JP2004190021A - 有機高分子シロキサン及びその用途 - Google Patents

有機高分子シロキサン及びその用途 Download PDF

Info

Publication number
JP2004190021A
JP2004190021A JP2003397726A JP2003397726A JP2004190021A JP 2004190021 A JP2004190021 A JP 2004190021A JP 2003397726 A JP2003397726 A JP 2003397726A JP 2003397726 A JP2003397726 A JP 2003397726A JP 2004190021 A JP2004190021 A JP 2004190021A
Authority
JP
Japan
Prior art keywords
group
organic polymer
sulfonic acid
catalyst
polymer siloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003397726A
Other languages
English (en)
Other versions
JP4571393B2 (ja
Inventor
Hidekazu Ookubo
英主 大久保
Tsukasa Haganuma
司 芳賀沼
Toshihiro Takai
敏浩 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003397726A priority Critical patent/JP4571393B2/ja
Publication of JP2004190021A publication Critical patent/JP2004190021A/ja
Application granted granted Critical
Publication of JP4571393B2 publication Critical patent/JP4571393B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicon Polymers (AREA)

Abstract

【課題】細孔径が20〜500Åであるメソポーラス部の細孔の存在割合が、特定の値以下である新規なスルホン酸基含有有機高分子シロキサンを提供し、有機高分子シロキサンを固体酸触媒として用いた場合に、反応にともなう副生成物がメソポーラス部に堆積し、触媒活性が失活するという問題を解決する
【解決手段】細孔径9〜500Åの細孔容積に対し、細孔径20〜500Åのメソポーラス部の細孔容積の存在割合が0〜20%であるスルホン基含有炭化水素基を有する新規な有機高分子シロキサン。有機高分子シロキサンは、寿命が著しく向上し、さらに反応器の流路閉塞など生じることのない、プロセス上、安全かつ経済的な触媒として種々の化合物の製造に用いる事ができる。
【選択図】なし

