WO2019163021A1 - 固定子、電動機、圧縮機および空気調和装置 - Google Patents

固定子、電動機、圧縮機および空気調和装置 Download PDF

Info

Publication number
WO2019163021A1
WO2019163021A1 PCT/JP2018/006204 JP2018006204W WO2019163021A1 WO 2019163021 A1 WO2019163021 A1 WO 2019163021A1 JP 2018006204 W JP2018006204 W JP 2018006204W WO 2019163021 A1 WO2019163021 A1 WO 2019163021A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
region
wire coil
slot
sectional area
Prior art date
Application number
PCT/JP2018/006204
Other languages
English (en)
French (fr)
Inventor
恵実 塚本
浩二 矢部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020501898A priority Critical patent/JP7046155B2/ja
Priority to PCT/JP2018/006204 priority patent/WO2019163021A1/ja
Priority to CN201880089216.6A priority patent/CN111771317B/zh
Priority to US16/965,462 priority patent/US11750053B2/en
Publication of WO2019163021A1 publication Critical patent/WO2019163021A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/02Windings characterised by the conductor material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator, an electric motor, a compressor, and an air conditioner.
  • the stator coil In an electric motor used for a compressor, the stator coil is hardly in contact with refrigerant and lubricating oil in the compressor. Therefore, the heat generated in the coil needs to be radiated from the stator core. Moreover, since the heat generation of the coil is due to the electrical resistance of the coil, it is desirable that the electrical resistance of the coil is low in order to suppress the heat generation of the coil.
  • an aluminum wire coil has a higher electrical resistivity than a copper wire coil, and therefore generates a large amount of heat when energized. Therefore, it is required to use different types of coils and enhance the heat dissipation effect.
  • the present invention has been made to solve the above-described problems, and aims to use different types of coils and enhance the heat dissipation effect.
  • a stator according to the present invention includes a stator core having an inner circumference extending in a circumferential direction centered on an axis, and a slot formed outside the inner circumference in a radial direction centered on the axis. And a first coil and a second coil connected in series with each other.
  • the first coil has a conductor formed of a first metal.
  • the second coil has a conductor formed of a second metal having a lower electrical resistivity than the first metal.
  • the slot is located between a slot opening that opens to the inner periphery of the stator core, a curved slot bottom that is located radially outward of the slot opening, and the slot opening and the slot bottom.
  • a straight line connecting a boundary between the slot bottom and the first side and a boundary between the slot bottom and the second side in a plane orthogonal to the axis is defined as a first straight line.
  • a region surrounded by the first straight line and the slot bottom is defined as a first region.
  • a region outside in the radial direction from the slot opening and inside in the radial direction from the first straight line is defined as a second region.
  • Area S1 of the first region, total cross-sectional area A1 of the first coil in the first region, area S2 of the second region, and total cross-sectional area A2 of the first coil in the second region Satisfies (A1 / S1)> (A2 / S2).
  • the first coil having a higher electrical resistivity is denser in the first region closer to the outer periphery of the stator core than the second region. Since it arrange
  • FIG. 1 is a cross-sectional view showing an electric motor according to a first embodiment. It is sectional drawing (A) and perspective view (B) which show the rotor of Embodiment 1.
  • FIG. FIG. 3 is an enlarged cross-sectional view illustrating a part of the stator according to the first embodiment. It is a schematic diagram which shows the connection state of the aluminum wire coil of Embodiment 1, and a copper wire coil. It is a schematic diagram which shows the cross-sectional structure of the aluminum wire coil of Embodiment 1, and a copper wire coil.
  • FIG. 3 is an enlarged cross-sectional view illustrating a part of the stator according to the first embodiment.
  • FIG. 6 is a schematic diagram showing a heat radiation action from a slot of the stator according to the first embodiment.
  • FIG. 4 is a table showing characteristics of the aluminum wire coil and the copper wire coil of the first embodiment. It is a graph which shows the cross-sectional area ratio and loss density ratio of an aluminum wire coil and a copper wire coil.
  • FIG. 6 is an enlarged cross-sectional view showing a part of a stator according to a modification of the first embodiment. It is a figure which shows the compressor to which the electric motor of Embodiment 1 is applied. It is a figure which shows the air conditioning apparatus provided with the compressor of FIG.
  • FIG. 1 is a cross-sectional view showing electric motor 100 of the first embodiment.
  • An electric motor 100 shown in FIG. 1 is an induction motor, and is used, for example, in a compressor of an air conditioner.
  • the electric motor 100 includes a stator 1 and a rotor 5 that is rotatably provided inside the stator 1.
  • An air gap is provided between the stator 1 and the rotor 5.
  • axial direction a direction of the axis C which is the rotation center of the rotor 5
  • axial direction a circumferential direction centered on the axis C (indicated by an arrow R1 in FIG. 1 and the like)
  • radial direction a radial direction centered on the axis C
  • FIGS. 2A and 2B are a cross-sectional view and a perspective view showing the rotor 5.
  • the rotor 5 includes a rotor core 50 having a plurality of slots 51, a shaft 55 that is a rotation shaft, and a bar 60 inserted into each slot 51 of the rotor core 50. And have.
  • the rotor core 50 is formed by, for example, laminating electromagnetic steel sheets having a thickness of 0.1 to 0.7 mm in the axial direction and integrating them by caulking or the like.
  • a circular shaft hole 54 is formed at the radial center of the rotor core 50.
  • a shaft 55 is fixed to the shaft hole 54 by press-fitting.
  • the central axis of the shaft 55 is an axis C that forms the rotation center of the rotor 5.
  • the rotor core 50 is formed in an annular shape around the axis C.
  • a plurality of slots 51 (also called rotor slots) are formed at equal intervals in the circumferential direction along the outer periphery 53 of the rotor core 50.
  • the number of slots 51 is 34 here, but is not limited thereto.
  • the slot 51 is a groove extending in the radial direction and penetrates the rotor core 50 in the axial direction.
  • Teeth 52 also referred to as rotor teeth is formed between slots 51 adjacent in the circumferential direction.
  • the rotor 5 has a pair of end rings 61 and 62 at both axial ends of the rotor core 50.
  • the end rings 61 and 62 are connected to both ends of the bar 60 in the axial direction, and are formed integrally with the bar 60.
  • the bar 60 and the end rings 61 and 62 constitute a cage-type secondary conductor 6.
  • the cage-type secondary conductor 6 is made of a nonmagnetic and conductive material such as aluminum.
  • the end rings 61 and 62 and the bar 60 of the cage-type secondary conductor 6 are formed by casting aluminum into both ends of the rotor core 50 and the slots 51. Note that copper may be used instead of aluminum.
  • the bar 60 is inclined and extended so that one end in the longitudinal direction is displaced in the circumferential direction with respect to the other end. In FIG. 2B, only one bar 60 is indicated by a broken line.
  • a secondary current is generated in the bar 60.
  • Torque for rotating the rotor 5 is generated by the secondary current and the magnetic flux of the stator 1.
  • FIG. 3 is an enlarged cross-sectional view showing a part of the stator 1.
  • the stator 1 has a stator core 10 and a coil 3 wound around the stator core 10.
  • the coil 3 has an aluminum wire coil 31 as a first coil and a copper wire coil 32 as a second coil.
  • the aluminum wire coil 31 and the copper wire coil 32 will be described later.
  • the stator core 10 is obtained by, for example, laminating electromagnetic steel sheets having a thickness of 0.1 to 0.7 mm in the axial direction and integrating them by caulking or the like.
  • the stator core 10 has an inner periphery 10b extending in the circumferential direction centering on the axis C, and an outer periphery 10a positioned radially outward from the inner periphery 10b.
  • a plurality of slots 13 that open to the inner periphery 10 b are formed at equal intervals in the circumferential direction.
  • the coil 3 is accommodated in the slot 13.
  • the number of slots 13 is 30 here, but is not limited thereto.
  • the stator core 10 includes an annular yoke portion (also referred to as a core back) 11 and a plurality of teeth 12 protruding radially inward from the yoke portion 11.
  • the teeth 12 are arranged at equal intervals in the circumferential direction.
  • the slot 13 is formed between the teeth 12 adjacent in the circumferential direction.
  • the number of teeth 12 is the same as the number of slots 13 (here, 30).
  • the coil 3 is wound around the teeth 12.
  • the tooth 12 has a tooth tip portion 12a having a width (that is, a dimension in the circumferential direction) wider than other portions of the tooth 12 at the radially inner tip.
  • the tip of the tooth tip 12a has an arc shape and forms the inner circumference 10b of the stator core 10 described above.
  • FIG. 4 is a diagram showing a connection state of the aluminum wire coil 31 and the copper wire coil 32 of the coil 3.
  • the aluminum wire coil 31 and the copper wire coil 32 of the coil 3 are connected in series.
  • the coil 3 has three-phase (U-phase, V-phase, and W-phase) coil portions, and each coil portion is connected by Y connection.
  • FIG. 5 is a schematic diagram showing a cross-sectional structure of the aluminum wire coil 31 and the copper wire coil 32.
  • the aluminum wire coil 31 has a conductor 31a formed of aluminum as a first metal, and the periphery of the conductor 31a is covered with a coating 31b of an insulating resin.
  • the first metal constituting the conductor 31a is aluminum here, but is not limited to aluminum.
  • the electric resistance of the conductor 31a of the aluminum wire coil 31 is R Al and the electric resistivity is ⁇ Al .
  • the diameter (also referred to as a wire diameter) of the aluminum wire coil 31 is D Al .
  • the diameter D Al can be considered to be equivalent to the diameter of the conductor 31a.
  • the copper wire coil 32 has a conductor 32a formed of copper as a second metal having a lower electrical resistivity than the first metal, and the periphery of the conductor 32a is covered with an insulating coating 32b.
  • the second metal constituting the conductor 32a is copper here, but is not limited to copper.
  • the electrical resistance of the conductor 32a of the copper wire coil 32 is R Cu and the electrical resistivity is ⁇ Cu .
  • the diameter of the copper wire coil 32 is D Cu .
  • the thickness of the coating 32b is thinner as compared to the diameter of the conductor 32a, it can be considered equivalent to the diameter of the diameter D Cu conductor 32a.
  • FIG. 6 is an enlarged view showing a portion including the slot 13 of the stator 1.
  • the slot 13 has a slot opening 14 connected to the inner periphery 10 b of the stator core 10, and a curved slot bottom 13 a positioned radially outward with respect to the slot opening 14.
  • the slot 13 has a first side portion 13b and a second side portion 13c that are located between the slot opening portion 14 and the slot bottom portion 13a in the radial direction.
  • the first side portion 13b and the second side portion 13c are opposed to each other in the circumferential direction.
  • the slot opening 14 is formed between the teeth tip portions 12a adjacent in the circumferential direction.
  • the slot opening 14 serves as an entrance through which the coil 3 passes when the coil 3 is wound around the tooth 12, that is, when the coil 3 is disposed in the slot 13.
  • the slot bottom 13a has a curved shape (more specifically, an arc shape) in which the center in the circumferential direction protrudes radially outward from both ends in the circumferential direction.
  • the circumferential length of the slot bottom 13 a is longer than the circumferential length of the slot opening 14.
  • the side portions 13b and 13c extend from the slot opening portion 14 toward the slot bottom portion 13a.
  • the side parts 13b and 13c are extended so that the space
  • the first side portion 13 b has a curved portion 131 at a portion connected to the slot opening portion 14.
  • the curved portion 131 is curved so as to be displaced inward in the circumferential direction of the slot 13 as it approaches the slot opening 14.
  • the second side portion 13 c has a curved portion 132 at a portion connected to the slot opening 14.
  • the curved portion 132 is curved so as to be displaced inward in the circumferential direction of the slot 13 as it approaches the slot opening 14.
  • the insulating part 2 is provided on the inner surface of the slot 13.
  • the insulating part 2 is made of a resin such as PET (polyethylene terephthalate).
  • the insulating unit 2 electrically insulates the coil 3 in the slot 13 from the stator core 10.
  • the insulating portion 2 includes a first portion 21 that covers the slot bottom portion 13a, a second portion 22 that covers the first side portion 13b, and a third portion 23 that covers the second side portion 13c.
  • the slot 13 may be filled with a resin having high thermal conductivity so as to surround the coil 3 (that is, the aluminum wire coil 31 and the copper wire coil 32).
  • a resin having high thermal conductivity for example, PBT (polybutylene terephthalate) can be used.
  • the inside of the slot 13 is divided into a first area 101 and a second area 102. This point will be described below.
  • first point P1 A boundary between the slot bottom 13a and the first side 13b of the slot 13 is defined as a first point P1.
  • a boundary between the slot bottom 13a and the second side 13c of the slot 13 is defined as a second point P2.
  • These points P1 and P2 correspond to both ends of the slot bottom 13a of the slot 13 in the circumferential direction.
  • a straight line connecting the first point P1 and the second point P2 is defined as a first straight line L1.
  • a region surrounded by the first straight line L1 and the slot bottom portion 13a is defined as a first region 101.
  • a point located on the first side portion 13b side at the radially outer end of the slot opening 14 on the plane orthogonal to the axis C is defined as a third point P3.
  • a point located on the second side 13c side at the radially outer end of the slot opening 14 is defined as a fourth point P4.
  • a straight line connecting the third point P3 and the fourth point P4 is defined as a second straight line L2.
  • a region surrounded by the second straight line L ⁇ b> 2 and the first straight line L ⁇ b> 1 is a second region 102. In other words, in the slot 13, a region radially outward from the slot opening 14 and radially inward from the first straight line L ⁇ b> 1 becomes the second region 102.
  • the points P1 to P4 may be defined on the inner surface of the insulating part 2. That is, the first point P1 is defined as the boundary between the inner surface of the first portion 21 and the inner surface of the second portion 22 of the insulating portion 2, and the second point P3 is defined as the inner surface of the first portion 21 of the insulating portion 2. And the boundary between the inner surface of the third portion 23 and the inner surface of the third portion 23.
  • the points P3 and P4 may be defined as points closest to the slot opening 14 on the inner surface of the second portion 22 and the inner surface of the third portion 23 of the insulating portion 2, respectively.
  • the area of the first region 101 is S1
  • the area of the second region 102 is S2.
  • the total cross-sectional area of the aluminum wire coil 31 disposed in the first region 101 is A1
  • the total cross-sectional area of the aluminum wire coil 31 disposed in the second region 102 is A2.
  • the total cross-sectional area of the copper wire coil 32 disposed in the first region 101 is C1
  • the total cross-sectional area of the copper wire coil 32 disposed in the second region 102 is C2.
  • the total cross-sectional area of the coil is the total cross-sectional area of the coils arranged in a certain region.
  • the total cross-sectional area of the coil is the product of the cross-sectional area per coil and the number of coils arranged in the region.
  • the area S1 of the first region 101, the total cross-sectional area A1 of the aluminum wire coil 31 in the first region 101, the area S2 of the second region 102, and the aluminum wire coil 31 in the second region 102 The total cross-sectional area A2 satisfies (A1 / S1)> (A2 / S2).
  • the aluminum wire coil 31 is arranged so that the occupation density in the first region 101 is higher than the occupation density in the second region 102. In other words, the aluminum wire coil 31 is arranged more densely in the first region 101 than in the second region 102.
  • the area S1 of the first region 101, the total cross-sectional area A1 of the aluminum wire coil 31 in the first region 101, and the total cross-sectional area C1 of the copper wire coil 32 in the first region 101 are ( A1 / S1)> (C1 / S1) is satisfied.
  • the occupation density of the aluminum wire coil 31 is higher than the occupation density of the copper wire coil 32.
  • the aluminum wire coil 31 is arranged more densely than the copper wire coil 32 in the first region 101.
  • the total cross-sectional area A1 of the aluminum wire coil 31 and the total cross-sectional area C1 of the copper wire coil 32 in the first region 101, and the total cross-sectional area A2 and the copper wire coil of the aluminum wire coil 31 in the second region 102 The total sectional area C2 of 32 satisfies (A1 / C1)> (A2 / C2). That is, the ratio of the total cross-sectional area of the aluminum wire coil 31 to the total cross-sectional area of the copper wire coil 32 is higher in the first region 101 than in the second region 102.
  • FIG. 7 is a schematic diagram showing the heat radiation action from the slot 13 in the stator 1.
  • the heat generated in the coil 3 in the slot 13 of the stator 1 is indicated by the heat radiation path from the slot 13 toward the radially outer yoke portion 11 as indicated by the arrow H1, and as indicated by the arrow H2.
  • the heat is dissipated through the heat dissipation path from the slot 13 toward the teeth 12 on both sides in the circumferential direction.
  • the tooth 12 has a small area, and heat is transmitted to the single tooth 12 from the slots 13 on both sides thereof, so that heat is likely to be accumulated.
  • the yoke portion 11 has a large area and the outer periphery 10a (FIG. 1) is in contact with a closed container (described later) of the compressor, heat is easily radiated to the outside of the stator 1. That is, in the slot 13, the first region 101 adjacent to the yoke portion 11 has better heat dissipation efficiency than the second region 102 adjacent to the tooth 12.
  • the aluminum wire coil 31 has a higher electrical resistivity than the copper wire coil 32, and therefore generates a large amount of heat. Also, the aluminum wire coil 31 has a lower thermal conductivity than the copper wire coil 32, and therefore the temperature tends to rise.
  • the aluminum wire coils 31 are arranged more densely in the first region 101 than in the second region 102. That is, (A1 / S1)> (A2 / S2) is established.
  • (A1 / S1)> (A2 / S2) is established.
  • the contact area between the aluminum wire coils 31 and the contact area between the aluminum wire coil 31 and the copper wire coil 32 are increased, and furthermore, the distance between the aluminum wire coil 31 and the stator core 10 is shortened. Heat of the wire coil 31 is easily transmitted to the stator core 10. Thereby, the temperature rise of the aluminum wire coil 31 can be suppressed.
  • the occupation density of the aluminum wire coil 31 is higher than the occupation density of the copper wire coil 32. That is, (A1 / S1)> (C1 / S1) is established.
  • (A1 / S1)> (C1 / S1) is established.
  • the ratio of the total cross-sectional area of the aluminum wire coil 31 to the total cross-sectional area of the copper wire coil 32 is higher in the first region 101 than in the second region 102. That is, (A1 / C1)> (A2 / C2) is established.
  • (A1 / C1)> (A2 / C2) is established.
  • FIG. 8 is an enlarged view showing a part of the stator 201 of the comparative example.
  • the stator core 210 of the stator 201 of the comparative example has an annular yoke portion 211 and a plurality of teeth 212 extending radially inward from the yoke portion 211, and a slot 213 is provided between adjacent teeth 212. Is formed.
  • An insulating portion 202 is formed on the inner surface of the slot 213.
  • an aluminum wire coil 231 and a copper wire coil 232 are arranged in the slot 213.
  • the aluminum wire coil 231 is arranged on one side in the circumferential direction of the slot 213 (right side in FIG. 8), and the copper wire coil 232 is the other in the circumferential direction of the slot 213.
  • the left side left side in FIG. 8).
  • the stator 201 of the comparative example most of the heat of the aluminum wire coil 231 is radiated through the teeth 212. As described above, since the heat radiation efficiency of the teeth 212 is lower than that of the yoke portion 211, the effect of suppressing the temperature rise of the aluminum wire coil 231 is not high.
  • the aluminum wire coil 31 that has a high electrical resistivity and easily rises in temperature is provided in the first region 101 rather than the second region 102. It is densely arranged. Therefore, the heat generated in the aluminum wire coil 31 is efficiently radiated to the outside through the yoke portion 11, and a high heat radiation effect can be obtained.
  • the electrical resistivity of the aluminum wire coil 31 is ⁇ Al [ ⁇ ⁇ m], and the diameter is D Al [mm].
  • the electrical resistivity of the copper wire coil 32 is ⁇ Cu [ ⁇ ⁇ m], and the diameter is D Cu [mm].
  • the electrical resistance of the coil is obtained by multiplying the electrical resistivity ⁇ by the coil length L and dividing by the coil cross-sectional area S (ie, ⁇ ⁇ L / S). That is, when the lengths L of the coils are equal, the electrical resistance of the coil is higher as the electrical resistivity is higher, and lower as the cross-sectional area is larger.
  • the cross sectional area per aluminum wire coil 31 is S Al and the cross sectional area per copper wire coil 32 is S Cu .
  • the loss [W] generated in the aluminum wire coil 31 that is, the square of the current
  • the product of electrical resistance is represented by ⁇ Al ⁇ (L / S Al )
  • the loss [W] generated in the copper wire coil 32 is represented by ⁇ Cu ⁇ (L / S Cu ).
  • the diameter D Al [mm] of the aluminum wire coil 31 when the loss generated in the aluminum wire coil 31 is equal to the loss generated in the copper wire coil 32 is the copper wire coil It is ⁇ ( ⁇ Al / ⁇ Cu ) times the diameter D Cu [mm] of 32.
  • the diameter D Al of the aluminum wire coil 31 may be set to ⁇ ( ⁇ Al / ⁇ Cu ) ⁇ D Cu or less.
  • the electrical resistivity ⁇ Al [W / m] and the diameter D Al [mm] of the aluminum wire coil 31 and the electrical resistivity ⁇ Cu [W / m] and the diameter D Cu [mm] of the copper wire coil 32 are It is most desirable to satisfy the following formula (1).
  • the electrical resistance of the aluminum wire coil 31 is less than or equal to the electrical resistance of the copper wire coil 32, and thus occurs in the aluminum wire coil 31.
  • the loss is equal to or greater than the loss generated in the copper wire coil 32. That is, a high loss (that is, heat generation) occurs in the aluminum wire coil 31 collected in the first region 101, and the heat is radiated from the yoke portion 11 of the stator core 10, so that a particularly high heat radiation effect is obtained.
  • the electrical resistivity ⁇ Al of the aluminum wire coil 31 is 2.82 ⁇ 10 ⁇ 8 [ ⁇ ⁇ m]
  • the electrical resistivity ⁇ Cu of the copper wire coil 32 is 1.68 ⁇ 10 ⁇ 8 [ ⁇ ⁇ m].
  • the upper limit of the diameter D Al [mm] of the aluminum wire coil 31 is 1.296 times the diameter D Cu [mm] of the copper wire coil 32. If the diameter D Al of the aluminum wire coil 31 is smaller than 1.296 ⁇ D Cu , a particularly high heat dissipation effect can be obtained.
  • the lower limit of the diameter D Al of the aluminum wire coil 31 is made equal to the diameter D Cu of the copper wire coil 32. Since the mechanical strength per unit cross-sectional area of the aluminum wire coil 31 is lower than that of the copper wire coil 32, in order to ensure sufficient strength of the aluminum wire coil 31 in the winding process, the diameter D Al of the aluminum wire coil 31 is sufficient. This is because it is desirable that the diameter is equal to or larger than the diameter D Cu of the copper wire coil 32 (ie, D Cu ⁇ D Al ).
  • the first region 101 It is possible to generate a high loss in the aluminum wire coil 31 collected in the above and efficiently radiate the heat from the yoke portion 11. Further, sufficient strength of the aluminum wire coil 31 in the winding process can be ensured.
  • the current flowing through the coils 31 and 32 is assumed to be 1 [A], but the current is not limited to 1 [A].
  • the relationship between the electrical resistivity ⁇ Al and the diameter D Al of the aluminum wire coil 31 and the electrical resistivity ⁇ Cu and the diameter D Cu of the copper wire coil 32 is not limited to the above formula (1).
  • the following equation (2) may be satisfied.
  • the upper limit of the diameter D Al of the aluminum wire coil 31 in the formula (2) is the same as that in the formula (1). The reason is as described above.
  • the lower limit of the diameter D Al of the aluminum wire coil 31 in the formula (2) is 0.5 ⁇ D Cu , that is, 1 ⁇ 2 of the diameter D Cu of the coil 32.
  • the aluminum wire coil 31 When the diameter D Al of the aluminum wire coil 31 is smaller than 1 ⁇ 2 of the diameter D Cu of the copper wire coil 32, the aluminum wire coil 31 may be inserted into the winding nozzle in two rows. 31 may be damaged. Further, since the winding machine applies the same tension when the aluminum wire coil 31 is wound and when the copper wire coil 32 is wound, there is a possibility of disconnection if the aluminum wire coil 31 is too thin.
  • the diameter D Al [mm] of the aluminum wire coil 31 is set to 0.5 ⁇ D Cu [mm] or more.
  • the aluminum wire coil 31 and the copper wire coil 32 are connected in series, and the loss caused by the aluminum wire coil 31 having a high electrical resistivity is higher than the loss caused by the copper wire coil 32.
  • High loss aluminum wire coils 31 are densely arranged in the first region 101 of the slot 13, and the heat of the aluminum wire coils 31 is radiated through the yoke portion 11.
  • the loss density [W / mm 2 ] is a value obtained by dividing the loss generated in the coil by the cross-sectional area per one coil.
  • the loss density of the aluminum wire coil 31 is relative to the loss density of the copper wire coil 32 to improve the high heat dissipation effect.
  • the loss [W] generated in the aluminum wire coil 31 is R Al
  • the loss [W] generated in the copper wire coil 32 is R Cu .
  • the loss density [W / m 2 ] of the aluminum wire coil 31 is R Al / S Al and is expressed as R Al / (k ⁇ S Cu ) when the cross-sectional area ratio k is used.
  • the loss density [W / m 2 ] of the copper wire coil 32 is R Cu / S Cu .
  • the ratio of the loss density of the aluminum wire coil 31 to the loss density of the copper wire coil 32 is defined as the loss density ratio. Since the loss density ratio is ⁇ R Al / (k ⁇ S Cu ) ⁇ / ⁇ R Cu / S Cu ⁇ , it is expressed as R Al / (k ⁇ R Cu ).
  • FIG. 9 shows a cross-sectional area S [mm 2 ], a cross-sectional area ratio k, an electric resistance [ ⁇ / km], a current [A], a loss [W], and a loss density [W] for the aluminum wire coil 31 and the copper wire coil 32. / Mm 2 ] and loss density ratio.
  • the loss density ratio is 1 or more, that is, when the loss density of the aluminum wire coil 31 is equal to or higher than the loss density of the copper wire coil 32, the aluminum wire coil 31 disposed in the first region 101 has a high loss. It is possible to generate heat and efficiently radiate heat from the yoke portion 11. Therefore, it is desirable that 1 ⁇ R Al / (k ⁇ R Cu ).
  • the aluminum wire coil 31 since the mechanical strength per unit cross-sectional area of the aluminum wire coil 31 is lower than that of the copper wire coil 32, the aluminum wire coil 31 has a mechanical strength that is sufficient in a winding process using a common winding machine.
  • the diameter D Al is desirably equal to or larger than the diameter D Cu of the copper wire coil 32. Therefore, it is desirable that 1 ⁇ k.
  • the upper limit of the loss density ratio R Al / (k ⁇ R Cu ) is R Al / R Cu in which 1 is substituted for k.
  • the diameter D Cu of the copper wire coil 32 is set to 0.9 [mm]
  • the electric resistance R Cu is set to 27.1 [ ⁇ ]
  • the diameter D Al of the aluminum wire coil 31 is set to 0.9 [mm]
  • FIG. 10 is a graph showing the relationship between the cross-sectional area ratio k and the loss density ratio when the diameter D Cu of the copper wire coil 32 is 0.9 [mm] and the diameter D Al of the aluminum wire coil 31 is changed. It is. As shown in FIG. 10, the desirable range of the loss density ratio when the diameter D Cu of the copper wire coil 32 is 0.9 [mm] is 1 ⁇ R Al / (k ⁇ R Cu ) ⁇ 1.679. is there.
  • the aluminum wire coil 31 and the copper wire coil 32 are wound by a common winding machine, it is necessary to match the nozzle diameter of the winding nozzle of the winding machine to the thicker coil.
  • the diameter D Al of the aluminum wire coil 31 is 1 ⁇ 2 or less of the diameter D Cu of the copper wire coil 32, the aluminum wire coil 31 may be inserted into the winding nozzle in two rows and damaged. Further, since the winding machine applies the same tension when the aluminum wire coil 31 is wound and when the copper wire coil 32 is wound, there is a possibility of disconnection if the aluminum wire coil 31 is too thin.
  • the lower limit of the diameter D Al [mm] of the aluminum wire coil 31 is 0.5 ⁇ D Cu [mm].
  • this is expressed by a cross-sectional area ratio k, 0.25 ⁇ k.
  • the aluminum wire coil 31 collected in the first region 101 of the slot 13 generates a high loss, and the heat can be efficiently radiated from the yoke portion 11, and the aluminum wire coil in the winding process Sufficient damage and disconnection of 31 can be prevented.
  • the upper limit of the loss density ratio R Al / (k ⁇ R Cu ) is R Al /(0.25 ⁇ R Cu ) in which 0.25 is substituted for k.
  • the diameter D Cu of the copper wire coil 32 is set to 0.9 [mm]
  • the electric resistance R Cu is set to 27.1 [ ⁇ ]
  • the diameter D Al of the aluminum wire coil 31 is set to 0.45 [mm]
  • a desirable range of the loss density ratio R Al / (k ⁇ R Cu ) is expressed as 1 ⁇ R Al / (k ⁇ R Cu ) ⁇ 25.815.
  • the electric motor 100 of Embodiment 1 is an induction motor as described above. That is, a rotating magnetic field is generated by the current of the coil 3 of the stator 1, thereby generating an induced current in the cage secondary conductor 6 of the rotor 5, and torque is generated by the action of the induced current and the rotating magnetic field.
  • Induction motors are often driven without using an inverter. That is, the control unit of the electric motor 100 often supplies the coil 3 with a constant voltage to drive the electric motor 100. Therefore, the current flowing through the coil 3 may greatly increase due to the load of the electric motor 100 or the fluctuation of the supply voltage, and the temperature of the coil 3 may increase.
  • the electric motor 100 of the first embodiment has a high heat dissipation effect as described above and can suppress the temperature rise of the coil 3, it is particularly effective for an induction motor with a large current fluctuation.
  • the electric motor 100 of this Embodiment 1 is an induction motor, even if it is a synchronous motor, a high heat dissipation effect is acquired.
  • A1 the area S2 of the second region 102, and the total cross-sectional area A2 of the aluminum wire coil 31 in the second region 102 satisfy (A1 / S1)> (A2 / S2).
  • the aluminum wire coil 31 having a higher electrical resistivity is densely arranged in the first region 101 on the radially outer side in the slot 13, so that the heat of the aluminum wire coil 31 is transferred to the yoke portion of the stator core 10. 11 can efficiently dissipate heat and suppress an increase in temperature.
  • the heat dissipation effect of the electric motor 100 allows a larger amount of current to flow through the coil 3, the output of the electric motor 100 can be increased.
  • the total cross-sectional area A1 of the aluminum wire coil 31 in the first region 101 the total cross-sectional area C1 of the copper wire coil 32 (that is, the second coil) in the first region 101, and the first region 101.
  • the area S1 satisfies (A1 / S1)> (C1 / S1).
  • the heat of the aluminum wire coil 31 is efficiently transferred from the yoke portion 11 of the stator core 10 by making the occupation density of the aluminum wire coil 31 higher than the occupation density of the copper wire coil 32. It can dissipate heat well and further enhance the heat dissipation effect.
  • the total cross-sectional area A1 of the aluminum wire coil 31 in the first region 101, the total cross-sectional area C1 of the copper wire coil 32 in the first region 101, and the aluminum wire coil 31 in the second region 102 The total cross-sectional area A2 and the total cross-sectional area C2 of the copper wire coil 32 in the first region 101 satisfy (A1 / C1)> (A2 / C2).
  • the electrical resistivity ⁇ Al [ ⁇ ⁇ m] and the diameter D Al [mm] of the aluminum wire coil 31 and the electrical resistivity ⁇ Cu [ ⁇ ⁇ m] and the diameter D Cu [mm] of the copper wire coil 32 are obtained. Satisfying the above formula (1). Thereby, high loss (that is, heat generation) occurs in the aluminum wire coil 31 collected in the first region 101, and the heat is radiated through the yoke portion 11 of the stator core 10, so that the heat radiation effect is further enhanced. Can do. Further, by setting the diameter D Al of the aluminum wire coil 31 to be equal to or larger than the diameter D Cu of the copper wire coil 32, sufficient strength of the aluminum wire coil 31 in the winding process can be ensured.
  • the electrical resistivity ⁇ Al [ ⁇ ⁇ m] and the diameter D Al [mm] of the aluminum wire coil 31 and the electrical resistivity ⁇ Cu [ ⁇ ⁇ m] and the diameter D Cu [mm] of the copper wire coil 32 are obtained. Satisfying the above formula (2). As a result, the heat radiation effect is enhanced, and the diameter D Al of the aluminum wire coil 31 is set to 1 ⁇ 2 or more of the diameter D Cu of the copper wire coil 32, thereby preventing damage and disconnection of the aluminum wire coil 31 in the winding process. Can be prevented.
  • the electrical resistance R Al of the aluminum wire coil 31 the electrical resistance R Cu of the copper wire coil 32, and the cross-sectional area ratio k, which is the ratio of the cross-sectional area of the aluminum wire coil 31 to the cross-sectional area of the copper wire coil 32,
  • the above formula (3) is satisfied.
  • the loss density of the aluminum wire coil 31 becomes equal to or higher than the loss density of the copper wire coil 32, a high loss is generated in the aluminum wire coil 31, and the heat can be efficiently radiated from the yoke portion 11, and the heat dissipation effect can be obtained. It can be further increased.
  • the cross-sectional area ratio k is 1 or more, sufficient strength of the aluminum wire coil 31 can be ensured in the winding process using a common winding machine. Moreover, if the cross-sectional area ratio k is 0.25 or more, the aluminum wire coil 31 can be prevented from being damaged and disconnected in a winding process using a common winding machine.
  • the electric motor 100 according to the first embodiment is particularly effective when applied to an induction motor that is often driven without using an inverter.
  • the aluminum wire coil 31 as the first coil and the copper wire coil 32 as the second coil are used.
  • the first embodiment is limited to the aluminum wire coil 31 and the copper wire coil 32. It is not a thing.
  • two types may be selected from gold, silver, copper, aluminum, and the like, and a coil having a higher electrical resistivity may be used as the first coil, and a coil having a lower electrical resistivity may be used as the second coil.
  • FIG. 11 is an enlarged view showing a portion including the slot 13 of the stator according to the modification of the first embodiment.
  • the aluminum wire coil 31 and the copper wire coil 32 are arranged in the first region 101 of the slot 13, and the aluminum wire coil 31 has a higher occupation density than the copper wire coil 32. Had.
  • FIG. 12 is a cross-sectional view showing the scroll compressor 300.
  • the scroll compressor 300 includes an airtight container 307, a compression mechanism 305 disposed in the airtight container 307, an electric motor 100 that drives the compression mechanism 305, a shaft 55 that connects the compression mechanism 305 and the electric motor 100, and a shaft 55 And a sub-frame 308 that supports a lower end portion (that is, an end portion opposite to the compression mechanism 305 side).
  • the compression mechanism 305 includes a fixed scroll 301 having a spiral part, a swinging scroll 302 having a spiral part that forms a compression chamber between the spiral part of the fixed scroll 301, and a compliance frame 303 that holds the upper end of the shaft 55. And a guide frame 304 that is fixed to the hermetic container 307 and holds the compliance frame 303.
  • a suction pipe 310 penetrating the sealed container 307 is press-fitted. Further, the sealed container 307 is provided with a discharge pipe 311 for discharging high-pressure refrigerant gas discharged from the fixed scroll 301 to the outside.
  • the discharge pipe 311 communicates with an opening (not shown) provided between the compression mechanism 305 of the sealed container 307 and the electric motor 100.
  • the electric motor 100 is fixed to the sealed container 307 by fitting the stator 1 into the sealed container 307.
  • the configuration of the electric motor 100 is as described above.
  • a glass terminal 309 for supplying electric power to the electric motor 100 is fixed to the sealed container 307 by welding.
  • the scroll compressor 300 has been described as an example of the compressor, but the electric motor described in the first embodiment and the modification may be applied to a compressor other than the scroll compressor 300.
  • FIG. 13 is a diagram showing an air conditioner 400 (refrigeration cycle apparatus).
  • the air conditioner 400 includes a compressor 401, a condenser 402, a throttling device (decompression device) 403, and an evaporator 404.
  • the compressor 401, the condenser 402, the expansion device 403, and the evaporator 404 are connected by a refrigerant pipe 407 to constitute a refrigeration cycle. That is, the refrigerant circulates in the order of the compressor 401, the condenser 402, the expansion device 403, and the evaporator 404.
  • the compressor 401, the condenser 402, and the expansion device 403 are provided in the outdoor unit 410.
  • the compressor 401 includes the scroll compressor 300 shown in FIG.
  • the outdoor unit 410 is provided with an outdoor fan 405 that supplies outdoor air to the condenser 402.
  • the evaporator 404 is provided in the indoor unit 420.
  • the indoor unit 420 is provided with an indoor blower 406 that supplies indoor air to the evaporator 404.
  • the operation of the air conditioner 400 is as follows.
  • the compressor 401 compresses and sends out the sucked refrigerant.
  • the condenser 402 exchanges heat between the refrigerant flowing in from the compressor 401 and the outdoor air, condenses and liquefies the refrigerant, and sends it out to the refrigerant pipe 407.
  • the outdoor blower 405 supplies outdoor air to the condenser 402.
  • the expansion device 403 adjusts the pressure and the like of the refrigerant flowing through the refrigerant pipe 407 by changing the opening degree.
  • the evaporator 404 exchanges heat between the refrigerant in the low pressure state by the expansion device 403 and the indoor air, causes the refrigerant to evaporate (vaporize) the heat of the air, and sends it to the refrigerant pipe 407.
  • the indoor fan 406 supplies indoor air to the evaporator 404. Thereby, the cold air from which heat has been removed by the evaporator 404 is supplied to the room.
  • the electric motor 100 according to the first embodiment and the modified example has a high heat dissipation effect, so that the temperature rise in the compressor 401 can be suppressed, and the air conditioner 400 can be stably operated.
  • the output of the air conditioning apparatus 400 can also be increased by the increase in the output of the compressor 401 accompanying the increase in the output of the electric motor 100.
  • stator 10 stator core, 10a outer circumference, 10b inner circumference, 11 yoke section, 12 teeth, 12a teeth tip, 13 slots, 13a bottom, 13b first side, 13c second side, 14 slots Opening, 2 insulation, 3 coils, 31 aluminum wire coil (first coil), 31a conductor, 32 copper wire coil (second coil), 32a conductor, 5 rotor, 50 rotor core, 51 slots, 55 shaft, 6 cage-type secondary conductor, 61 bar, 62, 63 end ring (annular body), 100 electric motor, 101 1st area, 102 2nd area, 300 scroll compressor (compressor), 305 compression mechanism 307, sealed container, 400 Air conditioner, 401 compressor, 402 agglomerator, 403 throttling device (decompression device), 404 evaporator, 405 refrigerant piping, 406 control unit, L1 first straight line, L2 second straight line, P1 first point, P2 2nd point, P3 3rd point, P4 4th point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

固定子は、固定子コアと、固定子コアのスロット内に配置された第1および第2のコイルとを有する。第1のコイルは、第1の金属で形成された導体を有し、第2のコイルは、第1の金属よりも電気抵抗率の低い第2の金属で形成された導体を有する。スロットは、固定子コアの内周に開口するスロット開口部と、スロット開口部に対して径方向の外側に位置する湾曲形状のスロット底部と、スロット開口部とスロット底部との間に位置し、周方向に相対する第1の側部および第2の側部とを有する。当該軸線に直交する面内において、スロット底部と第1の側部との境界と、スロット底部と第2の側部との境界とを結ぶ直線を、第1の直線とする。第1の直線とスロット底部とで囲まれた領域を、第1の領域とする。スロットにおいて、スロット開口部よりも径方向の外側で且つ第1の直線よりも径方向の内側の領域を、第2の領域とする。第1の領域の面積S1と、第1の領域内の第1のコイルの総断面積A1と、第2の領域の面積S2と、第2の領域内の第1のコイルの総断面積A2とは、(A1/S1)>(A2/S2)を満足する。

Description

固定子、電動機、圧縮機および空気調和装置
 本発明は、固定子、電動機、圧縮機および空気調和装置に関する。
 近年、電動機の分野では、出力の増加と小型化が求められている。電動機の出力が増加すると、コイルに流す電流が増加する。また、電動機を小型化する場合にも、同一出力を得るために必要な電流が増加する。そのため、コイルで発生した熱の放熱が課題となる。
 圧縮機に用いる電動機では、固定子のコイルは圧縮機内の冷媒および潤滑油に殆ど接触していない。そのため、コイルで発生した熱は、固定子コアから放熱する必要がある。また、コイルの発熱はコイルの電気抵抗によるため、コイルの発熱を抑制するためにはコイルの電気抵抗が低いことが望ましい。
 近年、電動機の低コスト化および軽量化のため、従来の銅線コイルに加えて、アルミニウム線コイルを併用することが提案されている(例えば、特許文献1参照)。
国際公開WO2014/188466(図3参照)
 しかしながら、アルミニウム線コイルは銅線コイルよりも電気抵抗率が高く、従って通電時の発熱量も大きい。そのため、種類の異なるコイルを用い、且つ放熱効果を高めることが求められている。
 本発明は、上記の課題を解決するためになされたものであり、種類の異なるコイルを用い、且つ放熱効果を高めることを目的とする。
 本発明の固定子は、軸線を中心とする周方向に延在する内周と、当該軸線を中心とする径方向において内周よりも外側に形成されたスロットとを有する固定子コアと、スロットの内部に配置され、互いに直列に接続された第1のコイルおよび第2のコイルとを有する。第1のコイルは、第1の金属で形成された導体を有する。第2のコイルは、第1の金属よりも電気抵抗率の低い第2の金属で形成された導体を有する。スロットは、固定子コアの内周に開口するスロット開口部と、スロット開口部に対して径方向の外側に位置する湾曲形状のスロット底部と、スロット開口部とスロット底部との間に位置し、周方向に相対する第1の側部および第2の側部とを有する。当該軸線に直交する面内において、スロット底部と第1の側部との境界と、スロット底部と第2の側部との境界とを結ぶ直線を、第1の直線とする。第1の直線とスロット底部とで囲まれた領域を、第1の領域とする。スロットにおいて、スロット開口部よりも径方向の外側で且つ第1の直線よりも径方向の内側の領域を、第2の領域とする。第1の領域の面積S1と、第1の領域内の第1のコイルの総断面積A1と、第2の領域の面積S2と、第2の領域内の第1のコイルの総断面積A2とは、(A1/S1)>(A2/S2)を満足する。
 本発明によれば、第1のコイルおよび第2のコイルのうち、より電気抵抗率の高い第1のコイルを、第2の領域よりも固定子コアの外周に近い第1の領域に密に配置しているため、第1のコイルで発生した熱を固定子コアに効率よく伝えることができる。これにより、第1のコイルで発生した熱を効率よく放熱し、第1のコイルおよび第2のコイルの温度上昇を抑制することができる。
実施の形態1の電動機を示す断面図である。 実施の形態1の回転子を示す断面図(A)および斜視図(B)である。 実施の形態1の固定子の一部を拡大して示す断面図である。 実施の形態1のアルミニウム線コイルおよび銅線コイルの接続状態を示す模式図である。 実施の形態1のアルミニウム線コイルおよび銅線コイルの断面構造を示す模式図である。 実施の形態1の固定子の一部を拡大して示す断面図である。 実施の形態1の固定子のスロットからの放熱作用を示す模式図である。 比較例の固定子の一部を拡大して示す断面図である。 実施の形態1のアルミニウム線コイルおよび銅線コイルの特性を示す表である。 アルミニウム線コイルと銅線コイルとの断面積比および損失密度比を示すグラフである。 実施の形態1の変形例の固定子の一部を拡大して示す断面図である。 実施の形態1の電動機が適用される圧縮機を示す図である。 図12の圧縮機を備えた空気調和装置を示す図である。
実施の形態1.
 図1は、実施の形態1の電動機100を示す断面図である。図1に示す電動機100は、誘導電動機であり、例えば空気調和装置の圧縮機に用いられる。電動機100は、固定子1と、固定子1の内側に回転可能に設けられた回転子5とを有する。固定子1と回転子5との間には、エアギャップが設けられている。
 以下では、回転子5の回転中心である軸線Cの方向を、「軸方向」と称する。また、軸線Cを中心とする周方向(図1等に矢印R1で示す)を、「周方向」と称し、軸線Cを中心とする径方向を、「径方向」と称する。
<回転子5の構成>
 図2(A)および(B)は、回転子5を示す断面図および斜視図である。図2(A)に示すように、回転子5は、複数のスロット51を備えた回転子コア50と、回転軸であるシャフト55と、回転子コア50の各スロット51に挿入されたバー60とを有する。
 回転子コア50は、例えば厚さ0.1~0.7mmの電磁鋼板を軸方向に積層し、カシメ等により一体化したものである。回転子コア50の径方向の中心には、円形のシャフト孔54が形成されている。シャフト孔54には、シャフト55が圧入により固定されている。シャフト55の中心軸線は、回転子5の回転中心をなす軸線Cである。
 回転子コア50は、軸線Cを中心とする環状に形成されている。回転子コア50の外周53に沿って、複数のスロット51(回転子スロットとも称する)が周方向に等間隔に形成されている。スロット51の数は、ここでは34個であるが、これに限定されるものではない。スロット51は、径方向に延在する溝であり、回転子コア50を軸方向に貫通している。周方向に隣接するスロット51の間には、ティース52(回転子ティースとも称する)が形成されている。
 図2(B)に示すように、回転子5は、回転子コア50の軸方向両端に、一対のエンドリング61,62を有する。エンドリング61,62は、バー60の軸方向両端に連結され、バー60と一体に形成されている。バー60およびエンドリング61,62は、かご型二次導体6を構成している。
 かご型二次導体6は、非磁性で導電性を有する材料、例えばアルミニウムで構成される。かご型二次導体6のエンドリング61,62およびバー60は、回転子コア50の両端およびスロット51内にアルミニウムを鋳込むことで形成される。なお、アルミニウムの代わりに、銅を用いてもよい。
 バー60は、長手方向の一端が他端に対して周方向に変位するように傾斜して延在している。なお、図2(B)では一本のバー60のみを破線で示している。回転子5のバー60に固定子1の磁束が鎖交すると、バー60に二次電流が発生する。この二次電流と固定子1の磁束とにより、回転子5を回転させるトルクが発生する。
<固定子1の構成>
 図3は、固定子1の一部を拡大して示す断面図である。固定子1は、固定子コア10と、固定子コア10に巻かれたコイル3とを有する。コイル3は、第1のコイルとしてのアルミニウム線コイル31と、第2のコイルとしての銅線コイル32とを有する。アルミニウム線コイル31および銅線コイル32については、後述する。
 固定子コア10は、例えば厚さ0.1~0.7mmの電磁鋼板を軸方向に積層し、カシメ等により一体化したものである。固定子コア10は、軸線Cを中心とする周方向に延在する内周10bと、この内周10bに対して径方向外側に位置する外周10aとを有する。固定子コア10には、内周10bに開口する複数のスロット13が、周方向に等間隔に形成されている。スロット13には、コイル3が収容される。スロット13の数は、ここでは30個であるが、これに限定されるものではない。
 また、固定子コア10は、環状のヨーク部(コアバックとも称する)11と、ヨーク部11から径方向内側に突出する複数のティース12とを有する。ティース12は、周方向に等間隔に配置されている。上記のスロット13は、周方向に隣り合うティース12の間に形成される。ティース12の数は、スロット13の数と同じ(ここでは30個)である。ティース12には、コイル3が巻き付けられる。
 ティース12は、径方向内側の先端に、ティース12の他の部分よりも幅(すなわち周方向の寸法)の広いティース先端部12aを有する。ティース先端部12aの先端は、円弧状であり、固定子コア10の上記の内周10bをなしている。
 図4は、コイル3のアルミニウム線コイル31および銅線コイル32の接続状態を示す図である。コイル3のアルミニウム線コイル31と銅線コイル32とは、直列に接続されている。また、コイル3は、3相(U相、V相およびW相)のコイル部分を有し、各コイル部分がY結線により結線されている。
 図5は、アルミニウム線コイル31および銅線コイル32の断面構造を示す模式図である。アルミニウム線コイル31は、第1の金属としてのアルミニウムで形成された導体31aを有し、導体31aの周囲は絶縁性樹脂の被膜31bによって覆われている。導体31aを構成する第1の金属は、ここではアルミニウムであるが、アルミニウムに限定されるものではない。
 アルミニウム線コイル31の導体31aの電気抵抗をRAlとし、電気抵抗率をρAlとする。また、アルミニウム線コイル31の直径(線径とも称する)をDAlとする。なお、被膜31bの厚さは導体31aの直径と比較して薄いため、直径DAlは導体31aの直径と同等と考えることができる。
 銅線コイル32は、第1の金属よりも電気抵抗率が低い第2の金属としての銅で形成された導体32aを有し、導体32aの周囲は絶縁性の被膜32bによって覆われている。導体32aを構成する第2の金属は、ここでは銅であるが、銅に限定されるものではない。
 銅線コイル32の導体32aの電気抵抗をRCuとし、電気抵抗率をρCuとする。また、銅線コイル32の直径をDCuとする。被膜32bの厚さは導体32aの直径と比較して薄いため、直径DCuは導体32aの直径と同等と考えることができる。
 図6は、固定子1のスロット13を含む部分を拡大して示す図である。スロット13は、固定子コア10の内周10bにつながるスロット開口部14と、スロット開口部14に対して径方向外側に位置する湾曲形状のスロット底部13aを有する。また、スロット13は、径方向においてスロット開口部14とスロット底部13aとの間に位置する第1の側部13bおよび第2の側部13cを有する。第1の側部13bと第2の側部13cとは、周方向に相対する。
 スロット開口部14は、周方向に隣り合うティース先端部12aの間に形成される。スロット開口部14は、ティース12にコイル3を巻き付ける際、すなわちスロット13内にコイル3を配置する際に、コイル3を通過させる入口となる。
 スロット底部13aは、周方向中心が周方向両端よりも径方向外側に突出する湾曲形状(より具体的には、円弧形状)を有する。スロット底部13aの周方向の長さは、スロット開口部14の周方向の長さよりも長い。
 側部13b,13cは、スロット開口部14からスロット底部13aに向けて延在している。側部13b,13cは、これらの周方向の間隔が径方向外側に向かって広がるように延在している。
 第1の側部13bは、スロット開口部14につながる部分に、湾曲部131を有する。湾曲部131は、スロット開口部14に近づくほどスロット13の周方向内側に変位するように湾曲している。第2の側部13cは、スロット開口部14につながる部分に、湾曲部132を有する。湾曲部132は、スロット開口部14に近づくほどスロット13の周方向内側に変位するように湾曲している。
 スロット13の内面には、絶縁部2が設けられている。絶縁部2は、例えば、PET(ポリエチレンテレフタレート)等の樹脂で構成されている。絶縁部2は、スロット13内のコイル3と固定子コア10とを電気的に絶縁する。絶縁部2は、スロット底部13aを覆う第1部分21と、第1の側部13bを覆う第2部分22と、第2の側部13cを覆う第3部分23とを有する。
 なお、スロット13の内部には、コイル3(すなわちアルミニウム線コイル31および銅線コイル32)を囲むように、熱伝導率の高い樹脂を充填してもよい。樹脂としては、例えばPBT(ポリブチレンテレフタレート)等を用いることができる。
 ここでは、スロット13の内部は、第1の領域101と、第2の領域102とに分けられる。この点について、以下に説明する。
 軸線Cに直交する面において、スロット13のスロット底部13aと第1の側部13bとの境界を、第1の点P1とする。スロット13のスロット底部13aと第2の側部13cとの境界を、第2の点P2とする。これらの点P1,P2は、スロット13のスロット底部13aの周方向の両端に相当する。第1の点P1と第2の点P2とを結んだ直線を、第1の直線L1とする。第1の直線L1とスロット底部13aとで囲まれた領域を、第1の領域101とする。
 また、軸線Cに直交する面において、スロット開口部14の径方向外側の端部で、第1の側部13b側に位置する点を、第3の点P3とする。スロット開口部14の径方向外側の端部で、第2の側部13c側に位置する点を、第4の点P4とする。第3の点P3と第4の点P4とを結んだ直線を、第2の直線L2とする。この第2の直線L2と第1の直線L1とで囲まれた領域が、第2の領域102となる。言い換えると、スロット13において、スロット開口部14よりも径方向外側で、且つ、第1の直線L1よりも径方向内側の領域が、第2の領域102となる。
 なお、スロット13の内側には絶縁部2が設けられているため、絶縁部2の内面上で点P1~P4を定義してもよい。すなわち、第1の点P1を、絶縁部2の第1部分21の内面と第2部分22の内面との境界と定義し、第2の点P3を、絶縁部2の第1部分21の内面と第3部分23の内面との境界と定義してもよい。また、点P3,P4を、絶縁部2の第2部分22の内面および第3部分23の内面でそれぞれ最もスロット開口部14側の点と定義してもよい。
 第1の領域101の面積をS1とし、第2の領域102の面積をS2とする。第1の領域101に配置されたアルミニウム線コイル31の総断面積をA1とし、第2の領域102に配置されたアルミニウム線コイル31の総断面積をA2とする。第1の領域101に配置された銅線コイル32の総断面積をC1とし、第2の領域102に配置された銅線コイル32の総断面積をC2とする。
 なお、コイルの総断面積とは、ある領域に配置されたコイルの断面積の合計である。言い換えると、コイルの総断面積は、コイルの1本当たりの断面積と、当該領域内に配置されたコイルの本数との積である。
 第1の領域101の面積S1と、第1の領域101内のアルミニウム線コイル31の総断面積A1と、第2の領域102の面積S2と、第2の領域102内のアルミニウム線コイル31の総断面積A2とは、(A1/S1)>(A2/S2)を満足する。
 すなわち、アルミニウム線コイル31は、第1の領域101における占有密度が第2の領域102における占有密度よりも高くなるように配置されている。言い換えると、アルミニウム線コイル31は、第2の領域102よりも第1の領域101に密に配置されている。
 また、第1の領域101の面積S1と、第1の領域101内のアルミニウム線コイル31の総断面積A1と、第1の領域101内の銅線コイル32の総断面積C1とは、(A1/S1)>(C1/S1)を満足する。
 すなわち、第1の領域101では、アルミニウム線コイル31の占有密度が銅線コイル32の占有密度よりも高い。言い換えると、第1の領域101には、アルミニウム線コイル31が銅線コイル32よりも密に配置されている。
 また、第1の領域101内のアルミニウム線コイル31の総断面積A1および銅線コイル32の総断面積C1と、第2の領域102内のアルミニウム線コイル31の総断面積A2および銅線コイル32の総断面積C2とは、(A1/C1)>(A2/C2)を満足する。すなわち、銅線コイル32の総断面積に対するアルミニウム線コイル31の総断面積の割合は、第2の領域102よりも第1の領域101で高い。
<作用>
 次に、実施の形態1の作用について説明する。電動機100の出力が増加すると、コイル3に流れる電流が増加し、これによりコイル3の発熱量が増加する。スロット13に配置されたコイル3は、冷媒、潤滑油および空気との接触面積が小さいため、コイル3の熱は固定子コア10を介して放熱される。コイル3の温度上昇を抑えるためには、コイル3の熱を固定子コア10から効果的に放熱する必要がある。
 図7は、固定子1におけるスロット13からの放熱作用を示す模式図である。図7に示すように、固定子1のスロット13内のコイル3で発生した熱は、矢印H1で示すようにスロット13から径方向外側のヨーク部11に向かう放熱経路と、矢印H2で示すようにスロット13から周方向両側のティース12に向かう放熱経路とを通って放熱される。
 これらの放熱経路のうち、ティース12は面積が狭く、1つのティース12にその両側のスロット13から熱が伝わるため、熱が蓄積されやすい。これに対し、ヨーク部11は面積が広く、外周10a(図1)が圧縮機の密閉容器(後述)等に接触しているため、固定子1の外部に熱が放熱されやすい。すなわち、スロット13において、ヨーク部11に隣接する第1の領域101の方が、ティース12に隣接する第2の領域102よりも、放熱効率がよい。
 アルミニウム線コイル31は、銅線コイル32よりも電気抵抗率が高く、従って発熱量が大きい。また、アルミニウム線コイル31は、銅線コイル32よりも熱伝導率が低く、従って温度が上昇しやすい。
 そのため、この実施の形態1では、アルミニウム線コイル31は、第2の領域102よりも第1の領域101に密に配置されている。すなわち、(A1/S1)>(A2/S2)が成り立つ。温度が上昇しやすいアルミニウム線コイル31を、第2の領域102よりも第1の領域101に密に配置することにより、アルミニウム線コイル31の熱がヨーク部11から効率よく放熱される。
 また、アルミニウム線コイル31同士の接触面積、およびアルミニウム線コイル31と銅線コイル32との接触面積が増加し、さらに、アルミニウム線コイル31と固定子コア10との距離が短縮されるため、アルミニウム線コイル31の熱が固定子コア10に伝わり易くなる。これにより、アルミニウム線コイル31の温度上昇を抑制することができる。
 また、第1の領域101では、アルミニウム線コイル31の占有密度が銅線コイル32の占有密度よりも高い。すなわち、(A1/S1)>(C1/S1)が成り立つ。このように、第1の領域101においてアルミニウム線コイル31を銅線コイル32よりも密に配置することにより、アルミニウム線コイル31の熱がヨーク部11から放熱されやすくなり、放熱効果をさらに高めることができる。
 また、銅線コイル32に総断面積に対するアルミニウム線コイル31の総断面積の割合は、第2の領域102よりも第1の領域101で高い。すなわち、(A1/C1)>(A2/C2)が成り立つ。このように、銅線コイル32に対するアルミニウム線コイル31の総断面積の割合を第1の領域101で高くすることにより、アルミニウム線コイル31の熱がヨーク部11から放熱されやすくなり、放熱効果をさらに高めることができる。
 図8は、比較例の固定子201の一部を拡大して示す図である。比較例の固定子201の固定子コア210は、環状のヨーク部211と、ヨーク部211から径方向内側に延在する複数のティース212とを有し、隣り合うティース212の間にスロット213が形成されている。スロット213の内面には、絶縁部202が形成されている。
 スロット213には、アルミニウム線コイル231と、銅線コイル232とが配置されている。但し、実施の形態1のコイル31,32と異なり、アルミニウム線コイル231はスロット213の周方向の一方の側(図8における右側)に配置され、銅線コイル232はスロット213の周方向の他方の側(図8における左側)に配置されている。
 そのため、比較例の固定子201では、アルミニウム線コイル231の熱の多くが、ティース212を経由して放熱されることになる。上記のように、ヨーク部211と比較してティース212の放熱効率は低いため、アルミニウム線コイル231の温度上昇の抑制効果は高くない。
 これに対し、この実施の形態1では、図6および図7に示したように、電気抵抗率が高く温度が上昇しやすいアルミニウム線コイル31を、第2の領域102よりも第1の領域101に密に配置している。そのため、アルミニウム線コイル31で発生した熱がヨーク部11を介して効率よく外部に放熱され、高い放熱効果を得ることができる。
<各コイルの直径>
 次に、コイル31,32の直径の関係について説明する。アルミニウム線コイル31と銅線コイル32とは直列に接続されているため、両コイル31,32に流れる電流は等しい。従って、電気抵抗率の高いアルミニウム線コイル31で生じる損失は、銅線コイル32で生じる損失よりも高い。そのため、放熱効率のよい第1の領域101に、アルミニウム線コイル31をできるだけ多く集めることが望ましい。
 上記の通り、アルミニウム線コイル31の電気抵抗率をρAl[Ω・m]とし、直径をDAl[mm]とする。また、銅線コイル32の電気抵抗率をρCu[Ω・m]とし、直径をDCu[mm]とする。コイルの電気抵抗は、電気抵抗率ρにコイルの長さLを乗算し、コイルの断面積Sで除算したもの(すなわちρ×L/S)である。すなわち、コイルの長さLが等しい場合、コイルの電気抵抗は、電気抵抗率が高いほど高く、断面積が大きいほど低い。
 アルミニウム線コイル31の1本当たりの断面積をSAlとし、銅線コイル32の1本当たりの断面積をSCuとする。アルミニウム線コイル31および銅線コイル32の長さLが等しく、コイル31,32に流れる電流が1[A]である場合、アルミニウム線コイル31で発生する損失[W]、すなわち電流の2乗と電気抵抗の積は、ρAl×(L/SAl)で表され、銅線コイル32で発生する損失[W]はρCu×(L/SCu)で表される。
 アルミニウム線コイル31で生じる損失が、銅線コイル32で生じる損失と等しくなる場合には、ρAl×(L/SAl)=ρCu×(L/SCu)が成立する。この式をSAlについて解くと、SAl=(ρAl/ρCu)×SCuとなる。すなわち、アルミニウム線コイル31の断面積SAlは、銅線コイル32の断面積SCuの(ρAl/ρCu)倍となる。
 コイルの断面積は直径の2乗に比例するため、アルミニウム線コイル31で生じる損失が銅線コイル32で生じる損失と等しくなる場合のアルミニウム線コイル31の直径DAl[mm]は、銅線コイル32の直径DCu[mm]の√(ρAl/ρCu)倍となる。
 そのため、アルミニウム線コイル31で生じる損失を、銅線コイル32で生じる損失以上にするためには、アルミニウム線コイル31の直径DAlを銅線コイル32の直径DCuの√(ρAl/ρCu)倍以下にすればよい。言い換えると、アルミニウム線コイル31の直径DAlを、√(ρAl/ρCu)×DCu以下にすればよい。
 そのため、アルミニウム線コイル31の電気抵抗率ρAl[W/m]および直径DAl[mm]と、銅線コイル32の電気抵抗率ρCu[W/m]および直径DCu[mm]とが、以下の式(1)を満足することが最も望ましい。
Figure JPOXMLDOC01-appb-M000004
 アルミニウム線コイル31の直径DAlが√(ρAl/ρCu)×DCu以下であれば、アルミニウム線コイル31の電気抵抗が銅線コイル32の電気抵抗以下となり、従ってアルミニウム線コイル31で生じる損失が銅線コイル32で生じる損失以上となる。すなわち、第1の領域101に集められたアルミニウム線コイル31で高い損失(すなわち発熱)が生じ、その熱が固定子コア10のヨーク部11から放熱されるため、特に高い放熱効果が得られる。
 例えば、アルミニウム線コイル31の電気抵抗率ρAlを2.82×10-8[Ω・m]とし、銅線コイル32の電気抵抗率ρCuを1.68×10-8[Ω・m]とすると、アルミニウム線コイル31の直径DAl[mm]の上限は、銅線コイル32の直径DCu[mm]の1.296倍となる。アルミニウム線コイル31の直径DAlが1.296×DCuよりも小さければ、特に高い放熱効果が得られる。
 また、式(1)では、アルミニウム線コイル31の直径DAlの下限を、銅線コイル32の直径DCuと等しくしている。アルミニウム線コイル31の単位断面積当たりの機械的強度は銅線コイル32よりも低いため、巻線工程においてアルミニウム線コイル31の十分な強度を確保するためには、アルミニウム線コイル31の直径DAlが銅線コイル32の直径DCu以上(すなわちDCu≦DAl)であることが望ましいためである。
 このように、アルミニウム線コイル31の電気抵抗率ρAlおよび直径DAlと、銅線コイル32の電気抵抗率ρCuおよび直径DCuとが式(1)を満足すれば、第1の領域101に集められたアルミニウム線コイル31で高い損失を発生させ、その熱をヨーク部11から効率よく放熱することができる。また、巻線工程でのアルミニウム線コイル31の十分な強度を確保することができる。
 なお、式(1)を導出する際に、コイル31,32に流れる電流を1[A]と仮定したが、電流は1[A]に限定されない。コイル31,32に流れる任意の電流をI[A]と表すと、アルミニウム線コイル31で生じる損失が銅線コイル32で生じる損失と等しくなる場合には、ρAl×(L/SAl)×I=ρCu×(L/SCu)×Iが成立し、上記のSAl=(ρAl/ρCu)×SCuが得られ、ここから式(1)が導出されるためである。
 また、アルミニウム線コイル31の電気抵抗率ρAlおよび直径DAlと、銅線コイル32の電気抵抗率ρCuおよび直径DCuとの関係は、上記の式(1)に限定されるものではなく、以下の式(2)を満足するようにしてもよい。
Figure JPOXMLDOC01-appb-M000005
 式(2)におけるアルミニウム線コイル31の直径DAlの上限は、式(1)と同様である。理由は、上述した通りである。一方、式(2)におけるアルミニウム線コイル31の直径DAlの下限は、0.5×DCu、すなわち、コイル32の直径DCuの1/2である。
 アルミニウム線コイル31と銅線コイル32とが直列に接続されたコイル3を固定子コア10のティース12に巻き付ける工程では、工程の複雑化を回避するため、共通の巻線機を用いることが望ましい。一方、アルミニウム線コイル31と銅線コイル32とで直径が異なる場合には、巻線機の巻線ノズルのノズル径を、太い方のコイルに合わせる必要がある。
 アルミニウム線コイル31の直径DAlが、銅線コイル32の直径DCuの1/2よりも小さい場合、巻線ノズルにアルミニウム線コイル31が2列に挿入される可能性があり、アルミニウム線コイル31が損傷を受ける可能性がある。また、巻線機は、アルミニウム線コイル31の巻線時と銅線コイル32の巻線時とで同じ張力を付与するため、アルミニウム線コイル31が細すぎると断線の可能性がある。
 以上の理由から、式(2)では、アルミニウム線コイル31の直径DAl[mm]を、0.5×DCu[mm]以上としている。これにより、第1の領域101に集められたアルミニウム線コイル31で高い損失を発生させ、その熱をヨーク部11から効果的に放熱すると共に、巻線工程でのアルミニウム線コイル31の損傷および断線を防止することができる。
<各コイルの断面積比>
 銅線コイル32の1本当たりの断面積SCuに対するアルミニウム線コイル31の1本当たりの断面積SAlの比、すなわちSAl/SCuを、断面積比kと称する。断面積SAlはπ×(DAl/2)であり、断面積SCuはπ×(DCu/2)であるため、断面積比kは、k=(DAl/DCuと表すことができる。断面積比kを用いると、式(1)のDCu≦DAlは、1≦kと表される。また、式(2)の0.5×DCu≦DAlは、k≦0.25と表される。
 上記の通り、アルミニウム線コイル31と銅線コイル32とは直列に接続され、電気抵抗率の高いアルミニウム線コイル31で生じる損失は銅線コイル32で生じる損失よりも高い。スロット13の第1の領域101には、損失の高いアルミニウム線コイル31が密に配置され、アルミニウム線コイル31の熱はヨーク部11を経由して放熱される。
 ここで、損失密度について説明する。損失密度[W/mm]は、コイルで生じる損失を、コイルの1本あたりの断面積で除算した値である。ここでは、アルミニウム線コイル31の損失密度が銅線コイル32の損失密度に対してどのような範囲にあれば高い放熱効果が向上するか、検討する。
 アルミニウム線コイル31の1本当たりの断面積SAl[mm]と、銅線コイル32の1本当たりの断面積SCu[mm]とは、断面積比kの定義(k=SAl/SCu)から、SAl=k×SCuの関係にある。コイル3に流れる電流を1[A]とすると、アルミニウム線コイル31で生じる損失[W]はRAlであり、銅線コイル32で生じる損失[W]はRCuである。
 そのため、アルミニウム線コイル31の損失密度[W/m]は、RAl/SAlであり、断面積比kを用いると、RAl/(k×SCu)と表される。一方、銅線コイル32の損失密度[W/m]は、RCu/SCuである。
 銅線コイル32の損失密度に対するアルミニウム線コイル31の損失密度の比を、損失密度比と定義する。損失密度比は、{RAl/(k×SCu)}/{RCu/SCu}であるため、RAl/(k×RCu)と表される。
 図9は、アルミニウム線コイル31と銅線コイル32について、断面積S[mm]、断面積比k、電気抵抗[Ω/km]、電流[A]、損失[W]、損失密度[W/mm]および損失密度比を示す表である。
 損失密度比が1以上の場合、すなわち、アルミニウム線コイル31の損失密度が銅線コイル32の損失密度以上である場合には、第1の領域101に配置されたアルミニウム線コイル31で高い損失を発生させ、ヨーク部11から効率よく放熱することができる。そのため、1≦RAl/(k×RCu)であることが望ましい。
 また、アルミニウム線コイル31の単位断面積当たりの機械的強度は銅線コイル32よりも低いため、共通の巻線機を用いた巻線工程での十分な強度確保のため、アルミニウム線コイル31の直径DAlは銅線コイル32の直径DCu以上であることが望ましい。そのため、1≦kであることが望ましい。
 以上から、断面積比kと、アルミニウム線コイル31の電気抵抗RAl[Ω]と、銅線コイル32の電気抵抗RCu[Ω]とが以下の式(3)、(4)を満足することにより、第1の領域101に集められたアルミニウム線コイル31で高い損失を発生させ、その熱をヨーク部11から効率よく放熱し、なお且つ、巻線工程でのアルミニウム線コイル31の十分な強度を確保することができる。
Figure JPOXMLDOC01-appb-M000006
1≦k …(4)
 ここで、損失密度比RAl/(k×RCu)の上限は、kに1を代入したRAl/RCuである。例えば、銅線コイル32の直径DCuを0.9[mm]とし、電気抵抗RCuを27.1[Ω]とし、アルミニウム線コイル31の直径DAlを0.9[mm]とし、電気抵抗RAlを73.72[Ω]とした場合、RAl/(k×RCu)の上限は、RAl/RCu=1.679となる。そのため、損失密度比RAl/(k×RCu)の望ましい範囲は、1≦RAl/(k×RCu)≦1.679と表される。
 図10は、銅線コイル32の直径DCuを0.9[mm]とし、アルミニウム線コイル31の直径DAlを変化させた場合の、断面積比kと損失密度比との関係を示すグラフである。図10に示すように、銅線コイル32の直径DCuを0.9[mm]とした場合の損失密度比の望ましい範囲は、1≦RAl/(k×RCu)≦1.679である。
 また、断面積比kと、アルミニウム線コイル31の電気抵抗RAl[Ω]と、銅線コイル32の電気抵抗RCu[Ω]とは、以下の式(5)、(6)を満足するようにしてもよい。式(5)は、上述した式(3)と同じである。
Figure JPOXMLDOC01-appb-M000007
0.25≦k …(6)
 上記の通り、アルミニウム線コイル31と銅線コイル32とを共通の巻線機で巻線する場合、巻線機の巻線ノズルのノズル径を太い方のコイルに合わせる必要がある。アルミニウム線コイル31の直径DAlが銅線コイル32の直径DCuの1/2以下の場合、アルミニウム線コイル31が巻線ノズルに2列に挿入されて損傷を受ける可能性がある。また、巻線機は、アルミニウム線コイル31の巻線時と銅線コイル32の巻線時とで同じ張力を付与するため、アルミニウム線コイル31が細すぎると断線の可能性がある。
 そのため、アルミニウム線コイル31の直径DAl[mm]の下限を、0.5×DCu[mm]とすることが望ましい。これを断面積比kで表すと、0.25≦kとなる。
 以上から、断面積比kと、アルミニウム線コイル31の電気抵抗RAl[Ω]と、銅線コイル32の電気抵抗RCu[Ω]とが式(5)、(6)を満足することにより、スロット13の第1の領域101に集められたアルミニウム線コイル31で高い損失を発生させ、その熱をヨーク部11から効率よく放熱することができ、なお且つ、巻線工程でのアルミニウム線コイル31の十分な損傷および断線を防止することができる。
 ここで、損失密度比RAl/(k×RCu)の上限は、kに0.25を代入したRAl/(0.25×RCu)である。例えば、銅線コイル32の直径DCuを0.9[mm]とし、電気抵抗RCuを27.1[Ω]とし、アルミニウム線コイル31の直径DAlを0.45[mm]とし、電気抵抗RAlを174.9[Ω]とした場合、RAl/(k×RCu)の上限は、RAl/(0.25×RCu)=25.815である。この場合、損失密度比RAl/(k×RCu)の望ましい範囲は、1≦RAl/(k×RCu)≦25.815と表される。
<誘導電動機>
 実施の形態1の電動機100は、上記の通り、誘導電動機である。すなわち、固定子1のコイル3の電流によって回転磁界を生じさせ、これにより回転子5のかご型二次導体6に誘導電流を発生させ、誘導電流と回転磁界との作用によりトルクを発生する。
 誘導電動機は、インバータを用いずに駆動される場合が多い。すなわち、電動機100の制御部は、コイル3に一定電圧を供給して電動機100を駆動する場合が多い。そのため、電動機100の負荷または供給電圧の変動により、コイル3を流れる電流が大幅に増加し、コイル3の温度が上昇する場合がある。
 この実施の形態1の電動機100は、上記の通り高い放熱効果を有し、コイル3の温度上昇を抑制することができるため、電流の変動の大きい誘導電動機で特に大きな効果を発揮する。なお、この実施の形態1の電動機100は誘導電動機であるが、同期電動機であっても高い放熱効果が得られる。
<実施の形態1の効果>
 以上説明したように、本発明の実施の形態1では、スロット13の第1の領域101の面積S1と、第1の領域101内のアルミニウム線コイル31(すなわち第1のコイル)の総断面積A1と、第2の領域102の面積S2と、第2の領域102内のアルミニウム線コイル31の総断面積A2とが、(A1/S1)>(A2/S2)を満足する。このように、より電気抵抗率の高いアルミニウム線コイル31を、スロット13において径方向外側の第1の領域101に密に配置することにより、アルミニウム線コイル31の熱を固定子コア10のヨーク部11から効率よく放熱し、温度上昇を抑制することができる。また、電動機100の放熱効果により、コイル3により多くの電流を流すことが可能になるため、電動機100の出力を増加させることができる。
 また、第1の領域101内のアルミニウム線コイル31の総断面積A1と、第1の領域101内の銅線コイル32(すなわち第2のコイル)の総断面積C1と、第1の領域101の面積S1とが、(A1/S1)>(C1/S1)を満足する。このように、第1の領域101において、アルミニウム線コイル31の占有密度を銅線コイル32の占有密度よりも高くすることにより、アルミニウム線コイル31の熱を固定子コア10のヨーク部11から効率よく放熱し、放熱効果をさらに高めることができる。
 また、第1の領域101内のアルミニウム線コイル31の総断面積A1と、第1の領域101内の銅線コイル32の総断面積C1と、第2の領域102内のアルミニウム線コイル31の総断面積A2と、第1の領域101内の銅線コイル32の総断面積C2とが、(A1/C1)>(A2/C2)を満足する。このように、銅線コイル32の総断面積に対するアルミニウム線コイル31の総断面積の割合を、第2の領域102よりも第1の領域101で高くすることにより、アルミニウム線コイル31の熱を固定子コア10のヨーク部11から効率よく放熱し、放熱効果をさらに高めることができる。
 また、アルミニウム線コイル31の電気抵抗率ρAl[Ω・m]および直径DAl[mm]と、銅線コイル32の電気抵抗率ρCu[Ω・m]および直径DCu[mm]とが、上記の式(1)を満足する。これにより、第1の領域101に集められたアルミニウム線コイル31で高い損失(すなわち発熱)が生じ、その熱が固定子コア10のヨーク部11を経て放熱されるため、放熱効果をさらに高めることができる。また、アルミニウム線コイル31の直径DAlを銅線コイル32の直径DCu以上とすることにより、巻線工程でのアルミニウム線コイル31の十分な強度を確保することができる。
 また、アルミニウム線コイル31の電気抵抗率ρAl[Ω・m]および直径DAl[mm]と、銅線コイル32の電気抵抗率ρCu[Ω・m]および直径DCu[mm]とが、上記の式(2)を満足する。これにより、放熱効果を高めると共に、アルミニウム線コイル31の直径DAlを銅線コイル32の直径DCuの1/2以上とすることにより、巻線工程でのアルミニウム線コイル31の損傷および断線を防止することができる。
 また、アルミニウム線コイル31の電気抵抗RAlと、銅線コイル32の電気抵抗RCuと、銅線コイル32の断面積に対するアルミニウム線コイル31の断面積の比である断面積比kとが、上記の式(3)を満足する。これにより、アルミニウム線コイル31の損失密度が銅線コイル32の損失密度以上となり、アルミニウム線コイル31で高い損失を発生させ、その熱をヨーク部11から効率よく放熱することができ、放熱効果をさらに高めることができる。
 また、断面積比kが1以上であれば、共通の巻線機を用いた巻線工程において、アルミニウム線コイル31の十分な強度を確保することができる。また、断面積比kが0.25以上であれば、共通の巻線機を用いた巻線工程において、アルミニウム線コイル31の破損および断線を防止することができる。
 また、この実施の形態1による電動機100は、インバータを用いずに駆動される場合が多い誘導電動機に適用することにより、特に高い効果が得られる。
 なお、この実施の形態1では、第1のコイルとしてのアルミニウム線コイル31と、第2のコイルとしての銅線コイル32とを用いたが、アルミニウム線コイル31と銅線コイル32に限定されるものではない。例えば、金、銀、銅、アルミニウム等から2種類を選択し、より電気抵抗率の高いものを第1のコイルとし、より電気抵抗率の低いものを第2のコイルとしてもよい。
変形例.
 図11は、実施の形態1の変形例の固定子のスロット13を含む部分を拡大して示す図である。上述した実施の形態1では、スロット13の第1の領域101にアルミニウム線コイル31および銅線コイル32が配置され、なお且つ、アルミニウム線コイル31の方が銅線コイル32よりも高い占有密度を有していた。
 これに対し、この変形例では、スロット13の第1の領域101に、アルミニウム線コイル31のみが配置されている。一方、第2の領域102には、アルミニウム線コイル31および銅線コイル32が配置されている。その他の構成は、実施の形態1で説明したとおりである。
 この変形例では、放熱効率のよい第1の領域101に、アルミニウム線コイル31のみが配置されているため、アルミニウム線コイル31の熱をより効果的に固定子コア10に伝え、放熱することができる。
<スクロール圧縮機>
 次に、実施の形態1および変形例で説明した電動機100が適用される圧縮機としてのスクロール圧縮機300について説明する。図12は、スクロール圧縮機300を示す断面図である。スクロール圧縮機300は、密閉容器307と、密閉容器307内に配置された圧縮機構305と、圧縮機構305を駆動する電動機100と、圧縮機構305と電動機100とを連結するシャフト55と、シャフト55の下端部(すなわち圧縮機構305側と反対側の端部)を支持するサブフレーム308とを備えている。
 圧縮機構305は、渦巻部分を有する固定スクロール301と、固定スクロール301の渦巻部分との間に圧縮室を形成する渦巻部分を有する揺動スクロール302と、シャフト55の上端部を保持するコンプライアンスフレーム303と、密閉容器307に固定されてコンプライアンスフレーム303を保持するガイドフレーム304とを備える。
 固定スクロール301には、密閉容器307を貫通する吸入管310が圧入されている。また、密閉容器307には、固定スクロール301から吐出される高圧の冷媒ガスを外部に吐出する吐出管311が設けられている。この吐出管311は、密閉容器307の圧縮機構305と電動機100との間に設けられた図示しない開口部に連通している。
 電動機100は、固定子1を密閉容器307に嵌め込むことにより密閉容器307に固定されている。電動機100の構成は、上述した通りである。密閉容器307には、電動機100に電力を供給するガラス端子309が溶接により固定されている。
 電動機100が回転すると、その回転が揺動スクロール302に伝達され、揺動スクロール302が揺動する。揺動スクロール302が揺動すると、揺動スクロール302の渦巻部分と固定スクロール301の渦巻部分とで形成される圧縮室の容積が変化する。そして、吸入管310から冷媒ガスが吸入され、圧縮されて、吐出管311から吐出される。
 電動機100の回転時には、コイル3に電流が流れて発熱する。コイル3で発生した熱は、絶縁部2(図1)を介して固定子コア10に伝わり、固定子コア10から密閉容器307に放熱される。実施の形態1および変形例の電動機100は高い放熱効果を有するため、スクロール圧縮機300の内部の温度上昇を抑制することができる。また、電動機100の出力の増加により、スクロール圧縮機300の出力も増加させることができる。
 ここでは、圧縮機の一例としてスクロール圧縮機300について説明したが、実施の形態1および変形例で説明した電動機は、スクロール圧縮機300以外の圧縮機に適用してもよい。
<空気調和装置>
 次に、上述した実施の形態1および変形例の電動機が適用される空気調和装置について説明する。図13は、空気調和装置400(冷凍サイクル装置)を示す図である。空気調和装置400は、圧縮機401と、凝縮器402と、絞り装置(減圧装置)403と、蒸発器404とを備えている。圧縮機401、凝縮器402、絞り装置403および蒸発器404は、冷媒配管407によって連結されて冷凍サイクルを構成している。すなわち、圧縮機401、凝縮器402、絞り装置403および蒸発器404の順に、冷媒が循環する。
 圧縮機401、凝縮器402および絞り装置403は、室外機410に設けられている。圧縮機401は、図13に示したスクロール圧縮機300で構成されている。室外機410には、凝縮器402に室外の空気を供給する室外側送風機405が設けられている。蒸発器404は、室内機420に設けられている。この室内機420には、蒸発器404に室内の空気を供給する室内側送風機406が設けられている。
 空気調和装置400の動作は、次の通りである。圧縮機401は、吸入した冷媒を圧縮して送り出す。凝縮器402は、圧縮機401から流入した冷媒と室外の空気との熱交換を行い、冷媒を凝縮して液化させて冷媒配管407に送り出す。室外側送風機405は、凝縮器402に室外の空気を供給する。絞り装置403は、開度を変化させることによって、冷媒配管407を流れる冷媒の圧力等を調整する。
 蒸発器404は、絞り装置403により低圧状態にされた冷媒と室内の空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発(気化)させて、冷媒配管407に送り出す。室内側送風機406は、蒸発器404に室内の空気を供給する。これにより、蒸発器404で熱が奪われた冷風が、室内に供給される。
 上記の通り、実施の形態1および変形例の電動機100は高い放熱効果を有するため、圧縮機401内の温度上昇を抑制することができ、空気調和装置400の安定した運転が可能となる。また、電動機100の出力増加に伴う圧縮機401の出力増加によって、空気調和装置400の出力も増加させることができる。
 以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良または変形を行なうことができる。
 1 固定子、 10 固定子コア、 10a 外周、 10b 内周、 11 ヨーク部、 12 ティース、 12a ティース先端部、 13 スロット、 13a 底部、 13b 第1の側部、 13c 第2の側部、 14 スロット開口部、 2 絶縁部、 3 コイル、 31 アルミニウム線コイル(第1のコイル)、 31a 導体、 32 銅線コイル(第2のコイル)、 32a 導体、 5 回転子、 50 回転子コア、 51 スロット、 55 シャフト、 6 かご型二次導体、 61 バー、 62,63 エンドリング(環状体)、 100 電動機、 101 第1の領域、 102 第2の領域、 300 スクロール圧縮機(圧縮機)、 305 圧縮機構、 307 密閉容器、 400 空気調和装置、 401 圧縮機、 402 凝集器、 403 絞り装置(減圧装置)、 404 蒸発器、 405 冷媒配管、 406 制御部、 L1 第1の直線、 L2 第2の直線、 P1 第1の点、 P2 第2の点、 P3 第3の点、 P4 第4の点。

Claims (15)

  1.  軸線を中心とする周方向に延在する内周と、前記軸線を中心とする径方向において前記内周よりも外側に形成されたスロットとを有する固定子コアと、
     前記スロットの内部に配置され、互いに直列に接続された第1のコイルおよび第2のコイルと
     を有し、
     前記第1のコイルは、第1の金属で形成された導体を有し、
     前記第2のコイルは、前記第1の金属よりも電気抵抗率の低い第2の金属で形成された導体を有し、
     前記スロットは、
     前記固定子コアの前記内周に開口するスロット開口部と、
     前記スロット開口部に対して前記径方向の外側に位置する湾曲形状のスロット底部と、
     前記スロット開口部と前記スロット底部との間に位置し、前記周方向に相対する第1の側部および第2の側部と
     を有し、
     前記軸線に直交する面内において、前記スロット底部と前記第1の側部との境界と、前記スロット底部と前記第2の側部との境界とを結ぶ直線を、第1の直線とし、
     前記第1の直線と前記スロット底部とで囲まれた領域を、第1の領域とし、
     前記スロットにおいて、前記スロット開口部よりも前記径方向の外側で且つ前記第1の直線よりも前記径方向の内側の領域を、第2の領域とし、
     前記第1の領域の面積S1と、前記第1の領域内の前記第1のコイルの総断面積A1と、前記第2の領域の面積S2と、前記第2の領域内の前記第1のコイルの総断面積A2とが、
     (A1/S1)>(A2/S2)
     を満足する固定子。
  2.  前記第1の領域内の前記第1のコイルの総断面積A1と、前記第1の領域内の前記第2のコイルの総断面積C1と、前記第1の領域の面積S1とが、
     (A1/S1)>(C1/S1)
     を満足する請求項1に記載の固定子。
  3.  前記第1の領域内の前記第1のコイルの総断面積A1と、前記第1の領域内の前記第2のコイルの総断面積C1と、前記第2の領域内の前記第1のコイルの総断面積A2と、前記第2の領域内の前記第2のコイルの総断面積C2とが、
     (A1/C1)>(A2/C2)
     を満足する請求項1または2に記載の固定子。
  4.  前記第1の領域に、前記第1のコイルおよび前記第2のコイルのうち、前記第1のコイルのみが配置されている
     請求項1から3までのいずれか1項に記載の固定子。
  5.  前記第1のコイルの直径が、前記第2のコイルの直径以上である
     請求項1から4までのいずれか1項に記載の固定子。
  6.  前記第1のコイルの直径DAlと、前記第1のコイルの電気抵抗率ρAlと、前記第2のコイルの直径DCuと、前記第2のコイルの電気抵抗率ρCuとが、
    Figure JPOXMLDOC01-appb-M000001
     を満足する請求項1から5までのいずれか1項に記載の固定子。
  7.  前記第1のコイルの直径DAlと、前記第1のコイルの電気抵抗率ρAlと、前記第2のコイルの直径DCuと、前記第2のコイルの電気抵抗率ρCuとが、
    Figure JPOXMLDOC01-appb-M000002
     を満足する請求項1から4までのいずれか1項に記載の固定子。
  8.  前記第1のコイルの電気抵抗RAlと、前記第2のコイルの電気抵抗RCuと、前記第2のコイルの断面積に対する前記第1のコイルの断面積の比kとが、
    Figure JPOXMLDOC01-appb-M000003
     を満足する請求項1から7までのいずれか1項に記載の固定子。
  9.  前記比kは、1以上である
     請求項8に記載の固定子。
  10.  前記比kは、0.25以上である
     請求項8に記載の固定子。
  11.  前記第1の金属はアルミニウムであり、前記第2の金属は銅である
     請求項1から10までのいずれか1項に記載の固定子。
  12.  請求項1から11までの何れか1項に記載の固定子と、
     前記固定子の前記径方向の内側に回転可能に設けられた回転子と
     を有する電動機。
  13.  前記電動機は、誘導電動機である
     請求項12に記載の電動機。
  14.  密閉容器と、
     前記密閉容器内に配置された圧縮機構と、
     前記圧縮機構を駆動する、請求項12または13に記載の電動機と
     を備えた圧縮機。
  15.  請求項14に記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを備えた空気調和装置。
     
PCT/JP2018/006204 2018-02-21 2018-02-21 固定子、電動機、圧縮機および空気調和装置 WO2019163021A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020501898A JP7046155B2 (ja) 2018-02-21 2018-02-21 固定子、電動機、圧縮機および空気調和装置
PCT/JP2018/006204 WO2019163021A1 (ja) 2018-02-21 2018-02-21 固定子、電動機、圧縮機および空気調和装置
CN201880089216.6A CN111771317B (zh) 2018-02-21 2018-02-21 定子、电动机、压缩机以及空调装置
US16/965,462 US11750053B2 (en) 2018-02-21 2018-02-21 Stator, motor, compressor, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006204 WO2019163021A1 (ja) 2018-02-21 2018-02-21 固定子、電動機、圧縮機および空気調和装置

Publications (1)

Publication Number Publication Date
WO2019163021A1 true WO2019163021A1 (ja) 2019-08-29

Family

ID=67687110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006204 WO2019163021A1 (ja) 2018-02-21 2018-02-21 固定子、電動機、圧縮機および空気調和装置

Country Status (4)

Country Link
US (1) US11750053B2 (ja)
JP (1) JP7046155B2 (ja)
CN (1) CN111771317B (ja)
WO (1) WO2019163021A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046170B2 (ja) 2018-05-18 2022-04-01 三菱電機株式会社 固定子、電動機、圧縮機、及び空気調和装置
EP4135173A4 (en) * 2020-06-30 2023-09-13 Beijing Goldwind Science & Creation Windpower Equipment Co. Ltd. MOTOR COIL AND MANUFACTURING METHOD THEREOF, MOTOR STATOR AND MANUFACTURING METHOD THEREOF AND MOTOR
WO2024009350A1 (ja) * 2022-07-04 2024-01-11 三菱電機株式会社 ステータ、電動機、圧縮機、冷凍サイクル装置及びステータの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229972A1 (ja) * 2018-06-01 2019-12-05 三菱電機株式会社 固定子、電動機、圧縮機、及び空気調和装置
US11973370B2 (en) * 2021-03-15 2024-04-30 Anhui Meizhi Precision Manufacturing Co., Ltd. Motor, compressor and refrigeration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174330A (ja) * 1996-12-17 1998-06-26 Toshiba Corp 三相電機子巻線
JP2010183741A (ja) * 2009-02-05 2010-08-19 Aisin Aw Co Ltd 電機子
WO2014188466A1 (ja) * 2013-05-20 2014-11-27 三菱電機株式会社 固定子及びこの固定子を使用する電動機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166643A (ja) 2009-01-13 2010-07-29 Mitsubishi Electric Corp 密閉型圧縮機及び冷凍サイクル装置
JP4980412B2 (ja) * 2009-11-26 2012-07-18 三菱電機株式会社 スクロール圧縮機
JP5591099B2 (ja) * 2010-12-28 2014-09-17 三菱電機株式会社 圧縮機および冷凍サイクル装置
JP2015211603A (ja) 2014-04-30 2015-11-24 三菱電機株式会社 電動機、密閉型圧縮機及び冷凍サイクル装置
US11183898B2 (en) * 2016-07-08 2021-11-23 Hitachi Industrial Equipment Systems Co., Ltd. Rotary electric machine and manufacturing method for rotary electric machine
JP2018050389A (ja) * 2016-09-21 2018-03-29 本田技研工業株式会社 ステータ及びその製造方法
JP7285620B2 (ja) * 2017-10-31 2023-06-02 ダイキン工業株式会社 電動機およびターボ圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174330A (ja) * 1996-12-17 1998-06-26 Toshiba Corp 三相電機子巻線
JP2010183741A (ja) * 2009-02-05 2010-08-19 Aisin Aw Co Ltd 電機子
WO2014188466A1 (ja) * 2013-05-20 2014-11-27 三菱電機株式会社 固定子及びこの固定子を使用する電動機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046170B2 (ja) 2018-05-18 2022-04-01 三菱電機株式会社 固定子、電動機、圧縮機、及び空気調和装置
EP4135173A4 (en) * 2020-06-30 2023-09-13 Beijing Goldwind Science & Creation Windpower Equipment Co. Ltd. MOTOR COIL AND MANUFACTURING METHOD THEREOF, MOTOR STATOR AND MANUFACTURING METHOD THEREOF AND MOTOR
WO2024009350A1 (ja) * 2022-07-04 2024-01-11 三菱電機株式会社 ステータ、電動機、圧縮機、冷凍サイクル装置及びステータの製造方法

Also Published As

Publication number Publication date
JPWO2019163021A1 (ja) 2020-12-10
US11750053B2 (en) 2023-09-05
CN111771317A (zh) 2020-10-13
CN111771317B (zh) 2022-08-05
JP7046155B2 (ja) 2022-04-01
US20200358327A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019163021A1 (ja) 固定子、電動機、圧縮機および空気調和装置
JP6914346B2 (ja) 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法
JP6692896B2 (ja) 電動機、送風機、圧縮機および空気調和装置
US11108293B2 (en) Stator, motor, compressor, and air conditioner
US20060284509A1 (en) Induction motor
US20200328636A1 (en) Reluctance motor, compressor, and air conditioner
JP6906701B2 (ja) 固定子、電動機、圧縮機、及び空気調和装置
JP2023168510A (ja) 電動機、圧縮機、送風機、及び冷凍空調装置
WO2019198138A1 (ja) 電動機、圧縮機および空気調和装置
US20230291263A1 (en) Stator, electric motor, compressor, air conditioner, and method for fabricating stator
JP2004282858A (ja) 固定子及びそれを用いた回転機
WO2022113346A1 (ja) ステータ、モータ、圧縮機および冷凍サイクル装置
WO2020026431A1 (ja) ステータ、モータ、圧縮機、及び冷凍空調装置
WO2019220610A1 (ja) 固定子、電動機、圧縮機、及び空気調和装置
WO2023170900A1 (ja) 回転電機
JP7353508B2 (ja) 固定子、電動機、圧縮機および空気調和装置
WO2022163342A1 (ja) モータ、圧縮機、及び冷凍装置
JP2022027230A (ja) 回転電機
WO2022193609A1 (zh) 电机、压缩机和制冷设备
WO2022193608A1 (zh) 电机、压缩机和制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907432

Country of ref document: EP

Kind code of ref document: A1