JP2004175125A - ショックアブソーバ作動油温度の高温化を抑制する減衰力特性制御装置および減衰力関連量取得プログラム - Google Patents

ショックアブソーバ作動油温度の高温化を抑制する減衰力特性制御装置および減衰力関連量取得プログラム Download PDF

Info

Publication number
JP2004175125A
JP2004175125A JP2002339868A JP2002339868A JP2004175125A JP 2004175125 A JP2004175125 A JP 2004175125A JP 2002339868 A JP2002339868 A JP 2002339868A JP 2002339868 A JP2002339868 A JP 2002339868A JP 2004175125 A JP2004175125 A JP 2004175125A
Authority
JP
Japan
Prior art keywords
damping force
related amount
oil temperature
hydraulic oil
shock absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002339868A
Other languages
English (en)
Other versions
JP4110943B2 (ja
Inventor
Kouichi Tomita
晃市 富田
Kazuo Yoshida
和夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002339868A priority Critical patent/JP4110943B2/ja
Publication of JP2004175125A publication Critical patent/JP2004175125A/ja
Application granted granted Critical
Publication of JP4110943B2 publication Critical patent/JP4110943B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

【課題】ショックアブソーバの作動油温度の高温化を抑制するとともに、車両の乗り心地および操縦安定性を可及的に良好な状態に保つ減衰力制御を行う。
【解決手段】走行中の車両前後のばね上部上下加速度,サスペンション部相対変位等のデータに基づき、測定することが不可能な状態量が状態量推定部164においてカルマンフィルタにより推定される。最適減衰力特性取得部168において、実測あるいは推定等により取得された状態量と作動油温度に基づき、乗り心地と操縦安定性とを良好に保つ第1フィードバックゲインと、作動油温度上昇を抑制しながら乗り心地と操縦安定性とを良好に保つ第2フィードバックゲインとを取得する。それら2つのフィードバックゲインを、作動油温度で重み付け加重平均することにより、作動油温度の上昇とともに作動油温度上昇抑制の度合いが大きくなる第3フィードバックゲインを取得する。その第3フィードバックゲインに基づいて取得された目標減衰力にしたがって減衰力特性の制御を行う。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
本発明は、車両のばね上部とばね下部とを互いに連結するサスペンションに含まれるショックアブソーバの減衰力特性制御装置に関するものである。
【0002】
【従来の技術】
車両走行時には、路面の凹凸に対応してばね上部およびばね下部が振動し、サスペンションが作動する。サスペンションに含まれるスプリングが伸縮してばね上部とばね下部との相対移動を許容する一方、ショックアブソーバがその相対移動の運動エネルギを熱エネルギに変換し、車体の振動を抑制するとともに車輪の接地性を向上させるのである。この車体の振動を適切に抑制して車両の乗り心地を改善し、車輪の接地性を向上させて操縦安定性を改善するための減衰力特性の制御についての研究が多く行われている。
【0003】
例えば、非特許文献1において、自動車用セミアクティブサスペンションに外乱包含双線形最適制御を適用した場合の効果がシミュレーションによって確認されている。外乱包含制御は、相対座標系で記述されているシステムに外乱のダイナミクスを導入した拡大系を構成して制御するものである。すなわち、外乱のダイナミクスの特性を仮定し、その仮定された外乱をシステムにフィードフォワードして制御するものであり、フィードフォワード併合制御とも称される。双線形最適制御は、減衰係数が可変であるセミアクティブサスペンションが減衰係数と速度の積を含む双線形システムとなることに着目し、最適制御則を双線形に拡張したものである。このような外乱包含双線形最適制御を行うことにより、減衰力特性制御を行わない場合に比べて、接地性の悪化を最小限に抑えながら、乗り心地に影響を及ぼすばね上部の上下加速度およびピッチ加速度を大幅に低減できることが明らかにされた。
【0004】
しかし、悪路を走行するとばね上部とばね下部との相対変位や変位速度が大きいため、ショックアブソーバ内での発熱量が多くなり、作動油の温度が上昇する。場合によっては、作動油の温度が高くなりすぎて、ショックアブソーバの機能が低下する事態が発生することがある。例えば、作動油の温度が極めて高くなると、ショックアブソーバの各部に配置されたシール部材のシール機能が低下したり、可変絞り機構内の電磁アクチュエータの磁気特性の変化に伴う同アクチュエータの作動不良が生じたりすることがあるのである。
【0005】
こうした悪路走行時における作動油の高温化には、特許文献1に示すように、作動油の温度が設定値以上になった場合に、ショックアブソーバの減衰力を最小にして発熱を抑制することで対処することが提案されている。しかし、減衰力を最小にしたのでは作動油の温度上昇は抑制できても、車両の乗り心地(車体の振動抑制)や操縦安定性(車輪の接地性等)が犠牲になってしまう。
【0006】
【特許文献1】
特開2002−195338号公報
【特許文献2】
特開平7−117437号公報
【特許文献3】
特開平7−117442号公報
【非特許文献1】
岡本,吉田,「自動車用セミアクティブサスペンションの外乱包含双線形最適制御」,日本機械学会論文集(C編),日本機械学会,2000年10月,66巻,650号,p.3297−3304
【0007】
【発明が解決しようとする課題,課題解決手段および効果】
本発明は、以上の事情を背景とし、車両走行時(特に悪路走行時)において減衰力特性を制御することにより乗り心地と操縦安定性との少なくとも一方を良好に保つとともに、ショックアブソーバ内部の作動油温度の高温化を抑制することを課題としてなされたものであり、本発明によって、下記各態様の減衰力特性制御装置および減衰力関連量取得プログラムが得られる。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも本発明の理解を容易にするためであり、本明細書に記載の技術的特徴およびそれらの組合わせが以下の各項に記載のものに限定されると解釈されるべきではない。また、一つの項に複数の事項が記載されている場合、それら複数の事項を常に一緒に採用しなければならないわけではない。一部の事項のみを選択して採用することも可能なのである。
【0008】
なお、以下の各項において、(1)項が請求項1に相当し、(4)項と (7)項とを合わせたものが請求項2に、(2)項,(3)項,(10)項,(11)項を合わせたものが請求項3に、(12)項と(13)項とを合わせたものが請求項4に、(18)項が請求項5に、(23)項,(24)項,(25)項を合わせたものが請求項6に、(27)項が請求項7にそれぞれ相当する。
【0009】
(1)車両のばね上部材とばね下部材とを互いに連結するサスペンションにおけるショックアブソーバの減衰力特性を制御する減衰力特性制御装置において、
前記ショックアブソーバ内部の作動油の温度を取得する作動油温度取得手段と、
車両の乗り心地と操縦安定性との少なくとも一方を良好に保つ第1減衰力関連量と、前記少なくとも一方を良好に保つとともに前記作動油温度の上昇を抑制する第2減衰力関連量とで規定される範囲内において、前記作動油温度取得手段によって取得された前記作動油温度に適した減衰力関連量である第3減衰力関連量を取得する減衰力関連量取得手段と
を設けたことを特徴とする減衰力特性制御装置。
【0010】
減衰力関連量はショックアブソーバで発生させるべき減衰力に関連する量であり、減衰力自体は勿論、それに基づいて減衰力を取得し得る量や、その量を制御すれば結果的に減衰力を制御し得る量等を含む。また、「第1減衰力関連量と第2減衰力関連量とで規定される範囲」には、第1減衰力関連量自体および第2減衰力関連量自体も含まれる。
乗り心地が良好な状態は、例えば、制御を行わない場合に比べて、ばね上部の上下動や前後ピッチ動が少ない状態を意味し、操縦安定性が良好な状態は、例えば、タイヤ部の変位が少なく、接地性が良い状態等を意味する。乗り心地と操縦安定性とのどちらか一方を良好に保つことと、両方を良好に保つこととの両方が可能である。
第2減衰力関連量において、前記少なくとも一方の制御に対して、温度上昇抑制の制御の度合いを予め設定したり、路面状態等に応じて変更したりすることも可能である。
第3減衰力関連量が上記の範囲内とされることで、車両の乗り心地と操縦安定性との少なくとも一方を可及的に良好に保つとともに、温度上昇抑制の必要性に応じて抑制の度合いを変えて制御することができる。
【0011】
(2)前記第1減衰力関連量を取得する第1減衰力関連量取得手段を含む (1)項に記載の減衰力特性制御装置。
(3)前記第2減衰力関連量を取得する第2減衰力関連量取得手段を含む(1)項または(2)項に記載の減衰力特性制御装置。
(4)前記第3減衰力関連量を取得する第3減衰力関連量取得手段を含む(1)項ないし(3)項のいずれかに記載の減衰力特性制御装置。
【0012】
(5)前記第3減衰力関連量取得手段が、前記作動油の温度が高い場合に、低い場合と比較して、作動油の温度上昇を抑制する度合いが大きくなるように前記第3減衰力関連量を取得するものである(4)項に記載の減衰力特性制御装置。
作動油温度が低い時は、温度上昇を抑制することは不可欠ではなく、作動油温度が高いほど、温度上昇の抑制の度合いが大きくされることが望ましい。温度上昇を抑制する段階は2段階以上とされるのであり、3段階以上の多段階とされること、あるいは連続的に変化させられることが望ましい。温度上昇を抑制する度合いが多段階的あるいは連続的に変化させられれば、より作動油温度に適した制御が可能となる。また、乗り心地や操縦安定性が急激に変化することを回避することができる。
【0013】
(6)前記第3減衰力関連量取得手段が、前記作動油の温度上昇を抑制する度合いを3段階以上の多段階または連続的に変化させる減衰力関連量を取得するものである(5)項に記載の減衰力特性制御装置。
(7)前記第3減衰力関連量取得手段が、前記第1減衰力関連量と前記第2減衰力関連量とのそれぞれを前記作動油温度に基づく重み付けをした加重平均値に相当するものを前記第3減衰力関連量として取得するものである(4)項ないし(6)項のいずれかに記載の減衰力特性制御装置。
重み付けには、一方が0で他方が全てになる場合も含まれる。
第3減衰力関連量を取得する際には、第1減衰力関連量と第2減衰力関連量とを個別に求めてから、それらを上記のように加重平均してもよく、また、第1減衰力関連量と第2減衰力関連量とを求めることなしに、直接第3減衰力関連量を求めてもよい。
【0014】
(8)前記第1,2,3減衰力関連量の少なくとも1つが、減衰力を制御するためのフィードバックゲインである(1)項ないし(7)項のいずれかに記載の減衰力特性制御装置。
(9)前記第1減衰力関連量を取得する第1減衰力関連量取得手段および前記第2減衰力関連量を取得する第2減衰力関連量取得手段を含み、それら第1,2減衰力関連量取得手段が、外乱包含双線形最適制御理論によって前記第1,2減衰力関連量を取得するものである(1)項,(4)項ないし(8)項のいずれかに記載の減衰力特性制御装置。
【0015】
(10)前記第1減衰力関連量取得手段が、乗り心地と操縦安定性との少なくとも一方に関連する評価指標と、減衰力の評価指標との2乗和を最小にするフィードバックゲインを前記第1減衰力関連量として取得するものである (8)項または(9)項に記載の減衰力特性制御装置。
本発明において、評価指標は減衰力特性制御により向上させようとする車両の特性(乗り心地,操縦安定性等),減衰力の大きさ等を表す関数であり、それらの2乗和を可及的に小さくするようにフィードバックゲインを決定することで、例えば、乗り心地を向上させることができる。乗り心地に関連する評価指標とは、例えば、ばね上部の上下速度,ピッチ速度等の乗り心地に影響を与える要素を少なくとも1つ含む関数であり、その値が小さくなるとともに乗り心地が良くなる。操縦安定性に関連する評価指標とは、例えば、接地性に関連性のあるタイヤ部相対変位等の要素を少なくとも1つ含む関数である。このような関数の例を挙げると、後に示す式(5−1)の括弧内の第1項は、乗り心地と操縦安定性との少なくとも一方に関連する評価指標の2乗に重み関数を乗じたものである。
それぞれの評価指標の2乗に重み付けをしてその重みを変更することにより、乗り心地と操縦安定性との少なくとも一方の向上と、減衰力低減とのどちらをどの程度重視するかを設定することができる。
なお、第1関連量を取得するための式は、例えば、後に示す式(5−10)等があり、その式(5−10)は式(5−1)に基づいて求められる。
(11)前記第2減衰力関連量取得手段が、乗り心地と操縦安定性との少なくとも一方に関連する評価指標,減衰力の評価指標およびピストン速度の評価指標の2乗和を最小にするフィードバックゲインを前記第2減衰力関連量として取得するものである (8)項または(10)項に記載の減衰力特性制御装置。
評価関数については、上記(11)項に関する説明を参照。
上記3つの評価指標の2乗に重み付けをしてその重みを変更することにより、乗り心地および操縦安定性の少なくとも一方の向上,減衰力低減,ピストン速度低減のうちどれをどの程度重視するかを設定することができる。
減衰力はショックアブソーバ内の作動油がオリフィスを通過する際の流体摩擦によって生じるため、減衰力が大きければ流体摩擦も大きくなる。従来は、減衰力の評価指標は流体摩擦による発熱を抑制する評価指標として捉えられていなかったが、減衰力の評価指標は流体摩擦の評価指標の意味合いを持っており、流体摩擦による発熱を抑制するための評価指標と捉えることができる。しかしながら、減衰力の評価指標、すなわち流体摩擦の評価指標に対する重み付けを大きくして、流体摩擦による発熱を抑制する制御を行っても、発熱の抑制は不十分であった。それに対して、ピストン速度は、ピストン等とアウタシェル等との摺動摩擦による発熱と、オリフィスにおける作動油の流体摩擦による発熱とに影響を及ぼすため、発熱を効果的に抑制する制御を行うことができる。ピストン速度の評価指標はショックアブソーバの発熱の評価指標ともなる。なお、減衰力の評価指標は第1の発熱の評価指標,ピストン速度の評価指標は第2の発熱の評価指標と捉えることもできる。
第2関連量を取得するための式は、例えば、後に示す式(6−6)等があり、その式(6−6)は式(6−1)に基づいて求められる。
【0016】
(12)前記第3減衰力関連量取得手段が、次式によって前記第3減衰力関連量であるF(θ(t))およびF(θ(t))を取得するものである (8)項ないし(11)項のいずれかに記載の減衰力特性制御装置。
【0017】
【数2】
Figure 2004175125
【0018】
数式2に示される各式には番号を付してあるが、これは実施形態との対応を分かり易くするためである。また、他の数式についても同様である。
【0019】
(13)減衰力取得手段を含み、その減衰力取得手段が制御目標となる減衰力を次式によって取得するものである(12)項に記載の減衰力特性制御装置。
【0020】
【数3】
Figure 2004175125
【0021】
実施形態における式(7−2)では、状態量であるxおよびWの成分に推定された値を含むことを意味する「^(ハット)」が付されている。数式3のxおよびWには「^」が付されていないが、実測値,実測値から演算により求められた値だけで制御目標となる目標減衰力(あるいは最適減衰力,減衰力制御入力)を求めてもよいし、推定値のみ、あるいは実測値等と推定値とを含む状態量から目標減衰力を求めてもよい。一方、状態量に「^」が付されている場合は、その状態量の成分に推定値が含まれることを示すが、実測値等から目標減衰力を取得することも可能である。また、他の数式についても同様である。
【0022】
(14)状態量推定手段を含み、前記式(7−2)の状態量の少なくとも一部として、前記状態量推定手段による推定値が用いられる(13)項に記載の減衰力特性制御装置。
状態量には、前後のサスペンションの伸縮によるばね上部と前後のばね下部との相対変位および相対速度、路面に接地している前後のタイヤの下部が変形することによる前後のばね下部と路面との相対変位および相対速度であるタイヤ部相対変位および相対速度、前後のタイヤが接地しているそれぞれの路面から受ける外乱である前後の路面外乱の速度および加速度がある。
実測できない状態量あるいは実測値から演算によって得られない状態量を推定することにより、制御する目標となる減衰力である目標減衰力を求めることができる場合がある。
【0023】
(15)前記状態量推定手段が、車両前後のばね上部の上下加速度に基づき前記状態量の少なくとも一部を推定する手段を含む(14)項に記載の減衰力特性制御装置。
(16)前記状態量推定手段が、ばね上部と前後のばね下部との相対変位および相対速度に基づき前記状態量の少なくとも一部を推定する手段を含むことを特徴とする(15)項に記載の減衰力特性制御装置。
車両前後のばね上部の上下加速度と、ばね上部と前後のばね下部との相対変位および相対速度とに基づいて前記状態量の少なくとも一部を推定すれば、ばね上部の上下加速度のみに基づいて推定するよりも推定の精度が高くなる。
【0024】
(17)前記状態量推定手段が、次式に示す外乱包含双線形最適制御システムに対するカルマンフィルタを含む(14)項ないし(16)項のいずれかに記載の減衰力特性制御装置。
カルマンフィルタによって、制御対象を乱す雑音の影響をあまり受けずに少なくとも一部の状態量を推定することが可能である。
【0025】
【数4】
Figure 2004175125
【0026】
(18)車両のばね上部材とばね下部材とを互いに連結するサスペンションにおけるショックアブソーバの減衰力特性を制御する減衰力特性制御装置において、
車両の乗り心地と操縦安定性との少なくとも一方を良好に保つとともに、前記ショックアブソーバ内部の作動油の温度上昇を抑制する減衰力関連量を取得する油温上昇抑制減衰力関連量取得手段を設けたことを特徴とする減衰力特性制御装置。
悪路を走行する際等に、単に作動油温度上昇を抑制してショックアブソーバの減衰力特性を制御する場合には乗り心地と操縦安定性とが犠牲になるが、本項の態様によれば、乗り心地と操縦安定性との少なくとも一方を犠牲にすることを可及的に回避しつつショックアブソーバの作動油温度の上昇を抑制することができる。
乗り心地と操縦安定性との少なくとも一方の向上と、発熱抑制とのどちらをどの程度重視するかを予め設定したり、路面状態等に応じて変更したりすることが可能である。
前記(15)項または(16)項のいずれかに記載された特徴は、本項にも適用可能である。
【0027】
(19)前記油温上昇抑制減衰力関連量取得手段が、乗り心地と操縦安定性との少なくとも一方に関連する評価指標,減衰力の評価指標およびピストン速度の評価指標の2乗和の最小値を求めることにより油温上昇抑制減衰力関連量を取得する手段を含む(18)項に記載の減衰力特性制御装置。
上記(11)項に関する説明が、本項にも当てはまる。
上記の評価指標の2乗に重み付けをしてその重みを変更することにより、乗り心地と操縦安定性との少なくとも一方の向上,減衰力の低減,ピストン速度低減のうちどれをどの程度重視するかを設定することができる。
【0028】
(20)前記油温上昇抑制減衰力関連量取得手段が、式(6−5)によって油温上昇抑制減衰力関連量を取得するものである(18)項または(19)項に記載の減衰力特性制御装置。
【0029】
【数5】
Figure 2004175125
【0030】
(21)状態量推定手段を含み、前記式(6−5)の状態量の少なくとも一部として、前記状態量推定手段による推定値が用いられる(20)項に記載の減衰力特性制御装置。
【0031】
(22)前記状態量推定手段が、式(6−7)に示す外乱包含双線形最適制御システムに対するカルマンフィルタを含む(20)項または(21)項に記載の減衰力特性制御装置。
前記(16)項に関する説明は、本項にもあてはまる。
【0032】
【数6】
Figure 2004175125
【0033】
(23)前記ショックアブソーバの作動油の温度を取得する作動油温度取得手段を含むことを特徴とする(18)項ないし(22)項のいずれかに記載の減衰力特性制御装置。
(24)前記作動油温度取得手段が作動油温度を測定する作動油温度測定手段と作動油温度を推定する作動油温度推定手段との少なくとも一方を含むことを特徴とする(1)項または(23)項に記載の減衰力特性制御装置。
作動油温度測定手段は作動油の温度を測定する温度センサ,作動油の温度と関連して温度が変動する部分の温度を測定する温度センサ等を含む。
【0034】
(25)前記作動油温度取得手段が前記作動油温度推定手段を含み、その作動油温度推定手段が少なくとも前記ショックアブソーバ内部のピストン等とショックアブソーバ内壁等との摺動摩擦による発熱を考慮して作動油温度を推定するものであることを特徴とする(24)項に記載の減衰力特性制御装置。
作動油温度推定手段が摺動摩擦による発熱に加え、前記ショックアブソーバのオリフィスにおける作動油の流体摩擦による発熱も考慮して作動油温度を推定することが望ましい。さらに、他の要素を考慮して作動油温度を推定することも可能である。摺動摩擦は、例えば、シール部等においても発生する。
(26)前記作動油温度推定手段が、熱貫流による放熱と熱放射による放熱とを考慮して作動油温度を推定するものであることを特徴とする(25)項に記載の減衰力特性制御装置。
【0035】
(27)車両のばね上部材とばね下部材とを互いに連結するサスペンションにおけるショックアブソーバの減衰力特性を制御するための目標減衰力を取得するために用いられる減衰力関連量を取得する減衰力関連量取得プログラムであって、車両の乗り心地と操縦安定性との少なくとも一方を良好に保つとともに、前記ショックアブソーバ内部の作動油の温度上昇を抑制する減衰力関連量である油温上昇抑制減衰力関連量を取得する油温上昇抑制減衰力関連量取得ステップを含むことを特徴とする減衰力関連量取得プログラム。
前記(18)項ないし(22)項のいずれかに記載された特徴は、本項にも適用可能である。
減衰力関連量については、前記(1)項に関する説明が本項にもあてはまる。
本項に記載のプログラムが、コンピュータにより読み取り可能な状態で記録媒体に記録される態様も本発明の一実施態様である。特に取り外し可能なもの(FD:フレキシブルディスク,CD−ROM等:コンパクトディスク等,DVD:デジタル・ビデオ・ディスク,HD:磁気ディスク記憶装置,MO:光磁気ディスク,不揮発メモリ等)に記録されることが望ましい。
【0036】
【発明の実施の形態】
本発明の一実施形態である減衰力最適制御システムについて説明する。図1は、減衰力最適制御システムを含む電子制御式エアサスペンションシステムのブロック図を示す。このシステムは、フロント右(FR)サスペンション20,フロント左(FL)サスペンション22,リア右(RR)サスペンション24,リア左(RL)サスペンション26の4つのサスペンションを含み、それら等によって車体(図6においてばね上部30に該当する)と4つの車輪(FR,FL,RR,RL)とを接近・離間可能に連結している。
【0037】
車体30には、サスペンション20,22,24,26が取り付けられた位置付近の上下加速度を検出する加速度センサ40,42,44,46(FR,FL,RR,RL)と、各サスペンション20,22,24,26における車体と車輪との相対変位を検出する4つの変位センサ60,62,64,66(FR,FL,RR,RL)とが、それぞれ各サスペンションの近傍に設けられている。加速度センサ40,42,44,46としては、例えば、加速度により発生するセンサチップの歪みから加速度を検出するものを採用可能であり、変位センサ60,62,64,66としては、例えば、2本の抵抗体上を、それらの抵抗体を導通させるブラシが摺動することにより変化する電圧から変位を検出する市販のものを採用可能である。
【0038】
サスペンション20について代表的に説明する。サスペンション20は線形のばね定数を有する弾性部材としてエアスプリング70を備えている。サスペンション20の下部にはショックアブソーバ74が設けられている。そのショックアブソーバ74は、減衰力特性が9段階に切換可能なもので、「セルシオ」の商品名で市販されている車両に搭載されており、「CELSIOR 新型車解説書 UCF3#系 2000年8月トヨタ自動車株式会社発行」の2−34ページに記載されているものとほぼ同じである。
【0039】
ショックアブソーバ74の外壁であるアウタシェル76に囲まれた内部を図2に示す。実線で示された矢印はサスペンション20が伸びる時の作動油の流れを示し、点線で示された矢印は縮む時の作動油の流れを示す。この図において、作動油はピストン102に設けられたハード用バルブ106と液通路選択部110に設けられたソフト用バルブ114との両方を通過できるため、減衰力は小さい状態となる。一方、図3に示す状態では作動油はハード用バルブ106しか通過できず、減衰力の大きな状態となる。その減衰力特性の変更は、ロータリーバルブ120がロッドガイド122の中心の貫通穴を通るコントロールロッド124を介してステップモータ128(図1)により必要な角度回転させられることにより、作動油が通過する液通路の種類,数等が変更されることによりなされる。なお、ステップモータ128は各サスペンション20,22,24,26に設けられている。
【0040】
図4にステップモータ128の回転角度位置を示す。このように、ステップモータ128が15度ずつ回転させられることによって減衰力特性の段数が1段ずつ変化して9段階の減衰力特性が得られる。なお、減衰力最適制御の効果を高めるには減衰力特性の切換段階数が3段階以上の多段階であることが望ましい。切換段階数が多いほど減衰力特性制御の効果が発揮されやすいが、目標とする減衰力特性制御の効果,ショックアブソーバ等のコスト制限等に応じて切換段階数が設定される。
【0041】
上記加速度センサ40,42,44,46および変位センサ60,62,64,66は、減衰力特性制御用のコンピュータ140(図1)に接続されており、各センサからコンピュータ140に信号が送信される。また、ステップモータ128がコンピュータ140に接続されており、コンピュータ140により必要な角度だけ回転させられる。さらに、コンピュータ140には車速検出装置144,外気温度検出装置148が接続されており、それぞれ車体速度,外気温度が取得される。
【0042】
図5にコンピュータ140の機能ブロック図を示す。加速度センサ40,42,44,46および変位センサ60,62,64,66のデータが取得データ処理部160に入力され、それらのデータから平均値,微分値,積分値等が求められる。処理されたデータが状態量推定部164に送られ、それらの処理データに基づきカルマンフィルタによる同一次元オブザーバによって、実測値から得られない状態量の各成分が推定される。
【0043】
全ての状態量の各成分が実測または推定により求められれば、それら状態量の各成分を用いて最適減衰力取得部168により最適な減衰力が取得される。その際に、最適な減衰力を求めるために作動油温度が必要であり、その作動油温度は作動油温度推定部172により推定される。最適減衰力が取得されれば、最適減衰力特性選択部176により最適な減衰特性段数が選択され、現状の減衰特性段数から変更すべき場合は、各ステップモータ128の回転方向と回転角度とが各ステップモータ128に対応する各駆動回路180に送信され、駆動回路により各ステップモータ128が必要な角度だけ回転させられる。なお、本実施形態において駆動回路180は各ステップモータ128それぞれに個別に対応するように4つ設けられているが、フロント用とリヤ用の2つが設けられ、FR,FLおよびRR,RLのステップモータ128を共通に制御することも可能である。
【0044】
本実施形態においては、各加速度センサ40,42,44,46が、ばね上部30における各サスペンション20,22,24,26に対応する位置に設けられて、それら各位置の加速度を取得しているが、それは不可欠ではない。各加速度センサが各サスペンションに対応する位置から外れており、その外れた位置の加速度を検出するものであっても、検出値を演算によって各サスペンションに対応する位置における加速度に変換することができるからである。また、本実施形態において、加速度センサは4つ設けられているが、ばね上部30の前輪側と後輪側の上下加速度が検出可能であれば2つでもよいし、3つでもよい。加速度センサを3つ設ける場合は、ばね上部30の4つのサスペンションに対応した位置のうち、センサが設けられていない位置の上下加速度を他の3つの位置の上下加速度から求めることができ、センサを4つ設ける場合と比較してコスト低減を図ることができる。
【0045】
次に、車両の一種である四輪自動車の乗り心地および操縦安定性を向上させると同時に、セミアクティブサスペンションのショックアブソーバの作動油温度の上昇を抑制すること、具体的には、ショックアブソーバの作動油温度の上昇を抑制する度合いを作動油温度に基づいて連続的に変化させ、作動油温度が高温であるほど温度上昇を抑制する度合いが大きくなるようにショックアブソーバの減衰力を最適に制御するために、外乱包含双線形最適制御則を適用することについて説明する。
【0046】
まず、図6に、減衰力最適制御のモデルとして用いられる4自由度を有する前後1/2実車モデルを示し、説明する。その前後1/2実車モデルを採用することにより、単輪モデルよりも実際の車両に適した制御システムを構築することが可能となり、乗り心地と操縦安定性とをより良好な状態で制御することが可能である。また、車体が路面共振する低周波領域では左右の路面の相関性は強く、左右輪にはほぼ同一の入力が入ると考えられるため、4輪ではなく前後ハーフモデルを採用した。
【0047】
図6において符号30は、ばね上部であり車両の車体等に対応する。そのばね上部30と、フロントばね下部202およびリアばね下部204とはそれぞれ前後のサスペンション部210,212によって接近・離間方向(上下方向)に相対移動可能に連結されている。これらサスペンション部210,212は、エアスプリング70により構成されるばね定数がそれぞれK,Kのばね部K,Kと、ショックアブソーバ74により構成される減衰係数がそれぞれCsF,CsRの減衰力固定部CsF,CsRおよび減衰係数がそれぞれCvF,CvRの減衰力可変部CvF,CvRとを有するとみなすことができる。
【0048】
前後のばね下部202,204と路面220との間は、それぞれ前後のタイヤの下部が介在しており、フロントタイヤ部230,リアタイヤ部234と称する。前後タイヤ部230,234は、ばね定数がそれぞれk,kのばね部k,kと減衰係数c,cの固定減衰部c,cとを有するとみなすことができる。図7および図8に、各種の記号の名称を記載する。なお、本文中においては変数zの一階微分をz’,2階微分をz”と表す場合があるものとし、他の変数においても同様とする。また、フロントタイヤが接地している路面の変位,路面変位の影響によるばね下部やばね上部の変位等を前輪要素と称し、リアタイヤ等に関しては後輪要素と称する。また、前輪,後輪の要素をまとめて前後輪要素と称する。
【0049】
図6の1/2実車モデルの運動方程式は図9の式(1−1)から式(1−4)で表されるものとなる。ここで、状態変数を式(1−5)のようにおいて、近似的に式(1−6)が成立すると仮定すると、状態方程式は式(1−7)のように記述される。なお、式(1−7)における変数,行列等の成分は図10から図12に示すものである。式(1−8)は式(1−7)における状態量xの成分を示す。
【0050】
【数7】
Figure 2004175125
【0051】
次に路面からの外乱を仮定したフィードフォワード併合制御について説明する。本実施形態では、路面(特に悪路)から受ける外乱の特性に基づいて外乱のダイナミクスを仮定し、フィードフォワード制御を行う外乱包含制御が用いられる。外乱のダイナミクスを仮定するにあたって、制御したい路面外乱に対応する周波数領域においてはパワースペクトルが白色雑音と同等であり、その周波数領域以外では路面外乱のパワースペクトルが白色雑音よりも小さなものであると仮定することにより、対象とする周波数領域において制御効果が高くなる。
【0052】
まず、外乱のスペクトルを以下の条件を満たすものと仮定する。(a)外乱をシステムに取り込む際に、外乱の状態量には少なくとも速度成分と加速度成分が含まれている。(b)目的関数を絶対系で記述するために、制御区間では外乱の速度成分を白色雑音と同等であるとする。(c)制御区間より高い周波数領域では外乱の速度スペクトルが下がっているものと仮定する。以上の条件を満たす成形フィルタを用いると、外乱の状態空間表現は図13の式(2−1),式(2−2)のようになり、さらに前後輪要素についての式は、式(2−3),式(2−4)のようになる。このように、路面からの外乱が仮定され、状態空間表現されることにより、外乱の状態量をシステムに包含させることが可能となる。なお、式中の変数等は図13の式(2−5)から式(2−12)を参照。
【0053】
【数8】
Figure 2004175125
【0054】
本実施形態において、式(2−5)に示すAz1,Bz1,Cz1の成分であるAz0,Bz0,Cz0は悪路を想定した値が予め設定されている。これらAz0,Bz0,Cz0には、良路,悪路,極悪路等のように路面状態にあわせて異なる値を複数種類設定することが可能であり、路面状態を判定する手段を設ければ、路面状態によって設定値を変化させて異なる路面状態に適応した外乱を仮定することができる。
【0055】
(t),w(t)はそれぞれ入力雑音、s(t)は観測雑音を表し、w(t)とs(t),w(t)とs(t)はそれぞれ互いに独立な正規分布に従う白色雑音過程とすると、それらの性質は式(2−9)から式(2−12)のように表せる。ここでδはDiracのデルタ関数を示している。
,Wはそれぞれ前後輪要素の入力雑音w(t),w(t)のインテンシティであり、それぞれ式(2−8)のように前後それぞれの路面外乱の速度成分w’,w’と加速度成分w”,w”を含んでいる。Sは観測雑音s(t)のインテンシティであり、前後輪要素の観測雑音を含んでいる。
【0056】
次に、式(1−7)に表される1/2実車モデルのシステムに対して上記で仮定した外乱を包括して制御する外乱包括制御を行うために、拡大系を構成すると拡大システムは式(3−1),式(3−2)のように記述される(図14にも示す)。
’=A+ES+Bu (3−1)
=C (3−2)
はCによって求められる絶対座標系の評価出力を表す。それぞれの行列の成分は式(3−3)から式(3−6)で表される。なお、Cについては後述する。
【0057】
前記状態量推定部164では、外乱包含双線形最適制御システムに対してカルマンフィルタによる同一次元オブザーバを用いた状態量推定により出力フィードバック制御が行われる。そして、実測が困難な路面外乱の変位や速度等の推定にカルマンフィルタが用いられる。以下にカルマンフィルタの設計法を簡単に示す。制御システムの状態方程式および出力方程式は図15の式(4−1),式(4−2)のように表すことができる。なお、各記号の内容は式(4−3)から式(4−6)で表される。
【0058】
ここで、y(t)は観測出力を表し、z”,z”はそれぞれ観測量としての前後車輪のばね上部加速度を示す。Sは観測雑音sのインテンシティである。このシステムに対して仮定された路面外乱のフィードフォワード制御を併合する拡大システムの状態方程式および出力方程式は式(4−7),式(4−8)で表され、それらに対するカルマンフィルタによる同一次元オブザーバは式(4−10)で与えられる。なお、各記号の内容は式(4−9)で表される。
【0059】
【数9】
Figure 2004175125
【0060】
この時、フィルタゲインKは図15の式(4−11)となり、Pは式(4−12)に示されるRiccati方程式の一意正定解として与えられる。
【0061】
次に、前記最適減衰力取得部168で用いられる最適レギュレータの設計について説明する。本作動油高温化抑制制御において、ショックアブソーバの作動油温度によって、作動油の温度上昇の抑制の度合いを連続的に変化させ、作動油温度上昇を適度に抑制しながら車両の乗り心地および操縦安定性を可及的に最適な状態に近づけるように減衰力を制御するために、異なる制御則に基づく2種類のコントローラを用いた。一つは「車両の乗り心地および操縦安定性を最適に制御するコントローラ」であり、もう一つは「車両の乗り心地および操縦安定性を向上させるとともに作動油温度上昇の抑制を重視したコントローラ」である。以後、後者のコントローラを「作動油温度上昇の抑制を重視したコントローラ」と略記する。
【0062】
まず、車両の乗り心地および操縦安定性を最適に制御するコントローラについて説明する。車両の乗り心地および操縦安定性を最適に制御するコントローラの導出にあたって、評価関数として期待値で表された式(5−1)を用いる。
【0063】
【数10】
Figure 2004175125
【0064】
は、乗り心地および操縦安定性の向上を目的とする評価出力y(t)を記述する行列であり、図20の式(8−1)にCの一例を示す。xの成分は式(8−2)で表され、Cを計算して式(1−5)を代入し、整理すると式(8−3)が得られ、式(5−1)の第1項は式(8−4)で表される。よって、式(8−4)のかっこ内の第1項は前後のばね上絶対速度が加えられたものであるから車体全体のばね上部の絶対上下速度を表し、一方、第2項は前後のばね上絶対速度の差であるから車体(ばね上部)のピッチング速度を表している。したがって、図20に示す例では式(5−1)の第1項は、ばね上部の絶対速度とピッチング速度の2乗和であることになる。この例の場合、式(5−1)の第1項は、値が小さくなるほど乗り心地が良くなるため、乗り心地の程度を示す項になるとともに、乗り心地の評価指標の2乗に重み関数を乗じたものと表現できる。なお、Cの値を変更することにより、式(5−1)の第1項を、乗り心地と操縦安定性の程度を示す項や、操縦安定性の程度を示す項にすることが可能である。
式(5−1)の第1項が乗り心地の程度を示す項であっても、操縦安定性が悪くなるとは限らず、本減衰力特性制御によって可及的に良好な状態が保たれることが多い。
【0065】
式(5−1)の第2項におけるxuは、図20の式(8−5)に示すように前後のサスペンション部の相対速度と可変減衰係数との積であり、減衰力を表している。よって、式(5−1)の第2項は減衰力の2乗に重み関数Rを乗じたものであり、重み関数Rはダンパが発生する減衰力に対する制約条件として働くと同時に、発熱源の1つ(流体摩擦による発熱)に対する制約条件としての意味合いも含んでいる。式(5−1)の第2項は、値が大きくなると減衰力が大きくなることを意味し、減衰力の程度を示す項であるとともに流体摩擦の程度を示す項ともなる。なお、式(5−1)の第2項は、減衰力の評価指標の2乗に重み関数を乗じたものであるとともに流体摩擦の評価指標の2乗に重み関数を乗じたものと表現できる。式(5−1)は乗り心地と操縦安定性との少なくとも一方に関連する評価指標の2乗に重み関数を乗じたものと、減衰力の評価指標の2乗に重み関数を乗じたものとの和の積分値の期待値を表す評価関数であると表現できる。
【0066】
乗り心地と操縦安定性との少なくとも一方の向上と、減衰力の低減とのどちらをどれくらい重視して制御するかは、重み関数QとRとの値を変えればよい。例えば、重み関数Qの値を現在の値より大きくして、重み関数Rの値をそのままにすれば、重み関数Qを変更する前よりも乗り心地等を重視した制御が行われることとなる。
【0067】
図14の式(3−1),式(3−2)で記述されるシステムに対して、制御区間[t,T]において、式(5−2)となるような減衰係数である最適制御入力u(t)が求められ、式(5−3),式(5−4)のように表される。ただし、式(5−3),式(5−4)におけるPは、式(5−5)に示すRiccati方程式の一意正定解であり、式(5−6)のように分割される。
【0068】
式(3−1)で表される拡大系双線形システムは図17の式(5−7)となり、その式(5−7)はx(t)およびRが対角行列であるときに式(5−8)と変形でき、システムは線形化される。このときU(t)は式(5−9),式(5−10)となる。
【0069】
【数11】
Figure 2004175125
【0070】
さらに、カルマンフィルタを用いた状態量推定により出力フィードバック制御を行うと、カルマンゲインKは式(5−11)のように与えられる。ただし、Pは式(5−12)のRiccati方程式の一意正定解として与えられる。これにより、乗り心地および操縦安定性を最適に制御するコントローラは式(5−13)および式(5−14)のように記述できる。なお、文字の上に「^」の記号が付された変数は、その変数の成分としてカルマンフィルタによる推定値を含むことを表す。
【0071】
【数12】
Figure 2004175125
【0072】
次に、作動油温度上昇の抑制を重視したコントローラの導出について説明する。ダンパ温度を上昇させる原因としては、オリフィスにおける作動油の流体摩擦による発熱とピストンの摺動摩擦による発熱とが挙げられる。前者を抑えるにはダンパが発生する力とピストン速度とを抑える必要があり、後者を抑えるには特にピストン速度を抑える必要がある。そこで評価関数として期待値で表された式(6−1)を用いる。式(6−1)を図18にも示す。
【0073】
【数13】
Figure 2004175125
【0074】
なお、Cpは式(5−1)の場合と同様である。Qr&sはQride&stabilityを意味しており、式(6−1)のかっこ内の第1項(例えば、ばね上部の上下速度,ピッチ速度)の評価出力に対する重み関数である。第2項に含まれるCpa”の例を図20の式(8−6)に示す。Cpa”を計算すると式(8−7)のようになり、式(6−1)の第2項は式(8−8)のかっこ内のように、前後のサスペンション部の相対速度の2乗和を含んでいる。よって、第2項のCpa”は2種類の発熱源に関わる物理量であるピストン速度の低減を目的とする評価出力ypa”(t)を記述する行列で、Qtempはこの評価出力に対する重み関数である。第3項における重み関数Rが意味するものは図16の式(5−1)と同様であるが、重み関数Rの値が同じであるとは限らない。
【0075】
重み関数Qr&s,Qtemp,Rの値を変更することにより、乗り心地と操縦安定性との少なくとも一方の向上,ピストン速度低減,減衰力低減のどれをどのくらい重視して制御するかを調節することが出来る。なお、それぞれの重み関数の値を大きくするほど、その要素が重視されて制御が行われる。また、本実施形態において重み関数Qr&s,Rの値の比率が式(5−1)における重み関数Q,Rの値の比率と等しくされているが、異なる比率とすることも可能である。
【0076】
式(6−1)の第3項は、式(5−1)の第2項と同様に、減衰力の評価指標の2乗に重み関数を乗じたものであるとともに流体摩擦の評価指標の2乗に重み関数を乗じたものという意味合いを持つ。
一方、ピストン速度は、ピストン等とアウタシェル等との摺動摩擦による発熱と、オリフィスにおける作動油の流体摩擦による発熱とに影響を及ぼすことから、式(6−1)の第2項は、ピストン速度の評価指標の2乗に重み関数を乗じたものであるとともに、摺動摩擦と流体摩擦との評価指標の2乗に重み関数を乗じたものという意味合いを持つ。式(6−1)は、乗り心地と操縦安定性との少なくとも一方に関連する評価指標,摺動摩擦と流体摩擦との評価指標および流体摩擦の評価指標のそれぞれの2乗に重み関数を乗じたものの和と捉えることができる。ただし、作動油温度の上昇抑制には、ピストン速度の評価指標を加えることが効果的であり、式(5−1)に式(6−1)の第2項のピストン速度の評価指標の2乗に重み関数Qtempを乗じたものを加えることによって、作動油温度上昇を効果的に抑制するコントローラが得られている。式(6−1)において、第2項と第3項とが、ピストン速度の低減と流体摩擦の低減とによってショックアブソーバ74の発熱を抑制すると表現することもできる。なお、式(6−1)は乗り心地と操縦安定性との少なくとも一方に関連する評価指標,減衰力の評価指標およびピストン速度の評価指標のそれぞれの2乗に重み関数を乗じて加えたものの積分値の期待値を表す評価関数であると表現できる。
【0077】
図18に示すように、評価関数の式(6−1)は式(6−2)のように変形でき、図16の式(5−1)と同様の形とすることができる。ただし、CおよびQについては式(6−3)のようになっている。また、式(6−3)に式(5−5)のRiccati方程式に対応する式も示す。作動油温度上昇の抑制を重視したコントローラの導出の手順に関しては、上述した乗り心地および操縦安定性を最適に制御するコントローラと同様であるため異なる点以外は説明および式を省略する。図16,図17の式(5−1)から式(5−8),式(5−11),式(5−12)を参照。なお、式(6−4)は式(5−8)に対応する。
【0078】
式(6−5)は式(5−9)に対応するが、Riccati方程式(5−5)の一意正定解Pの成分であるP11,P12を表示する記号は同じであっても、式(5−5)におけるCおよびQと式(6−3)におけるCおよびQの値が乗り心地および操縦安定性重視のコントローラと作動油温度上昇の抑制を重視したコントローラとでは異なるため、PおよびPの成分であるP11,P12の内容は異なっており、減衰力関連量であるフィードバックゲインFと減衰力制御入力U(t)との値も異なる。最終的に、作動油温度上昇の抑制を重視したコントローラの式(6−7),式(6−8)が導出される。
【0079】
【数14】
Figure 2004175125
【0080】
上述の2種類の評価関数を案出することにより導出された乗り心地および操縦安定性重視のコントローラ(式5−13,5−14)と作動油温度上昇の抑制を重視したコントローラ(式6−7,6−8)とを用いたゲインスケジューリングにより目的の制御器が決定される。本実施形態の目的である、ショックアブソーバの作動油温度によって、作動油の温度上昇の抑制の度合いを連続的に変化させ、作動油温度上昇を適度に抑制しながら車両の乗り心地および操縦安定性を可及的に最適な状態に制御するための制御器が式(7−1,7−2),式(7−3,7−4)のように決定される。
【0081】
【数15】
Figure 2004175125
【0082】
式(7−2)中の第3減衰力関連量である第3フィードバックゲインF(θ(t)),F(θ(t))は、式(7−3,7−4)によって決定される。すなわち、第1減衰力関連量である第1フィードバックゲインの成分であるFb−ride&stability,Ff−ride&stabilityと、第2減衰力関連量であり、油温上昇抑制減衰力関連量でもある第2フィードバックゲインの成分であるFb−temp,Ff−tempとが、上述した式(5−10),式(6−6)で求められる。そして、式(7−3,7−4)において、Fb−ride&stabilityとFb−tempとの重み付け,Ff−ride&stabilityとFf−tempとの重み付けがスケジューリングパラメータθ(t)に基づいて決定される。スケジューリングパラメータθ(t)は作動油温度T(t)に基づく値であり、式(7−6)に示すように、T(t)が、予め設定された温度Tminより小さい場合はθ(t)はTminとされ、Tmin以上Tmax以下の場合はθ(t)はT(t)とされ、予め設定された温度Tmaxより大きい場合はθ(t)はTmaxとされる。作動油温度T(t)としては、式(7−5)に示すように、フロントとリアとのショックアブソーバの作動油温度のうち高い方が選択される。
【0083】
なお、式(7−1)が、図5の状態量推定部164において用いられ、式(7−2)が最適減衰力取得部168において用いられる。
【0084】
本実施形態において、ゲインスケジューリングを適用している利点として、時変系のシステムも取り扱うことができる点が挙げられる。本実施形態では、理解を容易にするために、ショックアブソーバの作動油温度の変化に伴う減衰特性の変化は考慮されていない。その減衰特性の変化の要素を考慮に入れて制御対象をモデリングした場合、システムは時変系となり、時不変系に対する制御手法は適用できなくなるが、システム行列、出力行列なども同様にスケジューリングすることで容易に解決できる。
【0085】
作動油温度Tはショックアブソーバ74に温度センサを設けて実測することも可能であるが、本実施形態においては推定により取得される。以下、その推定方法について説明する。
ショックアブソーバ74の発熱原因の主たるものは、オリフィスにおける流体摩擦と、ピストン102と外壁となるアウタシェル76との摺動摩擦とである。一方放熱原因の主たるものは、アウタシェル76と空気とを媒体とした熱貫流による放熱と、熱放射による放熱とである。モデルを図21に示し、次のような前提の下で、発熱システムをモデル化した。(a)ショックアブソーバ内部の摺動抵抗はシール,ロッドガイド,ピストン部の3カ所に生じるが、これらをまとめてピストン部で生じるものとみなす。(b)熱の発生に関与するものは動摩擦のみとする。
【0086】
オリフィスの流体摩擦により発生する熱量Qd#はショックアブソーバ74で発生する減衰力に比例すると考えられるので、減衰力をF(t)とすると図23の式(9−1)で与えられる。なお、#はF,Rを意味する。本実施形態ではショックアブソーバ74で発生した減衰力はすべてショックアブソーバ74内の作動油に吸収されるものと仮定し、熱変換率aを1とした。
【0087】
ピストン102の摺動摩擦による発熱は、ピストン102に働く摩擦力のした仕事と見なし得るので、ある時刻tに摩擦力により単位時間当たりに発生する熱量Qf#は、式(9−2)で与えられる。
【0088】
熱貫流による放熱Qt#は図24の式(9−3)で与えられる。熱貫流とは、固体(アウタシェル74)の両側の流体(作動油と空気)の温度が異なるとき、高温側から低温側へ熱が通過する現象である。式中における#はF,Rを意味する。なお、次のような前提をおいた。(a)熱伝導率λは一定値とする。(b)ショックアブソーバ74の作動油の熱伝達率は無限であるものとする。rはアウタシェル74の内側面半径,rはアウタシェル74の外側面半径である。他の記号についても当てはまるが、長さの単位はメートルである。本実施形態では、熱伝達率が無限であると仮定しているのでh1#が無限となり、式(9−3)の分母第1項は0となり、この熱貫流を模式的に表すと図22のようになる。
【0089】
空気の平均熱伝達率h2#は、空気の一様流中に置かれた円柱の場合には式(9−4)で求められることが知られている。なお、ヌセルト数Nuは式(9−5)で与えられ、レイノルズ数Reは式(9−6)で求まる値である。なお、本実施形態において平均流速=車体速度とする。Cとnはレイノルズ数Reの値によって決まる値であり、実験的に検証された値は式(9−7)で表される。
【0090】
熱放射による放熱QE#は、物体の内部エネルギーが直接空間を通して電磁波の形で放出され、図25の式(9−8)から式(9−10)で表される。σは工学上の計算値である。
【0091】
以上の結果から、ショックアブソーバ74の発熱量から放熱量を差し引いた熱量が全て作動油に吸収され、ショックアブソーバ74の温度変化に使われるものと仮定すると式(9−11)が成り立ち、式(9−12)と変形できる。式(9−12)に式(9−1),式(9−2),式(9−3),式(9−4)を代入して式(9−13)ないし式(9−15)が得られ、作動油温度の変化を求めることができる。なお、走行を停止している間は式(9−16)が使用される。
【0092】
【数16】
Figure 2004175125
【0093】
次に図26に示すフローチャートに基づき、減衰力最適制御方法について説明する。
ステップ1(以後S1と略記し、他のステップについても同様とする)の各種データ取得ステップにおいて、各種のデータが取得される。すなわち、FR(前輪右),FL(前輪左),RR(後輪右),RL(後輪左)に位置する全ての加速度センサ40,42,44,46からばね上部加速度が取得され、全ての変位センサ60,62,64,66からサスペンション部相対変位が取得される。また、外気温度検出装置148から外気温度が取得され、車速検出装置144から車体速度が取得される。
【0094】
S2の取得データ処理ステップにおいて、取得されたデータが必要に応じて処理される。まず、FR,FL,RR,RL全てのばね上部加速度から、左右の前輪に対応したFR,FLのばね上部加速度の平均値が求められ、フロントばね上部絶対加速度z”とされる。同様に、左右の後輪に対応したRR,RLのばね上部加速度の平均値が求められ、リアばね上部絶対加速度z”とされる。サスペンション部相対変位についても同様であり、左右の前輪同士,後輪同士の実測値の平均値が、それぞれフロントサスペンション部相対変位δsF,リアサスペンション部相対変位δsRとされる。さらに、前後のサスペンション部相対変位が微分されて前後のサスペンション部相対速度δsF”,δsR”が求められる。
【0095】
後述する状態量推定を行うためには現在の状態における実際の減衰力値が必要である。その実際の減衰力値は、コンピュータ140のメモリに記憶されている現在の前後の減衰力特性段数と、上述のようにして求められた前後のサスペンション部相対速度δsF”,δsR”とに基づいて計算され、実減衰力計算値と称する。各減衰力特性段数における減衰係数とサスペンション部相対速度との関係もコンピュータ140のメモリに記憶されており、現在の前後の減衰力特性段数および前後のサスペンション部相対速度δsF”,δsR”に対応する減衰係数と、前後のサスペンション部相対速度δsF”,δsR”との積が計算され、前後の実減衰力計算値として取得される。なお、S2における以上の処理は図5の取得データ処理部160において行われ、取得データ処理部160,加速度センサ40等および変位センサ60等がデータ取得手段を構成している。
【0096】
次に、作動油温度Tの取得について説明する。本実施形態においては、ショックアブソーバの作動による発熱と、ショックアブソーバ金属外壁からの外気への放熱を考慮し、図25の式(9−13)から前後のショックアブソーバ74の温度変化がそれぞれ算出される。式(9−13)の計算において必要なデータは上述の取得データ処理部160,温度検出装置148および車速検出装置144から取得される。作動油温度推定の前提としてエンジンスタート時の作動油温度は外気温と等しいとされる。そして、車両が走行を開始し、ショックアブソーバが作動すると温度変化dTが算出され、現在記憶されている作動油温度Tに加えられ、新たな作動油温度Tが算出される。その後、S2実行毎に温度変化dTが算出されて前回処理後の作動油温度Tに加えられ、新たな作動油温度Tが記憶される。
【0097】
車両が走行を停止し、エンジンが停止した後に、再びエンジンが始動して走行が開始される場合には次に説明するようにして、作動油の初期温度が推定される。エンジン始動時には、図示しない作動油初期温度推定プログラムが実行され、エンジン停止時間,エンジン停止直前の作動油温度およびエンジン始動後の外気温が取得される。それらの値に基づいて図24の式(9−16)から温度変化が取得され、エンジン停止直前の作動油温度に加えられることによって現在の作動油温度が求められる。なお、温度が下がった場合に、マイナスの温度変化が加えられる。
【0098】
作動油の初期温度の推定には誤差の発生が予測されるが、例えば±20℃程度の誤差であれば制御にはほとんど影響しない。それは、作動油温度が低温(例えば80℃以下)であるときには、作動油温度上昇を抑制する必要がほとんどなく、高温(例えば120℃以上)である場合には、その誤差が相対的に小さくなるからである。さらに、放熱量は常時測定される外気温度との差によって変化するため、車両が走行を開始すればショックアブソーバの作動による発熱と外気への放熱とのバランスで誤差が徐々に修正されていくからである。
【0099】
以上の処理は図5の作動油温度推定部172において行われる。なお、本実施形態において、作動油温度取得手段はコンピュータ140の作動油温度推定部172により構成され、作動油温度を計算により推定するものであるが、少なくとも1つのショックアブソーバにそれの作動油温度を検出する作動油センサが設けられ、その作動油センサにより検出された作動油温度が最適減衰力取得部168において使用されるようにしてもよい。
【0100】
S3の状態量推定ステップにおいて、減衰力制御入力Uを得るために必要な、図10の式(1−8)に示される状態量x(前後サスペンション部相対変位および相対速度、前後タイヤ部相対変位および相対速度)と、図13の式(2−3)に示される路面外乱の状態量W(前後タイヤと接地している路面外乱の速度w’,w’と、路面外乱の加速度w”,w”)との推定が可能である。
【0101】
本実施形態において、前後ばね上部加速度および前後サスペンション部相対変位は実測されるが、実測が不可能なその他の状態量については状態量推定部164により行われる演算ないし推定によって取得される。前後のタイヤ部相対変位および変位速度と、前後の路面外乱の速度および加速度とが、式(4−10)に示されるカルマンフィルタを用いた状態量推定により取得される。その際には、予め取得されたサスペンション部相対変位δsF,δsRおよび相対速度δsF’,δsR’が式(4−10)に代入された後、演算により算出されるばね上部加速度の観測出力y(t)の値と実測されたばね上部加速度の値とが可及的に等しくなるような状態量が公知の解析プログラムにより演算され、推定値が求められる。なお、式(4−10)におけるUの値には上述した現在の実際の減衰力値である実減衰力計算値が用いられる。
【0102】
なお、前後のばね上部加速度z”,z”が実測されていれば、前後のサスペンション部相対変位δsF,δsRおよび相対速度δsF’,δsR’がなくとも上記と同様の方法で全ての状態量(前後サスペンション部相対変位および相対速度,前後タイヤ部相対変位および変位速度,前後の路面外乱W)を推定することができる。ただし、サスペンション部相対変位が実測されるようにする方がタイヤ部相対変位および変位速度の推定精度がよくなる。一方、変位センサを省略すれば、コスト面で有利となる。なお、S3における状態量の推定はコンピュータ140の状態量推定部164において行われ、状態量推定部164は状態量推定手段を構成している。本実施形態においては、オブザーバとしてカルマンフィルタを用いて状態量を推定したが、カルマンフィルタ以外のオブザーバを用いて推定することも可能である。
【0103】
S4の最適減衰力決定ステップにおいて、S2,S3で取得された状態量および前後のショックアブソーバの作動油温度に基づいて、ショックアブソーバの減衰力可変部の最適な減衰力である減衰力制御入力U(t)が求められる。まず、式(5−10)から第1減衰力関連量である第1フィードバックゲインFb−ride&stability,Ff−ride&stabilityが求められ、式(6−6)から第2減衰力関連量である第2フィードバックゲインFb−temp,Ff−tempが求められる。そして、上述したように、式(7−3,7−4)から第3減衰力関連量である第3フィードバックゲインF(θ(t)),F(θ(t))が求められ、先に求められた状態量の推測値とともに式(7−2)に代入されて最適制御減衰力U(t)が決定される。なお、U(t)=x(t)u(t)であるので、U(t)はサスペンション部相対速度と減衰係数との積であり、本作動油高温化抑制制御において、ショックアブソーバで発生させようとする目標となる減衰力を意味する。S4の処理は、図5の最適減衰力取得部168において行われ、その最適減衰力取得部168が最適減衰力取得手段を構成しているとともに、第1,2,3関連量取得手段(第2関連量取得手段は油温上昇抑制減衰力関連量取得手段と同じである)を含んでいる。
【0104】
S5の最適減衰力特性選択ステップにおいて、S4で得られた最適な減衰力制御入力U(t)に最も適するショックアブソーバの減衰特性の設定段数が選択される。そして、その選択された設定段数が現在の設定段数と同じ場合はその状態が維持され、異なる場合は変更指令が出力され、S6において減衰特性段数が目的段数になるように駆動回路180によってアクチエータが目標方向へ目標角度回転させられる。S5の処理は、図5の最適減衰力特性選択部176にて行われ、その最適減衰力特性選択部176,駆動回路180およびステップモータ128が減衰力特性駆動手段を構成している。
【0105】
S7のその他の処理ステップにおいて、今回の処理における減衰特性段数,作動油温度,外気温等がメモリに記憶され、減衰力最適制御ルーチンの1回の処理が終了する。この減衰力最適制御ルーチンが設定時間間隔で繰り返し実行され、ショックアブソーバの作動油温度の変化に伴い、目標の減衰力を求めるためのフィードバックゲイン(あるいは制御則)が変化させられて乗り心地と操安性とが良好に保たれるとともに作動油温度の高温化が抑制される。
【0106】
上述の実施形態において、異なる制御則に基づく2種類の減衰力関連量が用いられたが、車両の乗り心地および操縦安定性を向上させるとともに作動油温度上昇の抑制を重視する油温上昇抑制減衰力関連量(第2減衰力関連量に相当する)だけを用いて減衰力特性の制御を行うことも可能である。
【0107】
以上、本発明のいくつかの実施形態を詳細に説明したが、これらは例示に過ぎず、本発明は、前記〔発明が解決しようとする課題,課題解決手段および効果〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。
【図面の簡単な説明】
【図1】本発明の実施形態である減衰力最適制御システムを含む電子制御式エアサスペンションシステムのブロック図である。
【図2】上記サスペンションのショックアブソーバの垂直断面図である。(減衰力が弱い状態)
【図3】上記サスペンションのショックアブソーバの垂直断面図である。(減衰力が強い状態)
【図4】上記ショックアブソーバの減衰力特性段数を切り換えるステップモータの回転角度位置を示す平面図である。
【図5】減衰力特性制御用のコンピュータの機能ブロック図を示す。
【図6】減衰力最適制御のモデルとして用いられる、4自由度を有する1/2実車モデルを示す図である。
【図7】上記モデルの各要素を示す記号の内容を示す図である。
【図8】上記モデルの各要素を示す記号の内容を示す図である。
【図9】上記モデルに対する運動方程式と状態方程式を示す図である。
【図10】上記モデルに対する状態方程式とその状態方程式における変数等の成分を示す図である。
【図11】上記状態方程式における変数等の成分を示す図である。
【図12】上記状態方程式における変数等の成分を示す図である。
【図13】上記モデルに加わる外乱の仮定とされる成形フィルタとその成形フィルタにおける変数等の成分を示す図である。
【図14】上記モデルに対する外乱の状態量を含んだ拡大形システムを示す図である。
【図15】上記拡大形システムの状態量を推定するカルマンフィルタとその導出の概要を示す図である。
【図16】車両の乗り心地と操縦安定性とを良好に保つ減衰力制御入力を求める評価式等を示す図である。
【図17】車両の乗り心地と操縦安定性とを良好に保つコントローラ等を示す図である。
【図18】車両の乗り心地と操縦安定性とを良好に保つとともに、ショックアブソーバの作動油温度上昇を抑制するための評価式,減衰力制御入力,コントローラ等を示す図である。
【図19】作動油温度上昇を適度に抑制しながら車両の乗り心地および操縦安定性を可及的に最適な状態に近づけるように減衰力を制御するための評価式,コントローラ等を示す図である。
【図20】上記評価式中の一部の詳細を示す図である。
【図21】ショックアブソーバを模式的に示す図である。
【図22】ショックアブソーバ内部とその周辺の温度を模式的に示す図である。
【図23】ショックアブソーバにより発生する熱量を計算する式等を示す図である。
【図24】ショックアブソーバから熱貫流により放熱される熱量を計算する式等を示す図である。
【図25】ショックアブソーバから熱放射により放熱される熱量を計算する式、およびショックアブソーバの作動油温度の変化を計算する式を示す図である。
【図26】上記減衰力最適制御システムを実行する減衰力最適制御ルーチンのフローチャートを示す図である。
【符号の説明】
20,22,24,26:FR,FL,RR,RLサスペンション 30:車体 40,42,44,46:FR,FL,RR,RL加速度センサ
60,62,64,66:FR,FL,RR,RL変位センサ 74:ショックアブソーバ 128:ステップモータ 140:コンピュータ
144:車速検出装置 148:外気温検出装置 160:取得データ処理部 164:状態量推定部 168:最適減衰力取得部 172:作動油温度推定部 176:最適減衰力特性選択部 202,204:F,Rばね下部 210,212:F,Rサスペンション部 220:路面
230,234:F,Rタイヤ部

Claims (7)

  1. 車両のばね上部材とばね下部材とを互いに連結するサスペンションにおけるショックアブソーバの減衰力特性を制御する減衰力特性制御装置において、
    前記ショックアブソーバ内部の作動油の温度を取得する作動油温度取得手段と、
    車両の乗り心地と操縦安定性との少なくとも一方を良好に保つ第1減衰力関連量と、前記少なくとも一方を良好に保つとともに前記作動油温度の上昇を抑制する第2減衰力関連量とで規定される範囲内において、前記作動油温度取得手段によって取得された前記作動油温度に適した減衰力関連量である第3減衰力関連量を取得する減衰力関連量取得手段と
    を設けたことを特徴とする減衰力特性制御装置。
  2. 前記第3減衰力関連量を取得する第3減衰力関連量取得手段を含み、その第3減衰力関連量取得手段が、前記第1減衰力関連量と前記第2減衰力関連量とのそれぞれを前記作動油温度に基づく重み付けをした加重平均値に相当するものを前記第3減衰力関連量として取得するものである請求項1に記載の減衰力特性制御装置。
  3. 前記第1減衰力関連量を取得する第1減衰力関連量取得手段と前記第2減衰力関連量を取得する第2減衰力関連量取得手段とを含み、前記第1減衰力関連量取得手段が、乗り心地と操縦安定性との少なくとも一方に関連する評価指標と、減衰力の評価指標との2乗和を最小にするフィードバックゲインを前記第1減衰力関連量として取得するものであり、前記第2減衰力関連量取得手段が、乗り心地と操縦安定性との少なくとも一方に関連する評価指標,減衰力の評価指標およびピストン速度の評価指標の2乗和を最小にするフィードバックゲインを前記第2減衰力関連量として取得するものである請求項1または2に記載の減衰力特性制御装置。
  4. 前記第3減衰力関連量取得手段が、減衰力取得手段を含み、その減衰力取得手段が制御目標となる減衰力を次式によって取得するものである請求項2に記載の減衰力特性制御装置。
    Figure 2004175125
  5. 車両のばね上部材とばね下部材とを互いに連結するサスペンションにおけるショックアブソーバの減衰力特性を制御する減衰力特性制御装置において、
    車両の乗り心地と操縦安定性との少なくとも一方を良好に保つとともに、前記ショックアブソーバ内部の作動油の温度上昇を抑制する減衰力関連量を取得する油温上昇抑制減衰力関連量取得手段を設けたことを特徴とする減衰力特性制御装置。
  6. 前記ショックアブソーバの作動油の温度を取得する作動油温度取得手段を含み、少なくとも前記ショックアブソーバ内部のピストン等とショックアブソーバ内壁等との摺動摩擦による発熱を考慮して作動油温度を推定する作動油温度推定手段を含むことを特徴とする請求項5に記載の減衰力特性制御装置。
  7. 車両のばね上部材とばね下部材とを互いに連結するサスペンションにおけるショックアブソーバの減衰力特性を制御するための目標減衰力を取得するために用いられる減衰力関連量を取得する減衰力関連量取得プログラムであって、
    車両の乗り心地と操縦安定性との少なくとも一方を良好に保つとともに、前記ショックアブソーバ内部の作動油の温度上昇を抑制する減衰力関連量である油温上昇抑制減衰力関連量を取得する油温上昇抑制減衰力関連量取得ステップを含むことを特徴とする減衰力関連量取得プログラム。
JP2002339868A 2002-11-22 2002-11-22 ショックアブソーバ作動油温度の高温化を抑制する減衰力特性制御装置および減衰力関連量取得プログラム Expired - Fee Related JP4110943B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339868A JP4110943B2 (ja) 2002-11-22 2002-11-22 ショックアブソーバ作動油温度の高温化を抑制する減衰力特性制御装置および減衰力関連量取得プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339868A JP4110943B2 (ja) 2002-11-22 2002-11-22 ショックアブソーバ作動油温度の高温化を抑制する減衰力特性制御装置および減衰力関連量取得プログラム

Publications (2)

Publication Number Publication Date
JP2004175125A true JP2004175125A (ja) 2004-06-24
JP4110943B2 JP4110943B2 (ja) 2008-07-02

Family

ID=32702716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339868A Expired - Fee Related JP4110943B2 (ja) 2002-11-22 2002-11-22 ショックアブソーバ作動油温度の高温化を抑制する減衰力特性制御装置および減衰力関連量取得プログラム

Country Status (1)

Country Link
JP (1) JP4110943B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016655A1 (ja) * 2004-08-12 2006-02-16 Komatsu Ltd. キャブマウント制御装置、キャブマウント制御方法、建設機械
WO2006022386A1 (ja) * 2004-08-27 2006-03-02 Komatsu Ltd. キャブマウント制御装置、キャブマウント制御方法、建設機械
JP2006329800A (ja) * 2005-05-26 2006-12-07 Yamaguchi Univ 振動発電機による無電源型加速度計測方法及び計測器
JP2015524774A (ja) * 2012-08-16 2015-08-27 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited 車速制御における改良
JP2016215794A (ja) * 2015-05-19 2016-12-22 トヨタ自動車株式会社 車両の状態量推定装置
CN108999920A (zh) * 2018-08-31 2018-12-14 江苏科技大学 一种基于阀控阻尼可调减振器的温度补偿控制方法
WO2023286446A1 (ja) * 2021-07-12 2023-01-19 日立Astemo株式会社 車両の運動制御装置、車両の運動制御方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016655A1 (ja) * 2004-08-12 2006-02-16 Komatsu Ltd. キャブマウント制御装置、キャブマウント制御方法、建設機械
WO2006022386A1 (ja) * 2004-08-27 2006-03-02 Komatsu Ltd. キャブマウント制御装置、キャブマウント制御方法、建設機械
JP2006329800A (ja) * 2005-05-26 2006-12-07 Yamaguchi Univ 振動発電機による無電源型加速度計測方法及び計測器
JP2015524774A (ja) * 2012-08-16 2015-08-27 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited 車速制御における改良
JP2016215794A (ja) * 2015-05-19 2016-12-22 トヨタ自動車株式会社 車両の状態量推定装置
US10239519B2 (en) 2015-05-19 2019-03-26 Toyota Jidosha Kabushiki Kaisha Vehicle state estimation device
CN108999920A (zh) * 2018-08-31 2018-12-14 江苏科技大学 一种基于阀控阻尼可调减振器的温度补偿控制方法
WO2023286446A1 (ja) * 2021-07-12 2023-01-19 日立Astemo株式会社 車両の運動制御装置、車両の運動制御方法

Also Published As

Publication number Publication date
JP4110943B2 (ja) 2008-07-02

Similar Documents

Publication Publication Date Title
JP5224039B2 (ja) サスペンション制御装置
JP4926945B2 (ja) 車両のショックアブソーバシステムを制御する方法、セミアクティブショックアブソーバおよびショックアブソーバシステム
JP5158333B2 (ja) サスペンション制御装置
JP7162081B2 (ja) 車両挙動装置
JP5224048B2 (ja) サスペンション制御装置
JP5093490B2 (ja) サスペンション制御装置
JP5585632B2 (ja) サスペンション制御装置
JP2005153875A (ja) 電子制御懸架装置及び減衰力制御方法
EP2537691B1 (en) Damping force control device for vehicle
CN111273547A (zh) 集成车速规划和预瞄半主动悬架的无人车舒适性控制方法
CN100363194C (zh) 车辆的悬架以及控制该悬架的方法
JPH10278528A (ja) 車両用懸架装置の制御方法
JP4110943B2 (ja) ショックアブソーバ作動油温度の高温化を抑制する減衰力特性制御装置および減衰力関連量取得プログラム
Carratù et al. Semi-active suspension system for motorcycles: From the idea to the industrial product
JP5841200B1 (ja) 信号処理装置、サスペンション制御装置および信号処理方法
JP2007233985A (ja) システムの最適制御方法
JP7393520B2 (ja) 車両制御装置
Sugai et al. Preview ride comfort control for electric active suspension
JP2019018773A (ja) サスペンションの制御システム
JP2015104966A (ja) 車両のサスペンション装置
WO2022024758A1 (ja) 制御装置
Yamamoto et al. Preview ride comfort control for electric active suspension (eActive3)
CN117015494A (zh) 衰减车身纵向加速度振荡的方法
JP6132859B2 (ja) サスペンション装置
Soliman Effect of road roughness on the vehicle ride comfort using semi-active suspension system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees