JP2004183499A - 電動コンプレッサ - Google Patents

電動コンプレッサ Download PDF

Info

Publication number
JP2004183499A
JP2004183499A JP2002348411A JP2002348411A JP2004183499A JP 2004183499 A JP2004183499 A JP 2004183499A JP 2002348411 A JP2002348411 A JP 2002348411A JP 2002348411 A JP2002348411 A JP 2002348411A JP 2004183499 A JP2004183499 A JP 2004183499A
Authority
JP
Japan
Prior art keywords
coil
refrigerant
compressor
electric compressor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002348411A
Other languages
English (en)
Inventor
Nobuyasu Ioi
伸泰 五百井
Shinichi Ogawa
新一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002348411A priority Critical patent/JP2004183499A/ja
Priority to US10/722,425 priority patent/US7025577B2/en
Publication of JP2004183499A publication Critical patent/JP2004183499A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

【課題】カーエアコン等のCOP(冷凍サイクル効率)を向上させること。
【解決手段】本発明の電動コンプレッサは、ケーシング1内に電動モータ2とスクロール式コンプレッサ8とを直列に有する。電動モータ2の固定子コイル4はセグメント型コイルであって、両コイル端部41,42には整然と隙間が形成されている。冷媒吸入口10から吸入された冷媒Cは、コンプレッサ8と反対側のコイル端部42に吹き付けられてこれを冷却し、エアギャップを通ってセグメントの直線部を冷却し、さらにコイル端部41を吹き抜けて冷却した上でコンプレッサ8に吸い込まれる。セグメント型コイルの採用により、両コイル端部41,42での流路抵抗が小さくなり、特にクールダウン特性を決める高速回転領域でCOPが向上する。また、小型軽量化もできる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、主としてエアコンや冷蔵庫、冷凍機などに冷媒などの作動流体(主に気体)を圧送する密閉式電動コンプレッサの技術分野に属する。本発明の電動コンプレッサは、小型軽量化および高性能化の要求が特に高い自動車用の電動エアコンに用いて好適である。
【0002】
【従来の技術】
従来技術としては、特許文献1に、冷凍機用の電動コンプレッサが開示されている。
【0003】
この電動コンプレッサは、直立させた略円筒体状のケーシングの中に形成された内部空間をもち、この内部空間には、電動モータおよびコンプレッサが直列に収容されている。すなわち、ケーシングの下半部には直立した電動モータが収容されており、ケーシングの上部にはこの電動モータに駆動されるスクロール式のコンプレッサが収容されている。そして、この電動モータの駆動軸は、軸受けを介してこのコンプレッサの偏心軸を駆動し、可動スクロールを固定スクロールに対して偏心駆動するようになっている。
【0004】
また、この電動コンプレッサでは、多量の潤滑油や液冷媒がいっぺんにコンプレッサに吸入されてコンプレッサを傷めることがないように、この内部空間のうち下半部に電動モータが配設されており、上部にコンプレッサが配設されている。そして潤滑油のうち大部分は、内部空間のうち電動モータを収容した部分のさらに下の底部に形成された油溜まりに溜まっている。この潤滑油は、油溜まりから回転子の軸内に形成された給油孔に吸い上げられて、潤滑油を必要とする各部に分配されるようになっている。
【0005】
この電動モータのうち固定子コイルは、固定子コアのティースに導線を巻き付けた巻線コイルである。このことは、特許文献1の図面に記載された断面形状から、明瞭に読みとることができる。
【0006】
一方、冷媒吸入口のうち内部空間に開いた開口部は、コンプレッサの吸入口に対して開口しており、冷媒吸入口から導入された冷媒のうち大部分は、直接的にコンプレッサに吸い込まれるようになっている。それゆえ、冷媒吸入口から導入された冷媒に、固定子コイルのコイル端部を冷却する作用を期待することは、あまりできない。
【0007】
【特許文献1】
特公平6−74787号公報
【0008】
【発明が解決しようとする課題】
しかしながら、前述の従来技術では、電動モータの冷却に対してほとんど配慮されておらず、電動モータの過熱を防ぐためには、電動モータの定格出力の割にその体格を大きくして放熱性に余裕を持たせなければならなかった。また、前述のように固定子コイルは巻線コイルであるから、固定子コイルのスロット中に占めるコイル導線の占積率は、セグメント型コイルの占積率に比べて低くならざるを得ず、その分だけ電動モータの固定子の外径を小さくすることが難しかった。さらに、固定子コイルが巻線コイルであっては、軸長方向両端のコイル端部においてコイル導線の曲げアールがきついと、コイル導線に曲げ傷が生じてコイル端部の絶縁性が損なわれる危険性があり、コイル端部の軸長方向の長さを短くすることが難しかった。
【0009】
以上のような理由で、従来技術の電動コンプレッサでは、電動モータの大出力化と小型軽量化とを両立させることは、たいへんに難しかった。それゆえ、電動コンプレッサ全体としても、要求される定格出力を確保しながら、高効率化と小型軽量化とを両立させることが難しかった。
【0010】
そこで、本発明が解決しようとする課題は、要求される定格出力を確保しながら、高効率化と小型軽量化とを両立させることができる電動コンプレッサを提供することにする。
【0011】
【課題を解決するための手段】
前記課題を解決するために、発明者は以下の手段を発明した。
【0012】
(第1手段の構成)
本発明の第1手段は、請求項1記載の電動コンプレッサである。
【0013】
本手段の電動コンプレッサには、次の二つの特徴がある。
【0014】
第一の特徴は、ケーシングに内蔵された電動モータの固定子コイルは、断面形状が略矩形である導電性のコイルセグメントが複数本接続されて形成されたセグメント型コイルであることである。第二の特徴は、ケーシングの内部空間に冷媒を取り入れる冷媒吸入口は、このセグメント型コイルが軸長方向両端にもつ二つのコイル端部のうち、少なくとも一つに対して冷媒を導入する位置に開口していることである。
【0015】
ここで、電動モータは、直流モータであると交流モータであるとを問わない。また、固定子のセグメント型コイルを形成するコイルセグメントの元の形状は、略I字形状であってもよく、略U字形状であってもよい。さらに、コンプレッサの形式は特にスクロール型に限定されるものではなく、他の形式でも良い。電動モータとコンプレッサとの位置関係は、直列に配設して直結駆動する方式が最も小型軽量化に適する場合が多いが、必ずしもこのような位置関係に限定されるものではない。
【0016】
また、冷媒吸入口から導入された冷媒は、コイル端部に直接的に吹き付けられても良いし、間接的にコイル端部の隙間を吹き抜けさせられるようになっていても良い。さらに、冷媒吸入口から冷媒が吹き付けられるコイル端部は、セグメント型コイルの両端のコイル端部であっても良いし、いずれか一方のコイル端部であっても良い。いずれのコイル端部に吹き付けるかによって、相応の作用効果が得られる。
【0017】
ちなみに、屈曲部でターンした略U字形状のコイルセグメントが開放端部で接合されてセグメント型コイルを形成している場合には、屈曲部と開放端部とのうちいずれのコイル端部がコンプレッサの側に配設されてもよい。さらに、冷媒がいずれのコイル端部に対して導入されても良く、それぞれに特有の作用効果が発揮される。
【0018】
なお、本発明では、電動コンプレッサの用途を主にカーエアコンなどの冷却装置用コンプレッサ(圧縮機)に想定したので、作動流体を冷媒としてあるが、本発明の電動コンプレッサの用途は、冷却装置用圧縮機に限定されないものとする。それゆえ、冷媒吸入口から内部空間に取り入れられる冷媒が、主に気体からなる流体であるという条件さえ満たされれば、「冷媒」とあるをもっと広く一般的に「作動流体」ないし「作動気体」と読み替えることができるものとする。
【0019】
また、本明細書中では、密閉型の電動コンプレッサのうち、電動機部を指して電動モータと呼び、圧縮機部を指してコンプレッサと呼んでいる。
【0020】
ところで、本手段の電動コンプレッサを設置する際の姿勢は、電動モータの軸長方向が水平な横置きでも、軸長方向が垂直な縦置きでも、両者の中間の斜め置きでも可能である。本手段の電動コンプレッサは、何れの設置姿勢に対しても、潤滑油のポンプや油路などの設計改変で対応することができる。
【0021】
(第1手段の作用効果)
本手段の電動コンプレッサでは、次の三つの作用が得られる。
【0022】
第一に、冷媒が吹き付けられるコイル端部が、セグメント型コイルの端部であるから、そのコイル端部ではコイルセグメントの間に規則正しく隙間が形成されている。それゆえ、巻線コイルのように巻線が密集しておりその間の隙間が不規則で小さいコイル端部に比べて、固定子コイルのコイル端部を吹き抜けるにあたり、冷媒にかかる流路抵抗が小さくなっている。
【0023】
すると、流路抵抗が小さくなった分だけ、冷媒の流れに生じる圧力損失が低減されるので、COP(Coefficiency Of Performance:冷凍サイクル効率)が向上し、本手段の電動コンプレッサは、より効率的に作動する。ここで、冷凍サイクル効率の定義は、COP[1]=冷凍能力[kW]/消費電力[kW]である。それゆえ、本手段の電動コンプレッサによれば、エアコンなどの冷凍サイクルの高効率化(COP向上)に加えて、電動コンプレッサの大出力化ないし小型軽量化をも計ることができる。
【0024】
その結果、本手段の電動コンプレッサでは、高速回転領域でのCOPなどの効率の向上により、カーエアコンなどの冷凍サイクルが同じクールダウン特性を発揮しても、消費電力が低減されるので、運用費のコストダウンになる。さらに、コンプレッサ出力の割に電動コンプレッサ全体の小型軽量化がなされるので、電動コンプレッサの材料費が抑制されるうえに成形型や加工装置が小さくて済む分だけ、製品価格のコストダウンにもなる。
【0025】
ここで、冷媒にかかる流路抵抗の大きさは、冷媒の流速の二乗におおむね比例すると考えられる。それゆえ、本手段の電動コンプレッサでは、特にカーエアコンのクールダウン特性を計測するために、高速回転領域で全力運転している状態において、COPの向上効果がいっそう顕著になる。冷凍サイクルのうち、カーエアコンでは特にクールダウン特性が重要な性能指標であり、高速回転領域での効率や出力が問われることを考慮すると、流路抵抗の低減による冷媒の流れに生じる圧力損失の抑制による性能向上効果は大きい。
【0026】
第二に、電動モータの固定子コイルをセグメント型コイルとしたから、従来の巻線コイルに比べて固定子コアのスロット内における導体の占積率が向上する。その結果、同じ材料の導体を使っていても固定子コイルの電気抵抗が低くなり、同一の軸出力であれば発熱量が低下するので固定子を小型軽量化することができる。逆に、発熱量を同一にすれば、軸出力を向上させることができばかりではなく、コイル端部の軸長方向の寸法をやや短くすることができるので、やはりいくらか固定子を小型軽量化することができる。
【0027】
第三に、冷媒吸入口から導入された冷媒が、固定子コイルのうち少なくとも一方のコイル端部に吹き付けられるから、固定子コイルのうち少なくともコイル端部とその周辺部とは、冷媒によって冷却される。すると、固定子コイルを形成している導体のうち少なくとも一部の温度が下がり、その電気伝導率が向上するから、ジュール熱の発生が抑制される。
【0028】
その結果、ジュール熱による電力損失が少なくなる分だけ電動モータの効率が向上し、電動コンプレッサ全体としても効率が向上して性能向上につながる。そればかりではなく、固定子コイルでのジュール熱の発生が抑制される分と、冷媒による固定子コイルの冷却作用が得られる分だけ、電動モータの放熱に要するケーシングの容積が小さくて済むようになり、小型軽量化につながる。
【0029】
以上のように、本手段の電動コンプレッサでは、電動モータの固定子コイルにセグメント型コイルを採用したことと、そのコイル端部に冷媒を吹きつけるようにしたこととにより、両者の作用が相まって特有の相乗効果が得られる。
【0030】
すなわち、本手段の電動コンプレッサによれば、カーエアコンなどの冷凍サイクルに要求されるクールダウン特性を確保しながら、COPなどの作動効率の向上と小型軽量化とを両立させることができるという効果がある。そして、このような効果は、製品価格のコストダウン効果と、消費電力の低減による運用費のコストダウン効果とにつながる。そればかりではなく、この電動コンプレッサを搭載した車両等の価格低減および性能向上にまで波及する。
【0031】
(第2手段)
本発明の第2手段は、前述の第1手段において、冷媒吸入口は、両コイル端部のうちコンプレッサから遠い方に対して開口していることを特徴とする電動コンプレッサである。なお、コンプレッサから遠いか近いかの判定は、コンプレッサの吸入口からみて冷媒の流路が長いか短いかで判定されるものとする。
【0032】
本手段では、固定子のセグメント型コイル両端に形成された二つのコイル端部のうち、コンプレッサに近い方ではなくて、コンプレッサから遠い方に対して、冷媒吸入口が開口している。それゆえ、冷媒吸入口から導入された冷媒は、ケーシングの内部空間に入ってコンプレッサから遠い方のコイル端部を冷却した後、軸長方向に沿って電動モータの内部を流通してからコンプレッサに吸引される。このように冷媒がほぼ軸長方向に沿って電動モータの内部を流通する際に、電動モータに生じた熱を冷媒が吸収して電動モータが冷却されるので、電動モータの冷却が効率的に行われる。その結果、電動モータに要求される軸出力の割には、電動モータの体格が小さくて済み、小型軽量化が図れる。さらに、特別な加工方法や高価な構成要素を新たに必要とせずに電動モータが小型軽量化されるから、材料費が抑制されるうえに、成形型や加工装置が小さくて済む分だけ、電動コンプレッサの製品価格も低減される。
【0033】
したがって、本手段の電動コンプレッサによれば、前述の第1手段の効果(高効率化および小型軽量化、ならびに製品価格および運用費のコストダウン)がいっそう強化されるという効果がある。
【0034】
(第3手段)
本発明の第3手段は、前述の第2手段において、次の二つの特徴をもつ電動コンプレッサである。すなわち、第一の特徴は、冷媒吸入口が、両コイル端部のうちコンプレッサから遠い方の外周側に開口していることである。そして、第二の特徴は、コンプレッサの吸入口が、逆にコンプレッサに近い方のコイル端部の外周側に開口していることである。
【0035】
本手段では、冷媒吸入口から導入された冷媒が、一方のコイル端部の外周側から内周側へと流入し、固定子と回転子とのエアギャップなどを通って軸長方向に流れ、他方のコイル端部の内周側に達する。そして、この冷媒が、他方のコイル端部では逆に内周側から外周側へと流れ出して、コンプレッサの吸入口に吸い込まれるに至る。このように冷媒が流れる間に、この冷媒は次の三段階にわたって電動モータの全体を冷却する。
【0036】
先ず、冷媒吸入口から導入された冷媒が、コンプレッサから遠い方のコイル端部の外周側から内周側へと流入する。この際に、冷媒のうち少なくとも一部が、セグメント型コイルのコイル端部の隙間を通り抜けるので、このコイル端部が冷媒によって冷却される。このように冷媒がコイル端部を通り抜けるにあたり、セグメント型コイルのコイル端部には整然と隙間が形成されているので、冷媒の流れに生じる圧力損失は比較的小さい。
【0037】
次に、冷媒が固定子と回転子とのエアギャップを通って軸長方向に流れる際には、スロットに収容されたコイルセグメントのうち最内層の直線部と、固定子コアの内周面とから、熱を奪っていく。それゆえ、全てのコイルセグメントのうち、固定子のスロットに複数の層を成して収容された直線部分も、間接的に冷媒によって冷却される。
【0038】
この際、電動モータの固定子や回転子に、軸長方向に連通した貫通孔がいくつか形成されていると、冷媒がこれらの貫通孔を流れて冷却が促進されるうえに、圧力損失がより小さくなる。また、電動モータが、一部のブラシレスDCモータのように回転子が永久磁石をもち回転子の外周面に軸長方向に沿った溝があると、これらの溝が冷媒の流路になるので、冷媒の流れに生じる圧力損失はいっそう小さくなる。
【0039】
なお、回転子が電機子コイルをもつ場合やかご型回転子である場合などには、回転子の導体も冷媒によって冷却されるので、回転子においてもジュール熱の発生が抑制され、電動モータの効率が向上する。一方、回転子が永久磁石をもつ場合には、永久磁石が冷媒によって冷却され、永久磁石の過熱が防止されるので、永久磁石の磁力が高く保たれ、やはり電動モータの効率が向上する。
【0040】
最後に、冷媒が、コンプレッサに近い方のコイル端部に達っする際には、先ずエアギャップなどからこのコイル端部の内周側に流入する。そして次に、このコイル端部の内周側から外周側へと流れ出して、コンプレッサの吸入口に達するに至る。この際、やはり冷媒のうち少なくとも一部はこのコイル端部の隙間を吹き抜けるので、このコイル端部が冷媒によって冷却される。前述のように、冷媒がこのコイル端部を通り抜けるにあたっては、セグメント型コイルのコイル端部に整然と隙間が形成されているので、冷媒の流れに生じる圧力損失は比較的小さくて済む。
【0041】
以上のように、冷媒吸入口からケーシングの内部空間に吸入された冷媒は、三つの段階を経て電動モータの全体を冷却し、特に両コイル端部を含む固定子のセグメント型コイルを冷却する。それゆえ、セグメント型コイルの導体がもつ温度が低くなり、電気伝導性が上がってジュール熱による損失が低減されるので、電動モータの効率が向上する。また、固定子コイルにセグメント型コイルを採用しており、コイル端部で整然とした隙間が得られるので、過熱しやすいコイル端部の温度が低減されるばかりではなく、圧力損失も比較的小さく抑制される。それゆえ、冷凍サイクル用の電動コンプレッサとしてのCOP(冷凍サイクル効率)などの効率も向上する。
【0042】
そして、前述のように、カーエアコンの性能がクールダウン特性で評価され、クールダウン特性の測定に際しては、本手段の電動コンプレッサは、全力で運転される。すると、冷媒の流速が高まり、冷媒の流れに生じる圧力損失は、流速の約二乗に比例するので、クールダウン特性の計測時における圧力損失の低減によるCOPの向上効果は大きい。
【0043】
したがって、本手段の電動コンプレッサによれば、前述の第2手段の効果(COP等の高効率化および本体の小型軽量化、ならびに製品価格および運用費のコストダウン)が、よりいっそう強化されるという効果がある。
【0044】
(第4手段)
本発明の第4手段は、前述の第1手段において、次の二つの特徴を持つ電動コンプレッサである。すなわち、第一の特徴は、固定子のセグメント型コイルは、複数の略U字形状のコイルセグメントのうち開放端部が互いに先端部で溶接されて形成されていることである。そして、第二の特徴は、各コイルセグメントの開放端部は、その先端部のうち溶接された部分を覆い絶縁性の樹脂などからなる絶縁部材をもつ絶縁保護部と、この絶縁保護部よりも前記固定子コアに近く前記内部空間に露出した露出部とをもつことである。ただし、露出部といえども、コイルセグメント全体に施されるエナメル被覆などの薄い絶縁被覆はあってもかまわない。
【0045】
本手段では、略U字形状のコイルセグメントのうち溶接で接続される開放端部が形成する方のコイル端部は、先端部の被溶接部分を覆う絶縁部材をもつ絶縁保護部と、この絶縁部材に覆われておらず内部空間に露出した露出部とからなる。すなわち、一方のコイル端部を形成しているコイルセグメントの開放端部のうち、溶接された先端部の方だけが絶縁部材に覆われており、固定子コアに近い基端部の方は内部空間に露出している。
【0046】
それゆえ、コイルセグメントの開放端部のうち、エナメル被覆などがなくそのままでは短絡しやすい先端部の方だけが、絶縁性樹脂などからなる絶縁部材に覆われて絶縁性が確保されている。一方、開放端部のうち比較的短絡しにくい基端部の方は、絶縁部材に覆われていない分だけ細くなって放熱性がよいうえに、隙間が広いので風通しが良くなっている。
【0047】
その結果、溶接された方のコイル端部において、電動モータに要求される絶縁性が確保されるうえに、冷媒の流通によるコイル端部の冷却が良くなるとともに、冷媒の流通に伴う圧力損失が小さく抑制される。前述のように、冷媒の圧力損失が低減される効果は、特にクールダウン特性が測定される高速回転領域において著しい。ちなみに、このような作用がより良く発揮されるためには、なるべく露出部が長い方が望ましい。すなわち、絶縁保護部は、溶接のためにエナメル被覆などがない裸導体の部分だけに限定されていることが望ましい。
【0048】
したがって、本手段の電動コンプレッサによれば、溶接側のコイル端部においても、放熱性が良いうえに冷媒の流れの圧力損失が小さいので、前述の第1手段の効果(高効率化および小型軽量化、ならびに製品価格および運用費のコストダウン)が向上する。
【0049】
(第5手段)
本発明の第5手段は、前述の第1手段において、固定子コアのコイルセグメントは、略U字形状をしていて屈曲部と一対の開放端部とを持ち、冷媒吸入口は、コイルセグメントの屈曲部からなる方のコイル端部に対して開口していることを特徴とする電動コンプレッサである。
【0050】
本手段では、冷媒吸入口がコイルセグメントの屈曲部からなる方のコイル端部に対して開口しているので、冷媒は屈曲部からなる方のコイル端部に吹き付けられる。ここで、屈曲部の方のコイル端部には溶接部がなく、溶接部を覆う絶縁部材もないので、コイル端部の間の隙間が大きく、風通しがよい。それゆえ、コイル端部を流通する際に、冷媒の流れに生じる圧力損失が小さく、放熱性にも優れている。
【0051】
したがって、本手段の電動コンプレッサによれば、屈曲部の方のコイル端部において、放熱性が良いうえに冷媒の流れに生じる圧力損失がいっそう小さいので、前述の第1手段の効果(高効率化および小型軽量化、ならびに製品価格および運用費のコストダウン)が、より向上する。
【0052】
(第6手段)
本発明の第6手段は、前述の第1手段において、電動モータの固定子がもつセグメント型コイルの両コイル端部のうち少なくとも一方と、これに最も近接する導電性の部材との間の距離が、JIS(日本工業規格)に定められた絶縁距離の一倍以上二倍以内であることを特徴とする電動コンプレッサである。
【0053】
ここで、コイル端部と導電性部材との最短距離を絶縁距離以上と定めた根拠は、もちろん空中放電などによる短絡や漏電を防ぐためである。一方、コイル端部と導電性部材との最短距離を絶縁距離の二倍以内と定めたのは、適正な安全率を見越してのことである。すなわち、安全な絶縁距離を確保したうえでサイズ、特に軸長方向の寸法を抑制するためには、二倍程度以内に抑えることが必要であると判断したからである。
【0054】
本手段では、コイル端部からケーシングなどへの漏電を防ぐことができながら、電動コンプレッサのサイズ、とりわけ軸長方向の全長をできるだけ小さく抑制することができる。そればかりではなく、コイル端部の内部を冷媒の一部が流通するようにしながら、残りの冷媒がコイル端部と導電性部材との間に形成された隙間をバイパスすることができるようになっている。それゆえ、冷媒の流通によるコイル端部の冷却と、冷媒の流れに生じる圧力損失の低減との間で、適当なバランスが取られるようになっている。
【0055】
したがって、本手段の電動コンプレッサによれば、前述の第1手段の効果に加えて、コイル端部からの漏電を十分に防ぎつつ、電動コンプレッサの外形寸法、とりわけ軸長方向の全長をできるだけ小さく抑制することができるという効果がある。
【0056】
(第7手段)
本発明の第7手段は、前述の第1手段において、冷媒吸入口は、ケーシングの内部空間に向かい冷媒をコイル端部の外周に沿って略周方向に吹き付ける位置に開口していることを特徴とする電動コンプレッサである。
【0057】
本手段では、冷媒は冷媒吸入口の開口からコイル端部に直接的に吹き付けるのではなく、全体形状がリング状のコイル端部の周囲を巡りつつ、コイル端部の外周側から内周側へと流入していく。すると、コイル端部の一部に半径方向外側から冷媒を吹き付ける場合とは異なり、コイル端部の全体が周方向に沿ってほぼ均一に冷却され、温度分布が均一化される。それゆえ、コイル端部が部分的に過熱することが防止され、電動モータの信頼性が向上するとともに、電動モータの効率も向上する。
【0058】
したがって、本手段の電動コンプレッサによれば、前述の第1手段の効果に加えて、少なくとも一方のコイル端部が部分的に過熱することが防止されるので、電動モータの信頼性および効率がさらに向上するという効果がある。
【0059】
【発明の実施の形態】
本発明の電動コンプレッサがもつ好ましい実施形態については、当業者に実施可能な理解が得られるよう、以下の実施例で明確かつ十分に説明する。
【0060】
[実施例1]
(実施例1の構成概要)
本発明の実施例1としての電動コンプレッサは、自動車の車載エアコン(カーエアコン)用の電動コンプレッサである。
【0061】
本実施例の電動コンプレッサは、図1に示すように、大きく分けて、ケーシング1、電動モータ2、ベアリングホルダ7、コンプレッサ8およびアウタケーシング9を有する。
【0062】
先ず、ケーシング1は、冷凍サイクルに連なる外部に連通して冷媒Cを取り入れる冷媒吸入口10と、逆に冷媒Cを冷凍サイクルに連なる外部に吐出する冷媒吐出口20とをもち、所定の内部空間100を形成している略中空円筒状の容器である。それゆえ、本実施例の電動コンプレッサは、いわゆる密閉型の電動コンプレッサであり、前述の自動車用エアコンなど冷凍サイクルの一部を形成すべき製品である。
【0063】
そして、ケーシング1は、軸長方向を水平に設置されており、一方に電動モータ2を収容し、他方にコンプレッサ8を収容している。ここでは便宜上、コンプレッサ8のある方を前方と呼び、電動モータ2のある方を後方と呼ぶことにする。ここで、ケーシング1は、前述の従来技術とは異なって一体部材ではなく、略有底中空円筒体状のモータケーシング21と、ベアリングホルダ7の外周部と、コンプレッサ8の外周部と、アウタケーシング9とが、隙間なく軸長方向に連結されて構成されている。それゆえ、ケーシングが電動モータやコンプレッサとは別体になっている従来技術の電動コンプレッサよりも、本実施例の電動コンプレッサの方が、小型軽量化されている。
【0064】
さて、ケーシング1のうち後半部を構成するモータケーシング21のうち、リヤ部23に近い円筒部22の後端部付近には、冷媒吸入口10が直上から内部空間100に冷媒Cを導入する位置に開口している。一方、ケーシング1の最前部を構成するアウタケーシング9には、コンプレッサ8から吐出チャンバ90内に吐出された冷媒Cが直上に向かって排出される方向に、冷媒吐出口20が開口している。
【0065】
次に、電動モータ2は、ケーシング1内に配設されており、ケーシング1に対して固定された固定子コア31および固定子コイル4をもつ固定子3と、固定子3に回転駆動される回転子5とをもつ同期型永久磁石モータ(IPMモータ)である。ここで、回転子5の外周部には複数の図示しない永久磁石が埋設されており、回転子5の外周面の形状はほぼ円筒面状である。
【0066】
また、回転子5を軸支しているシャフト6の後端部63は、モータケーシング21のリヤ部23の中央に保持されたリヤベアリング24に回転自在に軸支されている。一方、シャフト6の前端部付近には大径部62が形成されており、大径部62がベアリングホルダ7に保持されたフロントベアリング71に回転自在に軸支されている。すなわち、電動モータ2のシャフト6は、前方の大径部62ではフロントベアリング71によって、後端部63ではリヤベアリング24によって回転自在に軸支されている。そして、電動モータ2のシャフト6は、回転子5に生じた回転駆動力をコンプレッサ8に伝達する作用をもつ。なお、シャフト6の先端部には、シャフト6の回転軸とは所定距離だけ平行に偏心した偏心軸61が形成されている。
【0067】
そして、コンプレッサ8は、ケーシング内に配設されており、電動モータ2の軸出力により駆動されて、冷媒吸入口10から内部空間100に入った冷媒Cを圧縮し、冷媒吐出口20から吐出する機能をもつ。
【0068】
すなわち、コンプレッサ8は、固定スクロール81と可動スクロール82とをもち、両者81,82の間に圧縮室80を形成するスクロール式コンプレッサである。このようにコンプレッサ8はスクロール式であるから、可動スクロール82の外周部にコンプレッサ8の吸入口(図略)がある。そして、この吸入口は、ベアリングホルダ7を通じ、モータケーシング21の内部空間100の外周部に連通している。それゆえ、内部空間100のうちモータケーシング21の前方に入っている冷媒Cは、外周部付近からベアリングホルダ7を通じてコンプレッサ8に吸引される。
【0069】
さて、コンプレッサ8のうち固定スクロール81と可動スクロール82とは、互いに対向して突出した螺旋状のスクロール羽根をもつ。そして、両スクロール81,82のスクロール羽根は、互いに摺接して両スクロールの81,82の間に圧縮室80を形成する。そして、可動スクロール82は、そのスクロール羽根と背向する後方に、円周状に突出して中央に凹部を形成する凸部をもち、この凹部に嵌り込んだスライドブッシュ83を介して、前述のシャフト6の偏心軸61に回動させられる。この際、スライドブッシュ83を介して、カウンタバランサ84も可動スクロール82および偏心軸61と同期して回転し、可動スクロール82等の重心位置の偏心による振動の発生を抑制する。
【0070】
なお、固定スクロール81および可動スクロール82のスクロール羽根の先端部に沿ってそれぞれ形成された溝には、チップシール85が嵌め込まれていて、両スクロール81,82の間の気密性が適度に保たれている。また、ベアリングホルダ7およびコンプレッサ8には、可動スクロール82等の回転に伴って、モータケーシング21およびアウタケーシング9の内部空間100のうち底部に溜まった潤滑油Oを、潤滑が必要な部分に行き渡らせる油路が形成されている。すなわち、ベアリングホルダ7には、オイル通路72,73、固定絞り74および減圧弁75などが形成されており、一方、固定スクロール81には、オイル通路88などが形成されている。
【0071】
ところで、本実施例の電動コンプレッサのように自動車用エアコン用のコンプレッサとして使用される場合、時としてモータケーシング21の内部空間100の大半が、液相を取った冷媒Cと潤滑油Oとの混合液によって満たされてしまうこともある。そこで、このような混合液をコンプレッサ8が大量に吸い込んでも破損することがないように、コンプレッサ8のトレーランス等は、ある程度の余裕を持って設計されている。
【0072】
最後に、コンプレッサ8に吸引された冷媒Cは、圧縮室80で圧縮されつつ外周部から中心部に集められ、吐出ポート86から逆止弁である吐出バルブ87を通じて、アウタケーシング9の内部の吐出チャンバ90に吐出される。そして、コンプレッサ8から吐出チャンバ90に送り込まれた冷媒Cは、ほぼ圧縮されたままの高温高圧を保ちつつ、冷媒吐出口20から配管等(図略)を通じて外部の冷凍サイクルに送り出される。
【0073】
(実施例1の構成上の特徴)
本実施例の電動コンプレッサは、電動モータ2の固定子コイル4と、冷媒吸入口10の位置および方向との二点に特徴がある。
【0074】
第一の特徴は、電動モータ2の固定子コイル4が、セグメント型コイルであることである。
【0075】
すなわち、固定子コイル4は、断面形状が略矩形である導電性のコイルセグメント4が多数本接続されて形成されたセグメント型コイルである。このセグメント型コイルは、図2に示すように、多数の略U字形状のコイルセグメント4のうち、固定子コア31から突出した開放端部43が互いに先端部で溶接されて形成されている。溶接部Wの形状は、ある程度バラツキがあるものの、所定の許容寸法の範囲に収まっている。なお、各コイルセグメント4は、銅製の平角棒からなり、開放端部43のうち溶接されるべき先端部分を除いて全体が薄くエナメル被覆されている。
【0076】
これらの開放端部43は、再び図1に示すように、これらの先端部のうち溶接部Wを覆う樹脂製の絶縁部材44をもつ絶縁保護部45と、絶縁保護部45よりも固定子コア31に近く内部空間100に露出した露出部46とをもつ。なお、露出部46は全てエナメル被覆されており、エナメル被覆のない先端部分は全て絶縁部材44に覆われた絶縁保護部45である。なお、絶縁保護部45を覆っている絶縁部材44は、絶縁保護部45から冷媒Cへの放熱をなるべく良くするために、できるだけ薄く形成されている。
【0077】
さらに、前述のセグメント型の固定子コイル4には、コイルセグメントの屈曲部で形成されている前方のコイル端部41と、コイルセグメントの開放端部43が曲げ捩り成形された後に互いに先端部で溶接されて形成されている後方のコイル端部42とがある。図示はされていないが、セグメント型の固定子コイル4には、固定子コア31のスロット内に収容されており、両コイル端部41,42を結ぶ直線部がある。
【0078】
そして、再び図1および図2に示すように、固定子コア31の各スロット内には、各コイルセグメントの直線部が四層に重なって挿置されている。さらに、各コイルセグメントの断面形状は略矩形であり、そのエナメル被覆の厚みはごく薄いものであるから、各スロットの断面積に占めるコイルセグメントの占積率は、100%に近い。
【0079】
前述の両コイル端部41,42と、これらに最も近接する導電性の部材との間の距離は、JIS(日本工業規格)に定められた絶縁距離の一倍以上二倍以内に設定されている。すなわち、再び図1に示すように、前方のコイル端部41とベアリングホルダ7との間の最接近距離は、JISに定められた絶縁距離の1.5倍程度であり、コイルセグメント毎に多少のバラツキはあっても、一倍以上二倍以内に収まっている。一方、後方のコイル端部42のうち金属部分とモータケーシング21のリヤ部23との間の最接近距離も、JISに定められた絶縁距離の1.5倍程度であり、コイルセグメント毎に多少のバラツキはあっても、やはり一倍以上二倍以内に収まっている。
【0080】
第二の特徴は、冷媒Cを後方のコイル端部41,42に直接吹き付ける冷媒吸入口10の位置および方向と、冷媒Cを吸い込むコンプレッサ8の吸い込み口がモータケーシング21の内部空間100の外周部にあることとである。
【0081】
先ず、冷媒吸入口10は、セグメント型の固定子コイル4がもつ両コイル端部41,42のうち、コンプレッサ8から遠い後方のコイル端部42に対し、遠心方向から求心方向へ半径線に沿って冷媒Cを吹き付けるように開口している。すなわち、冷媒吸入口10は、両コイル端部41,42のうちコンプレッサ8から遠い方の外周側に対して開口している。
【0082】
次に、コンプレッサ8の吸入口は、前述のように、ベアリングホルダ7を介して、コンプレッサ8により近い前方のコイル端部41の外周側に対して開口している。それゆえ、コンプレッサ8により近い前方のコイル端部41の付近では、内部空間100のうち外周部付近からコンプレッサ8に冷媒Cが吸引されていくことになる。
【0083】
(実施例1の作用効果)
本実施例の電動コンプレッサは、以上のように構成されているので、以下のような作用効果を発揮する。
【0084】
先ず、本実施例の電動コンプレッサでは、次の三つの作用が得られる。
【0085】
第一の作用は、固定子コイル4をセグメント型コイルとしたので、両コイル端部41,42に整然とした隙間が形成され、冷媒Cが両コイル端部41,42を吹き抜ける際に圧力損失が少なくて済むという作用である。
【0086】
すなわち、冷媒Cが吹き付けられる後方のコイル端部42が、前述のようにセグメント型コイルの端部であるから、再び図2に示すように、コイルセグメントの間に規則正しく隙間が形成されている。また、図示はされていないが、コイルセグメントの屈曲部からなる前方のコイル端部41でも、同様にコイルセグメントの間に規則正しく隙間が形成されている。
【0087】
それゆえ、巻線コイルのように巻線が密集しておりその間の隙間が不規則で小さいコイル端部に比べて、本実施例では、固定子コイル4の両コイル端部41,42を冷媒Cが吹き抜けるにあたり、冷媒Cの流れに生じる流路抵抗が小さくて済む。その結果、特に高速回転領域でのCOP(Coefficiency Of Performance:冷凍サイクル効率)が向上し、本実施例の電動コンプレッサがより効率的に作動するから、カーエアコン全体の高効率化に加えて、大出力化ないし小型軽量化も計れる。
【0088】
ここで、本実施例の電動コンプレッサはカーエアコン用であり、カーエアコンにおいては、クールダウン特性が最も重要な性能指標である。そして、クールダウン特性の測定は、電動コンプレッサの全力運転状態ないし高速回転領域で行われるので、本実施例により高速回転領域でCOPが改善されれば、そのままカーエアコンの性能の向上につながる。
【0089】
その結果、本実施例の電動コンプレッサによれば、特に高速回転領域でのCOPなどの効率の向上により、カーエアコンが同じクールダウン特性を発揮しても消費電力が低減され、運用費のコストダウンになる。さらに、コンプレッサ出力の割に小型軽量化がなされるので、材料費が抑制されるうえに成形型や加工装置が小さくて済む分だけ、製品価格のコストダウンにもなる。
【0090】
第二の作用は、固定子コイル4をセグメント型コイルとしたことから、固有に生じる作用である。
【0091】
本実施例では、電動モータ2の固定子コイル4をセグメント型コイルとしたから、従来の巻線コイルに比べて固定子コア31のスロット内における導体の占積率が向上する。その結果、同じ材料の導体を使っていても固定子コイル4の電気抵抗が低くなり、同一の軸出力であれば発熱量が低下するので固定子3を小型軽量化することができる。より具体的には、固定子コア31およびモータケーシング21の直径を小さくすることができ、併せて両端部11,12を含む固定子3およびモータケーシング21の軸長方向の寸法を短くすることができる。逆に、発熱量を同一にすれば、電動モータ2の軸出力を向上させることができばかりではなく、両コイル端部41,42の軸長方向の寸法をやや短くすることができるので、やはりいくらか固定子3を小型軽量化することができる。
【0092】
すなわち、固定子コイル4をセグメント型コイルにすることにより、スロット内での固定子コイル4の占積率が向上するので、電動モータ2の高効率化、大出力化および小型軽量化が可能になる。そして、ひいては本実施例の電動コンプレッサとしても、同様の作用効果が得られる。
【0093】
第三の作用は、冷媒Cを導入する冷媒吸入口10が、内部空間100に向かっては、後方のコイル端部42に直接的に冷媒を吹き付けるように配設されていることから起こる作用である。
【0094】
すなわち、再び図1に示すように、冷媒吸入口10から導入された冷媒Cが、後方のコイル端部42に直接吹き付けられて、コイル端部42を冷却する。さらに後述するように、冷媒Cは固定子コイル4の全体を冷却してから、コンプレッサ8に吸い込まれる。すると、固定子コイル4を形成している全てのコイルセグメントが全体的に温度が下がり、その電気伝導率が向上するから、固定子コイル4でのジュール熱の発生が抑制される。
【0095】
その結果、ジュール熱による電力損失が少なくなる分だけ電動モータ2の効率が向上し、本実施例の電動コンプレッサ全体としても効率が向上して性能向上につながる。そればかりではなく、固定子コイル4でのジュール熱の発生が抑制される分と、冷媒Cによる固定子コイル4の冷却作用が得られる分だけ、電動モータ2の放熱に要するケーシング1の容積が小さくて済むようになる。その結果、本実施例の電動コンプレッサの体格がいっそう小さくて済み、やはり小型軽量化につながる。
【0096】
すなわち、セグメント型の固定子コイル4の全体を冷媒Cで冷却し、固定子コイル4全体の導体温度を下げることにより、ジュール熱による損失が低減されるので、電動モータ2の高効率化、大出力化、ならびに小型軽量化が可能になる。そして、ひいては本実施例の電動コンプレッサとしても、同様の作用効果が得られる。
【0097】
以上のように、本実施例の電動コンプレッサでは、電動モータ2の固定子コイル4にセグメント型コイルを採用したことと、その後方のコイル端部42に冷媒を吹きつけるようにしたこととにより、両者の作用が相まって特有の相乗効果が得られる。
【0098】
したがって、本実施例の電動コンプレッサによれば、要求される定格出力を確保しながら、COPなどの作動効率の向上と小型軽量化とを両立させることができるという効果がある。ここで、カーエアコンのCOP向上効果は、特にクールダウン特性に影響する高速回転領域で顕著である。そして、このような効果は、製品価格のコストダウン効果と、消費電力の低減による運用費のコストダウン効果とにもつながる。そればかりではなく、この電動コンプレッサを搭載した車両等の価格低減および性能向上にまで波及する。
【0099】
次に、前述の第三の作用をより詳しく説明する。
【0100】
前述の第三の作用は、冷媒吸入口10が、コンプレッサ8から遠い方の後方のコイル端部42の外周側に向かって開口しており、しかもコンプレッサ8の吸入口が、コンプレッサ8に近い方の前方のコイル端部41の外周側に開口していることから生じる作用である。
【0101】
すなわち、冷媒吸入口10から導入された冷媒が、後方のコイル端部42の外周側から内周側へと流入し、固定子3と回転子5との間に形成されたエアギャップなどを通って軸長方向に沿って前方へ流れ、前方のコイル端部41の内周側に達する。そして冷媒Cが、前方のコイル端部41では、逆に内周側から外周側へと流れ出して、コンプレッサ8の吸入口(図略)に吸い込まれるに至る。このように冷媒Cが流れる間に、冷媒Cは次の三段階にわたって電動モータ2の全体を冷却する。
【0102】
第一段階では、冷媒吸入口10から導入された冷媒Cが、コンプレッサ8から遠い方のコイル端部42の外周側から内周側へと流入する。この際に、冷媒Cのうち一部は、絶縁保護部45とモータケーシング21のリヤ部23と間の隙間を通ってコイル端部42の外周側から内周側へと達する。しかし、この隙間はJISの定める絶縁距離の二倍以下に制限されており、ごく狭いので、冷媒Cの大部分は、セグメント型コイルのコイル端部42の隙間を通り抜ける。それゆえ、コイル端部42が冷媒Cによって効率よく冷却される。
【0103】
すなわち、このように冷媒Cのうち大半が、コイル端部42の露出部46の間の隙間を通り抜け、一方で、冷媒Cのうち一部は絶縁保護部45を乗り越えてコイル端部42をバイパスしていく。このような現象は、冷媒Cが冷媒吸入口10から直接吹き付けられるコイル端部42の一部で最も強く起こるが、その一部からコイル端部42の両周方向へ冷媒Cが分かれて回り込むので、コイル端部42の全周でも起こっている。そして、このように冷媒Cがコイル端部42を通り抜けるにあたり、再び図2に示すように、セグメント型コイル4のコイル端部42には整然と隙間が形成されているので、冷媒Cの流れに生じる圧力損失は比較的小さくて済む。
【0104】
第二段階では、冷媒Cが、固定子3と回転子5との間に形成されたエアギャップを通って、軸長方向の速度成分をもって前方に向かって流れる。この際には、固定子コア31のスロット(図略)に収容されたコイルセグメント4のうち最内層の直線部と、固定子コア31の内周面とから、冷媒Cが熱を奪っていく。それゆえ、全てのコイルセグメント4のうち固定子3のスロットに四層を成して収容された直線部分の奥の層も、コイルセグメント4と固定子コア31とを通じての熱伝導によって、間接的に冷媒Cに冷却される。
【0105】
なお、電動モータ2の固定子3や回転子5には、図示されていないが、軸長方向に連通した貫通孔がいくつか形成されている。それゆえ、冷媒Cがこれらの貫通孔を流れると、固定子3および回転子5の冷却が促進されるうえに、流路が拡がり流速が遅くなって、冷媒Cの流れに生じる圧力損失がより小さくなる。回転子5では、永久磁石(図略)が冷媒によって冷却され、永久磁石の温度が下がって過熱が防止されるので、永久磁石の磁力が高く保たれ、やはり電動モータ2の効率が向上する。
【0106】
第三段階では、冷媒Cが、エアギャップなどからコンプレッサ8に近い前方のコイル端部41の内周側に流入する。そして次に、コイルセグメント4の屈曲部からなるコイル端部41の内周側から外周側へと流れ出して、コンプレッサ8の吸入口(図略)に達する。この際、やはり冷媒Cのうち大半は、整列したコイル端部41の隙間を吹き抜けるので、コイル端部41もまた冷媒Cによって冷却される。前述のように、冷媒Cがコイル端部41を通り抜けるにあたり、セグメント型コイルのコイル端部に整然と隙間が形成されているので、冷媒Cの流れに生じる圧力損失は比較的小さくて済む。なお、冷媒Cのうち一部は、コイル端部41とベアリングホルダ7との間の隙間を抜けるが、この隙間は、前述のようにJISの定める絶縁距離の二倍以内に制限されているので、この隙間を抜けていく冷媒Cはそれほど多くはない。
【0107】
以上のように、冷媒吸入口10からケーシング1の内部空間100に吸入された冷媒Cは、三つの段階を経て電動モータ2の全体を冷却し、特に両コイル端部41,42を含む固定子3のセグメント型コイル4を冷却する。それゆえ、セグメント型コイル4の導体がもつ温度が低くなり、セグメント型コイル4の電気伝導性が上がってジュール熱による損失が低減されるので、電動モータ2の効率が向上する。また、固定子コイル4にセグメント型コイルを採用しており、前述のように両コイル端部41,42で整然とした隙間が得られるので、冷却なしには過熱しやすい両コイル端部41,42の温度が低減されるばかりではなく、圧力損失も比較的小さく抑制される。それゆえ、本実施例の電動コンプレッサによれば、冷凍サイクル用の電動コンプレッサとしてのCOP(冷凍サイクル効率)などの効率も向上する。
【0108】
その結果、電動モータに要求される軸出力の割には、電動モータの体格が小さくて済み、電動コンプレッサの小型軽量化が図れる。さらに、特別な加工方法や高価な構成要素を新たに必要とせずに電動モータが小型軽量化されるから、材料費が抑制されるうえに、成形型や加工装置が小さくて済む分だけ、電動コンプレッサの製品価格も低減される。
【0109】
したがって、本実施例の電動コンプレッサによれば、特にクールダウン特性に影響する高速回転領域でのCOPなどの高効率化と、小型軽量化という効果が得られる。そればかりではなく、製品価格および運用費のコストダウンという効果も得られる。
【0110】
最後に、以下に述べるように第四の作用と第五の作用とがある。
【0111】
第四の作用は、後方のコイル端部42における冷媒Cによる放熱が良好であるという作用である。
【0112】
なぜならば、後方のコイル端部42を形成しているコイルセグメント4の開放端部43のうち、樹脂からなる絶縁部材44の厚さもなるべく薄くなっており、絶縁部材44に覆われている絶縁保護部45の領域は最低限に抑えられているからである。すなわち、コイルセグメントの開放端部43のうち、エナメル被覆などがなくそのままでは短絡しやすい先端部の方だけが、絶縁性樹脂からなる絶縁部材44に薄く覆われて絶縁性が確保されている。一方、開放端部43のうち比較的短絡しにくい露出部46の方は、絶縁部材44に覆われていない分だけ細くなって放熱性がよいうえに、隙間が広く規則正しく並んでおり、風通しが良くなっている(冷媒Cの流路抵抗が低減されている)。
【0113】
その結果、溶接された方の後方のコイル端部42において、電動モータ2に要求される絶縁性が確保されるうえに、冷媒Cの流通によるコイル端部42の冷却が良くなるとともに、冷媒Cの流通に伴う圧力損失が抑制される。このような作用がより良く発揮されるために、前述のように、なるべく露出部46が長く形成されており、逆に絶縁保護部45は、溶接のためにエナメル被覆がない裸導体の部分だけにほぼ限定されている。
【0114】
第五の作用は、両コイル端部41,42とその直近の導電性部材7,23との間の距離が、JISに定めた絶縁距離の一倍以上二倍以内であることによる作用である。すると、両コイル端部41,42からの漏電を防ぐことができながら、本実施例の電動コンプレッサのサイズ、とりわけ軸長方向の全長をできるだけ小さくすることができる。そればかりではなく、前述のように、冷媒Cのうち大半が、両コイル端部41,42の内部を流通するようにしながら、残りの冷媒Cが両コイル端部41,42とその直近の導電性部材7,23との間に形成された隙間をバイパスすることができる。それゆえ、冷媒Cの流通による両コイル端部41,42の冷却と、冷媒の流れに生じる圧力損失の低減との間で、適当なバランスが取られる。
【0115】
したがって、本実施例の電動コンプレッサによれば、前述の数々の効果に加えて、コイル端部からの漏電を十分に防ぎつつ、軸長方向の全長をできるだけ小さくすることができるという効果がある。
【0116】
以上詳述したように、本実施例の電動コンプレッサによれば、次の五つの効果が発揮される。
【0117】
第一に、冷媒Cの流路抵抗が小さく特に高速回転領域での圧力損失が低減されているので、本実施例の電動コンプレッサの効率が向上している。したがって、本実施例の電動コンプレッサを用いた冷凍サイクルとしてのカーエアコンのCOP(冷凍サイクル効率)が向上するという効果がある。特に、カーエアコンの性能を決定するクールダウン特性は、電動モータ2の全力運転時または高速回転領域で測られるので、冷媒の圧力損失が低減される効果は、クールダウン特性の改善に大きく反映される。
【0118】
第二に、電動モータ2の効率が向上しているので、電動コンプレッサとしてより大きな出力を発揮できるようになりながら、その一方で小型軽量化ができるという効果がある。すなわち、電動コンプレッサに要求される定格出力を確保しながら、高効率化と小型軽量化とを両立させることができるようになったという効果がある。
【0119】
第三に、特殊な加工方法や高価な材料を必要とはせず、さらに加工の難しい形状や材料の部品をも必要としないので、小型軽量化した分だけ材料費や加工費が低減され、製品価格のコストダウンができるという効果がある。
【0120】
第四に、前述のように、流路抵抗が低減されているので冷媒Cの圧力損失が小さくなっており、カーエアコンのクールダウン特性を評価するにあたって、電動モータ2の消費電力が低減されているという効果がある。それゆえ、運用費のコストダウンができるという効果がある。
【0121】
第五に、自動車などのビークルに搭載して使用する際に、電動コンプレッサが小型化している分だけ搭載スペースに余裕が生まれる。また、電動コンプレッサが軽量化している分と電動コンプレッサを支持する部材が軽量化できる分だけ、ビークル全体を軽量化することができる。その結果、本実施例の電動コンプレッサを搭載したビークルは、電動コンプレッサが小型軽量化している分だけ、ビークル自体も小型軽量化ができる。すると、搭載ビークルの加速性や運動性が向上するうえに燃費も向上するので、搭載ビークル自体の性能も向上するという効果がある。そればかりではなく、搭載ビークルの価格や運用費も相応に低減できるという効果もある。
【0122】
(実施例1と比較例との比較試験)
発明者らは、本実施例の電動コンプレッサが、従来の巻線コイルに替えてセグメント型コイルを固定子コイル4に採用したことによる効果を実証する目的で、本実施例の電動コンプレッサとその比較例たる電動コンプレッサとの両者を試作した。そして両者を同一条件で運転させる比較試験を行った。
【0123】
比較例の電動コンプレッサは、図3に示すように、冷媒吸入口10の配置も含めて本実施例と同じ構成であるが、固定子コイルとして従来技術と同じ巻線コイル4’を採用している点だけが、本実施例とは異なっている。
【0124】
比較例の固定子コイル4’は巻線コイルであるので、図4に示すように、その両コイル端部41’,42’では導線がかなり密集しており、整然とした隙間は形成されていない。それゆえ、再び図3の右上部に示すように、冷媒吸入口10から内部空間100に吸引された冷媒Cの流れは、あまり両コイル端部41’,42’を透過せず、主に両コイル端部41’,42’の先端部とケーシング1との間の隙間を通り抜けるものと考えられる。
【0125】
その結果、もともと絶縁被覆が厚いために占積率が低い上に放熱性の悪い巻線コイル4’の導線は、冷媒Cが両コイル端部41,42を吹き抜けないので、いっそう冷却されにくくなる。その結果、巻線コイル4’でのジュール熱による損失が増えることなどにより、電動モータ2’の効率などの性能が低下することが予想された。そればかりではなく、前述のように冷媒Cの流路が狭められ、電動コンプレッサの内部での冷媒Cの流れに生じる圧力損失が大きくなるから、冷凍サイクル全体の効率(COP)が低下することが予測された。
【0126】
本実施例の電動コンプレッサと比較例の電動コンプレッサとは、前述のように固定子コイル4の構成が異なるだけで、次のように諸元ないし規格を互いに合致させてある。
(供試電動コンプレッサの仕様)
・コンプレッサ8のシリンダ容積:20cc/rev
・電動モータ2の最大出力:3kW(回転数8600rpmにて)
・電動モータ2の定格出力:2.25kW(定格回転数6700rpmにて)
・冷媒3の成分:R134a(HFC系冷媒)
・潤滑油Oの成分:合成冷凍機油POE(ポリオールエステル)
・冷凍サイクルの冷凍能力:最大で6kW、定格で4.5kWにて設計
・電動コンプレッサの外形寸法:直径110mm×全長220mmの略円筒体
両者の比較試験は、同じ構成の冷凍サイクルを接続して同じ運転条件で行い、COPなどの性能の測定は同一の二次冷媒式カロリーメータでの計測結果から算定した。両者の比較試験を行った際の運転条件は、次のように統一して設定されていた。
(比較試験の運転条件)
・吸入圧力:0.196MPa(2.0kgf/cm
・吐出圧力:1.47MPa(15kgf/cm
・スーパーヒート(過熱度):10℃
・サブクール(過冷却度):5℃
・周囲温度:25℃
・オイルレート:2%±0.5%(重量比)
なお、オイルレートとは、冷凍サイクルを循環している冷媒中に占める冷凍機油の割合のことである。
【0127】
以上のような同一の運転条件の下で電動モータ2の回転数をパラメータとして両者の比較試験を行った結果、性能の指標としてCOP(冷凍サイクル効率)を縦軸にとって、図5に示す線グラフが得られた。
【0128】
図5に示された比較試験の結果を見ると、回転数が定格値の6700rpm付近では、実施例1と比較例との間にCOPの差はほとんどない。しかしながら、最高回転数の8600rpm付近では、COPにおいて実施例1が明らかに比較例を凌駕している。そして、カーエアコンの性能は、定格回転数や定格出力のみで測られるのではなく、クールダウン特性も重要な要素とされる。クールダウン特性の測定時には、電動コンプレッサは全力運転させられることを考慮すると、高速回転領域でCOPが改善されているという効果は、カーエアコン用の電動コンプレッサの性能指標の改善に直結している。
【0129】
ここでさらに、最高回転数を超えて試験を行い、さらに回転数の高い領域にまでグラフを外挿すれば、回転数が高くなればなるほどCOPのおいて本実施例が比較例を大きく引き離して優れた性能を発揮しうることが推測される。この推測は、冷媒Cの圧力損失による冷凍サイクルでのエネルギー損失が冷媒Cの流速の二乗に比例するという流体力学上の常識と、本実施例の方が比較例よりも両コイル端部41,42付近での流路が広いという事実とに基づき、極めて合理性の高いものである。
【0130】
このように、この比較試験の結果から、回転数が高くなればなるほど本実施例の方が比較例よりも優れた性能を発揮するという傾向があると言える。そして、前述のように、カーエアコンの性能はクールダウン特性が重要な評価指標の一つであり、この場合COPの評価も、電動コンプレッサが全力運転している状態で測られるのであるから、高速回転時のCOP向上効果は、高く評価されるべきである。それゆえ、本実施例のような構成をもつ電動コンプレッサは、全力運転時のクールダウン特性が重要な性能指標であるカーエアコンに好適であることが分かった。
【0131】
さらに、一般的に言って、冷凍サイクルで使用される密閉式電動コンプレッサが徐々に小型軽量化していき、それに伴って高速回転化していくという傾向も、事実としてある。そこで、この試験結果と高速回転化の傾向とを照らし合わせれば、本実施例の電動コンプレッサは、将来においていっそうその特長を発揮し、カーエアコンなどの冷凍サイクルの効率を向上させることができることが当然の帰結として予想される。
【0132】
一方、同じく図5に示すように、定格回転数以下の所定の領域では、実施例1よりも比較例の方がCOPがわずかながら高い。しかしながら、このような低回転領域では、電動モータ2の消費電力もかなり小さく、冷凍サイクルの冷却熱量もやはりかなり小さいので、若干の効率の良し悪しは実運用上、ほとんど問題にはならない。
【0133】
以上詳述したように、実施例1と比較例1との比較試験により、本発明の実施例1の構成をもつ電動コンプレッサを使用した方が、高速回転領域において冷凍サイクルの効率(COP)が高くなることが実証された。このことから、本実施例の電動コンプレッサの適用を想定しているカーエアコンにおいては、特にクールダウン特性を決める高速回転領域での性能が大切であるから、重要な性能改善効果が得られたものと言える。さらに、将来的にはより高速回転化するであろうことを考慮すると、本実施例の電動コンプレッサは将来的にも有望であることが分かった。
【0134】
(実施例1の変形態様1)
本実施例の変形態様1として、前述の実施例1において、セグメント型の固定子コイル4の前後を逆転して配設した電動コンプレッサの実施が可能である。
【0135】
すなわち、本変形態様の電動コンプレッサでは、固定子コイル4は実施例1と同じく略U字形状のコイルセグメントから形成されているが、コイルセグメントの屈曲部からなる方のコイル端部41が、実施例1とは逆に後方に配設されている。それゆえ、本変形態様では、実施例1と同様の冷媒吸入口10が、コイルセグメントの屈曲部からなる方のコイル端部41に対して開口している(図1から想像されたい)。
【0136】
それゆえ、本変形態様では、冷媒Cが、屈曲部からなる方のコイル端部41に直接的に吹き付けられる。ここで、コイルセグメントの屈曲部からなるコイル端部41には溶接部Wがないばかりではなく、溶接部Wを覆う絶縁部材44もないので、コイル端部41の間の隙間が大きく、コイル端部41での風通しがよい。それゆえ、冷媒Cがコイル端部41を吹き抜ける際に、冷媒Cの流れに生じる圧力損失が実施例1よりも小さく、放熱性にも優れている。その結果、圧力損失が低減される分だけ、特にクールダウン特性を決める高速回転時のCOP(冷凍サイクル効率)向上効果が、さらに顕著になる。
【0137】
したがって、本変形態様の電動コンプレッサによれば、屈曲部の方のコイル端部41において、実施例1よりも放熱性が良いうえに冷媒の流れに生じる圧力損失が小さくなる。そして、最も冷媒Cの流速が高い部分での圧力損失が小さいので、電動コンプレッサ全体としての圧力損失も実施例1よりもやや小さくなる。それゆえ、前述の実施例1の効果のうち冷凍サイクルの高効率化(カーエアコンなどのCOPを向上させる効果)が、よりいっそう向上する。
【0138】
(実施例1の変形態様2)
本実施例の変形態様2として、図6に示すように、実施例1の冷媒吸入口10の位置を変更した電動コンプレッサの実施が可能である。本変形態様の電動コンプレッサでは、冷媒吸入口10’がケーシング1の内部空間100の周辺部100’に向かって開口しており、冷媒Cは、後方のコイル端部42の外周に沿って周方向に吹き付られる。
【0139】
本変形態様では、前述の実施例1とは異なって、冷媒Cは冷媒吸入口10’の開口から、後方のコイル端部42に直接的に吹き付けられるのではない。そうではなく、冷媒Cは、冷媒吸入口10から、いったん全体形状がリング状をしたコイル端部42の外周空間100’に吸入され、外周空間100’を渦状に巡る。そして、冷媒Cは、外周空間100’から、後方のコイル端部42を外周側から内周側へと吹き抜け、コイル端部42に囲まれた内周空間100”に流入していく。しかる後、冷媒Cは、内周空間100”から、固定子3と回転子5との間に形成されたエアギャップに流入する。
【0140】
すると、実施例1のように後方のコイル端部42の一部に半径方向外側から直接的に冷媒を吹き付ける場合とは異なり、本変形態様では、コイル端部42の全体がほぼ均一に冷却され、温度分布が周方向に沿って均一化される。それゆえ、後方のコイル端部42に吹き付けられる冷媒Cの圧力損失が低減され、カーエアコンなどのCOPがより向上する。さらに、後部のコイル端部42のうち上部以外が部分的に過熱することがなくなり、コイル端部42で過熱不具合が防止されるので、電動モータ2の信頼性が向上する。それとともに、後方のコイル端部42が全体的にほぼ均一に冷却されるので、ジュール熱の発生も抑制され、電動モータ2の効率が向上する。
【0141】
したがって、本変形態様の電動コンプレッサによれば、前述した実施例1の効果に加えて、後部のコイル端部42が部分的に過熱することが防止されるので、電動モータ2の信頼性および効率がさらに向上するという効果がある。そればかりではなく、特に後方のコイル端部42において冷媒Cの圧力損失が低減されるので、カーエアコン等のCOP(冷凍サイクル効率)が向上する効果がより大きくなる。
【0142】
(実施例1の変形態様3)
本実施例の変形態様3として、図7に示すように、実施例1と同様の冷媒吸入口10に加えて、前方のコイル端部41に冷媒Cを吹き付ける位置に開口した第二の冷媒吸入口10”をもつ電動コンプレッサの実施が可能である。
【0143】
本変形態様の電動コンプレッサでは、両コイル端部41,42に、二つの冷媒吸入口10,10”からそれぞれ直接的に冷媒Cが吹き付けられるので、前方のコイル端部41がよりよく冷却されるようになる。それゆえ、本変形態様では、前方のコイル端部41に過熱をよりよく防止する効果がある。あるいは、何らかの理由で電動コンプレッサに冷媒Cを戻す流路が二本になってしまった場合に、流路を一本にまとめる合流部材が不要になり、部品点数の低減とコストダウンとに効果がある。
【0144】
(実施例1の変形態様4)
本実施例の変形態様4として、コンプレッサ8の吸入口(図略)が、電動モータ2の前方にある内部空間100のうち前方のコイル端部41のあたり、またはその内周側に向かって開口している電動コンプレッサの実施が可能である。
【0145】
本変形態様の電動コンプレッサでは、コンプレッサ8の吸入口に至るまでに、冷媒Cが前方のコイル端部41を通り抜けなくても済むので、流路抵抗が減って冷媒の流れの圧力損失が低減される。その結果、カーエアコンなどのCOP(冷凍サイクル効率)がさらに向上するという効果が得られる。
【0146】
なお、エアギャップを通り抜けてきた冷媒Cは、流れの速度に旋回成分をもっている。それゆえ、冷媒Cのうち少なくとも一部は、その遠心力の作用により、前方のコイル端部41に自ら吹き付けられ、前方のコイル端部41が適正に冷却される。その結果、後方のコイル端部42だけではなく、前方のコイル端部41も適度に冷却されるので、両コイル端部41,42のうちいずれも過熱する恐れはない。
【0147】
(実施例1の変形態様5)
本実施例の変形態様5として、前述の図7において、後方の冷媒吸入口10を廃止して、前方の冷媒吸入口10”だけから冷媒Cが吸入される構成とした電動コンプレッサの実施が可能である。
【0148】
本変形態様の電動コンプレッサでは、前方のコイル端部41を収容しており、コンプレッサ8の吸入口が開口した内部空間100に、直接的に冷媒Cが導入される。それゆえ、冷媒Cの流路抵抗が減って圧力損失が最低限に抑えられ、カーエアコンなどのCOP(冷凍サイクル効率)がよりいっそう向上するという効果が得られる。
【0149】
なお、後方のコイル端部42の放熱性を改善するには、モータケーシング21の表面のうち適当な部分に放熱フィンを形成するなどの対応策を採ればよい。あるいは、本変形態様の電動コンプレッサの設置姿勢を縦置き式とし、これに伴って潤滑油Oの流路を設計改変してもよい。こうすれば、後方のコイル端部42は循環する潤滑油Oに浸って適正に冷却される。
【0150】
(実施例1のその他の変形態様)
前述の実施例1に対し、その変形態様1ないし変形態様5を適正に組み合わせて各種の他の変形態様を実施することもでき、それ相応の作用効果が得られるものと考えられる。
【図面の簡単な説明】
【図1】実施例1としての電動コンプレッサの全体構成を示す正断面図
【図2】実施例1における後方のコイル端部の形状を示す斜視図
【図3】比較例としての電動コンプレッサの全体構成を示す正断面図
【図4】比較例における両コイル端部の形状を示す斜視図
【図5】実施例1と比較例との比較試験の結果を示す線グラフ
【図6】実施例1の変形態様2の要部構成を示す後部断面図
【図7】実施例1の変形態様3の全体構成を示す正断面図
【符号の説明】
1:ケーシング
10,10’,10”:冷媒吸入口 20:冷媒吐出口
100,100’,100”:内部空間
2:電動モータ
21:モータケーシング
22:円筒部 23:リヤ部 24:リヤベアリング
25,26:オイル溜まり
3:固定子 31:固定子コア
4:固定子コイル(セグメント型コイル)、コイルセグメント
41:コイル端部(コイルセグメントの屈曲部側で形成)
42:コイル端部(コイルセグメントの開放端部で形成)
43:開放端部 44:絶縁部材(樹脂製)
45:絶縁保護部 46:露出部
5:回転子
6:シャフト(回転子軸)
61:偏心軸 62:大径部 63:後端部
7:ベアリングホルダ
71:フロントベアリング 72,73:オイル通路
74:固定絞り 75:減圧弁
8:コンプレッサ(スクロール式コンプレッサ)
80:圧縮室
81:固定スクロール
86:吐出ポート 87:吐出バルブ 88:オイル通路
82:可動スクロール
83:スライドブッシュ 84:カウンタバランサ
85:チップシール
9:アウタケーシング
90:吐出チャンバ 91:オイル溜まり
C:冷媒(HFC系冷媒) O:潤滑油(冷凍機油) W:被溶接部

Claims (7)

  1. 外部に連通して冷媒を取り入れる冷媒吸入口と、この冷媒を外部に吐出する冷媒吐出口とをもち、所定の内部空間を形成しているケーシングと、
    このケーシング内に配設されており、このケーシングに対して固定された固定子コアおよび固定子コイルをもつ固定子とこの固定子に回転駆動される回転子とをもつ電動モータと、
    このケーシング内に配設されており、この電動モータの軸出力により駆動されて、この冷媒吸入口からこの内部空間に入ったこの冷媒を圧縮し、この冷媒吐出口から吐出するコンプレッサと、
    を有する密閉式の電動コンプレッサにおいて、
    前記固定子コイルは、断面形状が略矩形である導電性のコイルセグメントが複数本接続されて形成されたセグメント型コイルであり、
    前記冷媒吸入口は、このセグメント型コイルが軸長方向両端にもつ二つのコイル端部のうち、少なくとも一つに対して前記冷媒を導入する位置に開口していることを特徴とする、
    電動コンプレッサ。
  2. 前記冷媒吸入口は、両前記コイル端部のうち前記コンプレッサから遠い方に対して開口している、
    請求項1記載の電動コンプレッサ。
  3. 前記冷媒吸入口は、両前記コイル端部のうち前記コンプレッサから遠い方の外周側に対して開口しており、
    このコンプレッサの吸入口は、これらのコイル端部のうちこのコンプレッサに近い方の外周側に対して開口している、
    請求項2記載の電動コンプレッサ。
  4. 前記セグメント型コイルは、複数の略U字形状の前記コイルセグメントのうち開放端部が互いに先端部で溶接されて形成されており、
    これらの開放端部は、これらの先端部のうち溶接された部分を覆う絶縁部材をもつ絶縁保護部と、この絶縁保護部よりも前記固定子コアに近く前記内部空間に露出した露出部とをもつ、
    請求項1記載の電動コンプレッサ。
  5. 前記コイルセグメントは、略U字形状をしていて屈曲部と一対の開放端部とを持ち、
    前記冷媒吸入口は、これらの屈曲部からなる方の前記コイル端部に対して開口している、
    請求項1記載の電動コンプレッサ。
  6. 両前記コイル端部のうち少なくとも一方と、これに最も近接する導電性の部材との間の距離は、JIS(日本工業規格)に定められた絶縁距離の一倍以上二倍以内である、
    請求項1記載の電動コンプレッサ。
  7. 前記冷媒吸入口は、前記内部空間に向かい前記冷媒を前記コイル端部の外周に沿って略周方向に吹き付ける位置に開口している、
    請求項1記載の電動コンプレッサ。
JP2002348411A 2002-11-29 2002-11-29 電動コンプレッサ Pending JP2004183499A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002348411A JP2004183499A (ja) 2002-11-29 2002-11-29 電動コンプレッサ
US10/722,425 US7025577B2 (en) 2002-11-29 2003-11-28 Enclosed-configuration electrically powered compressor having electric motor with stator coil thereof cooled by flow of refrigerant prior to compression of the refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348411A JP2004183499A (ja) 2002-11-29 2002-11-29 電動コンプレッサ

Publications (1)

Publication Number Publication Date
JP2004183499A true JP2004183499A (ja) 2004-07-02

Family

ID=32462915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348411A Pending JP2004183499A (ja) 2002-11-29 2002-11-29 電動コンプレッサ

Country Status (2)

Country Link
US (1) US7025577B2 (ja)
JP (1) JP2004183499A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018863A1 (ja) * 2009-08-10 2011-02-17 三菱電機株式会社 空気調和機
JP2011047535A (ja) * 2009-08-25 2011-03-10 Kobe Steel Ltd 冷凍装置
JP2012082996A (ja) * 2010-10-07 2012-04-26 Mitsubishi Electric Corp 空気調和機
JP2012215091A (ja) * 2011-03-31 2012-11-08 Toyota Industries Corp 電動圧縮機
WO2013051340A1 (ja) 2011-10-07 2013-04-11 大豊工業株式会社 スクロールコンプレッサ
JP2014240659A (ja) * 2014-09-29 2014-12-25 株式会社豊田自動織機 電動圧縮機

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558126B1 (en) * 2000-05-01 2003-05-06 Scroll Technologies Compressor utilizing low volt power tapped from high volt power
US7674099B2 (en) * 2006-04-28 2010-03-09 Sumitomo Heavy Industries, Ltd. Compressor with oil bypass
KR20080006733A (ko) * 2006-07-13 2008-01-17 삼성광주전자 주식회사 밀폐형 압축기 및 그 제조방법
ATE475218T1 (de) * 2007-03-15 2010-08-15 Direct Drive Systems Inc Kühlung einer elektrischen maschine
PL2158387T3 (pl) * 2007-05-24 2013-12-31 Lindenmaier Gmbh Układ sprężarki
JP5067022B2 (ja) * 2007-06-04 2012-11-07 株式会社豊田自動織機 電動圧縮機
JP2009150234A (ja) * 2007-12-18 2009-07-09 Toyota Industries Corp 電動圧縮機
JP4985590B2 (ja) * 2008-09-02 2012-07-25 株式会社豊田自動織機 電動コンプレッサ
KR101936192B1 (ko) * 2010-12-29 2019-01-08 엘지전자 주식회사 공기조화기의 실외기
JP5652359B2 (ja) * 2011-09-12 2015-01-14 株式会社豊田自動織機 電動圧縮機
CN103023211B (zh) * 2011-09-21 2015-07-15 珠海格力电器股份有限公司 空调器及其制冷机的电机的冷却结构
FR2998733B1 (fr) * 2012-11-27 2016-02-05 Valeo Japan Co Ltd Dispositif d'entrainement d'un compresseur electrique et compresseur electrique comprenant un tel dispositif
FR3043164B1 (fr) * 2015-10-29 2018-04-13 CRYODIRECT Limited Pompe de transfert d'un gaz liquefie
CN105782056A (zh) * 2016-04-15 2016-07-20 湖州骏能电器科技股份有限公司 一种涡旋压缩机的机壳结构
CN105782055A (zh) * 2016-04-15 2016-07-20 湖州骏能电器科技股份有限公司 一种涡旋压缩机的组合机壳结构
DE112019006431T5 (de) * 2018-12-27 2021-09-09 Honda Motor Co., Ltd. Motor-Kühlstruktur eines elektrischen Motorrads
BE1027496B1 (nl) * 2019-08-12 2021-03-16 Atlas Copco Airpower Nv Compressorinrichting
US11635091B2 (en) 2020-03-13 2023-04-25 Honeywell International Inc. Compressor with integrated accumulator
US11841031B2 (en) 2020-03-13 2023-12-12 Honeywell International Inc. Compressor sensor mount

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674787B2 (ja) 1986-07-30 1994-09-21 松下電器産業株式会社 電動圧縮機
US5873710A (en) * 1997-01-27 1999-02-23 Copeland Corporation Motor spacer for hermetic motor-compressor
WO1998054822A1 (fr) * 1997-05-26 1998-12-03 Denso Corporation Alternateur pour vehicule
JP3870642B2 (ja) * 1999-12-21 2007-01-24 株式会社デンソー 電動圧縮機
JP2001280249A (ja) * 2000-03-31 2001-10-10 Matsushita Electric Ind Co Ltd 圧縮機および電動機

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263984B2 (en) 2009-08-10 2016-02-16 Mitsubishi Electric Corporation Air-conditioning apparatus
AU2010283408B2 (en) * 2009-08-10 2013-03-07 Mitsubishi Electric Corporation Air conditioner
WO2011018863A1 (ja) * 2009-08-10 2011-02-17 三菱電機株式会社 空気調和機
JP2011038689A (ja) * 2009-08-10 2011-02-24 Mitsubishi Electric Corp 空気調和機
CN102472532A (zh) * 2009-08-10 2012-05-23 三菱电机株式会社 空气调节器
JP2011047535A (ja) * 2009-08-25 2011-03-10 Kobe Steel Ltd 冷凍装置
JP2012082996A (ja) * 2010-10-07 2012-04-26 Mitsubishi Electric Corp 空気調和機
JP2012215091A (ja) * 2011-03-31 2012-11-08 Toyota Industries Corp 電動圧縮機
WO2013051340A1 (ja) 2011-10-07 2013-04-11 大豊工業株式会社 スクロールコンプレッサ
US9453509B2 (en) 2011-10-07 2016-09-27 Taiho Kogyo Co., Ltd. Scroll compressor
EP3346133A2 (en) 2011-10-07 2018-07-11 Taiho Kogyo Co., Ltd. Scroll compressor
EP3660313A1 (en) 2011-10-07 2020-06-03 TAIHO KOGYO CO., Ltd Scroll compressor
EP3663584A1 (en) 2011-10-07 2020-06-10 TAIHO KOGYO CO., Ltd Scroll compressor
JP2014240659A (ja) * 2014-09-29 2014-12-25 株式会社豊田自動織機 電動圧縮機

Also Published As

Publication number Publication date
US7025577B2 (en) 2006-04-11
US20040109771A1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP2004183499A (ja) 電動コンプレッサ
JP2009150234A (ja) 電動圧縮機
KR101531861B1 (ko) 전동 압축기
JP2012143034A (ja) 誘導電動機、圧縮機および冷凍サイクル装置
US20170350405A1 (en) Integrated motor compressor for vapor compression refrigeration system
TW201840103A (zh) 具有冷卻流路的冷卻器馬達
KR101358602B1 (ko) 전동 압축기
JP2010144635A (ja) 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
JP5131032B2 (ja) 電動圧縮機
JP6934624B2 (ja) スクロール式圧縮機
KR102320908B1 (ko) 압축기 및 냉동 사이클 장치
KR102328761B1 (ko) 압축기 및 냉동 사이클 장치
JP6654414B2 (ja) 電動圧縮機
JP6633281B2 (ja) 圧縮機
JP2008138532A (ja) 電動コンプレッサ
JP2010090855A (ja) 電動圧縮機
JP2004251173A (ja) 密閉型電動機付圧縮機
JP6772934B2 (ja) 電動圧縮機
JP7497811B2 (ja) ロータ、モータ、圧縮機、冷凍装置
JP2015200200A (ja) 電動圧縮機
JP7410533B2 (ja) ロータ、モータ、圧縮機、冷凍装置
JP7500733B2 (ja) ロータ、電動機、圧縮機および冷凍サイクル装置
KR20090112322A (ko) 압축기
JP2023069205A (ja) 電動圧縮機
JP2021124016A (ja) 圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911