JP2004186659A - 磁気検出素子 - Google Patents

磁気検出素子 Download PDF

Info

Publication number
JP2004186659A
JP2004186659A JP2003048727A JP2003048727A JP2004186659A JP 2004186659 A JP2004186659 A JP 2004186659A JP 2003048727 A JP2003048727 A JP 2003048727A JP 2003048727 A JP2003048727 A JP 2003048727A JP 2004186659 A JP2004186659 A JP 2004186659A
Authority
JP
Japan
Prior art keywords
layer
magnetic layer
magnetic
fixed
sensing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003048727A
Other languages
English (en)
Inventor
Naoya Hasegawa
直也 長谷川
Eiji Umetsu
英治 梅津
Masaji Saito
正路 斎藤
Yosuke Ide
洋介 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003048727A priority Critical patent/JP2004186659A/ja
Priority to US10/671,970 priority patent/US7029771B2/en
Publication of JP2004186659A publication Critical patent/JP2004186659A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/123Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] thin films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1143Magnetoresistive with defined structural feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/115Magnetic layer composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1157Substrate composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1193Magnetic recording head with interlaminar component [e.g., adhesion layer, etc.]

Abstract

【課題】固定磁性層を適切に磁化固定できるとともに、再生出力の向上を図り、さらには狭ギャップ化等に適切に対応することが可能で、構造が簡単な磁気検出素子を提供する。
【解決手段】素子のトラック幅方向中央部には間欠部20cが形成され、反強磁性層20が設けられていない。したがって、前記間欠部20cにセンス電流の分流を防止でき、再生出力の向上、磁気的な静電破壊に対する強度向上を図ることができ、また素子中央部の膜厚が減少することにより狭ギャップ化を図ることが可能である。また、フリー磁性層14の磁化方向が形状異方性によって前記トラック幅方向に配向しているため、磁化配向手段を設ける必要がなく、素子の構造および製法を簡単にすることができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、ハードディスク装置などに搭載されるスピンバルブ型薄膜素子などの磁気検出素子に係わり、特に固定磁性層と反強磁性層との交換結合領域を限定して配置した磁気検出素子に関する。
【0002】
【従来の技術】
従来のスピンバルブ型の磁気検出素子は、フリー磁性層、非磁性層材料層、固定磁性層、反強磁性層が積層されて前記固定磁性層の磁化方向が固定されている。また、前記フリー磁性層はその両側から縦バイアス磁界が与えられて磁化方向が前記固定磁性層と交叉する方向へ向けられている。この種の磁気検出素子は前記積層体の上下にギャップ層と称される絶縁層を介して下部シールド層と上部シールド層が位置しており、下部シールド層と上部シールド層との間隔により外部磁界の検出の分解能が決まる。
【0003】
しかし、従来は、前記固定磁性層の全域に反強磁性層が積層されているため、膜の積層方向の厚みが大きくなっている。そのため、上部シールド層と下部シールド層との距離が長くなって、前記分解能を小さくするのに限界がある。
【0004】
そこで、以下の特許文献1に記載された発明では、前記反強磁性層の幅方向の中央部に肉薄部が設けられている。前記肉薄部を形成することにより、上下に位置するシールド層間の間隔をなるべく短くしようというものである。
【0005】
【特許文献1】
特開2000−163717号公報
【特許文献2】
特開平8−7235号公報
【特許文献3】
特開2000−113418号公報
【0006】
【発明が解決しようとする課題】
前記特許文献1に記載されている磁気検出素子では、反強磁性層の中央部分に肉薄部を設けることにより、シールド層間の間隔を短くできる利点がある。しかしながら、前記肉薄部も固定磁性層に対して磁化固定力を発揮するものとして機能させているため、前記肉薄部もある程度の厚みを必要としている。そのため、前記肉薄部に電極層からセンス電流が比較的多く分流することを避けることができず、それが電流ロスとなって再生出力が低下する。
【0007】
また、固定磁性層に反強磁性層が積層された磁気検出素子では、電極層から静電気放電(ESD)による過渡電流が流れたとき、それによって素子内に熱が発生し、この熱が反強磁性層のブロッキング温度に近い温度となることも有りえる。このような場合に、固定磁性層のトラック幅の中央部分に、交換結合を発揮する反強磁性層が前記特許文献1のように薄く存在していると、この薄い部分での固定磁性層との交換結合が不安定になる。
【0008】
特に、前記固定磁性層が単層の磁性層で構成されている場合は磁化固定が不安定になり易いが、固定磁性層がRKKY結合により反平行状態に磁化されている第1の磁性層と第2の磁性層を有する人工フェリ構造であっても、一方の磁性層が反強磁性層に接している構造であると、反強磁性層との交換結合が不安定になった時点で、反強磁性層に接している磁性層の磁化が反転し、その結果固定磁性層の磁化の固定が不安定になる。
【0009】
このように前記特許文献1に記載の発明では、磁気検出領域において反強磁性層を故意に肉薄部にしているため、前記のような固定磁性層の磁化固定を不安定にする現象を避けることができなくなる。
【0010】
また特許文献2に記載されている磁気検出素子は、タンタル(Ta)からなるバッファ層62を下地として、その上に、ピン止め強磁性層70が積層されたものである。ピン止め強磁性層70は、第1のコバルト(Co)フィルム72と第2のコバルト(Co)フィルム74が、ルテニウム(Ru)フィルム73を介して積層されたものである。第1のコバルト(Co)フィルム72と第2のコバルト(Co)フィルム74は各々の異方性磁界によって磁化が固定されている。第1のコバルト(Co)フィルム72と第2のコバルト(Co)フィルム74は反強磁性結合しており、互いに反平行方向に磁化されている。
【0011】
特許文献2では、特許文献1と異なって、ピン止め強磁性層70を磁化固定するための反強磁性層を設けていない。このため特許文献1のものに比べて分流ロスを低減させることができる。
【0012】
しかし、特許文献2に記載されている磁気検出素子のように、タンタルからなるバッファ層上にCoフィルムを積層する構成では、ピン止め強磁性層70の磁化方向を適切に固定できないことがわかった。このことは、特許文献3においても指摘されている。
【0013】
特許文献3に記載の磁気検出素子は、特許文献2の問題を解決することを目的として発明されたものである。この磁気検出素子では、積層フェリ固定層の強磁性膜をCoFeまたはCoFeNiによって形成することによって誘導異方性を向上させている。
【0014】
なお、特許文献3には、積層フェリ固定層の下にTaからなる下地層を設けることも記載されているが、Ta下地を設けた場合とTa下地を設けない場合を比較した実験結果(特許文献4の図4、図5、図6、図7)をみると、強磁性層にCoFe合金を用いたときには、Ta下地を設けない方が磁気抵抗変化も保磁力も大きくなることが示されている。
【0015】
特許文献3には、積層フェリ固定層の誘導異方性を大きくするために、強磁性膜にCoFe合金を使用すること、及び強磁性膜の磁歪を正にすることが記載されている。
【0016】
自己固定式の固定磁性層の磁化を固定するために、最も重要な要素は固定磁性層の磁気弾性エネルギーに由来する一軸異方性である。特に固定磁性層の磁歪を最適化することが重要である。しかし、特許文献3には、固定磁性層の磁歪を最適化する機構に関する考察がなく、固定磁性層の磁歪を最適化するための具体的構成に関する記載はなされていない。
【0017】
以上のように従来では、固定磁性層を強固に磁化固定できるとともに、再生出力を向上させることができ、さらには狭ギャップ化、静電破壊に適切に対応することができる構造は存在しなかった。
【0018】
また従来のスピンバルブ型の磁気検出素子では、フリー磁性層の磁化方向を安定させるための縦バイアス層が設けられていたため、膜の積層構造が複雑であり、その結果製造コストの高いものであった。
【0019】
本発明は前記従来の課題を解決するものであり、磁気検出機能を発揮する領域で膜の積層厚みを薄くするとともに、センス電流の分流を低減でき、また固定磁性層の磁化を安定させることができる磁気検出素子を提供することを目的としている。
【0020】
【課題を解決するための手段】
本発明は、外部からの磁界に応じて内部の磁化方向が変化するフリー磁性層と、内部の磁化方向が固定されている固定磁性層と、前記フリー磁性層と前記固定磁性層との間に介在する非磁性材料層と、交換結合により前記固定磁性層内の磁化を固定する反強磁性層とを有する磁気検出素子において、
前記フリー磁性層、前記非磁性材料層、および前記固定磁性層は、第1の方向の長さ寸法が前記第1の方向と直交する第2の方向の幅寸法よりも長く形成されて、前記フリー磁性層の内部磁化の向きは形状異方性によって前記第1の方向へ優先されており、
前記固定磁性層は、前記非磁性材料層に接する第2の磁性層と中間層と第1の磁性層とが積層されたもので、前記反強磁性層は、前記第1の方向に所定間隔の間欠部を介して前記第1の磁性層に接しており、
前記交換結合により前記第1の磁性層内の磁化の方向が前記第1の方向と交叉する方向に固定され、さらに前記第2の磁性層内の磁化の方向が前記第1の磁性層と反平行状態に設定され、
前記間欠部での、前記フリー磁性層の磁化の方向と前記固定磁性層内の磁化の方向とで電気抵抗が変化することを特徴とするものである。
【0021】
本発明の磁気検出素子は、前記間欠部で、固定磁性層と反強磁性層との交換結合を生じさせないか、あるいは生じてもその磁界のみで前記固定磁性層の磁化を固定できないほど弱いものである。しかしながら、固定磁性層を第1の磁性層と第2の磁性層を有する人工フェリ構造とすることにより、前記間欠部においても固定磁性層の磁化を安定できるようにしている。
【0022】
上記のように前記間欠部では、例えば固定磁性層と反強磁性層との交換結合を生じさせていないため、前記間欠部への静電気放電(ESD)による過渡電流によって高温状態になっても、反強磁性層と固定磁性層との交換結合が不安定になる心配もなくなる。
【0023】
また、前記間欠部には、両側の反強磁性層と同じ組成の非磁性金属が前記第1の磁性層と接して設けられており、前記間欠部での前記非磁性金属層は、反強磁性を発揮しない不規則結晶構造の層となるように反強磁性層よりも薄く形成されているものとして構成することもできる。
【0024】
この場合、前記間欠部に設けられた反強磁性層と同じ組成の非磁性金属層は反強磁性を発揮しない不規則結晶構造の層となる程度の厚さであるため、前記センス電流の分流による磁気抵抗効果のロス分を少なくでき、また前記間欠部での前記非磁性金属層は反強磁性を発揮しないため、前記固定磁性層との間に交換結合はほとんど生じておらず、高温になったときに固定磁性層の磁化を不安定とすることはない。
【0025】
また本発明では、前記間欠部での、前記非磁性金属層内の結晶と前記固定磁性層内の結晶はエピタキシャルまたはヘテロエピタキシャルな状態であり、前記固定磁性層の記録媒体との対向面側の端面が開放されていることが好ましい。
【0026】
前記非磁性金属層と膜厚方向で対向する固定磁性層の部分は、固定磁性層自体の一軸異方性によっても磁化固定が強化されるものであることが好ましい。
【0027】
強磁性体膜の磁気異方性磁界を決める要素には、結晶磁気異方性、誘導磁気異方性、及び磁気弾性効果がある。このうち、結晶磁気異方性は多結晶をランダムに配向した結晶を有する膜では、異方性を一軸にそろえるのは難しい。一方、誘導磁気異方性は成膜時または熱処理時に一方向の磁場を与えることによって一軸性を帯び、磁気弾性効果は一軸性の応力を加えることによって一軸性を帯びる。
【0028】
上記では、間欠部での固定磁性層の磁化を固定する一軸異方性を決める、誘導磁気異方性と磁気弾性効果のうち、磁気弾性効果に着目してなされたものである。
【0029】
磁気弾性効果は、磁気弾性エネルギーに支配される。磁気弾性エネルギーは、固定磁性層にかかる応力と固定磁性層の中央部の磁歪定数によって規定される。
【0030】
本発明では、前記固定磁性層の記録媒体との対向面側の端面が開放されているので、元々、二次元的に等方性であったギャップ膜等から作用する応力の対称性が崩れ、前記固定磁性層には、ハイト方向に引張応力が加えられる。そして、前記第1の磁性層は、磁歪定数が正の値である磁性材料によって形成されているので、磁気弾性効果によって、前記第1の磁性層の磁化容易軸は磁気検出素子の奥側(ハイト方向)に平行方向となり、前記第1の磁性層の磁化方向がハイト方向に平行方向または反平行方向に固定される。
【0031】
本発明では、間欠部での固定磁性層の磁歪定数を大きくすることによって磁気弾性エネルギーを大きくし、これによって、前記間欠部での固定磁性層の一軸異方性を大きくするものである。間欠部での固定磁性層の一軸異方性が大きくなると、間欠部での固定磁性層の磁化は一定の方向に強固に固定されやすくなり、磁気検出素子の出力が大きくなりかつ出力の安定性や対称性も向上する。
【0032】
なお前記非磁性金属層は、前記固定磁性層の第1の磁性層側の界面付近あるいは全領域において面心立方格子(fcc)構造をとり、前記界面と平行な方向に、{111}面として表される等価な結晶面が優先配向することが好ましい。
【0033】
上記の構成を満たすべく、例えば非磁性金属層は、PtMn合金、または、X―Mn(ただしXは、Pt,Pd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である)で形成される。
【0034】
