給電極及び前記検出電極の少なくとも一方と、検査対象パターンとの距離がほぼ一定になるように位置決め制御する離間制御手段を備えることを特徴とする請求項9乃至請求項11のいずれかに記載の回路パターン検査装置。  The apparatus according to claim 1, further comprising a separation control unit configured to perform positioning control so that a distance between at least one of the supply electrode and the detection electrode moved by the second movement unit and the pattern to be inspected is substantially constant. The circuit pattern inspection device according to any one of claims 9 to 11. 前記移動手段により移動される前記供給電極及び前記検出電極の少なくとも一方と検査対象パターンとの離間距離がほぼ一定になるように位置決め制御する離間距離制御手段を備えることを特徴とする請求項1乃至請求項12のいずれかに記載の回路パターン検査装置。  4. The apparatus according to claim 1, further comprising a separation distance control unit configured to perform positioning control such that a separation distance between at least one of the supply electrode and the detection electrode moved by the movement unit and the pattern to be inspected is substantially constant. The circuit pattern inspection device according to claim 12. 前記離間処理制御手段は、前記検出電極あるいは供給電極近傍位置に前記検出電極あるいは前記供給電極と共に移動する変位計を備え、前記変位計の検出結果に従って前記検出電極あるいは供給電極と検査対象との離間距離がほぼ一定になるように前記検査対象に直交する方向に位置決め制御することを特徴とする請求項12又は請求項13に記載の回路パターン検査装置。  The separation processing control means includes a displacement meter that moves together with the detection electrode or the supply electrode at a position near the detection electrode or the supply electrode, and separates the detection electrode or the supply electrode from the inspection object according to a detection result of the displacement meter. 14. The circuit pattern inspection apparatus according to claim 12, wherein positioning control is performed in a direction orthogonal to the inspection target so that a distance becomes substantially constant. 前記離間処理制御手段は、前記検査対象パターンの複数ピッチ間の前記変位計の検出結果の平均変位を前記検出電極あるいは前記供給電極と検査対象との離間距離として前記検査対象に直交する方向に位置決め制御することを特徴とする請求項14に記載の回路パターン検査装置。  The separation processing control means positions an average displacement of the detection result of the displacement meter between a plurality of pitches of the test pattern as a separation distance between the detection electrode or the supply electrode and the test object in a direction orthogonal to the test object. The circuit pattern inspection apparatus according to claim 14, wherein the circuit pattern inspection apparatus performs control. 検査対象領域の両端近傍が列状に形成されている検査対象パターンの検査対象領域の一方より検査信号を前記検査対象パターンに供給する供給電極を有する供給手段と、前記前記検査対象パターンよりの信号を検出する検出電極を有する検出手段とを有する回路パターン検査装置におけるパターン検査方法であって、
前記供給手段の供給電極と前記検出手段の検出電極とを前記供給手段の供給電極面及び前記検出手段の検出電極面を前記検査対象パターン表面と離間させた状態を維持しつつ前記供給電極及び前記検出電極と前記検査対象パターンとを前記検査対象領域の両端近傍の列状パターン部を横切り移動させ、前記検査対象パターンの前記検査対象領域の一方より交流の検査信号を供給し他方から前記検査対象パターンよりの信号を検出して前記検査対象パターンを検査することを特徴とする回路パターン検査方法。
Supply means having a supply electrode for supplying an inspection signal to the inspection target pattern from one of the inspection target regions of the inspection target pattern in which the vicinity of both ends of the inspection target region is formed in a row, and a signal from the inspection target pattern A pattern inspection method in a circuit pattern inspection apparatus having a detection means having a detection electrode for detecting
The supply electrode of the supply unit and the detection electrode of the detection unit, the supply electrode surface of the supply unit and the supply electrode while maintaining a state in which the detection electrode surface of the detection unit is separated from the surface of the pattern to be inspected. The detection electrode and the pattern to be inspected are moved across the columnar pattern portions near both ends of the inspection area, an AC inspection signal is supplied from one of the inspection areas of the inspection pattern, and the inspection object is supplied from the other. A circuit pattern inspection method, wherein the inspection target pattern is inspected by detecting a signal from the pattern.
前記回路パターンは、基板上に所定幅でほぼ棒状に形成された導電性パターンであることを特徴とする請求項16に記載の回路パターン検査方法。  17. The circuit pattern inspection method according to claim 16, wherein the circuit pattern is a conductive pattern formed in a substantially bar shape with a predetermined width on a substrate. 前記検出電極の幅は、少なくとも検査対象パターンの2列分の幅とし、検査信号を供給している導電パターンに隣接する導電パターンからの信号を検出して隣接する導電パターン間の短絡を検出可能とすることを特徴とする請求項17に記載の回路パターン検査方法。  The width of the detection electrode is at least two rows of the pattern to be inspected, and a signal from the conductive pattern adjacent to the conductive pattern supplying the inspection signal can be detected to detect a short circuit between the adjacent conductive patterns. The circuit pattern inspection method according to claim 17, wherein: 前記検出電極から検査信号を供給している導電パターンからの信号を前記検出手段の第一の検出電極で検出して導電パターン間の断線を検出可能とし、前記検出電極から検査信号を供給している導電パターンに隣接する導電パターンからの信号を前記検出手段の第二の検出電極で検出して隣接する導電パターン間の短絡を検査可能とすることを特徴とする請求項16又は請求項17に記載の回路パターン検査方法。  A signal from the conductive pattern supplying an inspection signal from the detection electrode is detected by the first detection electrode of the detection means to enable disconnection between the conductive patterns, and an inspection signal is supplied from the detection electrode. 18. A signal from a conductive pattern adjacent to a conductive pattern which is present is detected by a second detection electrode of the detection means, and a short circuit between the adjacent conductive patterns can be inspected. The described circuit pattern inspection method. 前記検出手段で非検出となる検出手段位置から導電パターンの概略断線箇所位置を検出することを特徴とする請求項16乃至請求項19のいずれかに記載の回路パターン検査方法。  20. The circuit pattern inspection method according to claim 16, wherein a position of the roughly disconnected portion of the conductive pattern is detected from a position of the detection unit which is not detected by the detection unit. 更に、前記検出手段による検出結果が所定範囲にある場合に検査対象パターンの正常と、検出結果が所定の範囲より外れる場合に検査対象パターンの不良と判断することを特徴とする請求項16乃至請求項20のいずれかに記載の回路パターン検査方法。  17. The method according to claim 16, further comprising: judging that the pattern to be inspected is normal when the result of detection by the detecting means is within a predetermined range, and that the pattern to be inspected is defective when the result of detection is out of the predetermined range. Item 21. The circuit pattern inspection method according to any one of Items 20 to 20. 前記判断手段が不良と判断した検査対象パターン位置を識別して保持し、前記識別した不良と判断した検査対象パターンの両端部に前記供給手段の供給電極と前記検出手段の検出電極を移動させ、前記供給電極又は前記検出電極のいずれか一方を他方に向かってパターンに沿って移動させ、前記検出手段の検出結果に基づき変化位置を検査対象パターンの不良位置とすることを特徴とする請求項21に記載の回路パターン検査方法。  The determination unit identifies and holds the position of the inspection target pattern determined to be defective, and moves the supply electrode of the supply unit and the detection electrode of the detection unit to both ends of the inspection target pattern determined to be defective. 22. The method according to claim 21, wherein one of the supply electrode and the detection electrode is moved along the pattern toward the other, and a change position is determined as a defective position of the inspection target pattern based on a detection result of the detection unit. The circuit pattern inspection method according to 1. 前記供給手段の供給電極又は前記検出手段の検出電極のいずれか他方を検査対象パターンに接触させることを特徴とする請求項22に記載の回路パターン検査方法。  23. The circuit pattern inspection method according to claim 22, wherein one of the supply electrode of the supply unit and the detection electrode of the detection unit is brought into contact with a pattern to be inspected. 前記供給電極又は前記検出電極のいずれか一方に備えられた撮像手段を他方に向かってパターンに沿って移動させ、検査対象パターンの不良位置の不良状態を撮像することを特徴とする請求項22又は請求項23に記載の回路パターン検査方法。  23. The imaging device according to claim 22, wherein an imaging unit provided on one of the supply electrode and the detection electrode is moved along the pattern toward the other, and an image of a defective state at a defective position of the pattern to be inspected is taken. A circuit pattern inspection method according to claim 23. 前記検出電極あるいは前記供給電極近傍位置に前記検出電極あるいは供給電極と共に移動する変位計を配置し、前記変位計の検出結果に従って前記検出電極あるいは供給電極と検査対象との離間距離がほぼ一定になるように前記検査対象に直交する方向に位置決め制御して前記検出電極の結果を一定化することを特徴とする請求項16乃至請求項24のいずれかに記載の回路パターン検査方法。  A displacement meter that moves together with the detection electrode or the supply electrode is disposed at a position near the detection electrode or the supply electrode, and a separation distance between the detection electrode or the supply electrode and the test object becomes substantially constant according to a detection result of the displacement meter. 25. The circuit pattern inspection method according to claim 16, wherein the positioning control is performed in a direction orthogonal to the inspection object to stabilize the result of the detection electrode. 前記検査対象パターン複数ピッチ間の前記変位計の検出結果の平均変位を前記検出電極あるいは前記供給電極と検査対象との離間距離として前記検査対象との位置決め制御をすることを特徴とする請求項25に記載の回路パターン検査方法。  26. The positioning control of the inspection object, wherein an average displacement of the detection result of the displacement meter between the plurality of inspection object pattern pitches is set as a separation distance between the detection electrode or the supply electrode and the inspection object. The circuit pattern inspection method according to 1.
JP2003436043A 2002-11-30 2003-11-28 Circuit pattern inspection apparatus and circuit pattern inspection method Expired - Fee Related JP3978178B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
TW92133778A TWI247904B (en) 2002-11-30 2003-11-28 Circuit pattern inspection device and circuit pattern inspection method
JP2003436043A JP3978178B2 (en) 2002-11-30 2003-11-28 Circuit pattern inspection apparatus and circuit pattern inspection method
AU2003302525A AU2003302525A1 (en) 2002-11-30 2003-11-28 Circuit pattern inspection device and circuit pattern inspection method
KR1020057009601A KR101013243B1 (en) 2002-11-30 2003-11-28 Circuit pattern inspection device and circuit pattern inspection method
PCT/JP2003/015290 WO2004051290A1 (en) 2002-11-30 2003-11-28 Circuit pattern inspection device and circuit pattern inspection method
CN200380104631.8A CN1720458B (en) 2002-11-30 2003-11-28 Circuit pattern inspection device and circuit pattern inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002382813 2002-11-30
JP2003436043A JP3978178B2 (en) 2002-11-30 2003-11-28 Circuit pattern inspection apparatus and circuit pattern inspection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006135526A Division JP4008949B2 (en) 2002-11-30 2006-05-15 Circuit pattern inspection apparatus and circuit pattern inspection method

Publications (2)

Publication Number Publication Date
JP2004191381A true JP2004191381A (en) 2004-07-08
JP3978178B2 JP3978178B2 (en) 2007-09-19

Family

ID=32473767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003436043A Expired - Fee Related JP3978178B2 (en) 2002-11-30 2003-11-28 Circuit pattern inspection apparatus and circuit pattern inspection method

Country Status (5)

Country Link
JP (1) JP3978178B2 (en)
KR (1) KR101013243B1 (en)
AU (1) AU2003302525A1 (en)
TW (1) TWI247904B (en)
WO (1) WO2004051290A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078057A1 (en) * 2005-01-19 2006-07-27 Oht Inc. Inspection device, inspection method, and inspection device sensor
JP2006284545A (en) * 2005-04-04 2006-10-19 Quanta Display Inc Apparatus and method for inspecting and repairing circuit defect
WO2006112543A1 (en) * 2005-04-19 2006-10-26 Oht Inc. Inspection device and conductive pattern inspection method
JP2007298422A (en) * 2006-04-28 2007-11-15 Nidec-Read Corp Board inspection system and board inspection method
JP2008002993A (en) * 2006-06-23 2008-01-10 Oht Inc Tool for correcting sensor part position of circuit pattern inspection device
JP2008026320A (en) * 2006-07-20 2008-02-07 Microinspection Inc Noncontact single side probe, and apparatus and method for testing breakage of wire and short circuit of pattern electrode using the same
JP2008076187A (en) * 2006-09-20 2008-04-03 Oht Inc Circuit pattern inspection device
JP2008249522A (en) * 2007-03-30 2008-10-16 Aisin Seiki Co Ltd Glass breakage detection apparatus
CN100538379C (en) * 2005-11-29 2009-09-09 日本麦可罗尼克斯股份有限公司 Sensor base plate and use its inspection method and device
JP2011033542A (en) * 2009-08-04 2011-02-17 Oht Inc Circuit pattern inspection apparatus
JP2011038962A (en) * 2009-08-17 2011-02-24 Efukamu:Kk Apparatus and method for inspection of conductive pattern
KR101175384B1 (en) * 2005-01-19 2012-08-20 오에이치티 가부시끼가이샤 Circuit pattern inspection device, method thereof and computer readable recording medium storing program therein
US8598896B2 (en) 2009-12-15 2013-12-03 Japan Display West Inc. Electrostatic capacitance-type input device, method of testing electrostatic capacitance-type input device, and driving device for electrostatic capacitance-type input device
JP5417651B1 (en) * 2013-01-08 2014-02-19 オー・エイチ・ティー株式会社 Circuit pattern inspection device
CN107567199A (en) * 2016-06-30 2018-01-09 Oht株式会社 Non-contact type circuit pattern checks prosthetic device
JP2018009976A (en) * 2016-06-30 2018-01-18 オー・エイチ・ティー株式会社 Non-contact type circuit pattern inspection/repair device
TWI636264B (en) * 2016-06-01 2018-09-21 Oht股份有限公司 Non-contact substrate inspection device and inspection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305111B2 (en) * 2011-01-21 2013-10-02 オー・エイチ・ティー株式会社 Circuit pattern inspection device
JP5432213B2 (en) * 2011-05-20 2014-03-05 株式会社ユニオンアロー・テクノロジー Pattern inspection device
JP5865734B2 (en) * 2012-03-01 2016-02-17 株式会社Screenホールディングス Area classification apparatus, program therefor, board inspection apparatus, and area classification method
JP6311223B2 (en) * 2013-06-07 2018-04-18 日本電産リード株式会社 Inspection device, calibration method of inspection device, and inspection method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302954A (en) * 1992-04-28 1993-11-16 Matsushita Electric Ind Co Ltd Electric inspection apparatus for printed wiring board
JPH05333357A (en) * 1992-05-29 1993-12-17 Idemitsu Kosan Co Ltd Method and device for inspecting stripe electrode pattern of liquid crystal display element
JPH07146323A (en) * 1993-11-22 1995-06-06 Inter Tec:Kk Method and device for inspecting glass substrate for liquid crystal display
JPH0854448A (en) * 1994-08-15 1996-02-27 Okano Hightech Kk Inspecting apparatus for electronic circuit board by scanning with laser light
JPH10206485A (en) * 1997-01-21 1998-08-07 Hioki Ee Corp Substrate inspecting apparatus
JP2000155149A (en) * 1998-11-19 2000-06-06 Okano Hightech Kk Device, method, jig for inspecting circuit board continuity, and recording medium
JP2000221227A (en) * 1999-01-30 2000-08-11 Koperu Denshi Kk Apparatus and method for inspecting conductive pattern
JP2001084905A (en) * 1999-09-14 2001-03-30 Dainippon Printing Co Ltd Inspection device for electrode and method therefor
JP2002365325A (en) * 2001-06-11 2002-12-18 Oht Inc Circuit pattern inspection device, circuit pattern inspection method and storage medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302954A (en) * 1992-04-28 1993-11-16 Matsushita Electric Ind Co Ltd Electric inspection apparatus for printed wiring board
JPH05333357A (en) * 1992-05-29 1993-12-17 Idemitsu Kosan Co Ltd Method and device for inspecting stripe electrode pattern of liquid crystal display element
JPH07146323A (en) * 1993-11-22 1995-06-06 Inter Tec:Kk Method and device for inspecting glass substrate for liquid crystal display
JPH0854448A (en) * 1994-08-15 1996-02-27 Okano Hightech Kk Inspecting apparatus for electronic circuit board by scanning with laser light
JPH10206485A (en) * 1997-01-21 1998-08-07 Hioki Ee Corp Substrate inspecting apparatus
JP2000155149A (en) * 1998-11-19 2000-06-06 Okano Hightech Kk Device, method, jig for inspecting circuit board continuity, and recording medium
JP2000221227A (en) * 1999-01-30 2000-08-11 Koperu Denshi Kk Apparatus and method for inspecting conductive pattern
JP2001084905A (en) * 1999-09-14 2001-03-30 Dainippon Printing Co Ltd Inspection device for electrode and method therefor
JP2002365325A (en) * 2001-06-11 2002-12-18 Oht Inc Circuit pattern inspection device, circuit pattern inspection method and storage medium

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196587B1 (en) 2005-01-19 2012-11-02 오에이치티 가부시끼가이샤 Inspection device, inspection method, and inspection device sensor
KR101175384B1 (en) * 2005-01-19 2012-08-20 오에이치티 가부시끼가이샤 Circuit pattern inspection device, method thereof and computer readable recording medium storing program therein
WO2006078057A1 (en) * 2005-01-19 2006-07-27 Oht Inc. Inspection device, inspection method, and inspection device sensor
TWI407126B (en) * 2005-01-19 2013-09-01 Oht Inc Circuit pattern checking device and method thereof
JP2006284545A (en) * 2005-04-04 2006-10-19 Quanta Display Inc Apparatus and method for inspecting and repairing circuit defect
WO2006112543A1 (en) * 2005-04-19 2006-10-26 Oht Inc. Inspection device and conductive pattern inspection method
CN100538379C (en) * 2005-11-29 2009-09-09 日本麦可罗尼克斯股份有限公司 Sensor base plate and use its inspection method and device
JP2007298422A (en) * 2006-04-28 2007-11-15 Nidec-Read Corp Board inspection system and board inspection method
JP2008002993A (en) * 2006-06-23 2008-01-10 Oht Inc Tool for correcting sensor part position of circuit pattern inspection device
JP2008026320A (en) * 2006-07-20 2008-02-07 Microinspection Inc Noncontact single side probe, and apparatus and method for testing breakage of wire and short circuit of pattern electrode using the same
JP4634353B2 (en) * 2006-09-20 2011-02-16 オー・エイチ・ティー株式会社 Circuit pattern inspection device
JP2008076187A (en) * 2006-09-20 2008-04-03 Oht Inc Circuit pattern inspection device
JP2008249522A (en) * 2007-03-30 2008-10-16 Aisin Seiki Co Ltd Glass breakage detection apparatus
JP2011033542A (en) * 2009-08-04 2011-02-17 Oht Inc Circuit pattern inspection apparatus
TWI401452B (en) * 2009-08-04 2013-07-11 Oht Inc Circuit pattern inspection device and inspection method
JP4644745B2 (en) * 2009-08-04 2011-03-02 オー・エイチ・ティー株式会社 Circuit pattern inspection device
KR101276970B1 (en) 2009-08-04 2013-06-19 오에이치티 가부시끼가이샤 Circuit pattern inspection device and method thereof
JP4723664B2 (en) * 2009-08-17 2011-07-13 株式会社エフカム Conductive pattern inspection apparatus and inspection method
CN102472788A (en) * 2009-08-17 2012-05-23 Fcom株式会社 Electrical conduction pattern inspection apparatus and inspection method
WO2011021567A1 (en) * 2009-08-17 2011-02-24 株式会社エフカム Electrical conduction pattern inspection apparatus and inspection method
JP2011038962A (en) * 2009-08-17 2011-02-24 Efukamu:Kk Apparatus and method for inspection of conductive pattern
US8598896B2 (en) 2009-12-15 2013-12-03 Japan Display West Inc. Electrostatic capacitance-type input device, method of testing electrostatic capacitance-type input device, and driving device for electrostatic capacitance-type input device
JP5417651B1 (en) * 2013-01-08 2014-02-19 オー・エイチ・ティー株式会社 Circuit pattern inspection device
TWI636264B (en) * 2016-06-01 2018-09-21 Oht股份有限公司 Non-contact substrate inspection device and inspection method
CN107567199A (en) * 2016-06-30 2018-01-09 Oht株式会社 Non-contact type circuit pattern checks prosthetic device
JP2018009976A (en) * 2016-06-30 2018-01-18 オー・エイチ・ティー株式会社 Non-contact type circuit pattern inspection/repair device
TWI651796B (en) * 2016-06-30 2019-02-21 Oht股份有限公司 Non-contact type circuit pattern inspection and repair device
CN107567199B (en) * 2016-06-30 2020-01-07 Oht株式会社 Non-contact circuit pattern inspection and repair device

Also Published As

Publication number Publication date
JP3978178B2 (en) 2007-09-19
AU2003302525A1 (en) 2004-06-23
TW200417742A (en) 2004-09-16
TWI247904B (en) 2006-01-21
WO2004051290A1 (en) 2004-06-17
KR101013243B1 (en) 2011-02-09
KR20050084001A (en) 2005-08-26

Similar Documents

Publication Publication Date Title
JP3978178B2 (en) Circuit pattern inspection apparatus and circuit pattern inspection method
JP2006300665A (en) Inspection device, and conductive pattern inspection method
US20060043153A1 (en) Circuit pattern inspection device and circuit pattern inspection method
KR100283834B1 (en) Bonding method of semiconductor chip and its device
KR101633514B1 (en) Circuit pattern inspection device and circuit pattern inspection method thereof
TWI474012B (en) Detecting device of conductive pattern and detecting method
JP4008949B2 (en) Circuit pattern inspection apparatus and circuit pattern inspection method
JP2004184385A (en) Circuit pattern inspection device and pattern inspection method
TWI407126B (en) Circuit pattern checking device and method thereof
JP2005208058A (en) Circuit pattern inspection device and circuit pattern inspection method
JP2003344474A (en) Inspection device and inspection method
JP4394113B2 (en) Circuit pattern inspection apparatus and circuit pattern inspection method
JP2008014918A (en) Circuit pattern inspecting device and circuit pattern inspection method
JP2006128452A (en) Probe card and prober, process for fabricating semiconductor device
JPH01282829A (en) Wafer prober
JPH0837211A (en) Testing equipment of semiconductor device
JPH033941B2 (en)
JPH0731130B2 (en) Recognition device
KR100982830B1 (en) Short inspecting apparatus and short inspecting method for circuit substrate pattern
JP2979917B2 (en) IC chip positioning method
JP2008177231A (en) Method and apparatus for automatic probe inspection
JP2000097983A (en) Method for inspecting wiring part in wiring integrated type suspension
JPH09222454A (en) Method and apparatus for inspecting soldered joint of electronic part
JPH0972947A (en) Method and apparatus for inspecting soldered joint of electronic part
JP2007234856A (en) Electronic component mounting apparatus and mounting state inspecting method therein

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051129

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061005

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061106

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3978178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

S805 Written request for registration of cancellation of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees