JP2004140977A - ゲート駆動回路 - Google Patents

ゲート駆動回路 Download PDF

Info

Publication number
JP2004140977A
JP2004140977A JP2002305833A JP2002305833A JP2004140977A JP 2004140977 A JP2004140977 A JP 2004140977A JP 2002305833 A JP2002305833 A JP 2002305833A JP 2002305833 A JP2002305833 A JP 2002305833A JP 2004140977 A JP2004140977 A JP 2004140977A
Authority
JP
Japan
Prior art keywords
gate
terminal
power supply
source
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002305833A
Other languages
English (en)
Other versions
JP2004140977A5 (ja
Inventor
Nobuyoshi Takehara
竹原 信善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002305833A priority Critical patent/JP2004140977A/ja
Priority to US10/683,588 priority patent/US6967520B2/en
Priority to EP20030023350 priority patent/EP1414153A1/en
Priority to KR1020030073326A priority patent/KR100552225B1/ko
Priority to CNA200310102507XA priority patent/CN1512650A/zh
Publication of JP2004140977A publication Critical patent/JP2004140977A/ja
Publication of JP2004140977A5 publication Critical patent/JP2004140977A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/0406Modifications for accelerating switching in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/04123Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

【課題】低電圧かつ扱う電力が小さい領域で使用されるゲート駆動回路において電力損失を低減させる。
【解決手段】直流電源8と、矩形波状の駆動信号を出力する駆動信号源5と、駆動信号源5から出力される信号がゲート端子に入力され、該信号のレベルに応じてソース端子及びドレイン端子間の導通状態を制御する主スイッチ素子3と、ソース端子及びドレイン端子間が導通状態となったときに通電される負荷4と、駆動信号源5とゲート端子との間に接続され、駆動信号源5からゲート端子への方向にのみ信号を出力する逆流防止手段1と、ゲート端子と直流電源8の高電位側との間に接続され、ソース端子及びドレイン端子間が非導通状態であるときに導通状態となる回生手段2と、を備えており、ソース端子及びドレイン端子間が導通状態となる閾値電圧が、直流電源8の出力電圧よりも大きい。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明はゲート駆動回路に関し、詳細には、電力変換装置等で使用されるゲート駆動回路に関する。
【0002】
【従来の技術】
近年、化石燃料の使用に伴う二酸化炭素等の排出による地球温暖化や、原子力発電所の事故や放射性廃棄物による放射能汚染などの問題が深刻となり、地球環境とエネルギに対する関心が高まっている。このような状況の下、無尽蔵かつクリーンなエネルギ源として太陽光を利用する太陽光発電、地熱を利用する地熱発電、風力を利用する風力発電等が世界中で実用化されている。
【0003】
このような自然エネルギによって発電された直流電力は、インバータと呼ばれる電力変換装置によって交流電力に変換され、例えば、商用電力系統に供給される。
【0004】
このような電力変換装置では変換効率の向上が重要であり、ゲート駆動回路における損失は無視できない。この損失を減らすために、スナバエネルギをゲート駆動に利用する方法が知られている(例えば、特許文献1参照)。また、トランジスタのコンバータのゲート電力をゲート駆動回路の電源側に回生する方法が知られている(例えば、特許文献2参照)。これらの技術は、一般的には電力回生技術の一種と考えられ、このような技術を利用しない場合には、ゲート電力は、そのまま電力損失となる。
【0005】
一方、太陽電池によって発電された電力を有効に活用する方法として、単セル・コンバータシステムが提案されている(例えば、特許文献3参照)。これは複数の太陽電池を直列接続せずに、1V程度の低電圧のまま電力変換装置に入力し、昇圧して利用するというものである。
【0006】
【特許文献1】
特開平5−344708号公報
【特許文献2】
特公平3−36332号公報
【特許文献3】
米国特許第5660643号明細書
【0007】
【発明が解決しようとする課題】
このような変換装置においてもゲート駆動電力及び電力損失の低減は重要な課題である。しかしながら、低電圧かつ扱う電力も比較的小さい領域で使用されるゲート駆動回路に適した電力損失を低減する方法は提案されていない。
【0008】
本発明は以上のような状況に鑑みてなされたものであり、低電圧かつ扱う電力が小さい領域で使用され、電力損失を低減したゲート駆動回路を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明のゲート駆動回路は、直流電源と、
ハイレベル及びローレベルの信号を出力する駆動信号源と、
前記駆動信号源から出力される信号がゲート端子に入力され、前記信号のレベルに応じてソース端子及びドレイン端子間の導通状態を制御する主スイッチ素子と、
前記ソース端子及びドレイン端子間が導通状態となったときに通電される負荷と、
前記駆動信号源と前記ゲート端子との間に接続され、前記駆動信号源から前記ゲート端子への方向にのみ信号を出力する逆流防止手段と、
前記ゲート端子と前記直流電源の高電位側との間に接続され、前記ソース端子及びドレイン端子間が非導通状態であるときに導通状態となる回生手段と、を備えており、
前記ソース端子及びドレイン端子間が導通状態となるゲート−ソース間閾値電圧が、前記直流電源の出力電圧よりも大きい。
【0010】
すなわち、本発明では、直流電源と、ハイレベル及びローレベルの信号を出力する駆動信号源と、駆動信号源から出力される信号がゲート端子に入力され、該信号のレベルに応じてソース端子及びドレイン端子間の導通状態を制御する主スイッチ素子と、ソース端子及びドレイン端子間が導通状態となったときに通電される負荷と、駆動信号源とゲート端子との間に接続され、駆動信号源からゲート端子への方向にのみ信号を出力する逆流防止手段と、ゲート端子と直流電源の高電位側との間に接続され、ソース端子及びドレイン端子間が非導通状態であるときに導通状態となる回生手段と、を備えており、ソース端子及びドレイン端子間が導通状態となるゲート−ソース間閾値電圧が、直流電源の出力電圧よりも大きく設定されている。
【0011】
このようにすると、主スイッチ素子を駆動する際に使用される電力の一部を電源側あるいは負荷側に回生(再利用)することができ、主スイッチ素子の駆動に伴う電力の損失を減少させることができる。さらに、主スイッチ素子が非導通状態であるときに、ゲート端子に印加される電圧が直流電源の電圧までにしか降下しないので、導通時と非導通時のゲートの電位差が小さくなり、導通状態となるまでに必要な駆動電力も減少させることが可能となる。
【0012】
従って、低電圧かつ扱う電力が小さい領域で使用されるゲート駆動回路において電力損失を低減させることができる。
【0013】
【発明の実施の形態】
以下添付図面を参照して本発明の好適な実施形態について詳細に説明する。
【0014】
<第1の実施形態>
図1は、本発明の第1の実施態様としてのゲート駆動回路の構成を示す図である。図示されたように本実施形態のゲート駆動回路は、逆流防止手段1、回生手段2、主スイッチ素子3、負荷4、ゲート駆動信号源5、直流電源8を含んでいる。なお、6は電源の高電位側端子、7は電源の低電位側端子である。以下、各構成要素とその動作について説明する。
【0015】
[主スイッチ素子3]
主スイッチ素子3は、MOS型ゲート・スイッチ素子であり、その導電型はPチャネルでもNチャネルでも良い。本質的に重要なのは、ゲートONとなる閾値電圧の絶対値と電源電圧の絶対値との大小関係であり、前者が後者よりも大きいことが、本発明では必須条件となる。このような関係が成立する場合にのみ、本発明の効果である「ゲートチャージの回生による効率向上」を享受することができる。
【0016】
なお、本明細書において「電源の高電位側」とは、スイッチ素子の導電型に依存しており、NチャネルMOSFETやNチャネルIGBTでは電源の正極側に相当し、PチャネルMOSFETやPチャネルIGBTでは電源の負極側に相当し、単なる電圧の高低を表すものではないことに注意されたい。また、「電源の低電位側」は「電源の高電位側」と対となる他方側を表している。
【0017】
[逆流防止手段1]
逆流防止手段1は、端的には主スイッチ素子3と同期動作するスイッチ手段であり、ダイオードが好適である。ダイオード以外に、リレーのような機械式接点、小容量MOSFET、更にはデジタル回路で使用される3ステート・ゲート(High、LowのほかにHighインピーダンス(無接続)状態という3つの状態を出力可能なロジックゲート)も使用可能である。また、フォトダイオードとMOSFETとを組合わせた素子であるフォトMOSリレーの類も使用できる。
【0018】
本実施形態では、このようなスイッチ手段を主スイッチ素子3がONであるときにON(導通状態)となり、主スイッチ素子がOFFであるときにOFF(非導通状態)となるように制御する手段と共に逆流防止手段1が構成される。
【0019】
[回生手段2]
回生手段2は、主スイッチ素子3と相補的に動作するスイッチ手段であり、基本的には逆流防止手段1と同じようなスイッチ手段で構成できる。ただし、回生手段2としては、ダイオードは適しているとは言えない。なぜなら、ダイオードを用いる場合には、ゲートに高電位が印加されて主スイッチ素子3がONするときに、電源側へ電流が流れてしまい、主スイッチ素子3がONである間、継続して電力損失が生じるからである。
【0020】
従って、本実施形態の回生手段2としては、小容量MOSFETなどの制御端子による導通状態が制御可能なスイッチ素子を用いることが望ましい。そしてこのようなスイッチ手段を主スイッチ素子3がON状態であるときにはOFFとなり、主スイッチ素子3がOFF状態であるときにはONとなるように制御する手段と共に、本実施形態の回生手段が構成される。
【0021】
回生手段2に使用されるスイッチ手段としては、特に、主スイッチ素子3と同一の導電型の小容量MOSFETが好適である。これは、上述のようにゲートONとなる閾値電圧の絶対値が電源電圧の絶対値よりも大きいという電位関係を利用すれば、主スイッチ素子3を駆動する電源でこのスイッチ手段を駆動する事が可能となるからである。なお、このとき小容量MOSFETにも主スイッチ素子と同様にゲートチャージによる損失が発生するが、回生手段として用いるスイッチ手段は主スイッチ素子を駆動できる程度の小容量のもので十分なので、ゲートチャージによる損失は主スイッチ素子のそれに比して著しく少ない。このゲートチャージに関しては、小容量のNチャネルMOSFETは高性能であり、特にゲートチャージが少ない。
【0022】
[負荷4]
負荷4に対しては、特に制限は無く、抵抗性負荷、誘導性負荷、又はトランスの1次コイルなど、適宜必要な負荷を使用することができる。
【0023】
[直流電源8]
直流電源8についてもその種類に特に制限は無いが、その出力電圧は主スイッチ素子3がONとなるゲート電圧の閾値よりも低いことが必須である。例えば、主スイッチ素子3がONとなるゲート電圧が2Vならば、その電圧よりも電源電圧の方が低い値、たとえば1Vである必要がある。
【0024】
一般的に、MOSFETの導通抵抗値はゲート電圧に対して指数関数的に変化するので、アプリケーションが必要とするON状態での抵抗値を得るための閾値電圧は、実測等で適宜求める必要がある。使用する素子のデータシートに記載された値を参考にすることも可能であるが、その際には、そのときのスイッチ素子の抵抗値(これはデータシート上で計測条件として定義されることが多い。)に注意を払う必要がある。
【0025】
また、本実施形態においては主スイッチ素子3がOFFであるときにゲートに印加される電圧は、直流電源の電圧と等しくなり、0にはならない。従って、直流電源の電圧は、上記のようにして求められた閾値電圧よりも十分低く設定しなければ、回生時に主スイッチ素子3がOFFとならず、負荷に対する電源供給制御ができなくなってしまう。
【0026】
更に、本実施形態で使用される直流電源には、ゲートから流れ込んでくるエネルギを受け入れる機能が必要であり、このためには電解コンデンサなどに代表される蓄電手段を持つことが望ましい。ただし、蓄電手段については電源に存在する寄生容量でも十分な場合もあるので、必ずしもコンデンサを設ける必要はない。
【0027】
以上のような条件を満たしさえすれば、本実施形態の直流電源としては種々のものが選択可能であり、太陽電池、燃料電池、アルカリ乾電池、ニッケル水素電池などが使用可能である。
【0028】
[ゲート駆動信号源5]
本実施形態のゲート駆動信号源5は単なる信号源ではなく、ゲート静電容量を駆動できるだけの電力を供給できる小容量電源機能も併せ持つ必要がある。その出力電圧としては、主スイッチ素子3がONとなるのに十分な電圧が必要であり、2.5〜15V程度が用いられる。最近ではロジックICの低電圧化にあわせて3.3Vや5Vが特に好んで用いられる。信号源として用いられる発振回路や電源回路としては、公知又は周知の回路が使用でき、その構成は、本発明の本質とはほとんど関連がないので詳細な説明は省略する。
【0029】
(具体的構成)
以下、上記の実施形態の動作に関して、詳細に説明する。なお、以下の動作説明は、直流電源8としては市販の単3型アルカリマンガン乾電池(出力電圧1.5V)と積層セラミックコンデンサ(100μF)を並列接続したものを用い、負荷4としては100Ωの抵抗を用い、逆流防止手段1及び回生手段2には市販のフォトMOSリレーを用いた。
【0030】
また、主スイッチ素子3としては、Nチャネル・パワーMOSFET(フェアチャイルド社製、型名ISL9N302AP)を用いた。NチャネルMOSFETはパワー素子としては最も一般的なもので、Pチャネル素子よりも高性能が得やすいため、好んで用いられる。なお、本実施形態で使用したMOSのデータシートにはスレッショルド電圧は1.0〜3.0Vと示されているが、実測した導通抵抗はゲート電圧を電源電圧に等しい1.5Vとしたときに10MΩ以上(すなわちOFF状態)であり、本実施形態の動作に関して支障はない。実質的にオン状態となる閾値電圧は、電源電圧よりもはるかに高いと言える。このように本発明の実施にあっては、電源電圧を主スイッチ素子のゲートに加えた状態で主スイッチ素子がOFF状態となることが本質的に重要である。
【0031】
駆動用信号源5としては出力5Vの矩形波発振器(発信周波数100Hz)を用い、その出力を逆流防止手段1と主スイッチ素子3のゲートに接続し、回生手段2へは上記発振器の否定出力を接続した。これにより、発振器の出力が5V(ハイレベル)のときには、主スイッチ素子3と逆流防止手段1がONとなり、回生手段2はOFFとなる。一方、発振器の出力が0V(ローレベル)のときには逆流防止手段1及び主スイッチ素子3がOFFとなり、回生手段2がONとなる。本発明の効果を享受するためには、他の回路部品で構成したとしても、上記のようなスイッチの動作を実現することが必要である。
【0032】
また、比較のための回路として、図9に示した従来のゲート駆動回路を用いた。この回路は、本実施形態の構成から、逆流防止手段と回生手段を取り除いたものである。
【0033】
(動作説明)
(1)ON動作
駆動用信号源5としての発振器出力が5Vになると、逆流防止手段1を介して主スイッチ素子3のゲートが5Vで充電される。主スイッチ素子3のゲートの静電容量は11000pFであり、ゲートには、1/2CV(J)のエネルギが蓄えられる。なお、比較のための従来回路でもON時の動作は同じである。
【0034】
(2)OFF動作
駆動用信号源5としての発振器出力が0Vになると、逆流防止手段1がOFFとなり、回生手段2がONとなる。図2はこの状態の等価回路図である。キャパシタ10は主スイッチ素子3のゲートの静電容量を表しており、9は寄生インピーダンスである。キャパシタ10は寄生インピーダンス9を通じて直流電源8に接続される。
【0035】
ゲート駆動電圧は5Vで、直流電源8の電圧は1.5Vであるから、キャパシタ10に蓄えられた電荷の一部は直流電源8に流れ込み、エネルギが回生されることになる。回生量は、直流電源8の電圧とゲート駆動電圧の比で決定され、この場合は直流電源の電圧が1.5V、ゲート駆動電圧が5Vなので、駆動用信号源5からゲートに送出されたエネルギの約30%(=1.5/5)が電源側に回生される。これによりゲート電圧は直流電源8の電圧である1.5Vまで下がるが、それ以下には下がらない。
【0036】
これに対し図9の従来回路では、ゲート電圧は0Vまで下がり、ゲートの静電容量により蓄えられたエネルギは、そのまま低電位側へ捨てられ損失となる。
【0037】
(3)再ON動作
従来回路では、主スイッチ素子3がON状態となるためには、0Vから5Vへの充電が必要となるが、本実施形態の回路では1.5Vから5Vへの充電で済むので、主スイッチ素子3が再度ON状態となるために必要なエネルギも減少することになる。
【0038】
図3は、上記の実施形態及び従例来の動作におけるエネルギ回収量等を具体的に計算した結果を示す図である。図示されたように、本実施形態によれば、送出エネルギの約30%を回収できると共に、ON時の送出エネルギも従来例より節約されるので、結局ゲート駆動エネルギ総量(=送出エネルギ−回収エネルギ)を従来例と比べて約51%削減できる。このように、ゲート駆動エネルギが削減できるので、ゲート駆動用電源を小容量とすることが可能になる。
【0039】
<第2の実施形態>
以下、本発明に係る第2の実施形態について説明する。なお、以下の説明においては上記第1の実施形態と同様な部分については同じ符号で表して説明を省略する。
【0040】
図4は第2の実施形態としてのゲート駆動回路の構成を示す図である。本実施形態における具体的構成を説明すると、直流電源8としては市販のニッケル水素電池(1.2V)とアルミ電解コンデンサ(470uF)を並列接続したものを用いた。主スイッチ素子3、駆動信号源5及び負荷4は第1の実施形態と同様の構成とした。
【0041】
逆流防止手段としてはショットキーバリアダイオード100を使用し、回生手段としては小容量NチャネルMOSFET200(インターナショナル・レクティファイア社製、型名IRLMS1902)を使用した。このように、逆流防止手段にダイオードを使用することで、自動的に逆流防止が可能となり、駆動信号源5からの配線が不要となる。
【0042】
また、NOT素子201を介して小容量MOSFET200のゲートへ主スイッチ素子3に印加されるのとは逆論理の信号を送り、小容量MOSFET200が主スイッチ素子3がONとなるときにはOFFに、主スイッチ素子3がOFFとなるときにはONとなるようにした。
【0043】
小容量MOSFET200は、図4に示したようにソース端子が直流電源8の高電位側に接続され、ドレイン端子が主スイッチ素子3のゲート端子に接続される。これは通常の常識的な接続(通常はNチャネルMOSFETでは電源の正電位側にドレイン端子が接続される。)とは逆の接続であるが、これによりMOSFETの内蔵ダイオードを通じて主スイッチ素子3のゲートに蓄積された電荷が放電される(漏洩する)ことが防止される。
【0044】
また、電位の関係から、主スイッチ素子3がOFFであるときには小容量MOSFET200のソース−ゲート間電圧は、3.8V(=5V−1.2V)となるので、このような電圧でONとなるデバイスを選択する必要がある。本実施形態で用いた小容量MOSFET200は、当然、この要件を満たしている。このようにして主スイッチ素子3のゲートに蓄積された電荷は、小容量MOSFET200を介して直流電源8へと回生される。
【0045】
図5は、本実施形態における電位の関係を示す図である。本実施形態を動作させるためには、主スイッチ素子3がONとなるゲートの閾値電位、直流電源8の電位、及び主スイッチ素子3をON状態とすべくゲートにかかる駆動電位の関係は、図示したような大小関係となる必要がある。
【0046】
本実施形態は、第1の実施形態よりもコンパクトで簡便な構成としたことを特徴とする。本実施形態の小容量MOSFET200、NOT素子201、逆流防止ダイオード100からなる回生ブロック60は、1つの半導体チップとすることも容易である。本実施形態の動作に関しては、第1の実施形態と同様であるので、説明を省略する。
【0047】
<第3の実施形態>
以下、本発明に係る第3の実施形態について説明する。なお、以下の説明においては上記第1及び第2の実施形態と同様な部分については同じ符号で表して説明を省略する。
【0048】
本実施形態は、プッシュプル電力変換回路に本発明に係るゲート駆動回路を適用した例である。図6は、本発明のゲート駆動回路を適用したプッシュプル電力変換器を有する太陽光発電システムを示すブロック図である。
【0049】
この太陽光発電システムは、直流電源として太陽電池81とコンデンサ82とを並列接続したものを有し、第2の実施形態のゲート駆動回路と同様な主スイッチ素子及び回生ブロックを、3a、3b及び60a、60bで示すようにそれぞれ2つ有している。また、電力変換のためにトランス40、ダイオードブリッジ50a〜50d、及びコイル70とコンデンサ71からなる平滑フィルタを有しており、変換された電力は2次電池90に蓄積される。
【0050】
図6の構成において、太陽電池81としては周知のタンデム型太陽電池であって、外部で電気的に直列接続されていない、いわゆる「単セル」型太陽電池モジュール(標準測定条件(AM1.5、1.0kW/m)下での出力が1.0V10A)を用い、コンデンサ82としては積層セラミックコンデンサ(100uF)を用いた。トランス40としては、1:15の巻き数比を持ったものを用いた。このトランス40の1次側コイルが主スイッチ素子3の負荷として使用されている。また、トランス40の2次側コイルからの出力は、ダイオードブリッジ50a〜50dによって整流され、コイル70とコンデンサ71からなる平滑フィルタを通じて平滑化され、市販の2次電池90(電圧12V、容量200Ah)に送出される。駆動信号源5としては、50%デューティの矩形波発振器を用い、主スイッチ素子3a及び3bを交互にON/OFFさせるように駆動する。
【0051】
図7は、比較例としての従来方法によるゲート駆動を採用した回路を示す図である。この回路は、図6に示された回路と比べて回生ブロック60a及び60bを用いていない点で異なることが容易に理解できるであろう。
【0052】
本実施形態での回生ブロック60a及び60bの動作は、第2の実施形態で説明したのと全く同様であり、主スイッチ素子3a及び3bのゲートに蓄積された電荷を電源側及び負荷側に直接回生するように動作するので、ゲート駆動電力を削減できる。
【0053】
このように、本発明はプッシュプル回路のような電力変換器においても有効な技術である。特に本実施形態のプッシュプル回路のように50%デューティで駆動するタイプでは、主スイッチ素子3a及び3bに対する駆動信号は互いに相補的関係にあるので、これを直接利用することで回生ブロックの中に含まれるNOT素子201を省略することも可能であり、回生ブロックの構成をより簡素化できるという効果が得られる。
【0054】
<第4の実施形態>
以下、本発明に係る第4の実施形態について説明する。なお、以下の説明においては上記第1から第3の実施形態と同様な部分については同じ符号で表して説明を省略する。
【0055】
図8は本実施形態の構成を示す図である。本実施形態では、回生ブロック60内に設けられる逆流防止手段として、3ステート・バッファ素子101(型式名74HC126)を用い、図8に示すように導通制御端子に駆動信号源からの信号をそのまま入力するように接続した。
【0056】
このようにすることで、駆動信号源5の出力がハイレベであればその出力がそのまま主スイッチ素子3のゲート端子に印加され、駆動信号源5の出力がローレベルであれば、主スイッチ素子3のゲート端子と駆動信号源5とが非接続(高インピーダンス接続状態)となり、上記の逆流防止手段として動作する。このようにすると、逆流防止手段にショットキー・ダイオードを使うよりも損失が少なくなり、また集積化にも好適である。
【0057】
以上説明したように本発明の実施態様としては以下のような態様がある。
【0058】
(実施態様1)
直流電源と、
ハイレベル及びローレベルの信号を出力する駆動信号源と、
前記駆動信号源から出力される信号がゲート端子に入力され、前記信号のレベルに応じてソース端子及びドレイン端子間の導通状態を制御する主スイッチ素子と、
前記ソース端子及びドレイン端子間が導通状態となったときに通電される負荷と、
前記駆動信号源と前記ゲート端子との間に接続され、前記駆動信号源から前記ゲート端子への方向にのみ信号を出力する逆流防止手段と、
前記ゲート端子と前記直流電源の高電位側との間に接続され、前記ソース端子及びドレイン端子間が非導通状態であるときに導通状態となる回生手段と、を備えており、
前記ソース端子及びドレイン端子間が導通状態となるゲート−ソース間閾値電圧が、前記直流電源の出力電圧よりも大きいことを特徴とするゲート駆動回路。
【0059】
(実施態様2)
前記主スイッチ素子が、NチャネルMOSFET又はNチャネルIGBTを含むことを特徴とする実施態様1に記載のゲート駆動回路。
【0060】
(実施態様3)
前記逆流防止手段がダイオードを含むことを特徴とする実施態様1又は2に記載のゲート駆動回路。
【0061】
(実施態様4)
前記回生手段がMOSFETである実施態様1から3のいずれか1つに記載のゲート駆動回路。
【0062】
(実施態様5)
実施態様1から4のいずれか1項に記載のゲート駆動回路を含み、前記ソース端子及びドレイン端子間が導通状態となったときに、前記負荷に前記直流電源からの出力電圧が供給されることを特徴とする電源回路。
【0063】
(実施態様6)
前記負荷が変圧器の1次側巻線を含むことを特徴とする実施態様5に記載の電源回路。
【0064】
(実施態様7)
DC/AC変換を行うことを特徴とする実施態様5又は6に記載の電源回路。
【0065】
(実施態様8)
前記直流電源が、直列接続されていない複数の太陽電池セルを含むことを特徴とする実施態様5から7のいずれか1つに記載の電源回路。
【0066】
【発明の効果】
以上説明したように本発明によれば、主スイッチ素子を駆動する際に使用される電力の一部を電源側あるいは負荷側に回生(再利用)することができ、主スイッチ素子の駆動に伴う電力の損失を減少させることができる。さらに、主スイッチ素子が非導通状態であるときに、ゲート端子に印加される電圧が直流電源の電圧までにしか降下しないので、導通時と非導通時のゲートの電位差が小さくなり、導通状態となるまでに必要な駆動電力も減少させることが可能となる。
【0067】
従って、低電圧かつ扱う電力が小さい領域で使用されるゲート駆動回路において電力損失を低減させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態としてのゲート駆動回路の構成を示す図である。
【図2】図1の回路でゲートチャージの回生時の等価回路を示す図である。
【図3】図1の回路と従来のゲート駆動回路のエネルギの比較を示す図である。
【図4】本発明の第2の実施形態としてのゲート駆動回路の構成を示す図である。
【図5】図4のゲート駆動回路が動作するために必要な各部の電位を表した図である。
【図6】本発明の第3の実施形態としてのプッシュプル方式電力変換器の構成を示す図である。
【図7】比較例としての従来のプッシュプル方式電力変換器の構成を示す図である。
【図8】本発明の第3の実施形態としてのプッシュプル方式電力変換器の構成を示す図である。
【図9】比較例としての従来のゲート駆動回路の構成を示す図である。
【符号の説明】
1 逆流防止手段
2 回生手段
3,3a,3b 主スイッチ素子
4 負荷
5 駆動信号源
6 高電位側端子
7 低電位側端子
8 直流電源
9 寄生インピーダンス
10 ゲート静電容量
40 トランス
50a,50b,50c,50d 整流ダイオード
60,60a,60b 回生ブロック
70 平滑コイル
71 平滑コンデンサ
81 太陽電池
82 コンデンサ
90 蓄電池
100 逆流防止ダイオード
101 3ステートバッファ
200 MOSFET
201 NOT素子

Claims (1)

  1. 直流電源と、
    ハイレベル及びローレベルの信号を出力する駆動信号源と、
    前記駆動信号源から出力される信号がゲート端子に入力され、前記信号のレベルに応じてソース端子及びドレイン端子間の導通状態を制御する主スイッチ素子と、
    前記ソース端子及びドレイン端子間が導通状態となったときに通電される負荷と、
    前記駆動信号源と前記ゲート端子との間に接続され、前記駆動信号源から前記ゲート端子への方向にのみ信号を出力する逆流防止手段と、
    前記ゲート端子と前記直流電源の高電位側との間に接続され、前記ソース端子及びドレイン端子間が非導通状態であるときに導通状態となる回生手段と、を備えており、
    前記ソース端子及びドレイン端子間が導通状態となるゲート−ソース間閾値電圧が、前記直流電源の出力電圧よりも大きいことを特徴とするゲート駆動回路。
JP2002305833A 2002-10-21 2002-10-21 ゲート駆動回路 Withdrawn JP2004140977A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002305833A JP2004140977A (ja) 2002-10-21 2002-10-21 ゲート駆動回路
US10/683,588 US6967520B2 (en) 2002-10-21 2003-10-14 Gate drive circuit, which makes the gate-charge flow back to the load and the main power source
EP20030023350 EP1414153A1 (en) 2002-10-21 2003-10-15 Gate driving circuit
KR1020030073326A KR100552225B1 (ko) 2002-10-21 2003-10-21 게이트구동회로
CNA200310102507XA CN1512650A (zh) 2002-10-21 2003-10-21 门驱动电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305833A JP2004140977A (ja) 2002-10-21 2002-10-21 ゲート駆動回路

Publications (2)

Publication Number Publication Date
JP2004140977A true JP2004140977A (ja) 2004-05-13
JP2004140977A5 JP2004140977A5 (ja) 2005-12-08

Family

ID=32064281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305833A Withdrawn JP2004140977A (ja) 2002-10-21 2002-10-21 ゲート駆動回路

Country Status (5)

Country Link
US (1) US6967520B2 (ja)
EP (1) EP1414153A1 (ja)
JP (1) JP2004140977A (ja)
KR (1) KR100552225B1 (ja)
CN (1) CN1512650A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920767B1 (ko) * 2002-12-09 2009-10-07 엘아이지넥스원 주식회사 하이 파워 증폭기용 펄스 모듈레이터의 오버슈트 방지회로
US9991012B2 (en) 2010-10-07 2018-06-05 Mallinckrodt Nuclear Medicine Llc Extraction process

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612283B2 (en) * 2002-07-09 2009-11-03 Canon Kabushiki Kaisha Solar power generation apparatus and its manufacturing method
JP2004336944A (ja) * 2003-05-09 2004-11-25 Canon Inc 電力変換装置及び太陽光発電システム
US7746153B1 (en) * 2007-11-09 2010-06-29 National Semiconductor Corporation Power FET gate charge recovery
US8547161B1 (en) * 2008-05-08 2013-10-01 Google Inc. Transistor having asymmetric gate-voltage control
DE102009024161B4 (de) * 2009-06-08 2021-11-11 Texas Instruments Deutschland Gmbh Elektronische Vorrichtung und Verfahren zur DC-DC-Umwandlung
JP5263316B2 (ja) 2011-02-15 2013-08-14 株式会社デンソー 半導体スイッチング素子の駆動回路
JP5263317B2 (ja) 2011-02-15 2013-08-14 株式会社デンソー 半導体スイッチング素子の駆動回路
JP5310758B2 (ja) 2011-02-15 2013-10-09 株式会社デンソー 半導体スイッチング素子の駆動回路
CN102904558B (zh) * 2012-10-15 2015-09-09 艾维新能源科技南京有限公司 一种微功耗单向导通电路
CN102970015B (zh) * 2012-11-01 2015-01-21 电子科技大学 零死区栅极驱动电路
CN103219874B (zh) * 2013-03-20 2015-03-11 北京市信息技术研究所 无人机直流调制电源漏极调制装置
JP6197442B2 (ja) * 2013-07-26 2017-09-20 三菱電機株式会社 半導体素子の駆動回路
CN104038193A (zh) * 2013-11-19 2014-09-10 西安永电电气有限责任公司 Igbt驱动装置及其驱动方法
US10250249B1 (en) 2017-06-30 2019-04-02 Bel Power Solutions Inc. Recuperative gate drive circuit and method
US10511297B2 (en) 2017-07-25 2019-12-17 Psemi Corporation High-speed switch with accelerated switching time

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654518A (en) * 1970-09-17 1972-04-04 Caterpillar Tractor Co Fast acting solid state circuit breaker
US3641424A (en) * 1970-11-20 1972-02-08 Trw Inc Regenerative voltage regulators
US4481434A (en) * 1982-06-21 1984-11-06 Eaton Corporation Self regenerative fast gate turn-off FET
JPS6014519A (ja) * 1983-07-04 1985-01-25 Kyosan Electric Mfg Co Ltd トランジスタインバ−タのベ−ス駆動装置
US4709316A (en) * 1985-12-27 1987-11-24 General Electric Company Single-ended DC-to-DC converter with lossless switching
FR2627033B1 (fr) * 1988-02-04 1990-07-20 Sgs Thomson Microelectronics Circuit de commande de grille d'un transistor mos de puissance fonctionnant en commutation
JPH0336332A (ja) 1989-06-30 1991-02-18 Komatsu Ltd 油圧式掘削機
JPH03286619A (ja) * 1990-04-02 1991-12-17 Mitsubishi Electric Corp 絶縁ゲート形半導体装置のゲート駆動回路および該回路を用いたフラッシュ制御装置
US5315533A (en) * 1991-05-17 1994-05-24 Best Power Technology, Inc. Back-up uninterruptible power system
US5264736A (en) * 1992-04-28 1993-11-23 Raytheon Company High frequency resonant gate drive for a power MOSFET
JP2780566B2 (ja) 1992-06-10 1998-07-30 株式会社日立製作所 電力変換器
US5347164A (en) * 1992-10-08 1994-09-13 Accton Technology Corporation Uninterruptible power supply having a 115V or 230V selectable AC output and power saving
US5298797A (en) * 1993-03-12 1994-03-29 Toko America, Inc. Gate charge recovery circuit for gate-driven semiconductor devices
CH685272A5 (de) * 1993-06-29 1995-05-15 Pms En Ag Solarzellen-Anlage.
US5455757A (en) * 1994-01-28 1995-10-03 Compaq Computer Corp. Power converter having regeneration circuit for reducing oscillations
US5467047A (en) * 1994-07-15 1995-11-14 Motorola, Inc. Power transistor rapid turn off circuit for saving power
US5737208A (en) * 1996-05-24 1998-04-07 Chen; Sung-Chin Modular uninterruptable power supply system
US6093883A (en) * 1997-07-15 2000-07-25 Focus Surgery, Inc. Ultrasound intensity determining method and apparatus
JPH11251615A (ja) * 1998-03-03 1999-09-17 Canon Inc 融雪機能付き太陽光発電システム
AU755700B2 (en) * 1999-11-29 2002-12-19 Canon Kabushiki Kaisha Power generation system, and method for installing the same
JP2001345472A (ja) * 2000-03-29 2001-12-14 Canon Inc 太陽電池モジュールの検査方法、検査装置及び製造方法、太陽光発電システムの点検方法及び点検装置、並びに絶縁抵抗測定器及び耐電圧試験器
JP2002158021A (ja) 2000-11-20 2002-05-31 Sony Corp 発電装置およびこれに用いる水素カートリッジ
US6731023B2 (en) * 2001-03-29 2004-05-04 Autoliv Asp, Inc. Backup power supply for restraint control module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920767B1 (ko) * 2002-12-09 2009-10-07 엘아이지넥스원 주식회사 하이 파워 증폭기용 펄스 모듈레이터의 오버슈트 방지회로
US9991012B2 (en) 2010-10-07 2018-06-05 Mallinckrodt Nuclear Medicine Llc Extraction process

Also Published As

Publication number Publication date
US6967520B2 (en) 2005-11-22
KR20040034550A (ko) 2004-04-28
CN1512650A (zh) 2004-07-14
KR100552225B1 (ko) 2006-02-14
EP1414153A1 (en) 2004-04-28
US20040075486A1 (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP2004140977A (ja) ゲート駆動回路
US9941722B2 (en) Converter and method for extracting maximum power from piezo vibration harvester
JP4966249B2 (ja) スイッチング電源装置
CN109088544A (zh) 开关电源装置
JP3505068B2 (ja) 同期整流式dc−dcコンバータ
JP2000270564A (ja) 連系装置
CN105811747A (zh) 具有使能控制的高压电源系统
JP2007209056A (ja) 蓄電装置
CN107359680A (zh) 电源补偿器充电电容蓄电管理系统
CN2678238Y (zh) 电力再生电路及电力变换装置
JP2000116120A (ja) 電力変換装置
JP4400065B2 (ja) スイッチング電源装置
CN105811773A (zh) 减小与同步整流mosfet相关联的开关损耗
JPH10174452A (ja) 電力変換装置、インバータおよび太陽光発電システム
JP2001309647A (ja) チョッパ回路
TWI750016B (zh) 返馳式轉換器及其控制方法
JP3377959B2 (ja) 電源装置
US20220181985A1 (en) Power conversion system, and diagnosis method and program for power conversion circuit
CN219499210U (zh) 变频控制器
JP6945166B2 (ja) スナバ回路、及び電力変換システム
JP2002199713A (ja) 同期整流型フォワードコンバータ
JP3370201B2 (ja) 同期整流コンバ−タ
JP3493317B2 (ja) 同期整流方式のスイッチング電源における系統並列運転回路
CN202931006U (zh) 小型太阳能电源系统
JPH06276754A (ja) インバータ方式

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070719