PtMn合金、または、X―Mn(ただしXは、Pt,Pd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である)からなる非磁性金属層の結晶構造は、成膜時の状態である面心立方構造(fcc)を維持しつづける。
【0035】
このような非磁性金属層を、間欠部での第1の磁性層と接合させることによって、前記間欠部での第1の磁性層の結晶構造に歪みを生じさせて前記間欠部での第1の磁性層の磁歪定数λを大きくさせることができる。
【0036】
なお前記非磁性金属層の膜厚は、5Å以上50Å以下であることが好ましい。
また少なくとも前記間欠部での、固定磁性層の第1の磁性層は、前記非磁性金属層側の界面付近あるいは全領域において面心立方格子(fcc)構造をとり、前記界面と平行な方向に、{111}面として表される等価な結晶面が優先配向していることが好ましい。
【0037】
上述のごとく、本発明における前記非磁性金属層は、例えばfcc構造をとり前記界面と平行な方向に、{111}面として表される等価な結晶面が優先配向しているものである。
【0038】
従って、少なくとも前記間欠部での前記第1の磁性層が、fcc構造をとり前記界面と平行な方向に、{111}面として表される等価な結晶面が優先配向しているものであると、間欠部にて、前記第1の磁性層を構成する原子と前記非磁性金属層を構成する原子が互いに重なりあいやすくなる。
【0039】
しかし、前記間欠部での第1の磁性層の{111}面内の最近接原子間距離と、前記非磁性金属層の{111}面内の最近接原子間距離には、一定以上の差が生じるので、前記間欠部での第1の磁性層の前記非磁性金属層との界面付近では、前記間欠部での第1の磁性層を構成する原子と前記非磁性金属層を構成する原子が互いに重なり合いつつも、それぞれの結晶構造に歪みが生じている。すなわち、前記間欠部での第1の磁性層の結晶構造に歪を生じさせることによって磁歪定数λを大きくさせることができる。
【0040】
例えば、前記固定磁性層の第1の磁性層を、CoまたはCoFe(y≦20,x+y=100)によって形成すると、前記間欠部での第1の磁性層を、fcc構造をとり前記界面と平行な方向に{111}面として表される等価な結晶面が優先配向するものにできる。
【0041】
または、少なくとも前記間欠部での、前記固定磁性層の第1の磁性層は、前記非磁性金属層側の界面付近あるいは全領域において体心立方格子(bcc)構造をとり、前記界面と平行な方向に、{110}面として表される等価な結晶面が優先配向しているものであることが好ましい。
【0042】
間欠部での前記第1の磁性層が、bcc構造をとり前記界面と平行な方向に、{110}面として表される等価な結晶面が優先配向しているものであっても、前記間欠部での第1の磁性層を構成する原子と前記非磁性金属層を構成する原子が互いに重なりあいやすくなる。
【0043】
このときも、前記間欠部での第1の磁性層の{110}面内の最近接原子間距離と、前記非磁性金属層の{111}面内の最近接原子間距離には、一定以上の差が生じ、前記間欠部での第1の磁性層と前記非磁性金属層の界面付近では、前記間欠部での第1の磁性層を構成する原子と前記非磁性金属層を構成する原子が互いに重なり合いつつも、それぞれの結晶構造に歪みが生じる。すなわち、前記間欠部での第1の磁性層の結晶構造に歪を生じさせることによって磁歪定数λを大きくさせることができる。
【0044】
例えば、前記固定磁性層の第1の磁性層を、CoFe(y≧20,x+y=100)によって形成すると、前記間欠部での第1の磁性層を、bcc構造をとり前記界面と平行な方向に{110}面として表される等価な結晶面が優先配向するものにできる。なお、bcc構造をとるCoFe(y≧20,x+y=100)は、fcc構造をとるCoまたはCoFe(y≦20,x+y=100)より、特にy=50附近の組成において磁歪定数λの値が大きいので、より大きな磁気弾性効果を発揮することができる。また、bcc構造をとるCoFe(y≧20,x+y=100)は、保磁力が大きく、前記間欠部での固定磁性層の磁化固定を強固にすることができる。
【0045】
また、本発明では、少なくとも前記間欠部での、前記固定磁性層の第1の磁性層の、前記非磁性金属層側の界面付近は面心立方格子(fcc)構造をとり、前記界面と平行な方向に、{111}面として表される等価な結晶面が優先配向しており、前記中間層側の界面付近は体心立方格子(bcc)構造をとり、前記界面と平行な方向に、{110}面として表される等価な結晶面が優先配向していることが好ましい。
【0046】
前記中間層側の界面付近をbcc構造にすることにより、磁歪定数λの値を大きくし、大きな磁気弾性効果を発揮させることができる。一方、前記間欠部での第1の磁性層の前記非磁性金属層側の界面付近をfcc構造にすると、間欠部での固定磁性層、非磁性材料層、フリー磁性層の結晶配向性が一定になり、磁気抵抗変化率(MR比)を高くすることができる。
【0047】
例えば、前記固定磁性層の第1の磁性層の、前記非磁性金属層側の界面付近の組成をCoFe(y≦20,x+y=100)またはCoにし、前記中間層側の界面付近の組成をCoFe(y≧20,x+y=100)にすることによって、前記非磁性金属層側の界面付近は、fcc構造であって、前記界面と平行な方向に{111}面として表される等価な結晶面が優先配向し、前記中間層側の界面付近は、(bcc)構造であって、前記界面と平行な方向に、{110}面として表される等価な結晶面が優先配向しているものにできる。
【0048】
また、前記中間層側の界面付近の組成が、CoFe(y≧20,x+y=100)であると、前記中間層を介した第1の磁性層と他の磁性層間のRKKY相互作用が強くなるので好ましい。
【0049】
なお、前記固定磁性層の第1の磁性層は、前記非磁性金属層側の界面から前記中間層側の界面に向かうに連れて、Fe濃度が徐々に大きくなるものであってもよい。
【0050】
本発明では、前記非磁性金属層を構成する原子と、前記間欠部での前記第1の磁性層の原子とを、重なり合わせつつ、結晶構造に歪みを生じさせるために、前記非磁性金属層の前記界面と平行な面内方向における最近接原子間距離と、少なくとも間欠部での、前記固定磁性層の第1の磁性層の最近接原子間距離の差を、前記第1の磁性層の最近接原子間距離で割った値を、0.05以上0.20以下にすることが好ましい。
【0051】
なお前記第1の磁性層は磁歪定数が正の値である磁性材料によって形成されることが好ましい。
【0052】
また、本発明は、非磁性材料層、前記第1の方向と交叉する方向に磁化方向が固定された固定磁性層および前記固定磁性層内の磁化方向を固定する反強磁性層が積層された積層体が、フリー磁性層を挟んで、2組設けられており、それぞれの組の積層体は、フリー磁性層に接する側から、非磁性材料層、固定磁性層および反強磁性層の順に配置されており、少なくとも一方の組の前記積層体と前記フリー磁性層とが前記いずれかに記載の構造であるいわゆるデュアルスピンバルブ型素子としても構成できる。
【0053】
また本発明では、前記フリー磁性層内の磁化方向を前記第1の方向へ向ける縦バイアス手段が設けられていないものにできる。
【0054】
縦バイアス層を設けないものでは、素子全体の構造を簡略化でき、しかも薄型化も可能となる。
【0055】
【発明の実施の形態】
図1は本発明における第1の実施形態の磁気検出素子(スピンバルブ型薄膜素子)の構造を記録媒体との対向面側から見た部分断面図である。図1に示す磁気検出素子10は、フリー磁性層14が反強磁性層20よりも下側に形成されるタイプである。
【0056】
前記磁気検出素子10は、NiFe合金やセンダストなどの磁性材料製の下部シールド層(基板)11の上面にAlなどの絶縁材料で形成された下部ギャップ層12が形成され、前記下部ギャップ層12上にはNiFe合金、NiFeCr合金あるいはCrなどで形成されたシード層13が形成されている。
【0057】
前記シード層13の上には、フリー磁性層14が形成される。前記フリー磁性層14はNiFe合金やCoFe合金などの磁性材料で形成される
前記フリー磁性層14の磁化は図示Y方向から進入してくる外部磁界によって磁化変動する程度に、前記トラック幅方向に弱く単磁区化された状態にある。
【0058】
前記フリー磁性層14の上には非磁性材料層15が形成されている。前記非磁性材料層15は、固定磁性層16とフリー磁性層14との磁気的な結合を防止し、またセンス電流が主に流れる層であり、Cu,Cr,Au,Agなど導電性を有する非磁性材料により形成されることが好ましい。特にCuによって形成されることが好ましい。
【0059】
前記非磁性材料層15の上には固定磁性層16が形成されている。図1に示す実施の形態では、固定磁性層16は人工フェリ構造である。前記固定磁性層は反強磁性層20に接する側の第1の磁性層17と、前記第1の磁性層17と膜厚方向(図示Z方向)で対向する第2の磁性層18と、前記第1の磁性層17と第2の磁性層18との間に介在する中間層19との3層構造である。
【0060】
前記第1および第2の磁性層17、18は、例えばNiFe合金、Co、CoNiFe合金、CoFe合金、CoNi合金などの磁性材料で形成される。例えば、前記第1の磁性層17と第2の磁性層18は、同一の材料で形成される。また単層構造であっても磁性層の積層構造であってもどちらでもよい。
【0061】
また前記中間層19は非磁性材料により形成されるもので、Ru、Rh、Ir、Cr、Re、Cuのうち1種またはこれらの2種以上の合金で形成されている。特にRuによって形成されることが好ましい。
【0062】
前記フリー磁性層14、前記非磁性材料層15および前記固定磁性層16は、前記第1の長さ方向(図示X方向;トラック幅方向という場合もある)の長さ寸法が、前記第1の方向とX−Y平面に平行な方向(膜面と平行な方向)で直交する第2の方向であるハイト方向(図示Y方向)の幅寸法よりも長く形成されている。したがって、前記フリー磁性層14は形状異方性を有し、前記フリー磁性層14内部の磁化がトラック幅方向に優先的に向いた状態である。ここで本明細書において「形状異方性」とは、所定の長さ寸法を有するフリー磁性層14の磁化が前記長さ方向に配向することを意味する。前記フリー磁性層14が形状異方性を有するには、前記フリー磁性層14のトラック幅方向における両側端間の長さ寸法は1μm以上であることが好ましい。また、前記フリー磁性層14の磁化を、前記第1の方向に、より適切に配向させ易くするには、前記形状異方性に加えて、誘導磁気異方性を付与することが好ましく、前記フリー磁性層14が磁場中で成膜されることが好ましい。
【0063】
また、前記フリー磁性層14のトラック幅方向における両側端部(ここで言う「両側端部」とは間欠部20cのトラック幅方向の両側領域を指し、以下同じである)のみに前記フリー磁性層14を硬磁性層化できる元素(例えば、Pt,C,B,希土類)をイオン打ち込みすることにより、前記フリー磁性層14の前記両側端部を硬磁性層とし、この硬磁性層を着磁することにより、前記フリー磁性層14の磁化を安定させても良い。
【0064】
前記磁気検出素子10は、反強磁性層20が前記第1の磁性層17の前記第1の方向における両側端部17a上に、間欠部20cを介して分離して形成されている。前記反強磁性層20は前記第1の磁性層17の中央部17b上には形成されていない。前記反強磁性層20は、PtMn合金、または、X―Mn(ただしXは、Pd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である)合金で、あるいはPt―Mn―X′(ただしX′は、Pd,Ir,Rh,Ru,Au,Ag,Os,Cr,Ni,Ar,Ne,Xe,Krのいずれか1または2種以上の元素である)合金で形成されることが好ましいが、IrMn合金などPtMn合金よりもブロッキング温度の低い反強磁性材料で形成されてもよい。前記反強磁性層20の膜厚は、例えば80Å〜300Å程度で形成される。
【0065】
前記反強磁性層20は前記第1の磁性層17との間に交換結合磁界を発生させるために、磁場中で熱処理が施される。前記反強磁性層20は熱処理前ではその結晶構造が不規則格子であるが、熱処理後では少なくとも一部の結晶構造が規則格子となる。例えばX―Mn合金では、前記熱処理前は結晶構造がX原子、Mn原子の配列が不規則な面心立方格子であるが、前記熱処理後では少なくとも一部において、X原子、Mn原子の配列が規則的になり、L10型(CuAuI型)の面心正方格子の結晶構造に変態する。
【0066】
磁場中熱処理が施されると前記反強磁性層20は、上記したように少なくとも一部の不規則格子が規則格子に変態して前記反強磁性層20と前記第1の磁性層17の両側端部17a,17a間に交換結合磁界が発生し、前記第1の磁性層17は前記第2の方向(図示Y方向)に磁化固定される。図1に示す実施形態では、前記固定磁性層16が2層の前記磁性層17,18とその間に介在する前記中間層19との人工フェリ構造であるから、前記第1の磁性層17と第2の磁性層18間にRKKY相互作用による反平行結合磁界が作用し、前記第2の磁性層18の両側端部18a,18aは図示Y方向とは逆方向に磁化固定される。一方、前記第1の磁性層17および第2の磁性層18の中央部17b,18bでも上記したRKKY相互作用による反平行結合磁界は生じ、前記第1の磁性層17および第2の磁性層18の中央部17b,18bの磁化は両側端部17a,18aでの磁化方向に倣って反平行状態で磁化固定される。
【0067】
前記反強磁性層20の上にはCrなどで形成されたストッパ層21が形成され、前記ストッパ層21の上にはTaなどで形成された保護層22が形成されている。前記保護層22上には例えばAu、Pd、Cr、Rh、Ru、Ta、Wなどの非磁性導電材料で形成された電極層23が形成され、さらに前記電極層23上にTaなどで形成された保護層24が形成されている。
【0068】
前記保護層24から、前記反強磁性層20間に形成された前記間欠部20c内から露出する前記固定磁性層16の前記第1の磁性層17上にかけて絶縁材料で形成された上部ギャップ層25が形成され、前記上部ギャップ層25上に磁性材料製の上部シールド層26が形成される。
【0069】
図1に示す実施の形態では、一方の前記反強磁性層20と前記第1の磁性層17との接触面20aの側端20bと、他方の前記反強磁性層20と前記第1の磁性層17との接触面20aの側端20bとの間、すなわち左右の反強磁性層20と反強磁性層20との間隔Cが、実質的な外部磁界の検出領域である。この検出領域の前記第1の方向の幅寸法をトラック幅(Tw)と呼ぶ。
【0070】
図1に示す磁気検出素子の構造の特徴的部分について以下に説明する。図1に示す実施の形態では、前記固定磁性層16が、第1および第2の磁性層17,18と、前記各磁性層17,18の間に介在する中間層19との3層構造で構成されている。前記第1の磁性層17と第2の磁性層18間にはRKKY相互作用による反平行結合磁界が生じるため、両磁性層17、18の磁化は反平行状態になっている。
【0071】
前記反強磁性層20は、前記第1の磁性層17の両側端部17a,17a上に、前記間欠部20cを介して分離して設けられ、前記第1の磁性層17の中央部17b上には設けられていない。このため交換結合磁界は前記反強磁性層20と接している前記第1の磁性層17の両側端部17a,17aの間でのみ生じ、前記第1の磁性層17の中央部17bとの間には生じていない。したがって前記第1の磁性層17および第2の磁性層18の両側端部17a、18aの磁化は前記交換結合磁界とRKKY相互作用等により反平行状態を保ちながら前記第2の方向(図示Y方向)と平行な方向に固定されている。
【0072】
一方、前記固定磁性層16の第1の磁性層17および第2の磁性層18の中央部17b、18bでは、各磁性層内部の交換相互作用により媒介されたバイアス磁界や上記したRKKY相互作用によって反平行状態を保って前記第2の方向と平行な方向に固定されることが後述する実験でも確認されており、図1に示す実施の形態であれば、前記固定磁性層16の磁化固定を適切に行うことが可能である。
【0073】
すなわち図1のように固定磁性層16上に設けられた反強磁性層20は、前記固定磁性層16の前記第1の方向における両側端部上に間欠部20cを介して分離して設けられ、この両側端部でのみ交換結合磁界が生じるが、この第1の磁性層17の構造に対して、前記固定磁性層16を人工フェリ構造にすることで、前記固定磁性層16全体の磁化を適切に前記第2の方向に磁化固定できる。
【0074】
また、前記第1の磁性層17の中央部17b上には前記反強磁性層20が設けられていないので、前記電極層23から主に非磁性材料層15を中心として流れるセンス電流が、前記反強磁性層20に分流することが少なくなり、分流ロスを軽減できる結果、再生出力の向上を図ることが可能である。
【0075】
また前記第1の磁性層17の中央部17b上には前記反強磁性層20が設けられていないため、素子中央部での前記下部シールド層11および前記上部シールド層26との膜厚方向(図示Z方向)への間隔は狭まり、いわゆる狭ギャップ化を図ることが可能である。フリー磁性層14の中央部14bが再生感度を持つ領域であるから、素子中央部でのギャップ長を短くできれば、再生波形のパルス幅(PW50)の広がりや分解能の低下を適切に防止でき、今後の高記録密度化に適切に対応可能な磁気検出素子を製造することが可能である。
【0076】
さらに、前記第1の磁性層17の中央部17b上に前記反強磁性層20を設けないことで、前記固定磁性層16の素子中央部での磁気的な静電破壊(ESD)は起こりにくくなる。
【0077】
固定磁性層に反強磁性層が積層された磁気検出素子では、電極層から静電気放電(ESD)による過渡電流が流れたとき、それによって素子内に熱が発生し、この熱が反強磁性層のブロッキング温度に近い温度となることも有りえる。このような場合に、固定磁性層の前記第1の方向の中央部分に、交換結合を発揮する反強磁性層が存在していると、この反強磁性層が存在している部分での固定磁性層との交換結合が不安定になり、固定磁性層の磁化方向が動いてしまい、磁気的な静電破壊が起こり易い。
【0078】
特に、固定磁性層が単層の磁性層で構成されている場合、磁化固定が不安定になり易いが、固定磁性層がRKKY結合により反平行状態に磁化されている第1の磁性層と第2の磁性層を有する人工フェリ構造であっても、第1の磁性層が反強磁性層に接している構造であると、反強磁性層がブロッキング温度以上になって反強磁性層と第1の強磁性層との交換結合が不安定になり、そのとき電流による磁界が発生した場合に、反強磁性層に接している第1の磁性層の磁化が反転し、磁気的な静電破壊が生じる。
【0079】
これに対し本発明のように、前記固定磁性層16の第1の磁性層17の前記第1の方向の中央部分に交換結合を発揮する反強磁性層が存在していなければ、前記第1の磁性層17の磁化反転は起こらず(磁化反転が起こっても前記第1の磁性層17の両側端部17aの交換結合の向きは不変であるため、前記過渡電流の流入が無くなれば、前記第1の磁性層17の磁化方向は元に戻る)、前記固定磁性層16の磁化の固定を安定させることができ、磁気的な静電破壊に対して強くなる。
【0080】
このように、図1に示す磁気検出素子10の構造では、固定磁性層16の磁化を適切に前記第2の方向に磁化固定できるとともに、再生出力の向上や狭ギャップ化および静電破壊の抑制をも図ることができ、今後の更なる高記録密度化に適切に対応可能な磁気検出素子を提供することができる。
【0081】
また、前記磁気検出素子10では、前記フリー磁性層14は形状異方性を有しており、前記フリー磁性層14内部の磁化がトラック幅方向に向いた状態である。したがって、前記フリー磁性層14の磁化をトラック幅方向に配向させるための手段、例えば永久磁石層を前記フリー磁性層14の側方に設ける必要がなく、素子の構造や製造方法を簡単にすることができる。
【0082】
なお図1に示した磁気検出素子10は、下から、前記フリー磁性層14、前記非磁性材料層15、前記固定磁性層16および前記反強磁性層20の順に積層されているものを例にして説明したが、本発明はこれに限定されるものではなく、例えば下から、反強磁性層、固定磁性層、非磁性材料層、フリー磁性層の順に積層されているものとして構成しても良い。
【0083】
図2は本発明における第2の実施形態の磁気検出素子(スピンバルブ型薄膜素子)の構造を記録媒体との対向面側から見た部分断面図である。図2に示す磁気検出素子110は、フリー磁性層14の上方に第1の反強磁性層20が設けられ、前記フリー磁性層14の下方に第2の反強磁性層130が設けられているタイプである。
【0084】
前記図2に示す磁気検出素子110のうち、図1に示した磁気検出素子10と同様の構成部分には同じ符号を付してその説明を省略する。
【0085】
前記磁気検出素子110は、フリー磁性層14と下部シールド層111との間に、さらに下から順に、第2の反強磁性層130、第2の固定磁性層116および第2の非磁性材料層115が形成されている。
【0086】
前記下部シールド層111はNiFe合金やセンダストなどの磁性材料で形成される。前記下部シールド層111にはトラック幅方向の中央に膜厚方向(図示Z方向)に突出する突出部111aが設けられ、そのトラック幅方向の両側に凹部111b,111bが設けられている。
【0087】
図2に示すように前記下部シールド層111の突出部111aの上面にはAlなどの絶縁材料で形成された下部ギャップ層140が形成され、前記下部ギャップ層140は、前記突出部111aのトラック幅方向における両側端面111a1,111a1から前記凹部111bの上面111b1,111b1にかけても形成されている。
【0088】
図2に示すように前記下部シールド層111の凹部111b、111b1上および突出部111a上に形成された下部ギャップ層140上には、NiFe合金、NiFeCr合金あるいはCrなどで形成されたシード層141が形成されている。
【0089】
前記シード層141上には第2の反強磁性層130が形成されている。この第2の反強磁性層130は主に前記下部シールド層111に形成された前記凹部111b内に埋められた状態になっている。前記第2の反強磁性層130は前記反強磁性層20と同様の構造で形成され、例えばPtMn合金などの反強磁性材料で形成される。
【0090】
前記第2の反強磁性層130上には第2の固定磁性層116が形成されている。前記第2の固定磁性層116は前記固定磁性層16と同様に人工フェリ構造である。前記固定磁性層116は前記第2の反強磁性層130に接する側の第1の磁性層117と、前記第1の磁性層117と膜厚方向(図示Z方向)で対向する第2の磁性層118と、前記第1の磁性層117と第2の磁性層118との間に介在する中間層119との3層構造である。
【0091】
前記第1および第2の磁性層117、118および中間層119は前記固定磁性層16の前記第1および第2の磁性層17、18および中間層19と同一の材料で形成される。また前記第2の固定磁性層116を構成する第1および第2の磁性層117,118は単層構造であっても磁性層の積層構造であってもどちらでもよい。
【0092】
前記第2の反強磁性層130は前記下部シールド層111の突出部111a上に形成されたシード層141上には形成されておらず、前記突出部111a上に形成された前記シード層141の上面は前記第2の固定磁性層116に接している。前記第2の反強磁性層130は前記第2の固定磁性層116の第1の磁性層117の両側端部117a,117a下に間欠部130cを介して分離して設けられ、前記反強磁性層130と前記第1の磁性層117の両側端部117a,117aとの間でのみ交換結合磁界が生じるが、この第1の磁性層117の構造に対して、前記固定磁性層116を人工フェリ構造にすることで、前記固定磁性層116全体の磁化を適切に前記第2の方向に磁化固定できる。
【0093】
前記第2の反強磁性層130は前記第1の磁性層117との間に交換結合磁界を発生させるために、磁場中で熱処理が施される。前記第2の反強磁性層130は熱処理前ではその結晶構造が不規則格子であるが、熱処理後では少なくとも一部の結晶構造が規則格子となる。例えばX―Mn合金では、前記熱処理前は結晶構造がX原子、Mn原子の配列が不規則な面心立方格子であるが、前記熱処理後では少なくとも一部において、X原子、Mn原子の配列が規則的になり、L10型(CuAuI型)の面心正方格子の結晶構造に変態する。
【0094】
磁場中熱処理が施されると上記したように前記第2の反強磁性層130の少なくとも一部の不規則格子は規則格子に変態し、前記第2の反強磁性層130と前記第2の固定磁性層116の第1の磁性層117の両側端部117a,117a間に交換結合磁界が発生し、前記第1の磁性層117は前記第2の方向に磁化固定される。図2に示す実施形態では、前記固定磁性層116が2層の前記磁性層117,118とその間に介在する前記中間層119との人工フェリ構造であるから、前記第1の磁性層117と第2の磁性層118間にRKKY相互作用による反平行磁界が作用し、前記第2の磁性層118の両側端部118a,118aは前記第2の方向とは逆方向に磁化固定される。一方、前記第1の磁性層117および第2の磁性層118の中央部117b,118bでも上記したRKKY相互作用による反平行結合磁界は生じ、前記第1の磁性層117および第2の磁性層118の中央部117b,118bの磁化は両側端部117a,118aでの磁化方向に倣って反平行状態で磁化固定される。
【0095】
前記第2の固定磁性層116と前記フリー磁性層14の間には第2の非磁性材料層115が形成されている。前記第2の非磁性材料層115は、前記第2の固定磁性層116とフリー磁性層14との磁気的な結合を防止し、またセンス電流が主に流れる層であり、前記非磁性層15と同様の材料で形成されている。
【0096】
前記フリー磁性層14、前記第1および第2の非磁性材料層15,115、前記第1および第2の固定磁性層16,116は、前記第1の長さ方向の長さ寸法が、前記第2の方向の幅寸法よりも長く形成されている。したがって、前記フリー磁性層14は形状異方性を有し、前記フリー磁性層14内部の磁化がトラック幅方向に優先的に向いた状態である。前記フリー磁性層14が形状異方性を有するには、前記フリー磁性層14のトラック幅方向における両側端間の長さ寸法は、1μm以上であることが好ましい。また、前記フリー磁性層14の磁化をトラック幅方向に安定化するには、前記形状異方性に加えて、誘導磁気異方性を付与することが好ましく、前記フリー磁性層14が磁場中で成膜されることが好ましい。
【0097】
図2に示す実施の形態では、一方の前記第2の反強磁性層130と前記第1の磁性層117との接触面130aの側端130bと、他方の前記第2の反強磁性層130と前記第1の磁性層117との接触面130aの側端130bとの間、すなわち左右の反強磁性層130と反強磁性層130との間隔Dが、前記トラック幅(Tw)と同じか、またはそれよりも小さくなっている。
【0098】
前記磁気検出素子110では、下部シールド層111および上部シールド層26の膜厚方向への間隔(いわゆるギャップ長)を狭くすることができ、狭ギャップ化に適切に対応できる。
【0099】
図3は本発明における第3の実施形態の磁気検出素子(スピンバルブ型薄膜素子)の構造を記録媒体との対向面側から見た部分断面図である。図3に示す磁気検出素子210は図2に示した前記磁気検出素子110と同様、フリー磁性層14の上方に第1の反強磁性層20が設けられ、前記フリー磁性層14の下方に第2の反強磁性層230が設けられているタイプである。
【0100】
前記図3に示す磁気検出素子210は図1および図2に示した前記磁気検出素子10、110と共通した構造を有しているため、磁気検出素子210のうち前記磁気検出素子10、110と同様の構成部分には、同じ符号を付してその説明を省略する。
【0101】
図3に示す磁気検出素子210は、下部シールド層211に凹部が形成されておらず、前記下部シールド層211の上面は平面形状に構成されている。そして、前記下部シールド層211の上に下部ギャップ層12、シード層13が形成され、さらにその上に第2の反強磁性層230が積層されている。
【0102】
前記第2の反強磁性層230は一定の膜厚で前記第1の方向に延びて形成されている。
【0103】
前記第2の反強磁性層230は前記第1の磁性層117との間に交換結合磁界を発生させるために、磁場中で熱処理が施される。前記第2の反強磁性層230は熱処理前ではその結晶構造が不規則格子であるが、熱処理後では少なくとも一部の結晶構造が規則格子となる。例えばX―Mn合金では、前記熱処理前は結晶構造がX原子、Mn原子の配列が不規則な面心立方格子であるが、前記熱処理後では少なくとも一部において、X原子、Mn原子の配列が規則的になり、L10型(CuAuI型)の面心正方格子の結晶構造に変態する。
【0104】
磁場中熱処理が施されると前記第2の反強磁性層230と第2の固定磁性層116の第1の磁性層117のトラック幅方向の全領域間に交換結合磁界が発生し、前記第1の磁性層117は前記第2の方向に磁化固定される。図3に示す実施形態では、前記固定磁性層116が2層の前記磁性層117,118とその間に介在する前記中間層119との人工フェリ構造であるから、前記第1の磁性層117と第2の磁性層118間にRKKY相互作用による反平行結合磁界が作用し、前記第2の磁性層118は前記第2の方向とは逆方向に磁化固定される。
【0105】
前記磁気検出素子210も前記磁気検出素子10,110と同様、前記フリー磁性層14、前記第1および第2の非磁性材料層15,115、前記第1および第2の固定磁性層16,116は、前記第1の長さ方向の長さ寸法が、前記第2の方向の幅寸法よりも長く形成されている。したがって、前記フリー磁性層14は形状異方性を有し、前記フリー磁性層14内部の磁化がトラック幅方向に優先的に向いた状態である。前記フリー磁性層14が形状異方性を有するには、前記フリー磁性層14のトラック幅方向における両側端間の長さ寸法は1μm以上であることが好ましい。また、前記フリー磁性層14の磁化をトラック幅方向に安定化させるには、前記形状異方性に加えて誘導磁気異方性を付与することが好ましく、前記フリー磁性層14が磁場中で成膜されることが好ましい。
【0106】
前記磁気検出素子210では前記第2の反強磁性層230が前記シード層13の上に一定の厚さを有して前記第1の方向に延びているため、素子構造を簡単にすることができ、またその製造も容易である。
【0107】
図1ないし図3に示す磁気検出素子10、110および210は、素子両側端部上に電極層23、23が設けられ、前記電極層23、23からのセンス電流が前記多層膜の各層に対し膜面と平行な方向に流れるCIP(current in the plane)型と呼ばれる構造であるが、本発明は、電極層からのセンス電流が多層膜に対し膜厚方向と平行な方向に流れるCPP(current perpendicular tothe plane)型と呼ばれる構造にも適用可能である。その実施形態は図4ないし図6に示している。
【0108】
図4は図1に示す磁気検出素子10をCPP型の構造に適用した第4の実施の形態である磁気検出素子310を示しており、図5は図2に示す磁気検出素子110をCPP型の構造に適用した第5の実施の形態である磁気検出素子410を示しており、図6は図3に示す磁気検出素子210をCPP型の構造に適用した第6の実施の形態である磁気検出素子510を示している。
【0109】
図4ないし図6において、図1ないし図3に示した前記磁気検出素子10,110,210と同様の構造の構成部分には、同様の符号を付してその説明を省略する。
【0110】
図4ないし図6に示す各磁気検出素子310,410,510では、各下部シールド層11,111,211はNiFe合金等の磁性材料で形成されており、シールド機能のみならず下部電極層としての役割も有している。
【0111】
図4ないし図6に示す実施形態では、図1ないし図3において電極層23,23であった箇所に絶縁層150、150が形成されている。そして前記絶縁層150,150上から、前記反強磁性層20間に形成された前記間欠部20c内から露出する前記固定磁性層16の前記第1の磁性層17上にかけて上部シールド層151が形成される。前記上部シールド層151はNiFe合金等の磁性材料で形成され、シールド機能と上部電極層としての機能も有する。
【0112】
また、前記上部シールド層151と前記第1の磁性層17は磁気的に分離されている必要があり、図4ないし図6に破線で示すように、非磁性導電層である上部ギャップ層152を設けることが好ましい。
【0113】
図4ないし図6に示す実施形態では、前記前記第1の磁性層17上に前記絶縁層150,150を設けることで、前記上部シールド層151からのセンス電流がトラック幅方向の両側に分流するのを抑制でき再生出力の大きい磁気検出素子を製造することができる。
【0114】
なお図4ないし図6に示す前記非磁性材料層15は、例えばCuで形成されているが、スピントンネル効果の原理を用いたトンネル型磁気抵抗効果素子(TMR素子)の場合、前記非磁性材料層15は、例えばAl等の絶縁材料で形成される。
【0115】
以上図1ないし図6で説明した磁気検出素子10,110,210,310,410,510では、前記反強磁性層20,130が、前記第1の磁性層17および117の両側端部17a,17a上および117a,117a下に、間隔を空けて分離して設けられ、前記第1の磁性層17,117の中央部17b上,117b下には設けられていないものを例として説明した。しかし、本発明はこれに限定されるものではなく、前記間欠部20cに前記反強磁性層20,130と同じ組成の非磁性金属層が設けられているものであっても良い。ただしこの場合、前記反強磁性層20,130と同じ組成の非磁性金属層は、前記反強磁性層20、130よりも膜厚(図示Z方向)が薄く形成されていることが好ましい。この場合、反強磁性層20,130と同じ組成の非磁性金属層の膜厚は、前記反強磁性層20、130に磁場中で熱処理を施した場合でも、熱処理後にその結晶構造が規則格子とならずに、不規則格子の状態を維持できる厚さで形成される。
【0116】
このように、前記反強磁性層20,130と同じ組成の非磁性金属層は熱処理によっても結晶構造が不規則格子の状態であるため反強磁性を有さず、したがって前記第1の磁性層17,117との間には交換結合を生じない。非磁性金属層は薄いので、センス電流の分流を少なくでき出力の向上に寄与する。また交換結合を生じていないため、非磁性金属層が反強磁性層20,130のブロッキング温度以上の高温になったときにも、固定磁性層16,116の磁化が反転するなど磁化が不安定となることはない。
【0117】
ところで、前記非磁性金属層が設けられる場合には、以下のような工夫を施すことが、前記間欠部での固定磁性層16,116、すなわち固定磁性層16,116の中央部での磁化をさらに好ましく固定できる点で望ましい。
【0118】
図7は、図1に示す磁気検出素子において、第1の反強磁性層20間の間欠部20c内に非磁性金属層60が設けられた構造を示している。
【0119】
前記非磁性金属層60は、その両側に形成された第1の反強磁性層20と同じ組成で形成されているから、例えば前記非磁性金属層60は、PtMn合金、または、X―Mn(ただしXは、Pt,Pd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である)合金によって形成されている。
【0120】
前記非磁性金属層60の膜厚は、前記第1の反強磁性層20の膜厚に比べて薄く、5Å以上50Å以下であることが好ましい。
【0121】
PtMn合金、または、X―Mn(ただしXは、Pt,Pd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である)からなる非磁性金属層60の膜厚がこの範囲内であると、非磁性金属層60の結晶構造は、成膜時の状態である面心立方構造(fcc)を維持しつづける。なお、非磁性金属層60の膜厚が、50Åより大きくなると、約250℃以上の熱が加わったときに、非磁性金属層60の結晶構造が、前記第1の反強磁性層20と同様に、CuAuI型の規則型の面心正方構造(fct)に構造変態するので好ましくない。ただし、前記非磁性金属層60の膜厚が、50Åより大きくても、約250℃以上の熱が加わらなければ、前記非磁性金属層60の結晶構造は、成膜時の状態である面心立方構造(fcc)を維持しつづける。
【0122】
PtMn合金、または、X―Mn(ただしXは、Pt,Pd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である)からなる非磁性金属層60が面心立方構造(fcc)の結晶構造を有するとき、この非磁性金属層60と第1磁性層17の中央部17bとの界面には交換結合磁界は発生しないか、または極めて弱く、交換結合磁界によって第1磁性層17の中央部17bの磁化方向を固定することはできない。この点は既に上述した通りであり、前記第1の磁性層17には、磁性層内部の交換相互作用により媒介されたバイアス磁界やRKKY相互作用による結合磁界が作用している。
【0123】
この図7では、上記作用以外に固定磁性層16の中央部での一軸異方性をも加味して、固定磁性層16の中央部での磁化固定を安定化させるといったものである。
【0124】
図7に示す実施の形態では、第2の磁性層18の膜厚の方が、第1の磁性層17の膜厚より大きくなっている。例えば第2の磁性層18の磁化はハイト方向(図示Y方向)を向き、第1の磁性層17の磁化はハイト方向と反平行方向を向いた状態で磁化が固定されている。
【0125】
第1の磁性層17の膜厚は10Å〜30Åであり、第2の磁性層18の膜厚は15Å〜35Åである。第1の磁性層17の膜厚を厚くすると、保磁力は大きくなる。しかし、第1の磁性層17の膜厚が大きいと分流損失が大きくなる。また、第1の磁性層17の中央部17bは、非磁性金属層60と整合することによって結晶構造に歪みが生じ、この歪みによって磁歪定数λ及び一軸異方性を大きくしている。しかし、第1の磁性層17の膜厚が大きすぎると、第1の磁性層17の中央部17bの非磁性金属層との界面附近で生じた歪が第1磁性層17の体積全体から見ると薄まってしまい、磁歪定数λ及び一軸異方性も小さくなってしまう。
【0126】
この実施の形態では、固定磁性層16の中央部の磁化を固定する一軸異方性を決める、誘導磁気異方性と磁気弾性効果のうち、磁気弾性効果を主に利用している。
【0127】
磁気弾性効果は、磁気弾性エネルギーに支配される。磁気弾性エネルギーは、固定磁性層16にかかる応力σと固定磁性層16の中央部の磁歪定数λによって規定される。
【0128】
図10は、図7に示された磁気検出素子を図示上側(図示Z方向と反対方向)からみた部分平面図である。なお図10には、磁気検出素子Tを構成する各層のうち、電極層23と第1の磁性層17を図示し、他の層を図示していない。
【0129】
また図10に示すように磁気検出素子Tの周囲は、斜線で示される絶縁材料層61によって埋められている。
【0130】
また前記磁気検出素子Tの記録媒体との対向面側の端面Fは露出しているか、またはダイヤモンドライクカーボン(DLC)などからなる膜厚20Å〜50Åの薄い保護層で覆われているだけであり、開放端となっている。
【0131】
磁気検出素子Tの上下に位置するギャップ層12,25などから、磁気検出素子に作用する応力は元々は二次元的に等方性であったが端面Fが開放されたことによってその対称性が崩れ、その結果、磁気検出素子Tのハイト方向(図示Y方向)に平行な方向に、一軸性の引っ張り応力が加えられている。さらに図10に示すように電極層の内部応力に起因して電極層23,23からトラック幅方向に(図示X方向)に平行な方向及び反平行な方向に圧縮応力が発生し、この圧縮応力は磁気検出素子Tの下層側に伝播し、記録媒体との対向面側の端面Fが開放されている固定磁性層16に、ハイト方向の引張り応力とトラック幅方向の圧縮応力が加えられる。そして、第1の磁性層17は、磁歪定数が正の値である磁性材料によって形成されると、磁気弾性効果によって、第1の磁性層17の磁化容易軸は磁気検出素子の奥側(ハイト方向;図示Y方向)に平行方向となる。
【0132】
図7に示す実施の形態では、固定磁性層16の中央部での磁歪定数を大きくすることによって、前記中央部に作用する磁気弾性エネルギーを大きくし、これによって、固定磁性層16の中央部での一軸異方性を大きくするものである。固定磁性層16の中央部での一軸異方性が大きくなると、固定磁性層16の中央部での磁化は、その両側のように第1の反強磁性層20との交換結合磁界が無くても一定の方向に強固に固定され、磁気検出素子の出力が大きくなりかつ出力の安定性や対称性も向上する。
【0133】
具体的には,固定磁性層16を構成する第1の磁性層17の中央部17bを、非磁性金属層60と接合させることによって、第1の磁性層17の中央部17bの結晶構造に歪みを生じさせて第1の磁性層17の中央部17bの磁歪定数λを大きくさせている。
【0134】
前記非磁性金属層60は、fcc構造をとり、界面と平行な方向に{111}面として表される等価な結晶面が優先配向するものである。
【0135】
一方、固定磁性層16の第1の磁性層17がCoまたはCoFe(y≦20,x+y=100)によって形成されていると、第1の磁性層17は面心立方格子(fcc)構造をとる。また、第1の磁性層17は、界面と平行な方向に、{111}面として表される等価な結晶面が優先配向している。
【0136】
従って、第1の磁性層17の中央部17bを構成する原子と非磁性金属層60を構成する原子が互いに重なりあいやすくなり、非磁性金属層60内の結晶と固定磁性層16内の中央部の結晶はエピタキシャルな状態になっている。
【0137】
しかし、第1の磁性層17の中央部17bでの{111}面内の最近接原子間距離と、非磁性金属層60の{111}面内の最近接原子間距離には、一定以上の差があることが必要である。
【0138】
前記非磁性金属層60を構成する原子と第1の磁性層17の中央部17bでの原子とを重なり合わせつつ、結晶構造に歪みを生じさせ、第1の磁性層17の中央部17bの磁歪を大きくするために、非磁性金属層60の材料である前記PtMn合金中のPt含有量、または、X―Mn合金中のX元素の含有量を調節することが好ましい。
【0139】
例えば、前記PtMn合金中のPt含有量、または、X―Mn合金中のX元素の含有量を、51原子%以上にすると、非磁性金属層60に重なる第1の磁性層17の中央部17bの磁歪が急激に増加する。また、前記PtMn合金中のPt含有量、または、X―Mn合金中のX元素の含有量が、55原子%以上95原子%以下であると、前記第1磁性層17の中央部17bの磁歪が大きな値をとりつつ安定する。
【0140】
また、前記非磁性金属層60の{111}面内の最近接原子間距離と、固定磁性層16の第1の磁性層17の中央部17bでの{111}面内の最近接原子間距離との差を、第1の磁性層17の中央部17bでの{111}面内の最近接原子間距離で割った値(以下ミスマッチ値と呼ぶ)を、0.05以上0.20以下にすることが好ましい。
【0141】
本実施の形態の磁気検出素子では、図11に模式的に示すように、非磁性金属層60を構成する原子と第1の磁性層17の中央部17bでの原子とが重なり合いつつも、界面付近で結晶構造に歪みが生じている状態になる。
【0142】
図11において符号N1は第1の磁性層17の中央部17bでの{111}面内の最近接原子間距離を示しており、符号N2は非磁性金属層60の{111}面内の最近接原子間距離を示している。N1及びN2は、非磁性金属層60と第1の磁性層17の中央部17bの界面から離れた歪みの影響の少ないところで測定する。
【0143】
このように、第1の磁性層17の中央部17bの結晶構造に歪みが生じると、前記第1の磁性層17の中央部17bの磁歪定数λを大きくすることができるので、大きな磁気弾性効果を発揮することができる。
【0144】
ここで、前記非磁性金属層60と第1の磁性層17の中央部17bでのミスマッチ値が小さすぎると、図12に模式的に示すように、非磁性金属層60の原子と第1の磁性層17の中央部17bの原子が重なりあったとき、界面付近の結晶構造に歪みが生じなくなり、第1の磁性層17の中央部17bの磁歪定数λを大きくすることができなくなる。
【0145】
また前記非磁性金属層60と第1の磁性層17の中央部17bでのミスマッチ値が大きくなりすぎると、図13に模式的に示すように前記非磁性金属層60の原子と第1の磁性層17の中央部17bの原子が重なりあわなくなり、非エピキャシタルまたは非整合な状態になる。非磁性金属層60の原子と第1の磁性層17の中央部17bの原子が非エピキャシタルまたは非整合な状態になるときも、界面付近の結晶構造に歪みが生じなくなり、第1の磁性層17の中央部17bの磁歪定数λを大きくすることができなくなる。
【0146】
また前記固定磁性層16の第1の磁性層17の中央部17bが、体心立方格子(bcc)構造をとり、界面と平行な方向に、{110}面として表される等価な結晶面が優先配向しているものであってもよい。
【0147】
例えば、固定磁性層16の第1の磁性層17がCoFe(y≧20,x+y=100)によって形成されていると、第1の磁性層17は体心立方格子(bcc)構造をとる。
【0148】
上述したように前記非磁性金属層60は、fcc構造をとり、界面と平行な方向に{111}面として表される等価な結晶面が優先配向しているものである。
【0149】
bcc構造を有する結晶の{110}面として表される等価な結晶面の原子配列とfcc構造を有する結晶の{111}面として表される等価な結晶面の原子配列は類似しており、bcc構造を有する結晶とfcc構造を有する結晶を、各々の原子が重なり合った整合状態、いわゆるヘテロエピタキシャルな状態にすることができる。
【0150】
さらに、第1の磁性層17の中央部17bの{110}面内の最近接原子間距離と、非磁性金属層60の{111}面内の最近接原子間距離には、一定以上の差が生じている。このため、第1の磁性層17の中央部17bと非磁性金属層60の界面付近では、第1の磁性層17の中央部17bを構成する原子と非磁性金属層60を構成する原子が互いに重なり合いつつも、それぞれの結晶構造に歪みが生じる。従って、第1の磁性層17の中央部17bの結晶構造に歪を生じさせることによって、第1の磁性層17の中央部17bの磁歪定数λを大きくさせることができる。
【0151】
なお、bcc構造をとるCoFe(y≧20,x+y=100)は、fcc構造をとるCoまたはCoFe(y≦20,x+y=100)より、特にy=50附近の組成において磁歪定数λの値が大きいので、より大きな磁気弾性効果を発揮することができる。また、bcc構造をとるCoFe(y≧20,x+y=100)は、保磁力が大きく、固定磁性層16の中央部の磁化固定を強固にすることができる。
【0152】
なお、本発明では、第1の磁性層17の中央部17bと非磁性金属層60の界面付近で、第1の磁性層17の中央部17bを構成する原子と、非磁性金属層60を構成する原子の大部分が互いに重なり合う整合状態になっていればよい。例えば、図11に模式的に示すように、一部に、第1の磁性層17の中央部17bを構成する原子と、非磁性金属層60を構成する原子が重なり合わない領域があってもよい。
【0153】
また第2の磁性層18の材料には、bcc構造をとるCoFe(y≧20,x+y=100)、fcc構造をとるCoまたはCoFe(y≦20,x+y=100)のどちらを用いてもよい。
【0154】
第2の磁性層18の材料に、bcc構造をとるCoFe(y≧20,x+y=100)を用いると、正磁歪を大きくすることができる。bcc構造をとるCoFe(y≧20,x+y=100)は、保磁力が大きく、固定磁性層16の中央部での磁化固定を強固にすることができる。また中間層19を介した第1の磁性層17と第2の磁性層18間のRKKY相互作用が強くなる。
【0155】
一方、第2の磁性層18は、非磁性材料層15に接しており、磁気抵抗効果に大きな影響を及ぼす層なので、fcc構造をとるCoまたはCoFe(y≦20,x+y=100)を用いて形成すると磁気抵抗効果の劣化が少ない。
【0156】
また図7に示す実施の形態では、電極層23,23がCr(クロム)またはα−TaまたはRhで形成され、しかも電極層23,23の結晶格子面の膜面平行方向の面間隔がCr(bcc)の{110}面の場合、0.2044nm以上、α−Ta(bcc)の{110}面の場合、0.2337nm以上、Rh(fcc)の{111}面の場合、0.2200nm以上であると、その下の固定磁性層16に加わる圧縮応力を大きくすることができる。このとき、図10に示される矢印方向、すなわち電極層23,23の外側方向に向けて、電極層23,23が延伸し、固定磁性層16に対し、トラック幅方向(図示X方向)に平行な方向及び反平行な方向に圧縮応力が加えられる。
【0157】
前記電極層23,23の結晶格子面の膜面平行方向の面間隔は、X線回折や電子線回折によって測定することができる。なお、バルク状態のCr、α−Ta、Rhは、結晶格子面の膜面平行方向の面間隔がCr(bcc)の{110}面で0.2040nm、α−Ta(bcc)の{110}面で0.2332nm、Rh(fcc)の{111}面で0.2196nmであり、前記面間隔がこの値以上になると電極層23,23が固定磁性層16に対し圧縮応力を与えるように作用する。
【0158】
前記電極層23,23をCrによって形成したときと、Auのような軟い金属材料によって形成したときとでは、前記圧縮応力に以下のような違いが生じる。
【0159】
例えば、下から順に、バイアス下地層:Cr(50Å)/ハードバイアス層:CoPt(200Å)/中間層:Ta(50Å)/電極層:Au(800Å)/保護層:Ta(50Å)が積層された膜が生じさせる圧縮応力は、280MPaである。
【0160】
これに対し、下から順に、バイアス下地層:Cr(50Å)/ハードバイアス層:CoPt(200Å)/中間層:Ta(50Å)/電極層:Cr(1400Å)/保護層:Ta(50Å)が積層された膜が生じさせる圧縮応力は、670MPaである。
【0161】
なお前記電極層23,23をスパッタ成膜するときには、イオンビームスパッタ法を用い、スパッタ装置内のArまたはXe、Kr等の圧力を5×10−3Pa〜1×10−1Paに小さくする。スパッタ装置内のArまたはXe、Kr等の圧力が小さいと、電極層23を形成するCr等の原子がArまたはXe等の原子に衝突する確率が減少するので、Cr等の原子は高いエネルギーを保持したまま堆積していく。既に成膜されているCr等の膜に、ターゲットから飛来したCr等の原子が大きなエネルギーをもって衝突して埋め込まれていくと、電極層23,23が外側方向に向けて延伸する。
【0162】
また前記フリー磁性層14の磁歪は負磁歪にすることが好ましい。上記したように、磁気検出素子には、両側から圧縮応力が加わっているので、負磁歪のフリー磁性層14は磁気弾性効果によって、トラック幅方向(図示X方向)に平行または反平行方向が磁化容易軸になりやすくなる。
【0163】
なお、フリー磁性層14の中央部付近の圧縮応力は、両端部の圧縮応力よりも小さいので、磁界検出感度の低下を抑えることができる。
【0164】
フリー磁性層14の磁歪定数λは、−8×10−6≦λ≦−0.5×10−6の範囲であることが好ましい。前記フリー磁性層14の磁歪λが負に大きすぎると、磁気検出素子の再生感度が低下する。一方、フリー磁性層24の磁歪λ(絶対値)が大きすぎると、磁気検出素子の再生波形に乱れが生じやすい。
【0165】
また、このように非磁性金属層60及び第1の磁性層17の構造を適正化することで、特に図7のように前記固定磁性層16のトラック幅方向への長さ寸法が長く延ばして形成された形態では、前記固定磁性層16の中央部の磁化の安定化を促進させることが可能である。
【0166】
上記のようにフリー磁性層14はトラック幅方向(第1の方向)に長く延ばして形成され、形状異方性によって磁化を前記トラック幅方向に向けさせている。一方、固定磁性層16もフリー磁性層14と同様にトラック幅方向に長く伸ばして形成されているから、トラック幅方向に形状異方性がつき易くなるが、図7では、特に磁気弾性効果を利用して、前記第1の磁性層16の中央部16bでの磁化をハイト方向に安定して向けることが可能になり、再生出力が大きく安定した再生機能を有する磁気検出素子を製造することが可能になっている。
【0167】
図8は、図2に示す磁気検出素子の変形例であり、図7と同様にトラック幅方向における第1の反強磁性層20間に、膜厚の薄い、前記第1の反強磁性層20と同じ組成の非磁性金属層60が形成されている。前記非磁性金属層60及び第1の磁性層17の好ましい形態に関しては図7に詳しく説明したので、そちらを参照されたい。
【0168】
また図8では、トラック幅方向の第2の反強磁性層130間の間欠部130cにも、膜厚の薄い、前記第2の反強磁性層130と同じ組成の非磁性金属層63が形成されている。前記非磁性金属層63は、前記非磁性金属層60とその材質や結晶配向等が全て同じなので、ここでは特に説明しない。また固定磁性層116を構成する第1の磁性層117の材質や結晶配向等についても、第1の磁性層17と全て同じなので、ここでは特に説明しない。
【0169】
図8に示すデュアルスピンバルブ型薄膜素子では、第1の反強磁性層20間、及び第2の反強磁性層130間の各間欠部20c,130c内に、膜厚の薄い非磁性金属層60,63を設けることで、前記固定磁性層16,116の中央部での磁化をより安定化させることができ、再生出力が大きく安定した再生機能を有する磁気検出素子を製造することが可能である。
【0170】
図9は、図8に示す磁気検出素子の変形例である。図9では、前記第2の反強磁性層130間に形成された前記非磁性金属層63と、シード層141間に、Ru、Re、Os、Ti、Rh、Ir、Pd、Pt、Alから選ばれる1種あるいは2種以上からなる非磁性金属層64が介在している。
【0171】
Ruなどからなる非磁性金属層64の{111}面内又はC面内の最近接原子間距離は、PtMn合金、または、X―Mn(ただしXは、Pd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である)からなる非磁性金属層63の{111}面内の最近接原子間距離より小さい値を有し、かかる場合、シード層141から非磁性金属層63にかけて、膜面平行方向の最近接原子間距離を段階的に広げることができ、第1の磁性層117の中央部117bに必要以上の歪みが生じ部分的に非整合となる領域の比率を抑えることができる。
【0172】
図14ないし図16は、固定磁性層116(反強磁性層が上側に設けられた固定磁性層16も同じ態様の実施が可能であるが、ここでは反強磁性層が固定磁性層よりも下側に設けられた固定磁性層116について説明することとする)の他の様態を示す部分断面図である。なお図14ないし図16に示す固定磁性層116は、図8の素子中央部附近を拡大したものである。
【0173】
図14に示されるように、固定磁性層116を構成する第1の磁性層117は、非磁性金属層63側にfcc磁性層117b1が設けられ、中間層119側にbcc磁性層117b2が設けられたものであってもよい。
【0174】
fcc磁性層117b1とは、面心立方格子(fcc)構造をとり、界面と平行な方向に{111}面として表される等価な結晶面が優先配向する磁性層であり、bcc磁性層117b2とは、体心立方格子(bcc)構造をとり、界面と平行な方向に{110}面として表される等価な結晶面が優先配向している磁性層である。
【0175】
fcc磁性層117b1は、CoまたはCoFe(y≦20,x+y=100)を用いて形成され、bcc磁性層117b2は、CoFe(y≧20,x+y=100)によって形成される。
【0176】
第1の磁性層117の中間層119側の界面付近をbcc構造にすることにより、前記第1の磁性層117の中央部117bでの磁歪定数λの値を大きくし、大きな磁気弾性効果を発揮させることができる。また中間層119側の組成が、CoFe(y≧20,x+y=100)であると中間層119を介した第1の磁性層117と第2の磁性層118間のRKKY相互作用が強くなる。
【0177】
一方、第1の磁性層117の非磁性金属層63側の界面付近をfcc構造にすると、固定磁性層116の中央部、非磁性材料層115の中央部及びフリー磁性層14の中央部の結晶配向性が一定になり、結晶粒も大きくなって磁気抵抗変化率(MR比)を高くすることができる。
【0178】
また図15に示されるように、固定磁性層116を構成する第2の磁性層118は、非磁性材料層115側にfcc磁性層118b2が設けられ、中間層119側にbcc磁性層118b1が設けられたものであってもよい。
【0179】
fcc磁性層118b2とは、面心立方格子(fcc)構造をとり、界面と平行な方向に{111}面として表される等価な結晶面が優先配向する磁性層であり、bcc磁性層118b1とは、体心立方格子(bcc)構造をとり、界面と平行な方向に{110}面として表される等価な結晶面が優先配向している磁性層である。
【0180】
fcc磁性層118b2は、CoまたはCoFe(y≦20,x+y=100)を用いて形成され、bcc磁性層118b1は、CoFe(y≧20,x+y=100)によって形成される。
【0181】
第2の磁性層118の中間層119側の界面付近をbcc構造にすることにより、前記第2の磁性層118の中央部118bでの磁歪定数λの値を大きくでき、大きな磁気弾性効果を発揮させることができる。また中間層119側の組成が、CoFe(y≧20,x+y=100)であると、中間層119を介した第1の磁性層117と第2の磁性層118間のRKKY相互作用が強くなる。
【0182】
一方、第1の磁性層117の中央部117bの非磁性金属層63側の界面付近をfcc構造にすることによって、磁気抵抗効果の劣化を抑えることができる。
【0183】
または、図16に示されるように、固定磁性層116を構成する第1の磁性層117は、非磁性金属層63側にfcc磁性層117b1が設けられ、中間層119側にbcc磁性層117b2が設けられたものであり、かつ、第2の磁性層118は、非磁性材料層115側にfcc磁性層118b2が設けられ、非磁性中間層119側にbcc磁性層118b1が設けられたものであってもよい。
【0184】
なお、図14ないし図16では、第1の磁性層117をfcc磁性層117b1とbcc磁性層117b2とが積層された構造にし、または、第2の磁性層118を、bcc磁性層118b1とfcc磁性層118b2とが積層された構造にしている。
【0185】
しかし、本発明では、固定磁性層116の第1の磁性層117が、非磁性金属層63側の界面付近で、面心立方格子(fcc)構造をとり、界面と平行な方向に{111}面として表される等価な結晶面が優先配向し、中間層119側の界面付近で、体心立方格子(bcc)構造をとり、界面と平行な方向に、{110}面として表される等価な結晶面が優先配向していればよい。
【0186】
従って、固定磁性層116の第1の磁性層117は、非磁性金属層63側の界面付近でCoまたはCoFe(y≦20,x+y=100)の組成を有し、fcc構造をとり、界面と平行な方向に{111}面として表される等価な結晶面が優先配向し、非磁性金属層63側の界面付近から中間層119側の界面に向かうに連れて、Fe濃度が徐々に大きくなって、中間層119側の界面付近で、CoFe(y≧20,x+y=100)の組成を有し、体心立方格子(bcc)構造をとり、界面と平行な方向に、{110}面として表される等価な結晶面が優先配向したものであってもよい。
【0187】
また、第2の磁性層118も同様に、非磁性材料層115側の界面付近から中間層119側の界面に向かうに連れて、Fe濃度が徐々に大きくなるCoFe合金で形成されてよい。
【0188】
【実施例】
図17(実施例)および図20(比較例)に示す構造の磁気検出素子を用いて一方向性交換バイアス磁界Hex*及び再生出力(規格化出力)を求めた。
【0189】
図17(実施例)は、磁気検出素子を記録媒体との対向面側から見た部分断面図の模式図であり、膜構成は、下からシード層:(Ni0.8Fe0.260at%Cr40at%(60Å)/フリー磁性層:Ni80at%Fe20at%(35Å)/Co90at%Fe10at%(10Å)/非磁性材料層:Cu(21Å)/固定磁性層:[第2の磁性層:Co90at%Fe10at%(XÅ)/中間層:Ru(9Å)/第1の磁性層:Co90at%Fe10at%(YÅ)]/反強磁性層:Pt50at%Mn50at%(200Å)の順である。なお括弧書きは膜厚を示している。
【0190】
図17に示すようにフリー磁性層は第1の方向であるトラック幅方向(図示X方向)に磁化が向けられているが、前記フリー磁性層の磁化を制御するための永久磁石層や他の反強磁性層は設けられていない。また図17に示すように前記第1の磁性層と第2の磁性層は第2の方向であるハイト方向(図示Y方向)に平行な方向で且つ互いに磁化が反平行状態になっている。
【0191】
また図17に示すように第1の反強磁性層間には間隔が空けられ、この間隔内からは固定磁性層を構成する第1の磁性層が露出している。そして前記間隔の第1の方向における幅寸法がトラック幅RTwであり、前記トラック幅RTwは物理的なトラック幅(Physical Read Track Width)である。
【0192】
上記のように第1の磁性層の膜厚はXÅで、第2の磁性層の膜厚はYÅであり、これら各磁性層の膜厚を変化させて、トラック幅Twと一方向性交換バイアス磁界及び前記トラック幅Twと規格化出力との関係について求めた。なお一方向性交換バイアス磁界Hex*とは、抵抗変化率(ΔR/R)の最大値の半分の値になる時の外部磁界の大きさを前記一方向性交換バイアス磁界(HeX*)と定める。一方向性交換バイアス磁界には、前記固定磁性層と反強磁性層間で発生する交換結合磁界のほか、前記固定磁性層は人工フェリ構造であるため、前記固定磁性層を構成するCoFe間で発生するRKKY交換相互作用における結合磁界などを含む磁界の大きさである。この一方向性交換バイアス磁界が大きいほど前記固定磁性層を所定の方向に適切にピン止めすることが可能になる。
【0193】
図18に示すように、トラック幅RTwが広がるにつれて一方向性交換バイアス磁界は低下する。しかし前記トラック幅RTwが約0.22μm程度でも100kA/m程度の高い一方向性交換バイアス磁界を生じている。前記固定磁性層の磁化固定には最低で80kA/m程度の一方向性交換バイアス磁界が必要であると考えられることからすると、前記トラック幅RTwの設定にある程度の自由度があることがわかった。
【0194】
図19は、前記トラック幅RTwと、前記トラック幅RTwで規格化された再生出力(ΔV/RTw)との関係を示すグラフである。規格化出力は、磁気検出素子の図示Y方向から、±100Oe(±7960A/m)の一様磁界を印加したときの電圧変化量ΔVを、トラック幅RTwで割ったものである。
【0195】
図19に示すように、トラック幅RTwが大きくなるにつれて、規格化出力は若干低下する傾向を見せるが、規格化出力は前記トラック幅RTwが0.2μmを超えても12mV/μm以上を保っていることがわかる。
【0196】
図20(比較例)は、磁気検出素子を記録媒体との対向面側から見た部分断面図の模式図であり、膜構成は、図17の磁気検出素子の膜構成と同じである。図20に示すようにフリー磁性層は前記第1の方向に磁化が向けられているが、前記フリー磁性層の磁化を制御するための永久磁石層や他の反強磁性層は設けられていない。また図20に示すように前記第1の磁性層と第2の磁性層は前記第2の方向に平行な方向で且つ互いに磁化が反平行状態になっている。
【0197】
なお図17の場合と同様に第1の磁性層の膜厚はXÅで、第2の磁性層の膜厚はYÅであり、これら各磁性層の膜厚を変化させて、トラック幅RTwと一方向性交換バイアス磁界及び前記トラック幅RTwと規格化出力との関係について求めた。なお図20に示す磁気検出素子は図17のように反強磁性層には前記第1の方向に間隔が空けられておらず、前記反強磁性層は前記第1の磁性層上の全面に設けられている。前記反強磁性層の上に設けられた電極層に図20に示すように前記第1の方向に間隔が空けられ、前記間隔の第1の方向における幅寸法がトラック幅RTwであり、前記トラック幅RTwは物理的なトラック幅(PhysicalRead Track Width)である。
【0198】
図21に示すように、トラック幅RTwが広がっても一方向性交換バイアス磁界の大きさにはさほど大きな変化が見られない。同様に図22に示すように、規格化出力の大きさもトラック幅RTwが広がっても変化しない。
【0199】
本発明の実施形態の磁気検出素子は図17のように、反強磁性層にトラック幅方向に所定の間隔を空けて成るものであるが、まず図18と図21に示す一方向性交換バイアス磁界Hex*を比べて見ると、実施例の方が比較例に比べて前記一方向性交換バイアス磁界Hex*は小さくなる。これは実施例の場合、素子の中央部の前記第1の磁性層上に第1の反強磁性層が設けられていないため、素子の中央部で交換結合磁界が生じないためであると考えられるが、実施例でもトラック幅RTwの大きさを適切に制御すれば前記固定磁性層を適切に磁化固定できるだけの一方向性交換バイアス磁界Hex*を得ることができることがわかった。
【0200】
上記したように前記一方向性交換バイアス磁界Hex*は最低、80kA/m程度以上あれば足りると考えられるので図18に示すように前記トラック幅RTwを0.2μm以下にすれば、前記一方向性交換バイアス磁界を80kA/m程度以上得ることが可能であるとわかった。
【0201】
次に図19と図22に示す規格化出力を比べて見ると、実施例の方が比較例に比べて前記規格化出力は大きくなる。これは実施例のように素子の中央部の第1の磁性層上に反強磁性層を設けないことで、電極層から流れるセンス電流の分流ロスが減るためであると考えられる。
【0202】
つまり、実施例のように素子の中央部の第1の磁性層上に反強磁性層を設けない構成とすれば、固定磁性層の第1の磁性層と第2の磁性層を磁化固定できるだけの十分な一方向性交換バイアス磁界を得ることができると共に、従来に比べて再生出力を大きくすることができることがわかった。
【0203】
また図18および図19に示すように第1の磁性層と第2の磁性層の膜厚は、互いに薄く且つ膜厚差が小さい方が、一方向性交換バイアス磁界及び規格化出力を大きくできることがわかった。
【0204】
次に、図17(実施例)に示す構造の磁気検出素子を用いて印加磁場と出力との関係を求めた。
【0205】
図23に示すように、実施例では縦バイアス磁界が付与されていないが、グラフの傾きはほぼ一定であり、バルクハウゼンノイズやヒステリシスが発生していない。これは、フリー磁性層が形状異方性によって、磁化方向がトラック幅方向に配向しているためであると考えられる。
【0206】
上記は、図17に示す試料に示すように第1の方向における第1の反強磁性層間に間隔が設けられるものの、この間隔内に前記第1の反強磁性層と同じ組成の非磁性金属層が設けられていない場合での実験であった。
【0207】
そこで今度は、前記非磁性金属層と固定磁性層を構成する第1の磁性層とに着目して以下の実験を試みた。
【0208】
まずPtMn層(非磁性金属層)にCoFe層(第1の磁性層)を積層し、PtMn層の組成比を変化させたときのCoFeの磁歪の変化を調べた。
【0209】
以下の多層膜を成膜し、290℃で4時間アニールした。
シリコン基板/アルミナ(1000Å)/(Ni0.8Fe0.260Cr40(52Å)/PtMn100−x(30Å)/Co90Fe10(20Å)/Ru(9Å)
磁歪の測定には光梃子法を用いた。レーザ光線を上記多層膜の表面に当てた状態て、前記多層膜の膜面平行方向に磁界を印加する。磁歪による多層膜の曲がりをレーザ光線の反射角度の変化として読み取り、多層膜の磁歪定数を検出する。
【0210】
結果を図24に示す。図24に示されるように、PtMn層のPt濃度が高くなる程、多層膜の磁歪定数が大きくなる。特に、Pt濃度が51原子%以上になると、磁歪定数が急激に増加し、Pt濃度が55原子%以上になると磁歪定数の増加率が緩やかになる。
【0211】
これは、PtMn層のPt濃度が高くなる程、PtMnの結晶格子定数が大きくなり、PtMn層とCoFe層の界面付近の歪みが大きくなるためであると考えられる。
【0212】
次に、PtMn層にCoFe層を積層したときと、PtMn層にCo層を積層したときのCo及びCoFeの磁歪定数を比較した。
【0213】
以下の多層膜を成膜し、290℃で4時間アニールした。
シリコン基板/アルミナ(1000Å)/(Ni0.8Fe0.260Cr40(52Å)/Pt50Mn50(0Åまたは30Å)/第1の磁性層(XÅ)/Ru(9Å)/Cu(85Å)/Ta(30Å)(ただし、第1の磁性層はCo90Fe10またはCo)
なお磁歪の測定には光梃子法を用いた。
【0214】
結果を図25に示す。第1の磁性層がCoであっても、CoFeであっても、PtMn層が下層にあるほうが、PtMn層がないものに比べて磁歪定数が大きくなっている。また、第1の磁性層がCoであるほうが、CoFeであるものよりも磁歪定数が大きくなっている。
【0215】
また、第1の磁性層をCoとし、第1の磁性層の下層にPtMn層(30Å)を設けたとき、第1の磁性層の膜厚を大きくしていくと、第1の磁性層の膜厚が16Åから20Åの範囲で磁歪定数の増加が見られるが、第1の磁性層の膜厚が20Åより大きくなると磁歪定数が減少している。
【0216】
これは、第1の磁性層が厚くなりすぎると、第1の磁性層とPtMn層の界面付近に生じた歪みによる磁歪定数増大の効果が小さくなることを示している。
【0217】
次に、第1の磁性層の上にPtMn層を形成して、Co及びCoFeの磁歪定数を比較した。
【0218】
以下の多層膜を成膜し、290℃で4時間アニールした。
シリコン基板/アルミナ(1000Å)/(Ni0.8Fe0.260Cr40(52Å)/Cu(85Å)/Ru(9Å)/第1の磁性層(XÅ)/Pt50Mn50(0Åまたは30Å)/Ta(30Å)(ただし、第1の磁性層はCo90Fe10またはCo)
磁歪の測定には光梃子法を用いた。
【0219】
結果を図26に示す。第1の磁性層の上にPtMn層を形成したときも、第1の磁性層の下にPtMn層を形成したときの結果と同様の傾向をしめした。
【0220】
すなわち、第1の磁性層がCoであっても、CoFeであっても、PtMn層が上層にあるほうが、PtMn層がないものに比べて磁歪定数が大きくなっている。また、第1の磁性層がCoであるほうが、CoFeであるものよりも磁歪定数が大きくなっている。また、第1の磁性層をCoとし、第1の磁性層の上層にPtMn層(30Å)を設けたとき、第1の磁性層の膜厚を大きくしていくと、第1の磁性層の膜厚が16Åから19Åの範囲で磁歪定数の増加が見られるが、第1の磁性層の膜厚が19Åより大きくなると磁歪定数が減少している。
【0221】
次に、積層人工フェリ構造の多層膜にPnMn層を重ねて磁歪を測定した。以下の多層膜を成膜し、290℃で4時間アニールした。
【0222】
シリコン基板/アルミナ(1000Å)/(Ni0.8Fe0.260Cr40(52Å)/Pt50Mn50(30Å)/第1の磁性層(16Å)/Ru(9Å)/第2の磁性層(40Å)/Cu(85Å)/Ta(30Å)(ただし、第1の磁性層、第2の磁性層はCo90Fe10、Fe50Co50またはCo)
磁歪の測定にはベンディング法を用いた。ベンディング法とは、上記多層膜を湾曲させて一軸性の歪みを与え、逆磁歪効果による一軸異方性の変化から磁歪定数を測定する方法である。その結果を表1に示す。
【0223】
【表1】
Figure 2004186659
【0224】
この実験結果から、第1の磁性層、第2の磁性層がCoであるほうが、CoFeであるものよりも磁歪定数が大きくなることがわかる。
【0225】
図24ないし図26、及び表1に示す実験結果から、例えば図7のように第1の反強磁性層20間に薄い膜厚(50Å以下)で、前記第1の反強磁性層20と同じ組成の非磁性金属層60を設ければ、前記第1の磁性層17の中央部17bでの磁歪定数を大きくでき、磁気弾性効果によって、前記第1の磁性層17の中央部17bをより安定して磁化固定できることがわかった。
【0226】
【発明の効果】
本発明の磁気検出素子では、素子のトラック幅方向中央部に間欠部が形成されており、前記間欠部には反強磁性層が設けられていない。したがって、素子中央部に位置する間欠部にセンス電流が分流することを防止できるため、再生出力の向上を図ることができる。またセンス電流や静電気放電(ESD)による過渡電流によって発生し、トラック幅方向中央部に集中し易い熱が、前記中央部において反強磁性層の交換結合磁界の方向を反転させることがない(素子の両側端部に設けられている反強磁性層の温度はあまり上昇しない)ため、磁気的な静電破壊に対する強度向上を図ることができる。また、素子中央部の磁気検出素子の膜厚を減少させることによって狭ギャップ化に適切に対応することが可能である。さらに、前記フリー磁性層の磁化方向が、前記フリー磁性層自体の形状異方性によって前記トラック幅方向に配向しているため、例えば永久磁石層などの磁化配向手段を設ける必要がなく、素子の構造および製法を簡単にすることができる。
【0227】
また前記間欠部に、反強磁性層と同じ組成の非磁性金属層が、前記反強磁性層より薄い膜厚で形成されている場合でも、磁気弾性効果を利用することで、前記固定磁性層の中央部での磁化固定力をさらに強いものにでき、出力が大きく且つ出力の安定性や対称性も向上させることが可能な磁気検出素子を提供することが可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図2】本発明の第2の実施の形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図3】本発明の第3の実施の形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図4】本発明の第4の実施の形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図5】本発明の第5の実施の形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図6】本発明の第6の実施の形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図7】本発明の第7の実施の形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図8】本発明の第8の実施の形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図9】本発明の第9の実施の形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図10】図7に示された磁気検出素子の部分平面図、
【図11】非磁性金属層と固定磁性層の第1の磁性層の中央部が整合しつつ、歪みが生じている状態を示す模式図、
【図12】非磁性金属層と固定磁性層の第1の磁性層の中央部が整合している状態を示す模式図、
【図13】非磁性金属層と固定磁性層の第1の磁性層の中央部が非整合している状態を示す模式図、
【図14】本発明の磁気検出素子の固定磁性層の中央部付近の部分断面図、
【図15】本発明の磁気検出素子の固定磁性層の中央部付近の部分断面図、
【図16】本発明の磁気検出素子の固定磁性層の中央部付近の部分断面図、
【図17】実験に使用した磁気検出素子(実施例)の構造を示す模式図、
【図18】図17の磁気検出素子を使用して求めた、トラック幅RTwと一方向性交換バイアス磁界Hex*との関係を示すグラフ、
【図19】図17の磁気検出素子を使用して求めた、トラック幅RTwと規格化出力との関係を示すグラフ、
【図20】実験に使用した磁気検出素子(比較例)の構造を示す模式図、
【図21】図20の磁気検出素子を使用して求めた、トラック幅RTwと一方向性交換バイアス磁界Hex*との関係を示すグラフ、
【図22】図20の磁気検出素子を使用して求めた、トラック幅RTwと規格化出力との関係を示すグラフ、
【図23】図17の磁気検出素子を使用して求めた、印加磁場と出力との関係を示すグラフ、
【図24】PtMn層にCoFe層を積層し、PtMn層の組成比を変化させたときのCoFeの磁歪の変化を示すグラフ、
【図25】PtMn層にCoFe層を積層したときと、PtMn層にCo層を積層したときのCo及びCoFeの磁歪定数を示すグラフ、
【図26】CoFe層の上にPtMn層を積層したときと、Co層の上にPtMn層を積層したときのCo及びCoFeの磁歪定数を示すグラフ、
【符号の説明】
10,110,210,310,410,510 磁気検出素子
11,111,211 下部シールド層
12,140 下部ギャップ層
13,141 シード層
14 フリー磁性層
15 非磁性材料層
16 固定磁性層
17 第1の磁性層
18 第2の磁性層
19 中間層
20 反強磁性層
20c,130c 間欠部
23 電極層
25 上部ギャップ層
26,151 上部シールド層
60、63、64 非磁性金属層
61 絶縁材料層
130,230 第2の反強磁性層
116 第2の固定磁性層
117 第1の磁性層
118 第2の磁性層
119 中間層
150 絶縁層
152 上部ギャップ層

Claims (16)

  1. 外部からの磁界に応じて内部の磁化方向が変化するフリー磁性層と、内部の磁化方向が固定されている固定磁性層と、前記フリー磁性層と前記固定磁性層との間に介在する非磁性材料層と、交換結合により前記固定磁性層内の磁化を固定する反強磁性層とを有する磁気検出素子において、
    前記フリー磁性層、前記非磁性材料層、および前記固定磁性層は、第1の方向の長さ寸法が前記第1の方向と直交する第2の方向の幅寸法よりも長く形成されて、前記フリー磁性層の内部磁化の向きは形状異方性によって前記第1の方向へ優先されており、
    前記固定磁性層は、前記非磁性材料層に接する第2の磁性層と中間層と第1の磁性層とが積層されたもので、前記反強磁性層は、前記第1の方向に所定間隔の間欠部を介して前記第1の磁性層に接しており、
    前記交換結合により前記第1の磁性層内の磁化の方向が前記第1の方向と交叉する方向に固定され、さらに前記第2の磁性層内の磁化の方向が前記第1の磁性層と反平行状態に設定され、
    前記間欠部での、前記フリー磁性層の磁化の方向と前記固定磁性層内の磁化の方向とで電気抵抗が変化することを特徴とする磁気検出素子。
  2. 前記間欠部には、両側の反強磁性層と同じ組成の非磁性金属層が前記第1の磁性層と接して設けられており、前記間欠部での前記非磁性金属層は、前記反強磁性層よりも薄く形成された不規則結晶構造の層である請求項1記載の磁気検出素子。
  3. 前記間欠部での、前記非磁性金属層内の結晶と前記固定磁性層内の結晶はエピタキシャルまたはヘテロエピタキシャルな状態であり、前記固定磁性層の記録媒体との対向面側の端面が開放されている請求項2記載の磁気検出素子。
  4. 前記非磁性金属層は、前記固定磁性層の第1の磁性層側の界面付近あるいは全領域において面心立方格子(fcc)構造をとり、前記界面と平行な方向に、{111}面として表される等価な結晶面が優先配向している請求項3記載の磁気検出素子。
  5. 前記非磁性金属層の膜厚は、5Å以上50Å以下である請求項3または4に記載の磁気検出素子。
  6. 少なくとも前記間欠部での、前記固定磁性層の第1の磁性層は、前記非磁性金属層側の界面付近あるいは全領域において面心立方格子(fcc)構造をとり、前記界面と平行な方向に、{111}面として表される等価な結晶面が優先配向している請求項3ないし5のいずれかに記載の磁気検出素子。
  7. 前記固定磁性層の第1の磁性層は、CoまたはCoFe(y≦20,x+y=100)からなる請求項6記載の磁気検出素子。
  8. 少なくとも前記間欠部での、前記固定磁性層の第1の磁性層は、前記非磁性金属層側の界面付近あるいは全領域において体心立方格子(bcc)構造をとり、前記界面と平行な方向に、{110}面として表される等価な結晶面が優先配向している請求項3ないし5のいずれかに記載の磁気検出素子。
  9. 前記固定磁性層の第1の磁性層は、CoFe(y≧20,x+y=100)からなる請求項8記載の磁気検出素子。
  10. 少なくとも前記間欠部での、前記固定磁性層の第1の磁性層の、前記非磁性金属層側の界面付近は面心立方格子(fcc)構造をとり、前記界面と平行な方向に、{111}面として表される等価な結晶面が優先配向しており、前記中間層側の界面付近は体心立方格子(bcc)構造をとり、前記界面と平行な方向に、{110}面として表される等価な結晶面が優先配向している請求項3ないし5のいずれかに記載の磁気検出素子。
  11. 前記固定磁性層の第1の磁性層の、前記非磁性金属層側の界面付近の組成はCoFe(y≦20 x+y=100)またはCoであり、前記中間層側の界面付近の組成はCoFe(y≧20 x+y=100)である請求項10記載の磁気検出素子。
  12. 前記固定磁性層の第1の磁性層は、前記非磁性金属層側の界面から前記中間層側の界面に向かうに連れて、Fe濃度が徐々に大きくなる請求項11記載の磁気検出素子。
  13. 前記非磁性金属層の前記界面と平行な面内方向における最近接原子間距離と、少なくとも前記間欠部での、前記固定磁性層の第1の磁性層の最近接原子間距離の差を、前記第1の磁性層の最近接原子間距離で割った値が、0.05以上0.20以下である請求項3ないし12のいずれかに記載の磁気検出素子。
  14. 前記第1の磁性層は磁歪定数が正の値である磁性材料によって形成される請求項3ないし13のいずれかに記載の磁気検出素子。
  15. 非磁性材料層、前記第1の方向と交叉する方向に磁化方向が固定された固定磁性層および前記固定磁性層内の磁化方向を固定する反強磁性層が積層された積層体が、フリー磁性層を挟んで、2組設けられており、それぞれの組の積層体は、フリー磁性層に接する側から、非磁性材料層、固定磁性層および反強磁性層の順に配置されており、少なくとも一方の組の前記積層体と前記フリー磁性層とが請求項1ないし14のいずれかに記載の構造であることを特徴とする磁気検出素子。
  16. 前記フリー磁性層内の磁化方向を前記第1の方向へ向ける縦バイアス手段が設けられていない請求項1ないし15のいずれかに記載の磁気検出素子。
JP2003048727A 2002-10-07 2003-02-26 磁気検出素子 Pending JP2004186659A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003048727A JP2004186659A (ja) 2002-10-07 2003-02-26 磁気検出素子
US10/671,970 US7029771B2 (en) 2002-10-07 2003-09-26 Magnetic sensor having free layer additionally provided with magnetic anisotropy by shape anisotropy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002293365 2002-10-07
JP2003048727A JP2004186659A (ja) 2002-10-07 2003-02-26 磁気検出素子

Publications (1)

Publication Number Publication Date
JP2004186659A true JP2004186659A (ja) 2004-07-02

Family

ID=32044674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048727A Pending JP2004186659A (ja) 2002-10-07 2003-02-26 磁気検出素子

Country Status (2)

Country Link
US (1) US7029771B2 (ja)
JP (1) JP2004186659A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194327A (ja) * 2006-01-18 2007-08-02 Alps Electric Co Ltd トンネル型磁気検出素子
JP2008519460A (ja) * 2004-11-03 2008-06-05 コリア インスティテュート オブ サイエンス アンド テクノロジー 電流印加磁気抵抗素子
US7554776B2 (en) 2004-09-01 2009-06-30 Tdk Corporation CCP magnetic detecting element including a self-pinned CoFe layer
WO2010050125A1 (ja) * 2008-10-31 2010-05-06 株式会社日立製作所 Cpp-gmr素子、tmr素子および磁気記録再生装置
JP2015156501A (ja) * 2009-07-13 2015-08-27 シーゲイト テクノロジー エルエルシー 磁気積層体設計

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186658A (ja) * 2002-10-07 2004-07-02 Alps Electric Co Ltd 磁気検出素子及びその製造方法
US7362546B2 (en) * 2003-02-26 2008-04-22 Alps Electric Co., Ltd Spin-valve magnetoresistive element having fixed magnetic layer of epitaxal laminate including magnetic layer and nonmagnetic layer
JP2005101423A (ja) * 2003-09-26 2005-04-14 Alps Electric Co Ltd 磁気検出素子およびその製造方法
US7118814B1 (en) * 2004-03-02 2006-10-10 Storage Technology Corporation Apparatus and method for step-stabilization of GMR-based read sensors
US7268981B2 (en) * 2004-04-30 2007-09-11 Hitachi Global Storage Technologies Netherlands B.V. Spin valve sensor having antiferromagnetic (AFM) pinning layer structures formed in the end regions
JP2006156608A (ja) * 2004-11-29 2006-06-15 Hitachi Ltd 磁気メモリおよびその製造方法
JP2006245274A (ja) * 2005-03-03 2006-09-14 Alps Electric Co Ltd 磁気検出素子
JP2006245277A (ja) * 2005-03-03 2006-09-14 Alps Electric Co Ltd 磁気検出素子
WO2007053517A2 (en) * 2005-10-28 2007-05-10 The University Of Alabama Enhanced toggle-mram memory device
US7690263B2 (en) * 2006-11-24 2010-04-06 Academia Sinica Strain sensor and a method of making the same
US8760819B1 (en) 2010-12-23 2014-06-24 Western Digital (Fremont), Llc Magnetic recording sensor with sputtered antiferromagnetic coupling trilayer between plated ferromagnetic shields
US8822046B2 (en) * 2012-04-30 2014-09-02 Seagate Technology Llc Stack with wide seed layer
US8797692B1 (en) 2012-09-07 2014-08-05 Western Digital (Fremont), Llc Magnetic recording sensor with AFM exchange coupled shield stabilization
US8780505B1 (en) 2013-03-12 2014-07-15 Western Digital (Fremont), Llc Method and system for providing a read transducer having an improved composite magnetic shield
US9013836B1 (en) 2013-04-02 2015-04-21 Western Digital (Fremont), Llc Method and system for providing an antiferromagnetically coupled return pole
US9431047B1 (en) 2013-05-01 2016-08-30 Western Digital (Fremont), Llc Method for providing an improved AFM reader shield
US10074387B1 (en) 2014-12-21 2018-09-11 Western Digital (Fremont), Llc Method and system for providing a read transducer having symmetric antiferromagnetically coupled shields
KR101870581B1 (ko) * 2017-09-29 2018-06-22 캐논 톡키 가부시키가이샤 수정진동자의 수명 판정방법, 막두께 측정장치, 성막방법, 성막장치, 및 전자 디바이스 제조방법
JP6717442B2 (ja) * 2018-01-25 2020-07-01 株式会社村田製作所 磁気センサおよび電流センサ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2931523B2 (ja) 1994-06-24 1999-08-09 ティーディーケイ株式会社 薄膜磁気ヘッドの製造方法
US5949623A (en) * 1997-09-11 1999-09-07 International Business Machines Corporation Monolayer longitudinal bias and sensor trackwidth definition for overlaid anisotropic and giant magnetoresistive heads
JP3234814B2 (ja) * 1998-06-30 2001-12-04 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2000163717A (ja) 1998-11-24 2000-06-16 Fujitsu Ltd 磁気抵抗効果素子
JP2001076323A (ja) * 1999-09-06 2001-03-23 Tdk Corp スピンバルブ磁気抵抗効果素子の製造方法及び該素子を備えた薄膜磁気ヘッドの製造方法
JP2001216612A (ja) * 2000-01-31 2001-08-10 Alps Electric Co Ltd スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP2001256617A (ja) 2000-03-14 2001-09-21 Matsushita Electric Ind Co Ltd 薄膜磁気ヘッド及びその製造方法
US6751072B2 (en) * 2002-03-21 2004-06-15 Hitachi Global Storage Technologies Netherlands B.V. High magnetoresistance spin valve sensor with self-pinned antiparallel (AP) pinned layer structure
JP2004031547A (ja) * 2002-06-25 2004-01-29 Alps Electric Co Ltd 磁気検出素子及びその製造方法
US7362546B2 (en) * 2003-02-26 2008-04-22 Alps Electric Co., Ltd Spin-valve magnetoresistive element having fixed magnetic layer of epitaxal laminate including magnetic layer and nonmagnetic layer
JP3974587B2 (ja) * 2003-04-18 2007-09-12 アルプス電気株式会社 Cpp型巨大磁気抵抗効果ヘッド

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554776B2 (en) 2004-09-01 2009-06-30 Tdk Corporation CCP magnetic detecting element including a self-pinned CoFe layer
JP2008519460A (ja) * 2004-11-03 2008-06-05 コリア インスティテュート オブ サイエンス アンド テクノロジー 電流印加磁気抵抗素子
JP2007194327A (ja) * 2006-01-18 2007-08-02 Alps Electric Co Ltd トンネル型磁気検出素子
US7839608B2 (en) 2006-01-18 2010-11-23 Tdk Corporation Tunnel-type magnetic detecting device having laminated seed layer
WO2010050125A1 (ja) * 2008-10-31 2010-05-06 株式会社日立製作所 Cpp-gmr素子、tmr素子および磁気記録再生装置
JP2015156501A (ja) * 2009-07-13 2015-08-27 シーゲイト テクノロジー エルエルシー 磁気積層体設計

Also Published As

Publication number Publication date
US7029771B2 (en) 2006-04-18
US20040067389A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP2004186659A (ja) 磁気検出素子
JP3291208B2 (ja) 磁気抵抗効果型センサおよびその製造方法とそのセンサを備えた磁気ヘッド
US7310208B2 (en) Magnetoresistive sensor containing self-pinned layer containing a plurality of magnetic sublayers with magnetostriction-enhancing layer made of a nonmagnetic material
US7126797B2 (en) Spin valve magnetoresistive element having pinned magnetic layer composed of epitaxial laminated film having magnetic sublayers and nanomagnetic interlayer
JP2001216612A (ja) スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
US7045224B2 (en) Magnetic detecting element having antiferromagnetic film having predetermined space in track width direction and method for manufacturing the same
JP3756758B2 (ja) 交換結合膜と、この交換結合膜を用いた磁気抵抗効果素子、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッド
JP3694440B2 (ja) 交換結合膜の製造方法、及び前記交換結合膜を用いた磁気抵抗効果素子の製造方法、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッドの製造方法
JP3670928B2 (ja) 交換結合膜と、この交換結合膜を用いた磁気抵抗効果素子、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッド
JP3756757B2 (ja) 交換結合膜と、この交換結合膜を用いた磁気抵抗効果素子、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッド
US7362546B2 (en) Spin-valve magnetoresistive element having fixed magnetic layer of epitaxal laminate including magnetic layer and nonmagnetic layer
US7312960B2 (en) Magnetic sensing element comprising a pinned magnetic layer, a free magnetic layer, and a nonmagnetic conductive layer disposed therebetween
JP2004221303A (ja) 磁気検出素子及びその製造方法
KR100363462B1 (ko) 스핀밸브형 자기저항 효과소자와 그 제조방법
JP4506242B2 (ja) 磁気検出素子
JP2004119755A (ja) 磁気検出素子及びその製造方法
JP2002232039A (ja) スピンバルブ型巨大磁気抵抗効果素子、磁気抵抗効果型磁気ヘッド、およびこれらの製造方法
JP2002163810A (ja) スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP3694441B2 (ja) 交換結合膜と、この交換結合膜を用いた磁気抵抗効果素子、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッド
JP2001111136A (ja) 磁化方向制御膜及びこれを用いた磁気抵抗効果型センサ
JP2004282054A (ja) 磁気検出素子
JP2002299723A (ja) 磁気抵抗効果素子及びこの磁気抵抗効果素子を用いた薄膜磁気ヘッド
JP3961251B2 (ja) 磁気検出素子の製造方法
JP3255901B2 (ja) 交換結合膜の製造方法
JP2002043655A (ja) スピンバルブ型薄膜磁気素子およびそのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721