Description

本発明は、有機高分子シロキサンに関し、詳しくは固体酸触媒として有用な有機高分子シロキサンに関し、更に詳しくはスルホン酸基含有炭化水素基を有する有機高分子シロキサンに関する。
スルホン酸基を有する強酸性イオン交換体は種々の化学合成において固体酸触媒として広く利用されている。具体的には、(1)アルコール類の分子内脱水によるオレフィンや環状エーテルの合成、アルコール類同士の分子間脱水によるエーテル類の合成、アルコール類とカルボン酸類の分子間脱水によるエステル類の合成、アルデヒド類もしくはケトン類と芳香族類との分子間脱水によるアルキル芳香族化合物の合成といった脱水縮合反応、(2)オレフィン類の水和によるアルコール類の合成といった水和反応、(3)芳香族類とオレフィン類との反応によるアルキル芳香族の合成といったアルキル化反応のように種々の反応において固体酸触媒として用いられている。ほとんどの場合使用されるカチオン交換体はポリスチレン骨格を有し、フェニルスルホン酸基を有する一般的に陽イオン交換樹脂と呼ばれるものである。陽イオン交換樹脂は耐熱性が低く、一般的に100〜130℃が使用の上限とされている。また、著しい膨潤性による破壊、機械的強度の脆さ等の不利な点を有している。これに対して無機ポリマー系の場合、強固な構造、非膨潤性、高い温度に対する安定性を有しており、かかる欠点の大部分を避けることが可能である。無機ポリマー系イオン交換体の例としてスルホン酸基含有炭化水素基を有する有機高分子シロキサンが挙げられる。スルホン酸基含有炭化水素基を有する有機高分子シロキサンは特開昭59−20325号、特開昭61−272237号、特開平6−207021号、特開平5−271243号、J.Mol.Catal.,43,41(1987)に、いずれも高い耐熱性、物理的強度の高さを有していることが記載されている。これらの有機高分子シロキサンはいずれも多孔質物質であり、高表面積を有し、500Å以上のマクロポーラス部、20〜500Åのメソポーラス部、20Å以下のミクロポーラス部を有しているが細孔の大部分はメソポーラス部に存在している。そのため上記特許記載の有機高分子シロキサンを固体酸触媒として用いた場合、メソポーラス部において反応にともなう副生成物が触媒上に堆積して、最終的には細孔が閉塞することによって触媒活性が失活するという問題を有している。
スルホン酸基を有する強酸性イオン交換体の用途の一つとして、固体酸触媒としてビスフェノールA[2,2−ビス(4−ヒドロキシフェニル)プロパン]の合成に用いることが可能である。ビスフェノールAは通常固体酸触媒にアセトンとモル比にして8〜15倍の過剰のフェノールを通液する、いわゆる固定床流通反応の形態で連続的に製造されている。ビスフェノールA合成用触媒としてはスルホン酸点の一部を2−(4−ピリジル)エタンチオール(特開昭57−035533号)、N,N,N−トリメチル−3−メルカプトプロピルアンモニウム(特開平08−089819号)N,N−ジメチル−3−メルカプトプロピルアンモニウム(特開平08−187436号)、1−(5−メルカプトペンチル)−4−(2−メルカプトエチル)ピペリジン(特開平10−211434号)等のメルカプトアルキル基を有する含窒素化合物により修飾した触媒が知られている。
また、特開平8−208545に記載のスルホン酸基含有炭化水素とメルカプトアルキル基含有炭化水素を共にケイ素骨格に固定化した有機高分子シロキサンは、高い触媒活性を有することが記載されている。しかしながら、この有機高分子シロキサンを固定床流通反応で用いた場合、特開2000−297056、特開2000−290208、特開2001−212465に記載されているように、触媒活性が連続的に低下する。上記特許明細書には、原料であるアセトンとフェノールへの水の添加、スルホン酸基含有炭化水素基とメルカプト基含有炭化水素基の合計量を有機高分子シロキサンの単位比表面積(1m2/g)あたり0.3〜2.0μmol/m2の範囲に限定するといった方法を用いることで劣化の抑制が可能であることが示されている。しかし、反応時間の経過による連続的な触媒活性の低下という問題は解決されていない。そのため、そのような触媒をそのまま固定床に充填すると、使用とともに触媒活性が低下し満足な生産性の維持が困難になる。また、媒触活性が低下すると触媒の入れ替え作業が必要となるが、連続的な触媒活性の低下が大きい触媒を用いると触媒の使用期間が短くなり、触媒コストが増大し経済的な損失が大きくなる。さらに、入れ替えのためには一定期間生産を停止しなければならない。以上のような問題のため触媒活性が連続的に低下する触媒を用いることは、工業的に不利である。
特開平6−207021号公報 特開平5−271243号公報 特開2001−212465号公報
本発明は、細孔径が20〜500Åであるメソポーラス部の細孔の存在割合が、特定の値以下である新規なスルホン酸基含有有機高分子シロキサンを提供とすることを目的としている。さらに本発明は、有機高分子シロキサンを固体酸触媒として用いた場合に、反応にともなう副生成物がメソポーラス部において堆積し、触媒活性が失活するという問題を解決することを課題としている。
本発明者らは、かかる問題点を解決するため鋭意研究を行い、有機高分子シロキサンに存在する細孔のうち、細孔径が20〜500Åであるものの存在比が特定の範囲にあると、触媒活性の失活を抑制できることを見出した。すなわち窒素ガス吸着法により測定される細孔径が9〜500Åである細孔の全容積に対し、細孔径20〜500Åのメソポーラス細孔が占める割合が、容積比で0〜20%であると触媒活性の失活を抑制できることを見出し、本発明を完成するに至った。さらにこの有機高分子シロキサンのスルホン酸の一部をメルカプト基を有する含窒素化合物により修飾しビスフェノールA合成反応に使用したところ、驚くべきことに触媒寿命が大幅に向上することを見出した。
本発明の方法により、細孔径9〜500Åの細孔容積に対し、細孔径20〜500Åのメソポーラス部の細孔容積の存在割合が0〜20%であるスルホン基含有炭化水素基を有する有機高分子シロキサンを調製することで、触媒寿命が著しく向上し、さらに反応器の流路閉塞など生じることのない、プロセス上、安全かつ経済的な触媒として工業上重要であるビスフェノールA等種々の化合物の製造をプロセス上および経済上著しく優位に行うことができる。
本発明におけるスルホン酸基含有炭化水素基を有する有機高分子シロキサンとは、特開昭59−20325号、特開昭61−272237号、特開平6−207021号、特開平5−271243、J.Mol.Cata1.,43,41(1987)に記載されているシロキサン結合からなるシリカマトリックス中に、部分的にスルホン酸基含有炭化水素基が直接シリカマトリックス中のケイ素原子と炭素−ケイ素結合した構造を有する有機高分子シロキサンである。
本発明のスルホン酸基を有する有機高分子シロキサンは、種々の化学合成において固体酸触媒として用いることができるが、とりわけ次の反応に好適に用いられる。
(1)アルコール類の分子内脱水によるオレフィンや環状エーテルの合成、アルコール類同士の分子間脱水によるエーテル類の合成、アルコール類とカルボン酸類の分子間脱水によるエステル類の合成、アルデヒド類もしくはケトン類と芳香族類との分子間脱水によるアルキル芳香族化合物の合成といった脱水縮合反応;
(2)オレフィン類の水和によるアルコール類の合成といった水和反応;(3)芳香族類とオレフィン類との反応によるアルキル芳香族の合成といったアルキル化反応。
とりわけアルデヒド類もしくはケトン類と芳香族類との分子間脱水によるアルキル芳香族化合物の合成反応に好適に用いることができ、とりわけビスフェノール類の合成に好適に用いることが出来る。例えばアセトンとフェノールからビスフェノールAを合成する反応、ホルムアルデヒドとフェノールからビスフェノールFを合成する反応等が例示される。
スルホン酸基を有する炭化水素基は、少なくとも1個のスルホン酸基(−SO3H)を有する炭化水素基であれば、いかなる炭化水素基であっても本発明に使用することが可能である。スルホン酸基を有する炭化水素としては、好ましくはスルホン酸基含有炭化水素基を少なくとも1個有する、炭素数1以上20以下の炭化水素基があげられる。より好ましくは炭素数6以上20以下、更に好ましくは炭素数6以上15以下の、少なくとも1個のスルホン酸基を有する置換ないしは無置換の芳香族炭化水素基(芳香族基に直接スルホン酸基が置換された基でも、芳香族基に置換された炭化水素基にスルホン酸基が置換された基でもよい)、また好ましくは少なくとも1個のスルホン酸基を有する炭素数1以上15以下、更に好ましくは炭素数1以上10以下の置換ないしは無置換の脂肪族および脂環式炭化水素基よりなる群から選ばれた少なくとも1種の炭化水素基があげられる。
このようなスルホン酸基含有炭化水素基を有する炭化水素基の例としては、少なくとも1個のスルホン酸基により核置換されたフェニル基、トリル基、ナフチル基、メチルナフチル基等の芳香族基、ベンジル基、ナフチルメチル基等の芳香族置換アルキル基等、少なくとも1個のスルホン酸基で置換された、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、直鎖または分枝のペンチル基、直鎖または分枝のヘキシル基、直鎖または分枝のヘプチル基、直鎖または分枝のオクチル基、シクロヘキシル基、メチルシクロヘキシル基、エチルシクロヘキシル基等があげられる。さらにこれらの芳香族炭化水素基、または飽和・不飽和の脂肪族炭化水素(脂環式化合物を含む)基は、スルホン酸基の他にハロゲン原子、アルコキシ基、ニトロ基、ヒドロキシ基等の置換基を有する炭化水素基であってもよい。
このような有機高分子シロキサンの調製法としては以下の方法で調製が可能である。実施しやすい調製方法として、例えば、(1)スルホン酸基含有炭化水素基を有するアルコキシシランとテトラアルコキシシランとを任意の割合で混合し、加水分解、共縮合する調製法、(2)水溶性のスルホン酸基含有炭化水素基を有するアルコキシシランの加水分解物とテトラアルコキシシランとを任意の割合で混合し加水分解させて共縮合する調製法、といったいわゆるアルコキシシランのゾル−ゲル法による調製法や、(3)スルホン酸基含有炭化水素基を有するアルコキシシランを有機高分子シロキサンに存在するシラノール基にシリル化しスルホン酸基を固定する、いわゆるシリル化による調製法が知られている。
これらの有機高分子シロキサンは多孔性物質であり、9〜500Åの細孔の比表面積は500〜1500m2/gと非常に高く、一般に表面積の大部分はメソポーラス部(20〜500Å)が占めている。本発明で重要なのは、この多孔性物質である有機高分子シロキサンの細孔径9〜500Åの細孔容積に対し、細孔径20〜500Å(メソポーラス部)の細孔容積の存在割合を0〜20%とすることで、メルカプト基を有する含窒素化合物により修飾した有機高分子シロキサンの触媒寿命が大幅に向上することを見出したことである。細孔径20〜500Å(メソポーラス部)の細孔容積の存在割合を減少させる方法として以下の方法で調製することが可能であるが、本発明で用いる有機高分子シロキサンはこれらの調製法のみに限定されることはない。
実施しやすい調製法としては、スルホン酸基含有炭化水素基を調製する際のスルホン化の収率を向上させ、さらに「テトラエトキシシランのモル量」と「スルホン酸基含有炭化水素基を有するアルコキシシランのモル量」との比を調整することにより調製が可能である。具体的に説明すると、フェニルスルホン酸を有するアルコキシシランの合成において、原料であるフェニルトリクロロシランに対し、スルホン化剤の無水硫酸を2.5当量と過剰に加え、反応温度を上げスルホン化する。さらにアルコールによりアルコキシ化したものをゾル−ゲル調製の原料として用いる。アルコールとしては特に限定されることがないが、好ましくは炭素数1〜5のアルキル基を有する直鎖飽和炭素を有するアルコールがあげられる。有機高分子シロキサンのゾル−ゲル調製法としては、上記したスルホン酸基含有炭化水素基を有するアルコキシシランとテトラエトキシシランを混合し、エタノール等を用い均一な混合溶媒とする。この際、「スルホン酸基含有炭化水素基を有するアルコキシシランのモル量」:「テトラエトキシシランのモル量」が1:3〜7であることが重要である。これに加水分解基量に対して1当量の水を加えた後、加熱攪拌し、酸性条件下で濃縮する。
得られた高粘度の液体は一般にシリカゾルと呼ばれるものである。上記したシリカゾルに、加水分解基量に対して過剰の水とアンモニア水等を加え、塩基性条件下でゲル化させる。また、この時必要であるならば、加熱し長時間熟成させることもできる。得られたゲルは、溶媒を留去することにより単離できる。このゲルはスルホン酸がアンモニウム塩型であるため、固体酸触媒として用いるために酸処理により酸型に戻す必要がある。
本発明で使用するメルカプト基を有する含窒素化合物としては、メルカプトアルキル基を有するピリジン化合物、メルカプトアルキル基を有するテトラアルキルアンモニウムカチオン、メルカプトアルキル基を有するトリアルキルアンモニウム化合物等がある。
メルカプトアルキル基を有するピリジン化合物とは、ピリジン環にメルカプトアルキル基が結合した含窒素化合物であり、例えば下記一般式[1]で表される。
Figure 2004190021
(式中aは1〜6の整数である)
このような含窒素化合物としては、具体的には例えば、4-ピリジンメタンチオール、3-ピリジルメタンチオール、2-ピリジルメタンチオール、2-(4-ピリジル)エタンチオール、2-(3-ピリジル)エタンチオール、2-(2-ピリジル)エタンチオール、3-(4-ピリジル)プロパンチオール、3-(2-ピリジル)プロパンチオール等があげられる。
本発明で使用するメルカプトアルキル基を有するテトラアルキルアンモニウムカチオンとは、アミンの窒素原子にメルカプトアルキル基以外に三つのアルキル基が結合した含窒素化合物(メルカプトアルキル基含有テトラアルキルアンモニウム化合物)から導かれるカチオンである。
このような含窒素化合物としては、例えば下記一般式[2]で表されるものがある。
Figure 2004190021
(式中のR1・R2・R3は、それぞれ独立に炭素数が1〜10のアルキル基を表し、bは1〜6の整数である)
1の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、、n−ヘプチル基等が挙げられる。これらの中では、メチル基、エチル基、n−プロピル基、n−ブチル基等が好ましい。
上記式[2]のメルカプトアルキル基としては、メルカプトプロピル基が好ましい。このような含窒素化合物としては、具体的には例えば、N,N,N−トリメチル−3−メルカプトプロピルアンモニウム、N,N,N−トリエチル−3−メルカプトプロピルアンモニウム、N,N,N−トリプロピル−3−メルカプトプロピルアンモニウム、N,N,N−トリブチル−3−メルカプトプロピルアンモニウム等があげられる。また、通常これらアンモニウムカチオンは、カウンターアニオンにCl-、Br-等のハロゲンが用いられる。
本発明で使用するメルカプトアルキル基を有するトリアルキルアンモニウム化合物とは、アミンの窒素原子にメルカプトアルキル基以外に二つのアルキル基が結合した含窒素化合物である。
このような含窒素化合物としては、例えば下記一般式[3]で表されるものがある。
Figure 2004190021
[3]

(式中のR4・R5は、それぞれ独立に炭素数が1〜10のアルキル基を表し、cは1〜6の整数である)
1の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基等が挙げられる。これらの中では、メチル基、エチル基、n−プロピル基、n−ブチル基等が好ましい。
メルカプトアルキル基としては、メルカプトプロピル基が好ましい。このような含窒素化合物としては、具体的には例えば、N,N−ジメチル−3−メルカプトプロピルアンモニウム、N,N−ジエチル−3−メルカプトプロピルアンモニウム、N,N−ジプロピル−3−メルカプトプロピルアンモニウム、N,N−ジブチル−3−メルカプトプロピルアンモニウム等があげられる。
メルカプト基を有する含窒素化合物による修飾は、スルホン酸基を有する有機高分子シロキサンとともに溶媒中で混合させることにより行うことができる。溶媒としては、メルカプト基を有する含窒素化合物を溶解させうるものであれば、特に限定されない。反応温度としては常温または加温が採用され、反応時間は特に長時間を必要とせず数分で十分であるが、均一に反応させるため反応混合物は攪拌されていることが好ましい。この反応においては、未修飾有機高分子シロキサン中に含まれるスルホン酸基の一部、通常、1〜95%、好ましくは3〜70%がメルカプトアルキル基に変換されるように行うのがよい。
メルカプトアルキル基で修飾したスルホン酸基含有有機高分子シロキサンを充填した固定床流通式反応装置を用いてビスフェノールAを製造する場合、原料であるアセトンとフェノールのモル比は通常1:3〜15の範囲好ましくは1:5〜10の範囲、また反応温度は通常70℃〜130℃の範囲好ましくは70℃〜100℃の範囲で一般的な条件の下に実施される。固体触媒の酸量は、過剰の塩化ナトリウム水溶液でイオン交換し、遊離した塩酸を定量する事で求められる。またメルカプト量は、塩化ナトリウムで酸点をイオン交換したのち、濾別した触媒を硝酸銀水溶液を用いてメルカプト基と銀メルカプチドを生成させ、遊離した硝酸を定量することにより求めることが可能である。その他にも、ヨウ素による酸化還元滴定により定量可能である。

[実施例]
以下、本発明を実施例、および比較例により具体的に説明する。しかしながら、この実施例は単なる例示であって、本発明はこれらに限定されるものではない。また、実施例において、触媒の寿命を300時間後の劣化率(アセトン転化率において20時間の値と300時間の値との差を20時間の値で除した値)で表わした。また、細孔径9〜500Åの細孔容積に対し、細孔径20〜500Å(メソポーラス部)の細孔容積の存在割合をメソ孔存在割合(20〜500Åの細孔容積の値を、9〜500Åの細孔容積の値で除した値)として表わした。
(1)スルホン酸基含有アルコキシシランの合成
スルホン酸基含有アルコキシシラン1
滴下ロートを取り付けた2口の300mlの丸底フラスコに塩化メチレンを100ml入れ、これにフェニルトリクロロシラン39.1g(0.19mol)を加え、氷冷した。これに無水硫酸37.3g(0.47mol)の塩化メチレン溶液20mlを、1時間かけて滴下した。滴下後外温を60℃にし、還流下2時間反応を行いスルホン化反応を行った。次に、外温60℃でエタノール46.0gを塩化水素を除きながら1時間かけて滴下し、ついで外温を100℃にし、塩化メチレンを留去した。さらに、エタノール46.0gを滴下し、外温100℃で2時間還流してエトキシ化反応を行った。得られた不純物を含むスルホン酸基含有エトキシシランのエタノール溶液162.7gをスルホン酸基含有アルコキシシラン1とし、スルホン酸基含有炭化水素基を有する有機高分子シロキサンのゾル−ゲル調製におけるスルホン酸成分の原料として用いた。この際、スルホン酸基含有アルコキシシラン1とテトラエトキシシランを任意の割合で混合し、ゾル−ゲル調製によりスルホン酸基含有炭化水素基を有する有機高分子シロキサンを調製し、その固体酸量を測定する。その求めた酸量から得られる、仕込時のスルホン酸基含有アルコキシシラン1の濃度から、スルホン化収率(仕込みフェニルトリクロロシランに対する、生成したスルホン酸基含有エトキシシランの収率)を求めた。スルホン酸基含有アルコキシシラン1でのスルホン化収率は70%であった。
スルホン酸基含有アルコキシシラン2
滴下ロートを取り付けた2口の300mlの丸底フラスコに塩化メチレンを100ml入れ、これにフェニルトリクロロシラン130.0g(0.62mol)を加え、氷冷した。これに無水硫酸50.0g(0.63mol)の塩化メチレン溶液20mlを、1時間かけて滴下した。滴下後、室温で1時間攪拌し、スルホン化反応を行った。次に、外温を100℃にし塩化メチレンを留去した。ついで、外温100℃で無水エタノール114gを塩化水素を除きながら、2時間かけて滴下しエトキシ化反応を行った。得られた不純物を含むフェニルスルホン酸基含有エトキシシランのエタノール溶液214.0gをスルホン酸基含有アルコキシシラン2とし、スルホン酸基含有炭化水素基を有する有機高分子シロキサンのゾル−ゲル調製におけるスルホン酸成分の原料として用いた。この際、スルホン酸基含有アルコキシシラン2とテトラエトキシシランを任意の割合で混合し、ゾル−ゲル調製によりスルホン酸基含有炭化水素基を有する有機高分子シロキサンを調製し、その固体酸量を測定する。その求めた酸量から得られる、スルホン酸基含有アルコキシシラン2の濃度から、スルホン化収率(仕込みフェニルトリクロロシランに対する、生成したスルホン酸基含有エトキシシランの収率)を求めた。スルホン酸基含有アルコキシシラン2でのスルホン化収率は、45%であった。
(2)有機高分子シロキサンの調製
触媒1
攪拌棒を取り付けた2口の1000mlの丸底フラスコに上記したスルホン酸基含有アルコキシシラン1を138.0g(0.11mol)、テトラエトキシシランを119.0g(0.57mol)、エタノール100mlを入れて混合した。これに水24.0gを15分かけて滴下し、60℃で3時間攪拌した。放冷後、水120.0gを1分間かけて滴下し、さらに28%アンモニア水35mlを滴下すると反応液は急速に固形化した。これを室温で4時間放置した後、60℃で3日間熟成させた。熟成後10mmHgの減圧下100℃で溶媒留去し、乾燥固体を得た。ついで2Nの塩酸300mlを加え、室温で30分間攪拌する操作を2回繰り返し、スルホン酸基をH+型にもどした。酸処理後、イオン交換水500mlで洗浄し、これを10mmHgの減圧下100℃で10時間乾燥させた。以上の操作により、スルホン酸基含有炭化水素基を有する有機高分子シロキサン55.1gを得、触媒1とした。この触媒1の固体酸量を測定したところ、1.42meq/gであった。また、窒素ガス吸着法により測定した比表面積は464m2/g、細孔径9〜500Åの細孔容積は0.21cc/g、細孔径20〜500Åでは細孔の存在は認められず、メソ孔存在割合は0%であった。結果を表1に示す。
触媒2
攪拌棒を取り付けた2口の1000mlの丸底フラスコに上記したスルホン酸基含有アルコキシシラン2を42.0g(0.06mol)、テトラエトキシシラン150.0g(0.72mol)、エタノール100mlを入れて混合した。これに水29.0gを15分かけて滴下し、60℃で3時間攪拌した。放冷後、水140.0gを1分間かけて滴下し、さらに28%アンモニア水35mlを滴下すると反応液は急速に固形化した。これを室温で4時間放置した後、60℃で3日間熟成させた。熟成後10mmHgの減圧下100℃で溶媒留去し乾燥固体を得た。ついで2Nの塩酸300mlを加え、室温で30分間攪拌する操作を2回繰り返し、スルホン酸基をH+型にもどした。酸処理後、イオン交換水500mlで洗浄し、これを10mmHgの減圧下100℃で10時間乾燥させスルホン酸基含有炭化水素基を有する有機高分子シロキサン62.0gを得、触媒2とした。この触媒2の固体酸量を測定したところ、0.87meq/gであった。また、窒素ガス吸着法により測定した比表面積は741m2/gであり、細孔径9〜500Åの細孔容積は0.49cc/g、細孔径20〜500Åの細孔容積は0.14cc/gでありメソ孔存在割合は30%であった。結果を表1に示す。
触媒3
J.Mol.Cata1.,43,41(1987)記載の方法にしたがって、スルホン酸基含有炭化水素基を有する有機高分子シロキサンを調製した。攪拌棒を取り付けた2口の1000mlの丸底フラスコに、フェニルトリエトキシシラン72.0g(0.30mol)、テトラエトキシシラン145.6g(0.70mol)、エタノール125mlを入れて混合した。これに0.01Nの塩酸35mlを滴下したのち、混合溶液の体積が120mlとなるまで加熱攪拌した。放冷後、エタノール60mlとシクロヘキサン90mlを加え混合した。ついで、水270gを滴下し、さらにアンモニア水50mlを滴下した。これを室温で4時間攪拌した後、濾別した。ついで水洗し、これを減圧下120℃で乾燥させ、フェニル基を有する有機高分子シロキサン80.0gを得た。
500mlの2口の丸底フラスコに、上記で得たフェニル基を有する有機高分子シロキサン10.0g、モル比でクロロスルホン酸:クロロホルム=1:4の混合溶液200mlを混合し、還流下で3時間スルホン化を行いスルホン酸基含有炭化水素基を有する有機高分子シロキサン8.5gを得、触媒3とした。この触媒3の固体酸量を測定したところ、1.10meq/gであった。また、窒素ガス吸着法により測定した比表面積は772m2/gであり、細孔径9〜500Åの細孔容積は0.21cc/g、細孔径20〜500Åの細孔容積は0.06cc/gでありメソ孔存在割合は30%であった。結果を表1に示す。
触媒4
特開昭59−20325記載の方法にしたがって、スルホン酸基含有炭化水素基を有する有機高分子シロキサンを調製した。ボールミルで2時間粉砕した S2(CH2CH2CH2SiO2/3)2の単位からなるオルガノポリシロキサン8gを、イオン交換水50mlに懸濁させた。懸濁役に35%の過酸化水素水水溶液154gを加え、室温で7時間攪拌した。引き続き固体を濾別し、水1000mlで洗浄し、減圧下120℃で8時間乾燥した。以上の操作によりスルホン酸基含有炭化水素基を有する有機高分子シロキサン8.9gを得、触媒4とした。この触媒4の固体酸量を測定したところ、1.82meq/gであった。また、窒素ガス吸着法により測定した比表面積は747m2/gであり、細孔径9〜500Åの細孔容積は0.46cc/g、細孔径20〜500Åの細孔容積は0.11cc/gでありメソ孔存在割合は24%であった。結果を表1に示す。
Figure 2004190021
(1)メルカプトアルキル基を有するピリジン化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒1を15.0g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。2−(4−ピリジル)エタンチオール塩酸塩9.6mmolを20mlの水に溶解させた溶液を滴下ロートを用い5分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するピリジン化合物で修飾した有機高分子シロキサン15.8gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると、個体酸量は0.73mmol/g、固体メルカプト量は0.70mmol/gであった。すなわちスルホン酸基の49%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たピリジン化合物修飾有機高分子シロキサン8.2g(11cc)を、円筒形反応器(直径1.50cm、長さ15cm)に充填した。この反応器の下側から、モル比が5:1:0.4のフェノール/アセトン/水混合物を、10.5g/hrの速度で触媒中を通過させた。反応温度は100℃とし、20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は58.5%であり、ビスフェノールAの選択率は88.2%であった。 反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は58.5%であり、触媒の劣化はまったく認められなかった。表2に結果を示す。比較例1の触媒の劣化率4%と比較して、実施例1の触媒の劣化率は0%であり、活性低下が大きく抑制されていることがわかる。
(1)メルカプトアルキル基を有するテトラアルキルアンモニウムカチオンによる有機高分子シロキサンの修飾
500mlビーカー中に、上記で得た触媒1を20g、水100mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。N,N,N−トリメチル−3−メルカプトプロピルアンモニウム酢酸塩12.8mmolを、滴下ロートを用い30分かけて滴下した。室温で30分攪拌した後、濾別し得られた触媒をガラス製カラムに充填した。触媒を充填したガラスカラムに、1,4ジオキサン/イオン交換水=1/1の混合溶液を700ml通液し、さらにイオン交換水1500mlをLHSV1hr-1で通液し、溶媒を置換したのち濾別した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するテトラアルキルアンモニウムカチオンで修飾した有機高分子シロキサン21.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると、個体酸量は0.58mmol/g、固体メルカプト量は0.44mmol/gであった。すなわちスルホン酸基の43%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たテトラアンモニウムカチオン修飾有機高分子シロキサン8.2g(11cc)を使用し、実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は44.8%であり、ビスフェノールAの選択率は87.5%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は44.8%であり、触媒の劣化率はまったく認められなかった。表2に結果を示す。比較例2の触媒2の劣化率10%と比較して、実施例2の触媒の劣化率は0%であり、活性低下が大きく抑制されていることがわかる。
(1)メルカプトアルキル基を有するトリアルキルアンモニウム化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒1を20.0g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。3−メルカプトプロピルジメチルアミン12.8mmolを20mlのエタノールに溶解させた溶液を、滴下ロートを用い5分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するトリアルキルアンモニウム化合物で修飾した有機高分子シロキサン21.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は0.70mmol/g、固体メルカプト量は0.71mmol/gであった。すなわちスルホン酸基の50%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たジメチルアミン修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は69.6%であり、ビスフェノールAの選択率は87.5%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は67.0%であり、触媒の劣化率は4%であった。表2に結果を示す。比較例3の触媒2の劣化率15%と比較して、実施例3の触媒の劣化率は4%であり、活性低下が大きく抑制されていることがわかる。
[比較例1]
(1)メルカプトアルキル基を有するピリジン化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒2を11.6g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。2−(4−ピリジル)エタンチオール4.5mmolを20mlのエタノールに溶解させた溶液を、滴下ロートを用い5分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するピリジン化合物で修飾した有機高分子シロキサン11.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は0.53mmol/g、固体メルカプト量は0.40mmol/gであった。すなわちスルホン酸基の43%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たピリジン化合物修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は56.3%であり、ビスフェノールAの選択率は88.3%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は54.1%であり、触媒の劣化率は4%であった。表2に結果を示す。
[比較例2]
(1)メルカプトアルキルを有するテトラアルキルアンモニウムカチオンによる有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒2を17.7g、水200mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。N,N,N−トリメチル−3−メルカプトプロピルアンモニウム酢酸塩水溶液5.2mmolを、滴下ロートを用い30分かけて滴下した。室温で30分攪拌した後、濾別し得られた触媒をガラス製カラムに充填した。触媒を充填したガラスカラムに1,4ジオキサン/イオン交換水=1/1の混合溶液を700ml通液し、さらにイオン交換水1500mlをLHSV1hr-1で通液し、溶媒を置換したのち濾別した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するテトラアルキルアンモニウムカチオンで修飾した有機高分子シロキサン17.8gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は0.51mmol/g、固体メルカプト量は0.26mmol/gであった。すなわちスルホン酸基の34%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たテトラアルキルアンモニウムカチオン修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は56.3%であり、ビスフェノールAの選択率は88.4%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は50.5%であり、触媒の劣化率は10%であった。表2に結果を示す。
[比較例3]
(1)メルカプトアルキル基を有するトリアルキルアンモニウム化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒2を20.0g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。3−メルカプトプロピルジメチルアミン7.4mmolを20mlのエタノールに溶解させた溶液を、滴下ロートを用い5分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するトリアルキルアンモニウム化合物で修飾した有機高分子シロキサン21.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は0.51mmol/g、固体メルカプト量は0.37mmol/gであった。すなわちスルホン酸基の42%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たジメチルアミン修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は58.2%であり、ビスフェノールAの選択率は88.1%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は49.3%であり、触媒の劣化率は15%であった。表2に結果を示す。
[比較例4]
(1)メルカプトアルキル基を有するピリジン化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒3を10.0g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。2−(4−ピリジル)エタンチオール4.9mmolを20mlのエタノールに溶解させた溶液を、滴下ロートを用い5分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するピリジン化合物で修飾した有機高分子シロキサン10.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は0.57mmol/g、固体メルカプト量は0.22mmol/gであった。すなわちスルホン酸基の28%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たピリジン化合物修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は47.9%であり、ビスフェノールAの選択率は82.7%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は40.6%であり、触媒の劣化率は15%であった。表2に結果を示す。
[比較例5]
(1)メルカプトアルキル基を有するピリジン化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒4を10.0g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。2−(4−ピリジル)エタンチオール4.0mmolを20mlのエタノールに溶解させた溶液を滴下ロートを用い20分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するピリジン化合物で修飾した有機高分子シロキサン11.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は1.20mmol/g、固体メルカプト量は0.26mmol/gであった。すなわちスルホン酸基の18%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たピリジン化合物修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は24.1%であり、ビスフェノールAの選択率は82.6%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は21.6%であり、触媒の劣化率は10%であった。表2に結果を示す。
[比較例6]
(1)メルカプトアルキル基を有するピリジン化合物によるイオン交換樹脂の修飾
ビーカー中に、イオン交換水150mlに懸濁させたアンバーリスト31(ローム&ハース社製、交換容量5.0meq/g)21.0gに2−(4−ピリジル)エタンチオール塩酸塩21.0mmolを20mlのイオン交換水に溶解させた溶液を、滴下ロートを用い30分かけて滴下した。室温で60分攪拌した後、濾別しイオン交換水500mlで洗浄した。さらに10mmHgの減圧下、80℃で5時間乾燥し、メルカプトプロピル基含有ピリジン化合物で修飾したイオン交換樹脂22.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると、3.90meq/g、固体メルカプト量は0.77meq/gであった。すなわち、スルホン酸基の17%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たピリジン化合物修飾イオン交換樹脂6.5g(11cc)を実施例1と同様にして、ビスフェノールA合成反応を行った。得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は74.6%であり、ビスフェノールAの選択率は84.9%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は71.2%であり、触媒の劣化率は5%であった。表2に結果を示す。
Figure 2004190021

Claims (8)

  1. 細孔径9〜500Åの細孔容積に対し細孔径20〜500Åのメソポーラス部の細孔容積の存在割合が0〜20%であるスルホン酸基含有炭化水素基を有する有機高分子シロキサン。
  2. 請求項1記載の有機高分子シロキサンからなる触媒。
  3. (1)細孔径9〜500Åの細孔容積に対し細孔径20〜500Åのメソポーラス部の細孔容積の存在割合が0〜20%であり、(2)スルホン酸基の1〜95%がメルカプト基を有する含窒素化合物により修飾されたスルホン酸基含有炭化水素基を有する有機高分子シロキサン触媒。
  4. メルカプト基を有する含窒素化合物が、一般式[1]
    Figure 2004190021

    (式中aは1〜6の整数である)で示される、メルカプトアルキル基を有するピリジン化合物である請求項3記載の有機高分子シロキサン触媒。
  5. メルカプト基を有する含窒素化合物が、一般式[2]
    Figure 2004190021
    (式中のR1・R2・R3は、それぞれ独立に炭素数が1〜10のアルキル基を表し、bは1〜6の整数である)で示される、メルカプトアルキル基を有するテトラアルキルアンモニウムカチオンである請求項3記載の有機高分子シロキサン触媒。
  6. メルカプト基を有する含窒素化合物が、一般式[3]
    Figure 2004190021
    (式中のR4・R5は、それぞれ独立に炭素数が1〜10のアルキル基を表し、cは1〜6の整数である)で示されるメルカプトアルキル基を有するトリアルキルアンモニウム化合物である請求項3記載の有機高分子シロキサン触媒。
  7. 請求項2〜6のいずれかに記載の有機高分子シロキサン触媒の存在下、アルデヒド類またはケトン類と、フェノール性水酸基を有する芳香属化合物を脱水縮合させ、アルキル化芳香族を製造する方法。
  8. 請求項2〜6のいずれかに記載の有機高分子シロキサン触媒の存在下、アセトンとフェノールよりビスフェノールAを製造する方法。


JP2003397726A 2002-11-27 2003-11-27 有機高分子シロキサン及びその用途 Expired - Fee Related JP4571393B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397726A JP4571393B2 (ja) 2002-11-27 2003-11-27 有機高分子シロキサン及びその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002344072 2002-11-27
JP2003397726A JP4571393B2 (ja) 2002-11-27 2003-11-27 有機高分子シロキサン及びその用途

Publications (2)

Publication Number Publication Date
JP2004190021A true JP2004190021A (ja) 2004-07-08
JP4571393B2 JP4571393B2 (ja) 2010-10-27

Family

ID=32774822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397726A Expired - Fee Related JP4571393B2 (ja) 2002-11-27 2003-11-27 有機高分子シロキサン及びその用途

Country Status (1)

Country Link
JP (1) JP4571393B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152263A (ja) * 2004-10-27 2006-06-15 Tokyo Institute Of Technology 有機−無機ハイブリッド型メソポーラス材料、その製造方法及び固体触媒
JP2017515962A (ja) * 2014-05-21 2017-06-15 株式会社ブリヂストン タイヤを製造するためのゴムコンパウンド

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735533A (en) * 1980-08-12 1982-02-26 Mitsubishi Chem Ind Ltd Preparation of bisphenol
JPH06207018A (ja) * 1992-08-06 1994-07-26 Degussa Ag 成形されたオルガノシロキサン重縮合物、その製造方法、その後処理方法、ガス状の有機化合物の吸着、均一触媒の調製および水溶液または有機溶液から金属を吸着させる方法
JPH0889819A (ja) * 1994-09-20 1996-04-09 Mitsubishi Chem Corp イオン交換樹脂
JPH08187436A (ja) * 1994-04-08 1996-07-23 Mitsubishi Chem Corp 変性イオン交換樹脂及びその使用
JPH08208545A (ja) * 1994-07-21 1996-08-13 Mitsui Toatsu Chem Inc ビスフェノールaの製造方法
JPH09110989A (ja) * 1995-09-29 1997-04-28 Degussa Ag 成形したスルホネート基およびメルカプト基を有するオルガノポリシロキサン、その製造方法ならびに該オルガノシロキサンよりなる又はそれを含有する縮合触媒およびビスフェノール−a合成用触媒
JPH10218817A (ja) * 1997-02-04 1998-08-18 Degussa Ag 2,2’−ビス(4−ヒドロキシフェニル)プロパンの選択的製造方法
JPH10225638A (ja) * 1996-12-10 1998-08-25 Mitsui Chem Inc ビスフェノール製造用触媒、その調製方法及びビスフェノールの製造方法
JPH11209472A (ja) * 1998-01-22 1999-08-03 Mitsui Chem Inc スルホン酸基含有有機高分子シロキサンの製造法
JP2000281608A (ja) * 1999-03-29 2000-10-10 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000281607A (ja) * 1999-03-29 2000-10-10 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000290208A (ja) * 1999-04-09 2000-10-17 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000297056A (ja) * 1999-04-09 2000-10-24 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000296337A (ja) * 1999-04-12 2000-10-24 Mitsui Chemicals Inc 有機高分子シロキサン触媒の充填方法
JP2000302715A (ja) * 1999-04-19 2000-10-31 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000319215A (ja) * 1999-05-13 2000-11-21 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000319216A (ja) * 1999-05-14 2000-11-21 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000327611A (ja) * 1999-05-17 2000-11-28 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000344699A (ja) * 1999-06-01 2000-12-12 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2001104794A (ja) * 1999-10-08 2001-04-17 Mitsui Chemicals Inc 有機高分子シロキサン担持触媒
JP2001212465A (ja) * 2000-02-01 2001-08-07 Mitsui Chemicals Inc 有機高分子シロキサン触媒
JP2001233812A (ja) * 2000-02-24 2001-08-28 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2001232209A (ja) * 2000-02-23 2001-08-28 Mitsui Chemicals Inc 有機高分子シロキサン触媒
JP2001247502A (ja) * 2000-03-06 2001-09-11 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2002211917A (ja) * 2000-11-20 2002-07-31 Mitsubishi Chemicals Corp 骨格内に有機基を有するゼオライト
JP2002219365A (ja) * 2000-11-22 2002-08-06 Mitsui Chemicals Inc ビスフェノールa製造用固体触媒の再生方法
WO2003023831A1 (en) * 2001-09-12 2003-03-20 Dow Corning Corporation Silicone resins and porous materials produced therefrom

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735533A (en) * 1980-08-12 1982-02-26 Mitsubishi Chem Ind Ltd Preparation of bisphenol
JPH06207018A (ja) * 1992-08-06 1994-07-26 Degussa Ag 成形されたオルガノシロキサン重縮合物、その製造方法、その後処理方法、ガス状の有機化合物の吸着、均一触媒の調製および水溶液または有機溶液から金属を吸着させる方法
JPH08187436A (ja) * 1994-04-08 1996-07-23 Mitsubishi Chem Corp 変性イオン交換樹脂及びその使用
JPH08208545A (ja) * 1994-07-21 1996-08-13 Mitsui Toatsu Chem Inc ビスフェノールaの製造方法
JPH0889819A (ja) * 1994-09-20 1996-04-09 Mitsubishi Chem Corp イオン交換樹脂
JPH09110989A (ja) * 1995-09-29 1997-04-28 Degussa Ag 成形したスルホネート基およびメルカプト基を有するオルガノポリシロキサン、その製造方法ならびに該オルガノシロキサンよりなる又はそれを含有する縮合触媒およびビスフェノール−a合成用触媒
JPH10225638A (ja) * 1996-12-10 1998-08-25 Mitsui Chem Inc ビスフェノール製造用触媒、その調製方法及びビスフェノールの製造方法
JPH10218817A (ja) * 1997-02-04 1998-08-18 Degussa Ag 2,2’−ビス(4−ヒドロキシフェニル)プロパンの選択的製造方法
JPH11209472A (ja) * 1998-01-22 1999-08-03 Mitsui Chem Inc スルホン酸基含有有機高分子シロキサンの製造法
JP2000281608A (ja) * 1999-03-29 2000-10-10 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000281607A (ja) * 1999-03-29 2000-10-10 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000297056A (ja) * 1999-04-09 2000-10-24 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000290208A (ja) * 1999-04-09 2000-10-17 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000296337A (ja) * 1999-04-12 2000-10-24 Mitsui Chemicals Inc 有機高分子シロキサン触媒の充填方法
JP2000302715A (ja) * 1999-04-19 2000-10-31 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000319215A (ja) * 1999-05-13 2000-11-21 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000319216A (ja) * 1999-05-14 2000-11-21 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000327611A (ja) * 1999-05-17 2000-11-28 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2000344699A (ja) * 1999-06-01 2000-12-12 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2001104794A (ja) * 1999-10-08 2001-04-17 Mitsui Chemicals Inc 有機高分子シロキサン担持触媒
JP2001212465A (ja) * 2000-02-01 2001-08-07 Mitsui Chemicals Inc 有機高分子シロキサン触媒
JP2001232209A (ja) * 2000-02-23 2001-08-28 Mitsui Chemicals Inc 有機高分子シロキサン触媒
JP2001233812A (ja) * 2000-02-24 2001-08-28 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2001247502A (ja) * 2000-03-06 2001-09-11 Mitsui Chemicals Inc ビスフェノールaの製造方法
JP2002211917A (ja) * 2000-11-20 2002-07-31 Mitsubishi Chemicals Corp 骨格内に有機基を有するゼオライト
JP2002219365A (ja) * 2000-11-22 2002-08-06 Mitsui Chemicals Inc ビスフェノールa製造用固体触媒の再生方法
WO2003023831A1 (en) * 2001-09-12 2003-03-20 Dow Corning Corporation Silicone resins and porous materials produced therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152263A (ja) * 2004-10-27 2006-06-15 Tokyo Institute Of Technology 有機−無機ハイブリッド型メソポーラス材料、その製造方法及び固体触媒
JP2017515962A (ja) * 2014-05-21 2017-06-15 株式会社ブリヂストン タイヤを製造するためのゴムコンパウンド

Also Published As

Publication number Publication date
JP4571393B2 (ja) 2010-10-27

Similar Documents

Publication Publication Date Title
JPS59210036A (ja) フエノ−ル及びアセトンの製造方法
US3242219A (en) Preparation of bisphenols
US3496239A (en) Production of aromatic condensation products
JPH11179210A (ja) イオン交換樹脂及びこれを触媒とするビスフェノール類の製造方法
US6229037B1 (en) Polyorganosiloxane catalyst
US9670123B2 (en) Process for preparation of unsaturated ketone
JP2000319216A (ja) ビスフェノールaの製造方法
JP2004190021A (ja) 有機高分子シロキサン及びその用途
JP2001233812A (ja) ビスフェノールaの製造方法
JP3592418B2 (ja) グルタルジアルデヒドの製法
JP2001335522A (ja) ビスフェノールの製造方法
JPH09110767A (ja) 2,2′−ビス(4−ヒドロキシフェニル)プロパンの製造方法
JP2001104794A (ja) 有機高分子シロキサン担持触媒
JP3888936B2 (ja) ビスフェノールa製造法
JP3888937B2 (ja) ビスフェノールaの製造法
JPH08208545A (ja) ビスフェノールaの製造方法
JP4371388B2 (ja) 有機高分子シロキサン触媒
JPH10225638A (ja) ビスフェノール製造用触媒、その調製方法及びビスフェノールの製造方法
JP3761342B2 (ja) ビスフェノールa製造用触媒の再生方法
US6768031B2 (en) Process and catalyst for producing p-cumylphenol
JP2001232209A (ja) 有機高分子シロキサン触媒
KR100377808B1 (ko) 폴리오르가노실록산촉매
JP2000297056A (ja) ビスフェノールaの製造方法
JP2005060289A (ja) フェノール類の製造方法
JP2969384B2 (ja) トリオキサンの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4571393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees