JP2004182479A - 表面改質球状シリカ及びその製造方法、並びに半導体封止用樹脂組成物 - Google Patents

表面改質球状シリカ及びその製造方法、並びに半導体封止用樹脂組成物 Download PDF

Info

Publication number
JP2004182479A
JP2004182479A JP2002347637A JP2002347637A JP2004182479A JP 2004182479 A JP2004182479 A JP 2004182479A JP 2002347637 A JP2002347637 A JP 2002347637A JP 2002347637 A JP2002347637 A JP 2002347637A JP 2004182479 A JP2004182479 A JP 2004182479A
Authority
JP
Japan
Prior art keywords
spherical silica
surfactant
resin
modified
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002347637A
Other languages
English (en)
Inventor
Yasuhiro Yougen
康裕 溶原
Nobutaka Kokubu
信孝 國分
Takashi Mihashi
隆史 三橋
Akira Motonaga
彰 元永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002347637A priority Critical patent/JP2004182479A/ja
Publication of JP2004182479A publication Critical patent/JP2004182479A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】従来技術に比べ、樹脂配合時に高流動性を示す表面改質球状シリカと、その製造方法を提供する。また、本発明の改質球状シリカを用いることで、高流動性を示す液状封止用樹脂組成物を提供する。
【解決手段】以下の項目を満足する平均粒径が0.1〜20μmの表面改質球状シリカ。(a)比表面積が理論値の3倍以下、(b)粒子表面に界面活性剤を0.01〜10質量%包含およびその製造方法と上記表面改質球状シリカを30〜90質量%配合することを特徴とする封止用樹脂組成物。
【選択図】 なし

Description

【0001】
【発明の属する技術分野】
本発明は表面改質球状シリカ及びその製造方法に関する。さらに詳しくは、IC封止材用樹脂の充填材、基板、電子材料や半導体製造装置高純度シリカガラス及び石英ガラス、光学ガラスの原料用途等に適する表面改質球状シリカ及びその製造方法に関する。特に、フリップチップのアンダーフィル用フィラーとして、樹脂混合時の流動性、狭い隙間への進入性に極めて優れた表面改質球状シリカ及びその製造方法に関する。
【0002】
【従来の技術】
近年、電子産業の急速な発展につれて電子材料用や半導体製造用などに高純度のシリカが使用されるようになったが、製品の高度化につれてシリカに対する要望は高純度化はもちろんのこと、その他の性能として樹脂配合時の高流動性等が強く求められるようになった。特にフリップチップタイプの半導体デバイスではアンダーフィル用フィラーとして樹脂配合時の流動性に優れた球状シリカが必要となった。樹脂は特にエポキシ樹脂、シリコーン樹脂が有用であるが、その中でも特にビスフェノールA型またはビスフェノールF型から成るエポキシ樹脂がしばしば用いられる。そのため、これらと混合した際に高流動性を示す球状シリカが望まれていた。
【0003】
従来、このような樹脂混合時の流動性に優れた球状シリカは
1)最大粒子径が45μm、平均粒子径が2〜10μm、当該粒子の比表面積Sw1と当該粒子の理論比表面積Sw2との比、Sw1/Sw2が1.0〜2.5であり、且つ当該粒子表面は平滑であることを特徴とする溶融球状シリカ(特許文献1参照)。
【0004】
2)最大粒径が24μm、平均粒子径が1.7〜7μm、3μm以下の粒子が全体粒子に占める割合X1が100/D50重量%以上、(18+100/D50)以下の粒度分布を有する微細球状シリカであって、かつ、常温で液状のエポキシ樹脂又はシリコーン樹脂に、前記微細球状シリカを最大80重量%配合した混合物の50℃における粘度が20Pa・s以下であることを特徴とする微細球状シリカ(特許文献2参照)。
【0005】
などが提案されている。
【0006】
しかし、1)の球状シリカは原料が溶融球状シリカであり、表面微粉を溶解させても、粒子表面も溶解させるため、結果として粒子表面の凹凸、表面のシラノール基が残ってしまう。そのため、樹脂混合時に期待する流動性は得られない。
2)の球状シリカも実質的には溶融球状シリカを用いており、表面に微粉が付着している。また、1)の手法同様に微粉を溶解させたとしても前記と同様の理由により、期待する流動性は得られない。
【0007】
一方、シリカ粒子表面と樹脂との界面の相互作用、密着性等を考慮し、
3)樹脂及び予めカップリング剤で処理された充填剤からなる半導体封止用樹脂組成物が提案されている(特許文献3参照)。
【0008】
さらに、
4)エポキシ樹脂、硬化剤、硬化促進剤及び充填材からなるエポキシ樹脂組成物において、アミノシラン系カップリング剤により表面処理が施されたセラミックスの大粒子と、平均粒径が前記のセラミックスの大粒子の平均粒径の1/8以下であって、且つ5μm以下である、エポキシシラン系カップリング剤により表面処理が施されたセラミックスの小粒子とを、前記の小粒子の重量が前記の大粒子の重量の2/5以下となる割合で含む複合粒子を充填材として用いることを特徴とするエポキシ樹脂組成物が提案されている(特許文献4参照)。
【0009】
さらに、
5)エポキシ樹脂組成物の硬化物によって封止された樹脂封止半導体装置であって、該エポキシ樹脂組成物が、
(A)エポキシ樹脂
(B)フェノール樹脂
(C)(i)シランカップリング剤、(ii)シリコーン系界面活性剤、および(iii)熱硬化性シリコーンゴムによって常温で表面処理されたシリカ粉末、並びに(D)スチレン−ブタジエン−メタクリル酸メチル共重合体
を含むことを特徴とする樹脂封止半導体装置が提案されている(特許文献5参照)。
【0010】
しかし、3)、4)、5)いずれも樹脂配合時の流動特性については満足のいくものではなかった。
【0011】
【特許文献1】
特開2000−7319号公報
【0012】
【特許文献2】
特開2000−63630号公報
【0013】
【特許文献3】
特開昭63−230729号公報参照
【0014】
【特許文献4】
特開平5−32867号公報
【0015】
【特許文献5】
特開昭63−245426号公報
【0016】
【発明が解決しようとする課題】
従来の技術による球状シリカは樹脂配合時の粘度特性の面で満足できるものとは言い難く、樹脂配合時に高流動性を示す球状シリカの開発が望まれている。本発明は、従来技術に比べ、樹脂配合時に高流動性を示す表面改質球状シリカと、その製造方法を提供することにある。また、本発明による表面改質球状シリカを用いることで、高流動性を示す液状封止用樹脂組成物を提供することを目的としている。
【0017】
【課題を解決するための手段】
本発明者らは、従来法における問題点を改善するために検討を行った結果、真球度が高く、表面が平滑な球状シリカを界面活性剤で表面改質することで樹脂配合時の流動性を著しく改善できることを見出した。また、真球度が高く、表面が平滑な球状シリカと界面活性剤を併用することで、高流動性を示す封止材が得られることを見出した。
【0018】
本発明の請求項1の発明は「以下の項目を満足する平均粒径が0.1〜20μmの表面改質球状シリカ。
【0019】
(a)比表面積が理論値の3倍以下
(b)粒子表面に界面活性剤を0.01〜10質量%包含」を要旨とする。
【0020】
本発明の請求項2の発明は「界面活性剤がシリコーン系界面活性剤である請求項1記載の表面改質球状シリカ。」を要旨とする。
【0021】
本発明の請求項3の発明は「シリコーン系界面活性剤が非イオン性界面活性剤であることを特徴とした請求項2記載の表面改質球状シリカ。」を要旨とする。
【0022】
本発明の請求項4の発明は「以下の工程を含む表面改質球状シリカの製造方法。
【0023】
(1)アルカリ珪酸塩水溶液を分散相として細粒状に分散させた油中水滴型(W/O型)エマルションを調製する乳化工程
(2)油中水滴型(W/O型)エマルションを鉱酸水溶液と混合し、球状シリカゲルを凝固させる凝固工程
(3)球状シリカゲルを600〜1500℃で焼成する焼成工程
(4)焼成した球状シリカを界面活性剤で処理する表面処理工程」を要旨とする。
【0024】
本発明の請求項5の発明は「エポキシ樹脂または/およびシリコーン樹脂に、請求項1乃至3いずれかに記載の表面改質球状シリカを30〜90質量%配合することを特徴とする封止用樹脂組成物」を要旨とする。
【0025】
本発明の請求項6の発明は「以下の成分からなることを特徴とする封止用樹脂組成物。
【0026】
(A)ビスフェノールF型エポキシ樹脂
(B)シリコーン系界面活性剤
(C)比表面積が理論比表面積の3倍以下且つ、平均粒径0.1〜20μmの球状シリカ」を要旨とする。
【0027】
半導体封止用樹脂組成物では樹脂粘度が低いものがしばしば好まれて使用されており、樹脂配合時に高流動性を示すフィラーが嘱望されていた。本発明者らは検討を重ねた結果、表面平滑性に優れ、真球度の高い球状シリカを界面活性剤で処理することにより樹脂配合時の流動性を大きく向上させることを見出した。また、表面平滑性に優れ、真球度の高い球状シリカ、シリコーン系界面活性剤、ビスフェノールF型エポキシ樹脂から成る封止用樹脂組成物が極めて流動性に優れることを見出した。尚、本発明において流動性とは樹脂配合時に低粘度且つ、狭い隙間への浸透性が良いことを意味する。
【0028】
【発明の実施の形態】
粒子表面の平滑性及び真球度は比表面積で示される。本発明では球状シリカの比表面積は理論値の3倍以下であることが必須である。一般に、直径がd(μm)であり、細孔を有しない真球体の比表面積SAは、その真比重がDであるとき、式(I)によって表すことができる。
【0029】
SA(m/g)=6/(d×D)・・・・・・(I)
式(I)から、直径がd(μm)であり、真比重が2.2であるシリカの真球体の比表面積SA(m/g)は、次式(II)で表されることから、例えば、直径10μmであるシリカ球体の比表面積の理論値は、およそ0.27(m/g)となる。
【0030】
式(II):SA=2.73/d
比表面積はBET法による値であり、本発明では日機装製ベータソーブ4200を用いた。流動特性をより向上させるためには、比表面積は理論値の1.5倍以下が望ましい。
【0031】
球状シリカへの界面活性剤処理量は0.01〜10質量%の範囲で適宜選択すればよい。大過剰の界面活性剤は球状シリカと樹脂の接着性を低下させるため望ましくない。界面活性剤処理量は望ましくは0.1〜5質量%の範囲が良い。但し、一般に界面活性剤の単位質量当たりの被覆面積が算出できるため、その被覆面積から数割増で添加することが望ましい。
【0032】
球状シリカの粒径は樹脂に配合して使用するため、平均粒径0.1〜20μmが良い。粒径分布に関してはアンダーフィル等の狭い隙間に流し込む封止材では平均粒径の4倍以下であることが望ましい。本発明で平均粒径はメディアン径を意味する。粒径はレーザー回折散乱方式による値である。本発明ではコールター社のLS130を使用した。
【0033】
また、本発明において界面活性剤処理前の球状シリカはエポキシ樹脂配合時にダイラタンシー性を示すものがより望ましい。ダイラタンシー性とはE型粘度計において回転数0.5rpmの粘度をη1、2.5rpmの粘度をη2とした際のη1/η2が1未満であることを意味する。エポキシ樹脂はビスフェノールA型もしくはF型のいずれかを用いることでダイラタンシー性の判断ができる。粘度測定はE型粘度計が好ましい。
【0034】
球状シリカへの界面活性剤処理はシリコーン系界面活性剤により処理することで特に樹脂配合時の流動特性が向上する。
【0035】
シリコーン系界面活性剤の構造は特に制限しないが、アルコキシ、アルコール、カルボキシル等親水基によって変性されたシリコーンオイル、疎水基がジメチルポリシロキサン、親水基がポリアルキレンオキサイドからなるシリコーン系非イオン界面活性剤等が好ましい。具体例として、FZ−2222(日本ユニカー(株)製)、SF−8421(東レ・ダウコーニング・シリコーン(株)製)、FM−7721(チッソ(株)製)等が挙げられる。シリコーン系界面活性剤はノニオン系が特に望ましい。
【0036】
本発明において比表面積の小さな球状シリカは気相反応では得難く、液相反応により得られるものが望ましい。特にアルカリ珪酸塩水溶液をエマルションとして鉱酸と反応させる製造方法が好適に使用できる。具体的な製法としては、アルカリ珪酸塩水溶液を分散相として細粒状に分散させた油中水滴型(W/O型)エマルションを調製する(乳化工程)。エマルションの調製は乳化機を使用することが粒径調整の点から好ましい。エマルションの調製において、複数回乳化機で処理することにより、生成する球状シリカの粒度分布をシャープにすることができる。連続相形成用液体としては、アルカリ珪酸塩水溶液および鉱酸水溶液と反応せず、かつ、混和しない液体を用いる。その種類は、特に限定しないが、解乳化処理の面からは、沸点が100℃以上であり、比重が1.0以下であるオイルを使用することが好ましい。アルカリ珪酸塩水溶液とオイルの質量比は8:2〜2:8である。好ましくは8:2〜6:4である。
【0037】
上記の連続相形成用液体としてのオイルは、たとえば、n−オクタン、ガソリン、灯油、イソパラフィン系炭化水素油などの脂肪族炭化水素類、シクロノナン、シクロデカンなどの脂環族炭化水素類、トルエン、キシレン、エチルベンゼン、テトラリンなどの芳香族炭化水素類などを用いることができる。乳化安定性の観点からイソパラフィン系飽和炭化水素類が好ましい。
【0038】
乳化剤としては、W/O型エマルションの安定化機能を有するものであれば特に限定はなく、脂肪酸の多価金属塩・水難溶性のセルローズエーテルなどの親油性の強い界面活性剤を用いることができる。後処理の点からは、非イオン性界面活性剤を用いることが好ましい。具体例として、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレートなどのソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレートなどのポリオキシエチレンソルビタン脂肪酸エステル類、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノパルミテート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレートなどのポリオキシエチレン脂肪酸エステル類、ステアリン酸モノグリセリド、オレイン酸モノグリセリドなどのグリセリン脂肪酸エステル類などを挙げることができる。
【0039】
乳化剤の添加量は、乳化対象であるアルカリ珪酸塩水溶液に対して、0.05〜5質量%の範囲が適量である。また、各工程での処理を考慮すると0.5〜1質量%が好ましい。
【0040】
調製した油中水滴型(W/O型)エマルションを鉱酸水溶液と混合し、球状シリカゲルを凝固させる(凝固工程)。鉱酸濃度は不純物の抽出を考慮すると、15〜50質量%が望ましい。また、凝固後の硫酸濃度が10質量%以上になるように反応させると生成する球状シリカゲルはFe、Al等の金属元素が1ppm以下まで抽出され、極めて高純度の球状シリカゲルが得られる。鉱酸は硫酸、硝酸、塩酸が使用できる。コストの面で硫酸が最も望ましい。但し、一部の金属において硫酸塩では溶解度が低く、抽出性及び再析出防止を考慮すると液中濃度で0.5〜3%程度の硝酸または塩酸の添加が有効である。また、過酸化水素、過硫酸アンモニウム等、その他キレート剤を添加することにより、さらに高純度化できる。キレート等の添加により、U、Th等の放射性元素もそれぞれ1ppb以下に抑制できる。エマルションを鉱酸水溶液と混合する際は25℃程度の常温で可能である。球状シリカゲルが生成した後、加熱処理を施すことも不純物の抽出には有効であり、50〜120℃の範囲で加熱することが望ましい。さらには、抽出時間の短縮を考慮すると80〜100℃程度が望ましい。この加熱処理によりエマルションが解乳化され、液相からのシリカ分の分離が容易になる。得られた球状シリカゲルは純水もしくは超純水で洗浄し、付着したイオン性金属元素を洗い流す。尚、放射性元素の含有率が1ppb以下の高純度なアルカリ珪酸塩水溶液を用いることも高純度な球状シリカゲルの生成に有効である。
【0041】
次に生成した球状シリカゲルを乾燥させる(乾燥工程)。球状シリカゲル中には、なお水分が保持されている。この水分は、付着水と結合水とに分けられる。通常、付着水は100℃前後の温度で加熱すれば容易に除けるが、結合水は400℃以上の温度でも完全に除去することは困難である。付着水を除去するために乾燥処理を行い、そして、結合水を除去し、かつ、球状シリカゲルを緻密化させるために焼成処理を行う。
【0042】
乾燥及び焼成の工程において、乾燥時に静置状態で乾燥し、その状態で焼成した場合、一部の粒子間で焼結が生じ、粒径を増大させる原因となっていた。乾燥時もしくは乾燥後に解砕し、焼成することで粒子間の焼結を抑制することができ、焼成後においても粒径分布は最大粒子径が平均粒径の4倍以下である粗粒切れの良い粒径分布が維持できる。
【0043】
流動乾燥機は乾燥しながら、解砕されるため、さらに有効である。付着水を除去するための乾燥処理条件は、温度50〜500℃、実用的には100〜300℃の範囲とするのがよい。処理時間は、乾燥温度に応じて、1分間〜40時間の範囲で適宜選定すればよい。通常、10〜30時間で乾燥できる。また、乾燥後に解砕を行うことにより、乾燥及び焼成処理の際に球状シリカゲルを流動状態に保たなくても、粒子同士が焼結することなく焼成できる。平均粒径0.1〜100μmの球状シリカゲルを焼成するにあたり、乾燥後の解砕が粒子間焼結を防止するために有効である。
【0044】
焼成前の解砕には最大粒径の10倍以下の目開きを有するスクリーンが用いられる。好ましくは1〜5倍の目開きを有するスクリーンを使用することがよい。さらに好ましくは1〜3倍の目開きを有するスクリーンを使用することがよい。スクリーンを使用した解砕の仕方は特に限定しないが、振動篩や超音波篩を用いる方法や水平円筒状のスクリーンの内部に原料をフィードし、スクリーン内部に取り付けられたブレードを高速回転させることにより、連続的に解砕させる方法(例えば、ターボ工業製ターボスクリーナー)などが挙げられる。篩の材質は金属による汚染が無いものが好ましい。これを満足するために樹脂製の篩が好ましい。樹脂の種類は特に限定しないが、ポリエチレン、ポリプロピレン、ナイロン、カーボン、アクリル、ポリエステル、ポリイミド、フッ素系樹脂等が使用できる。解砕時の静電気を抑制するために、帯電性を抑制した樹脂が有効である。また、高湿下で作業することも可能である。また、若干の水分を添加することも可能である。
【0045】
また、解砕前原料の球状シリカゲルの最大粒径以下の篩目を有するスクリーンを用いることにより、解砕と分級を同時に行うことも出来る。原料の球状シリカゲルの粒径分布から篩上が10%に相当する粒径と同じ目開き、もしくはそれ以上の目開き有する篩が工業的に有用である。
【0046】
解砕後の焼成方法は特に限定しないが、石英等の容器中において、600〜1500℃の任意の温度で焼成できる。また、その他の方法として、流動焼成炉、ロータリーキルン、火炎焼成炉などを用いることもできる。場合によって、焼成後に極弱い凝集が見られることもあるが、再度スクリーンを用いて解砕することにより、粒子間焼結および凝集のない単分散状の焼成シリカ粒子が得られる。
【0047】
湿式法で得られた球状シリカゲルの表面には多数のシラノール基(Si−OH)が存在し、これが大気中の水分と結合して前記結合水となる。得られた球状シリカゲルを1000℃以上の温度で焼成処理することにより、シラノール基は除去することができる。この処理によって、粒子間で焼結の無い、比表面積の小さな緻密な球状シリカを得ることができる。焼成温度は高いほうがより緻密な粒子が得られ、樹脂配合時の流動性が良くなるため、好ましくは1100℃以上がよい。さらに表面のシラノールを極限まで低減させるためには1150℃以上の焼成が好ましい。
【0048】
焼成時間は焼成温度に応じて、1分間〜20時間の範囲で適宜選定すればよい。通常、2〜10時間で所定の比表面積まで下げることができる。焼成処理を行う際の雰囲気としては、酸素や炭酸ガスなどでも良いし、必要によっては窒素やアルゴンなどの不活性ガスを用いることもできる。実用的には空気とするのがよい。焼成処理を行う際に用いる装置としては、球状シリカゲルを静置した状態で処理する焼成炉を用いることができる。なお、球状シリカゲルを流動状態に保ちながら焼成処理する装置、たとえば、流動焼成炉・ロータリーキルン・火炎焼成炉などを用いることもできる。加熱源としては、電熱または燃焼ガスなどを用いることができる。焼成前の球状シリカゲルの水分含有量は特に規定しないが、焼成時の粒子間固結が生じないようにするために、出来る限り含水率を低減した球状シリカゲルを焼成することが好ましい。焼成後において再度解砕することも樹脂配合時の分散性の面で有効である。解砕方法は特に制限しないが、樹脂製スクリーンを用いることが望ましい。
【0049】
焼成した球状シリカを界面活性剤で処理する工程(表面処理工程)の処理方法は特に限定しないが、界面活性剤が均一に球状シリカ表面に処理することを考慮すると界面活性剤を溶剤に分散させ、球状シリカを浸漬させる方法が望ましい。溶剤は特に制限しないが、メタノール、エタノール、n−プロパノール、i−プロパノール、ブタノール、イソアミルアルコール、エチレングリコールおよびプロピレングリコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、n−ヘキサン、シクロヘキサン等の飽和炭化水素類、トルエン、キシレン等が使用できる。親水性の強い界面活性剤の場合、水に分散させ、処理することも可能である。高純度の表面改質球状シリカとしたい場合は超純水を用いることが好ましい。
【0050】
界面活性剤と溶剤の混合比率も特に制限しないが、1:1〜1:5000質量比の範囲で適宜選択すればよい。溶剤と界面活性剤の混合液に球状シリカを浸漬させる際は10〜80℃程度の温度で5分から10時間の範囲で処理できる。処理速度を考慮すると25〜50℃程度の温度で10分から3時間の範囲が望ましい。この浸漬処理により球状シリカ表面のシラノール基に選択的に界面活性剤が吸着される。
【0051】
浸漬処理後は溶剤を揮発させる。揮発させる温度は溶剤の種類により適宜選定できる。例えば、ヘキサンの場合は100g程度の球状シリカを処理するにあたり、80℃で2時間程度加熱処理をすることで溶剤を揮発させることができる。
【0052】
溶剤を揮発させた後、未反応の界面活性剤をシラノール基へより吸着させるため、熟成工程を設けても良い。熟成は80〜200℃の範囲で適宜選択できる。界面活性剤の変質等を考慮すると80〜150℃程度が望ましい。熟成後、凝集していることがあるため、再度解砕することが望ましい。解砕方法は特に制限しないが、樹脂製のスクリーンを用いることが望ましい。樹脂の種類は球状シリカの製造で前述した樹脂種が望ましい。スクリーンの目開きは球状シリカの最大粒径の10倍以下の目開きを有するスクリーンが好適である。好ましくは1〜5倍の目開きを有するスクリーンを使用することがよい。さらに好ましくは1〜3倍の目開きを有するスクリーンを使用することがよい。
【0053】
本発明による表面改質球状シリカはエポキシ樹脂を用いた封止材に好適に使用できる。即ち、本発明の表面改質球状シリカを30〜90%添加したエポキシ樹脂、硬化剤からなるエポキシ樹脂組成物は従来にない高い流動特性を有した封止材として使用できる。
【0054】
エポキシ化合物としては、特に限定するものでなく、単一成分でも、2成分以上を混合しても良い。エポキシ化合物の具体例としては、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、1,4−シクロヘキサンジメタノールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(3’,4’−エポキシシクロヘキシル)メチル−3,4−エポキシシクロヘキサンカルボキシレート、ε−カプロラクトン変性3,4−エポキシシクロヘキシルメチル3’,4’−エポキシシクロヘキサンカルボキシレート等を挙げることができる。硬化して得られる封止材硬化物の耐熱性、機械的強度の点からビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテルを用いるのが好ましい。
【0055】
本発明で使用する硬化剤としては、脂肪族ポリアミン類、脂環式脂肪族ポリアミン類、芳香族ポリアミン類、酸無水物類、フェノールノボラック類、ポリメルカプタン類等を挙げることができる。特に、皮膚刺激性が少なく、可使時間が長く、硬化物の熱特性、機械特性、電気特性に優れる点から酸無水物類を使用するのが好ましい。酸無水物としては、分子中に酸無水物基を1個以上有すれば特に限定するものでなく、単一成分でも、2成分以上を混合しても良い。
【0056】
酸無水物の具体例としては、ヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、3−メチルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、無水メチルナジック酸、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、グリセロールトリスアンヒドロトリメリテート、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物等が挙げられる。特に、エポキシ化合物と混合した際の流動性を考慮して、常温で液状の単官能酸無水物である、4−メチルヘキサヒドロ無水フタル酸、3−メチルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、無水メチルナジック酸等が好ましい。
【0057】
エポキシ化合物と、上記単官能酸無水物及び多官能酸無水物の配合比率は、特に限定するものではないが、全エポキシ基のモル数:全酸無水物基のモル数が、10:10〜10:6の範囲になるよう配合することが好ましい。この範囲を越えて酸無水物基が多いと、液状エポキシ樹脂封止材の硬化物の耐湿信頼性が低下する場合があり、酸無水物基の数がこの範囲に満たない場合、液状エポキシ樹脂封止材の硬化物のガラス転移温度が低下し、耐熱性が低下する場合がある。
【0058】
なお、本発明で使用する硬化剤としては、1種類の硬化剤に限定するものではなく、例えば酸無水物類硬化剤とポリアミン類、フェノールノボラック類硬化剤等を併用してもよい。
【0059】
本発明の封止用樹脂組成物には、必要に応じて、硬化促進剤、可塑剤、顔料、シランカップリング剤、レベリング剤、消泡剤等を配合してもよい。
【0060】
本発明で使用することができる硬化促進剤としては特に限定するものではなく、例えば、1−シアノエチル−2−エチル−4−メチルイミダゾール、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン化合物、トリエチレンジアミン、ベンジルジメチルアミン等の三級アミン化合物、トリアゾール化合物、有機金属錯塩、有機酸金属塩、四級アンモニウム塩等が挙げられる。これらは単独で用いても、2種類以上を併用してもよい。なお、イミダゾール化合物を用いると、液状封止樹脂の硬化物の耐熱性が向上して好ましい。
【0061】
可塑剤としては、シリコーン系ポリマー、アクリル系ポリマー等を挙げることができる。また、顔料としては例えば、カーボン、酸化チタン等が挙げられる。シランカップリング剤としては例えば、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、N−β(アミノメチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノメチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノメチル)γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等が挙げられる。
【0062】
特にエポキシ樹脂が常温で液状のタイプでは表面改質球状シリカの含有率が30〜80質量%で低粘度且つ高い隙間浸透性を有し、アンダーフィル材に好適に用いることができる。
【0063】
シリコーン系の界面活性剤に関しては比表面積が小さな球状シリカに処理する以外に、比表面積が小さな球状シリカとビスフェノールF型エポキシ樹脂との系で併用することにより、低粘度の液状の樹脂組成物が得られる。
【0064】
【実施例】
以下、実施例を示し、本発明を具体的に説明する。
【0065】
参考例1
1>球状シリカゲル粒子の調製
1−1)エマルションの調製
水ガラスとしてJIS3号水ガラスを濃縮し、25℃での粘度を350cpに調整したもの、連続相形成用液体としてイソパラフィン系炭化水素油(「アイソゾール400」、日本石油化学工業製)、乳化剤としてソルビタンモノオレート(「レオドールSP−O10、花王製」を使用した。水ガラス、アイソゾール400、レオドールSP−O10をそれぞれ20kg、7.5kg、0.18kg秤量した。各原料を混合し、攪拌機で粗攪拌した後、乳化機を用いて2980rpmの回転数で乳化させ、乳化液415gを採取した。
【0066】
1−2)球状シリカゲルの凝固・不純物抽出・洗浄処理
28%硫酸水溶液を575g調製し、室温で攪拌しながら、これに前述の乳化液を添加した。添加終了後、室温下でさらに40分間攪拌を続けた。次いで攪拌下で62%工業用硝酸40gを添加し、さらに20分間攪拌した後、攪拌下で100℃に加熱し、30分間保持した。この処理によって、乳濁状の反応液はオイル相(上層)と球状シリカゲルが分散した水相(下層)とに分離した。
【0067】
オイル相を除き、水相中の球状シリカゲルを常法により濾過・洗浄した。洗浄は0.01%硫酸水溶液で反応液を置換洗浄した後、純水を用い、洗液のpHが4以上になるまで繰り返した。ヌッチェを用いて、脱水し、球状シリカゲルを得た。
【0068】
2>球状シリカゲルの乾燥・解砕・焼成工程
得られた球状シリカゲルを温度120℃で20時間乾燥し、100gの乾燥球状シリカゲルを得た。この乾燥球状シリカゲルをポリエステル製目開き33μm篩で解砕し、石英製ビーカー(1リットル)に充填し、1150℃で6時間焼成した。
【0069】
焼成して得られた球状シリカについて分析したところ、Na、K、Liなどのアルカリ金属、Ca、Mgなどのアルカリ土類金属及びCr、Fe、Cuなど遷移金属の各元素の濃度は1ppm以下であり、また、UおよびThの放射性元素の合計は0.1ppb以下であった。得られた球状シリカについての各種の測定並びに観察結果を表1に示す。平均粒径は4.0μm、最大粒径は12μmであり、真比重は2.19であった。BET法で測定した比表面積は0.7m/gで理論値の1.0倍であった。また、電子顕微鏡写真より真球度が0.9以上である粒子の含有率が90%以上である球状シリカで、表面の平滑性も良好であった。
【0070】
球状シリカの粒径はコールター社製LS130を用いて測定した。また、比表面積は日機装のベータソーブ4200を用いて測定した。
【0071】
樹脂配合粘度及び隙間浸透性の測定の際にエポキシ樹脂はジャパンエポキシレジン製のエピコート815と東都化成製のエポトートYDF−8170Cを用いた。配合比はフィラー:エポキシ樹脂=70:30質量比とした。
【0072】
樹脂配合粘度は東機産業製RE−80Rを用いて、50℃で測定した。隙間浸透性はガラス基板を用いて75μmの隙間を作り、その隙間を2cm浸透する時間を測定した。隙間浸透性は110℃で測定した。
【0073】
実施例1
球状シリカへの界面活性剤処理工程
界面活性剤としてFZ−2222(日本ユニカー製)0.6gとトルエン100gを混合し、30分間攪拌した。この界面活性剤とトルエンの混合溶液に上記参考例1で得られた球状シリカを100g添加し、さらに30分間攪拌した。次にロータリーエバポレーターを用いて、溶剤を除去し、さらに120℃で2時間熟成した。熟成後はポリエステル製33μm篩で解砕した。参考例1と同様に各種物性を測定した。
【0074】
実施例2
界面活性剤の添加量を0.2質量%とした以外は実施例1と同様にして表面改質球状シリカを製造し、各種物性を測定した。
【0075】
実施例3
界面活性剤にチッソ製FM−7721を用いた以外は実施例1と同様にして表面改質球状シリカを製造し、各種物性を測定した。
【0076】
比較例1
(a)シリカ粉の合成
攪拌機付き反応槽に、硫酸水溶液(HSO:23.7質量%)1200gをとり、これにシュウ酸(二水塩:市販品)2g、35%過酸化水素水(市販品)5gを添加溶解した。この硫酸水溶液に、JIS3号珪酸ソーダ(NaO:9.2質量%、SiO:28.5質量%)600gを約20分間を要して1mmφのノズル先端より連続的に添加し、シリカの沈殿を生成させた。この間、反応槽を充分に攪拌し、また、液温を25〜30℃に保持した。反応終了後スラリーを30℃で30分間攪拌したのち80℃まで昇温し、80℃で2時間攪拌して熟成をおこなった。
【0077】
この熟成終了スラリーからのシリカ沈殿を濾過、洗浄をくり返した後、分離回収した。分離回収したシリカを攪拌機付き酸処理槽にとり、これに水と硫酸を加えてスラリー全量1.7l、液中の硫酸濃度が16.6質量%となるように調製し、更にシュウ酸2g、35%過酸化水素水5gを添加して攪拌しながら85℃で2時間加熱して酸処理した。このスラリーからシリカを濾過分離し、以下常温で水によるリパルプ洗浄、固液分離をおこない、105℃、2時間乾燥した。得られた顆粒状シリカゲルを分析した結果、U:<0.1ppb、Th:0.2ppb、Na:0.36ppm、Fe:0.35ppm、含水率7質量%であった。
【0078】
得られた顆粒状シリカゲルを分級機能を有するマジャック型ジェットミルで粉砕して、平均粒径3.9μmの原料シリカを調製した。
【0079】
(b)溶融球状化
次いで、中心に粉体吐出孔、その中心軸上にガス炎孔のある構造の溶融バーナーを設置した溶融炉内に原料シリカを供給して次のような条件で操業した。
【0080】
すなわち、プロパン100l/M、酸素440l/Mからなるガス炎を形成させて、バーナーの熱負荷を13.5万kcal/Hに設定したところで、この中心の粉体吐出孔から粉砕シリカ20.0kg/hrをキャリアガスである酸素60l/Mと共に分散させて供給し、シリカの溶融を行った。なお、このときの溶融炉の熱負荷は107万kcal/m・hrであった。このようにして溶融された球状シリカは空気で冷却した後、サイクロンおよびバグフィルターで回収した。
【0081】
実施例1と同様にして各種物性を測定した。
【0082】
比較例2
球状シリカ粒子に比較例1の溶融球状シリカを用いて実施例1と同様にして表面改質球状シリカを製造し、各種物性を測定した。
【0083】
参考例1、実施例1〜3および比較例1、2の測定値を表1に示す。
【0084】
【表1】
Figure 2004182479
【0085】
【発明の効果】
本発明の方法によれば、従来技術に比べ、樹脂配合時に極めて高い流動特性を示す表面改質球状シリカを得ることができる。特に狭い隙間に流し込むような液状封止材用充填材として好適に用いることができる。また、本発明の方法で得られた表面改質球状シリカは放射性元素の含有率を極めて低位に抑制された高純度な表面改質球状シリカであるため、電子部品等にも好適に用いることができる。

Claims (6)

  1. 以下の項目を満足する平均粒径が0.1〜20μmの表面改質球状シリカ。
    (a)比表面積が理論値の3倍以下
    (b)粒子表面に界面活性剤を0.01〜10質量%包含
  2. 界面活性剤がシリコーン系界面活性剤である請求項1記載の表面改質球状シリカ。
  3. シリコーン系界面活性剤が非イオン性界面活性剤である請求項2記載の表面改質球状シリカ。
  4. 以下の工程を含む表面改質球状シリカの製造方法。
    (1)アルカリ珪酸塩水溶液を分散相として細粒状に分散させた油中水滴型(W/O型)エマルションを調製する乳化工程
    (2)油中水滴型(W/O型)エマルションを鉱酸水溶液と混合し、球状シリカゲルを凝固させる凝固工程
    (3)球状シリカゲルを600〜1500℃で焼成する焼成工程
    (4)焼成した球状シリカを界面活性剤で処理する表面処理工程
  5. エポキシ樹脂および/またはシリコーン樹脂に、請求項1乃至3いずれかに記載の表面改質球状シリカを30〜90質量%配合することを特徴とする封止用樹脂組成物。
  6. 以下の成分からなることを特徴とする封止用樹脂組成物。
    (A)ビスフェノールF型エポキシ樹脂
    (B)シリコーン系界面活性剤
    (C)比表面積が理論比表面積の3倍以下且つ、平均粒径0.1〜20μmの球状シリカ
JP2002347637A 2002-11-29 2002-11-29 表面改質球状シリカ及びその製造方法、並びに半導体封止用樹脂組成物 Pending JP2004182479A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347637A JP2004182479A (ja) 2002-11-29 2002-11-29 表面改質球状シリカ及びその製造方法、並びに半導体封止用樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347637A JP2004182479A (ja) 2002-11-29 2002-11-29 表面改質球状シリカ及びその製造方法、並びに半導体封止用樹脂組成物

Publications (1)

Publication Number Publication Date
JP2004182479A true JP2004182479A (ja) 2004-07-02

Family

ID=32750764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347637A Pending JP2004182479A (ja) 2002-11-29 2002-11-29 表面改質球状シリカ及びその製造方法、並びに半導体封止用樹脂組成物

Country Status (1)

Country Link
JP (1) JP2004182479A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182561A (ja) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd 電子部品用液状樹脂組成物、及びこれを用いた電子部品装置
KR101321302B1 (ko) 2011-11-15 2013-10-28 삼성전기주식회사 인쇄회로기판 형성용 에폭시 수지 조성물, 이로 제조된 인쇄회로기판, 및 상기 인쇄회로기판의 제조 방법
CN106517214A (zh) * 2015-09-14 2017-03-22 富士施乐株式会社 二氧化硅颗粒以及二氧化硅颗粒的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182561A (ja) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd 電子部品用液状樹脂組成物、及びこれを用いた電子部品装置
KR101321302B1 (ko) 2011-11-15 2013-10-28 삼성전기주식회사 인쇄회로기판 형성용 에폭시 수지 조성물, 이로 제조된 인쇄회로기판, 및 상기 인쇄회로기판의 제조 방법
CN106517214A (zh) * 2015-09-14 2017-03-22 富士施乐株式会社 二氧化硅颗粒以及二氧化硅颗粒的制备方法
CN106517214B (zh) * 2015-09-14 2022-01-11 富士胶片商业创新有限公司 二氧化硅颗粒以及二氧化硅颗粒的制备方法

Similar Documents

Publication Publication Date Title
JP2003238141A (ja) 表面改質球状シリカ及びその製造方法、並びに半導体封止用樹脂組成物
KR100793503B1 (ko) 비공성 구상 실리카 및 그의 제조 방법
JP6480863B2 (ja) 解砕シリカ粒子の製造方法
JP2009519197A (ja) 高充填の遷移酸化アルミニウム含有分散液
TW201202144A (en) Method for producing spherical alumina powder
TWI809042B (zh) 熔融球狀二氧化矽粉末及其製造方法
JP4043103B2 (ja) 溶融球状シリカ及びその製造方法
JPWO2009017058A1 (ja) シリカ粉末、その製造方法及びそれを用いた組成物
JP2004169081A (ja) 金属粉及びその製造方法
JP6440551B2 (ja) シリカ粒子の製造方法
JPH0769617A (ja) 高純度球状シリカおよびその製造方法
JP4428618B2 (ja) 表面改質球状シリカ及びその製造方法、並びに封止用樹脂組成物
JP5480497B2 (ja) 表面封止シリカ系粒子の製造方法、表面封止シリカ系粒子および該粒子を混合してなる半導体封止用樹脂組成物
WO2022209768A1 (ja) シリカ粉末及びその製造方法
KR101394808B1 (ko) 비정질 실리카질 분말, 그 제조 방법 및 반도체 봉지재
JP2004292250A (ja) 表面改質球状シリカ及びその製造方法及び半導体封止用樹脂組成物
JP5116968B2 (ja) 球状アルミナ粉末の製造方法
JP2004182479A (ja) 表面改質球状シリカ及びその製造方法、並びに半導体封止用樹脂組成物
JP4195243B2 (ja) 高純度シリカ粉末の製造方法
JP4006220B2 (ja) 表面改質球状シリカ、その製造方法及び半導体封止材用樹脂組成物
JP2016079061A (ja) 無機フィラー及びその製造方法、樹脂組成物、及び成形品
JP2005054131A (ja) 吸着性シリカ充填材及びその製造方法並びに封止用樹脂組成物
WO2022210260A1 (ja) 球状無機質粉末及び液状封止材
JP5506883B2 (ja) 球状アルミナ粉末
JP2005054129A (ja) 吸着性シリカ充填材及びその製造方法並びに封止用樹脂組成物。