JP2004140576A - 電圧比較器およびリーク電流検出装置 - Google Patents

電圧比較器およびリーク電流検出装置 Download PDF

Info

Publication number
JP2004140576A
JP2004140576A JP2002303127A JP2002303127A JP2004140576A JP 2004140576 A JP2004140576 A JP 2004140576A JP 2002303127 A JP2002303127 A JP 2002303127A JP 2002303127 A JP2002303127 A JP 2002303127A JP 2004140576 A JP2004140576 A JP 2004140576A
Authority
JP
Japan
Prior art keywords
voltage
transistor
circuit
terminal
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002303127A
Other languages
English (en)
Inventor
Kunihiko Goto
後藤 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002303127A priority Critical patent/JP2004140576A/ja
Publication of JP2004140576A publication Critical patent/JP2004140576A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

【課題】対象回路が接続される端子の電圧が半導体集積回路に供給される電源電圧よりも高い場合であっても、端子間電圧をしきい値電圧と比較動作可能とする。
【解決手段】比較回路32の基準電圧生成回路37には常に電流Iaが流れており、その両端子間には基準電圧Vr(=Ia・R24+VBE(Q28) )が生成される。MOSトランジスタQ21のオフ駆動時にソレノイド22にリーク電流が流れ、端子27、28間の電圧が(Vr−VBE(Q30) )つまりIa・R24以上になると、トランジスタQ30がオフとなり、出力回路33はHレベルの検出信号を出力する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路装置として構成され第1の端子と第2の端子との間の電圧を所定のしきい値電圧と比較する電圧比較器およびそれを用いたリーク電流検出装置に関する。
【0002】
【従来の技術】
インダクタンス負荷駆動回路のリーク検出回路として、特許文献1に示されたものがある。この特許文献1の図4に示す回路は、インダクタンス負荷の各端子電圧を分圧して汎用のコンパレータで比較するようになっている。
【0003】
【特許文献1】
特開平11−30639号公報(第1図、第4図)
【0004】
【発明が解決しようとする課題】
また、図3は、車両に搭載された負荷回路例えばソレノイドに対するリーク電流検出回路の電気的構成を示している。この図3において、端子2、3は半導体集積回路1(以下、IC1と称す)の電源端子であって、イグニッションスイッチ4がオンされるとバッテリ5から電圧Vbが供給されるようになっている。バッテリ5の両端子間には、ソレノイド6とMOSトランジスタQ1とが直列に接続されており、MOSトランジスタQ1がオンするとソレノイド6が通電状態となる。また、ソレノイド6の両端子は、それぞれIC1の電圧検出用の端子7、8に接続されている。
【0005】
IC1の内部には、電源回路9、駆動回路10、定電流回路11、しきい値電圧発生回路12、コンパレータ13、出力回路14、ダイオードD1、D2、D3からなるレベルシフト回路15、ダイオードD4、D5、D6からなるレベルシフト回路16等が形成されている。コンパレータ13の非反転側入力端子であるトランジスタQ2のベースは、しきい値電圧発生回路12内の抵抗R1とレベルシフト回路15とを介して上記端子7に接続され、コンパレータ13の反転側入力端子であるトランジスタQ3のベースは、レベルシフト回路16を介して上記端子8に接続されている。
【0006】
定電流回路11が出力する定電流をIa、pn接合の順方向電圧をVF、バッテリ電圧をVBattとすれば、イグニッションスイッチ4が閉じた状態で、トランジスタQ2のベース電圧VB(Q2) は次の(1)式に示すようになる。
VB(Q2) =VBatt−3・VF−Ia・R1     …(1)
【0007】
これに対し、トランジスタQ3のベース電圧VB(Q3) は、ソレノイド6がオフ駆動され且つソレノイド6にリーク電流が流れていない場合にあっては次の(2)式に示すようになる。その結果、トランジスタQ2がオン、トランジスタQ3がオフとなり、出力回路14はLレベルの検出信号を出力する。
VB(Q3) =VBatt−3・VF           …(2)
【0008】
これに対し、ソレノイド6にリーク電流が流れ、端子8の電圧が端子7の電圧に対してIa・R1以上低下すると、トランジスタQ2がオフ、トランジスタQ3がオンとなり、出力回路14はHレベルの検出信号を出力する。
【0009】
この回路構成において、コンパレータ13が正常に動作するためには、トランジスタQ2、Q3の各ベース電圧VB(Q2) 、VB(Q3) はともに(Vb−VF)以下でなければならず、逆接続防止用のダイオードD1の存在を考慮すれば、バッテリ電圧VBattに対し少なくとも2・VFだけ低い電圧でなければならない。レベルシフト回路15、16においてダイオードを3個直列に接続したのは、ベース電圧VB(Q2) 、VB(Q3) をバッテリ電圧VBattに対し3・VF(>2・VF)だけ低い電圧とするためである。
【0010】
しかしながら、バッテリ5からイグニッションスイッチ4、ダイオードD1を介してIC1の端子2に至る電源配線は、長く引き回されることが多く、配線抵抗による電圧降下やノイズの混入による一時的な電圧低下を引き起こすことがある。その結果、電圧Vbがバッテリ電圧VBattに対し2・VF以上低下すると、上述したコンパレータ13の動作条件が満たされなくなり、コンパレータ13の動作が停止してしまう。
【0011】
この現象は、図4に示すようにNPN形トランジスタQ4、Q5を差動入力トランジスタとするコンパレータ17を用いた構成でも同様に生じる。この回路構成では、トランジスタQ4、Q5の各ベース電圧VB(Q4) 、VB(Q5) はともに(Vb+VF)以下でなければならず、ダイオードD1の存在を考慮すれば、バッテリ電圧VBatt以下の電圧でなければならない。従って、本構成では、図3に示す構成に比べて電圧余裕が大きくなるものの、電圧Vbがバッテリ電圧VBattに対し4・VF以上低下すると、コンパレータ17の動作が停止してしまう。
【0012】
本発明は上記事情に鑑みてなされたもので、その目的は、対象回路が接続される端子の電圧が半導体集積回路に供給される電源電圧よりも高い場合であっても、端子間電圧をしきい値電圧と比較動作可能な電圧比較器およびそれを用いたリーク電流検出装置を提供することにある。
【0013】
【課題を解決するための手段】
請求項1に記載した手段によれば、基準電圧生成回路に第1の定電流回路が出力する一定電流が流れ、基準電圧生成回路の両端子間には、ダイオード接続された第1のトランジスタに係るpn接合の順方向電圧と上記一定電流により生じる抵抗回路の電圧降下とが加算された基準電圧が生成される。第1の端子と第2の端子との間の電圧について、第2のトランジスタのオンオフ状態が変化するしきい値電圧は、(基準電圧−第2のトランジスタのベース・エミッタ間電圧)となる。
【0014】
本電圧比較器は、定電流回路を除いて半導体集積回路装置に供給される電源電圧を用いておらず、その定電流回路も例えば2・VBE程度の低電圧から動作可能となる。従って、半導体集積回路装置に供給される電源電圧が低下したり、第1の端子の電圧および第2の端子の電圧が当該電源電圧よりも高い場合であっても比較動作を維持することができる。
【0015】
また、半導体集積回路装置として構成されているため、ダイオード接続された第1のトランジスタに係るpn接合の順方向電圧と第2のトランジスタのベース・エミッタ間電圧とは値自体および温度特性がよく一致し、しきい値電圧は、これら両電圧が相殺されることにより抵抗回路の電圧降下に等しくなる。これにより、しきい値電圧からpn接合の順方向電圧の温度依存性を排除でき、温度変動幅の大きい車載電子機器に対しても適用可能となる。
【0016】
請求項2に記載した手段によれば、第2のトランジスタがオンの時、第1のトランジスタと第2のトランジスタのコレクタ電流が等しくなるため、第1のトランジスタに係るpn接合の順方向電圧と第2のトランジスタのベース・エミッタ間電圧とはより一致する傾向を示す。これにより、しきい値電圧の精度をより一層高めることができる。
【0017】
請求項3に記載した手段によれば、請求項1記載の電圧比較器と同様な動作となり、しきい値電圧は、(基準電圧−第2のトランジスタのゲート・ソース間電圧)すなわち抵抗回路の電圧降下に等しくなる。その結果、請求項1記載の電圧比較器と同様の効果が得られる。また、請求項4に記載した手段によっても、請求項2に記載した手段と同様の作用、効果が得られる。
【0018】
請求項5に記載した手段によれば、請求項1ないし4の何れかに記載した電圧比較器を設けたので、第1の端子と第2の端子との間に接続される負荷回路に与えられる負荷駆動用電源電圧が半導体集積回路装置に与えられる制御用電源電圧よりも高い場合であっても、電圧比較器は比較動作可能となり、しきい値電圧に相当するしきい値電流を超えるリーク電流の有無を検出できる。
【0019】
【発明の実施の形態】
(第1の実施形態)
以下、本発明の第1の実施形態について図1を参照しながら説明する。
図1は、半導体集積回路装置(IC)の一部として形成されたリーク電流検出装置の実使用状態における電気的構成を示している。ここに示すIC21は、例えば車両のABS制御を行うECU(Electronic Control Unit) に用いられるもので、アクチュエータを構成するソレノイド22(負荷回路に相当)をはじめ、ブレーキ制御に関する図示しない種々の負荷回路(モータ、リレーコイル、ランプ等)を通断電制御するものである。
【0020】
端子23、24はIC21の電源端子であって、実使用時には、端子23は逆接続防止用のダイオードD21とイグニッションスイッチ25とを有する電源配線を介してバッテリ26の正極端子に接続され、端子24は電源配線または車体アースを介してバッテリ26の負極端子に接続されるようになっている。また、バッテリ26の正極端子と負極端子との間には、上記ソレノイド22とNチャネル型のMOSトランジスタQ21とが直列に接続され、ソレノイド22の両端子はそれぞれIC21の電圧検出用の端子27、28(第1、第2の端子に相当)に接続されるようになっている。
【0021】
IC21は、バイポーラプロセスにより製造されており、その内部には電源回路29、駆動回路30、定電流回路31、比較回器32、出力回路33が形成されており、その他にも図示しないCPU、メモリ、A/Dコンバータ、入出力ポートをはじめ各種のアナログ回路およびディジタル回路が形成されている。リーク電流検出装置は、比較回器32と出力回路33を主体として構成されている。以下、これらの回路構成について説明する。
【0022】
電源回路29は、イグニッションスイッチ25がオン状態の時に端子23に与えられる電圧Vbを入力とし、電源電圧Vcc(例えば5V)を生成するシリーズレギュレータを備えている。この電源電圧Vccは、電源線34および端子24に繋がる電源線35(グランド線)を通して、IC21の各機能回路に供給されるようになっている。また、電源回路29は、バンドギャップレギュレータを内蔵しており、温度依存性の小さい一定電圧VBG(例えば1V)を出力するようになっている。なお、電圧Vbまたは電源電圧Vccが本発明でいう制御用電源電圧に相当し、バッテリ電圧VBatt が本発明でいう負荷駆動用電源電圧に相当する。
【0023】
駆動回路30は、図示しないCPUからの指令に従って、IC21の端子36を介してMOSトランジスタQ21のゲートに駆動電圧を出力するようになっている。
【0024】
定電流回路31は、上記一定電圧VBGに応じた電流を出力するようになっている。すなわち、電源線34と35との間には、抵抗R21とPNP形トランジスタQ22のエミッタ・コレクタ間とが直列に接続されており、そのトランジスタQ22のベースには上記一定電圧VBGが与えられている。トランジスタQ22のエミッタは、NPN形トランジスタQ23のベースに接続されており、そのトランジスタQ23のエミッタは抵抗R22を介して電源線35に接続され、コレクタはPNP形トランジスタQ25のコレクタ・エミッタ間を介して電源線34に接続されている。
【0025】
PNP形トランジスタQ26は上記トランジスタQ25とともにカレントミラー回路を構成しており、そのトランジスタQ26のコレクタと電源線35との間にはトランジスタQ27が接続されている。さらに、トランジスタQ25とQ26のベースは、抵抗R23とPNP形トランジスタQ24のエミッタ・コレクタ間を通して電源線35に接続されており、当該トランジスタQ24のベースはトランジスタQ23、Q25のコレクタに接続されている。
【0026】
抵抗R22の抵抗値を符号と同じくR22で表せば、トランジスタQ25、Q26、Q27のコレクタ電流Iaは、次の(3)式に示す値となる。
Ia=VBG/R22               …(3)
【0027】
比較回器32は、本発明でいう電圧比較器に相当し、IC21の端子27、28間の電圧としきい値電圧Vt(後述)とを比較するものである。具体的には、ベースとコレクタとが接続(ダイオード接続)されたPNP形トランジスタQ28(第1のトランジスタに相当)と抵抗R24(抵抗回路に相当)とが直列に接続されて基準電圧生成回路37が構成されており、その基準電圧生成回路37の一端子(トランジスタQ28のエミッタ)は端子27に接続され、他端子はNPN形トランジスタQ29のコレクタおよびPNP形トランジスタQ30(第2のトランジスタに相当)のベースに接続されている。トランジスタQ30のエミッタは端子28に接続され、コレクタはNPN形トランジスタQ31のコレクタに接続されている。
【0028】
ここで、トランジスタQ30のコレクタは比較信号の出力ノードN1とされている。また、トランジスタQ29、Q31は、ともにトランジスタQ27とともにカレントミラー回路を構成しており、(3)式で示した電流Iaを吸い込むようになっている。これらは、それぞれ本発明でいう第1、第2の定電流回路に相当する。
【0029】
出力回路33は、比較回器32からの比較信号を高インピーダンスで受けて二値化した検出信号としてCPUに出力するものである。具体的には、トランジスタQ25、Q26とともにカレントミラー回路を構成するPNP形トランジスタQ32のコレクタと電源線35との間にPNP形トランジスタQ33のエミッタ・コレクタ間が接続されており、そのトランジスタQ33のベースは上記比較回器32の出力ノードN1に接続されている。
【0030】
さらに、電源線34と35との間には、抵抗R25、NPN形トランジスタQ34および抵抗R26の直列回路、並びに抵抗R27およびNPN形トランジスタQ35の直列回路が接続されており、トランジスタQ34、Q35の各ベースは、それぞれトランジスタQ33,Q34の各エミッタに接続されている。そして、トランジスタQ35のコレクタが出力ノードN2となっている。
【0031】
次に、本実施形態の動作について説明する。
イグニッションスイッチ25が閉じられると、バッテリ26からイグニッションスイッチ25とダイオードD21とを有する電源配線を介してIC21の端子23、24間に電圧Vbが印加される。この電圧Vbは、上記配線途中における電圧低下がないと仮定すれば、ダイオードD21の順方向電圧をVFとして(VBatt−VF)となる。
【0032】
この状態で、駆動回路30がMOSトランジスタQ21のゲートに対しオン駆動電圧を印加すればMOSトランジスタQ21がオンとなり、ソレノイド22が通電状態となる。一方、駆動回路30がMOSトランジスタQ21のゲートに対しオフ駆動電圧(通常は0V)を印加すればMOSトランジスタQ21がオフとなり、ソレノイド22が断電状態となる。
【0033】
図1に示すリーク電流検出装置は、ソレノイド22が断電状態にある時にソレノイド22に流れるリーク電流の有無を検出する。比較回路32を構成する基準電圧生成回路37には常に電流Iaが流れており、トランジスタQ28のベース・エミッタ間電圧をVBE(Q28) 、抵抗R24の抵抗値を符号と同じくR24で表せば、基準電圧生成回路37の両端に生成される基準電圧Vrは、次の(4)式で示す値となる。
Vr=Ia・R24+VBE(Q28)          …(4)
【0034】
IC21の端子27、28間の電圧について、トランジスタQ30がオンからオフに移行する電圧すなわちしきい値電圧Vtは、オン状態にあるトランジスタQ30のベース・エミッタ間電圧をVBE(Q30) とすれば、次の(5)式のようになる。
Figure 2004140576
【0035】
トランジスタQ30がオンすると、当該トランジスタQ30にもトランジスタQ28と同じ電流Iaが流れる。しかも、トランジスタQ28とQ30は同じ接合形式(PNP形)を有し、IC21においてトランジスタQ28とQ30とは互いに近接してレイアウトされているため、両トランジスタQ28、Q30のベース・エミッタ間電圧VBE(Q28) 、VBE(Q30) は等しくなる。その結果、(5)式で示すしきい値電圧Vtは(6)式のようになる。
Vt=Ia・R24               …(6)
【0036】
すなわち、MOSトランジスタQ21がオフ状態において、端子28の電圧が(VBatt−Vt)よりも高い場合には、トランジスタQ30、Q34、Q35がオン、トランジスタQ33がオフとなり、ノードN2はLレベル(0V)の検出信号を出力する。一方、端子28の電圧が(VBatt−Vt)以下の場合には、トランジスタQ30、Q34、Q35がオフ、トランジスタQ33がオンとなり、ノードN2はHレベル(5V)の検出信号を出力する。
【0037】
従って、CPUは、イグニッションスイッチ25が閉じられ、MOSトランジスタQ21をオフ駆動している期間において、検出信号がHレベルとなったことによりソレノイド22にしきい値電流It(下記参照)以上のリーク電流が流れていることを検出できる。
【0038】
この場合、ソレノイド22の持つ抵抗値をRs、リーク電流のしきい値をItとすれば、しきい値電流Itは次の(7)式のようになる。
It=Vt/Rs=Ia・(R1/Rs)     …(7)
従って、しきい値電流Itが、アクチュエータが動作しない範囲内の値となるように、抵抗値R24または電流値Iaを設定すれば良い。
【0039】
以上説明したように、リーク電流検出装置に用いられる比較回路32は、IC21に供給される電圧Vbを直接的に用いておらず、また電源回路29が5Vの電源電圧Vccを出力する限りトランジスタQ29、Q31も定電流動作し続ける。従って、配線抵抗やノイズの混入によってIC21に供給される電圧Vbが5V近くにまで低下した場合であっても、端子27、28間の電圧としきい値電圧Vtとの電圧比較動作、つまりはソレノイド22に流れる電流としきい値電流Itとの電流比較動作が可能となる。
【0040】
また、IC化されているため、ダイオード接続されたトランジスタQ28のベース・エミッタ間電圧VBE(Q28) とトランジスタQ30のベース・エミッタ間電圧VBE(Q30) とは常に等しくなり、しきい値電圧Vtは、これら両電圧が相殺されることにより抵抗R24と電流Iaとの積に等しくなる。これにより、しきい値電圧Vtからベース・エミッタ間電圧の温度依存性を排除でき、温度変動幅の大きい車載電子機器(ECU等)に対しても適用可能となる。
【0041】
さらに、トランジスタQ30がオンの時、トランジスタQ28とQ30のコレクタ電流が等しくなるため、両トランジスタQ28、Q30のベース・エミッタ間電圧VBE(Q28) 、VBE(Q30) はより精度良く一致する。これにより、しきい値電圧Vtの精度をより一層高めることができる。
【0042】
(第2の実施形態)
次に、本発明のリーク電流検出装置をCMOSプロセスにより製造されるICを用いて構成した第2の実施形態について説明する。基本構成は第1の実施形態で説明したものと同様であるため、ここでは中核部分をなす比較回器38(電圧比較器に相当)について図2を参照しながら説明する。
【0043】
この図2において、ゲートとドレインとが接続されたPチャネル型トランジスタQ36(第1のトランジスタに相当)と抵抗R28(抵抗回路に相当)とが直列に接続されて基準電圧生成回路39が構成されており、その基準電圧生成回路39の一端子(トランジスタQ36のソース)は端子27に接続され、他端子はNチャネル型トランジスタQ37のドレインおよびPチャネル型トランジスタQ38(第2のトランジスタに相当)のゲートに接続されている。トランジスタQ38のソースは端子28に接続され、ドレインはNチャネル型トランジスタQ39のドレインに接続されている。ここで、トランジスタQ30のドレインは比較信号の出力ノードN1とされている。また、トランジスタQ37、Q39は、それぞれ第1、第2の定電流回路に相当し、ともに(3)式で示した電流Iaを吸い込むようになっている。
【0044】
この構成において、基準電圧生成回路39には常に電流Iaが流れており、トランジスタQ36のゲート・ソース間電圧をVGS(Q36) 、抵抗R28の抵抗値を符号と同じくR28で表せば、基準電圧生成回路39の両端に生成される基準電圧Vrは、次の(8)式で示す値となる。
Vr=Ia・R28+VGS(Q36)          …(8)
【0045】
比較回器38のしきい値電圧Vtは、オン状態にあるトランジスタQ38のゲート・ソース間電圧をVGS(Q38) とすれば、次の(9)式のようになる。
Figure 2004140576
【0046】
さらに、トランジスタQ36、Q38のゲート・ソース間電圧VGS(Q36) 、VGS(Q38) は等しいので、しきい値電圧Vtは(10)式のようになる。
Vt=Ia・R28               …(10)
このように本実施形態によっても比較回路32と同様のしきい値電圧Vtを設定でき、第1の実施形態と同様の効果を得ることができる。
【0047】
なお、本発明は上記し且つ図面に示す各実施形態に限定されるものではなく、例えば以下のように変形または拡張が可能である。
図1におけるトランジスタQ31、図2におけるトランジスタQ38に替えて抵抗を用いても良い。
電源回路29をIC21の外部に設けても良い。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示すリーク電流検出装置の実使用状態における電気的構成図
【図2】本発明の第2の実施形態を示す図1相当図
【図3】従来技術を示す図1相当図
【図4】他の従来技術についてのコンパレータおよびその周辺回路を示す電気的構成図
【符号の説明】
21はIC(半導体集積回路装置)、22はソレノイド(負荷回路)、27は端子(第1の端子)、28は端子(第2の端子)、32、38は比較回器(電圧比較器)、37、39は基準電圧生成回路、Q28、Q36はトランジスタ(第1のトランジスタ)、Q29、Q37はトランジスタ(第1の定電流回路)、Q30、Q38はトランジスタ(第2のトランジスタ)、Q31、Q39はトランジスタ(第2の定電流回路)、R24、R28は抵抗(抵抗回路)である。

Claims (5)

  1. 半導体集積回路装置として構成され、第1の端子と第2の端子との間の電圧を所定のしきい値電圧と比較する電圧比較器において、
    ダイオード接続された第1のトランジスタと抵抗回路との直列回路からなる基準電圧生成回路の一端子が前記第1の端子に接続され、
    第2のトランジスタのエミッタが前記第2の端子に接続され、
    前記基準電圧生成回路の他端子と前記第2のトランジスタのベースとが共通に接続された上で第1の定電流回路に接続され、
    前記第2のトランジスタのコレクタから比較信号を取り出すように構成されていることを特徴とする電圧比較器。
  2. 前記第2のトランジスタのコレクタは、前記第1の定電流回路と同じ電流値を出力する第2の定電流回路に接続されていることを特徴とする請求項1記載の電圧比較器。
  3. 半導体集積回路装置として構成され、第1の端子と第2の端子との間の電圧を所定のしきい値電圧と比較する電圧比較器において、
    ゲートとドレインが接続された第1のトランジスタと抵抗回路との直列回路からなる基準電圧生成回路の一端子が前記第1の端子に接続され、
    第2のトランジスタのソースが前記第2の端子に接続され、
    前記基準電圧生成回路の他端子と前記第2のトランジスタのゲートとが共通に接続された上で定電流回路に接続され、
    前記第2のトランジスタのドレインから比較信号を取り出すように構成されていることを特徴とする電圧比較器。
  4. 前記第2のトランジスタのドレインは、前記第1の定電流回路と同じ電流値を出力する第2の定電流回路に接続されていることを特徴とする請求項3記載の電圧比較器。
  5. 請求項1ないし4の何れかに記載の電圧比較器を備え、
    その半導体集積回路装置に対し制御用電源電圧が印加され、前記第1の端子と第2の端子との間に負荷回路が接続され、前記第1の端子とグランド端子との間に負荷駆動用電源電圧が印加された状態において、前記負荷回路の断電駆動時におけるリーク電流の有無を検出するように構成されていることを特徴とするリーク電流検出装置。
JP2002303127A 2002-10-17 2002-10-17 電圧比較器およびリーク電流検出装置 Pending JP2004140576A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303127A JP2004140576A (ja) 2002-10-17 2002-10-17 電圧比較器およびリーク電流検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303127A JP2004140576A (ja) 2002-10-17 2002-10-17 電圧比較器およびリーク電流検出装置

Publications (1)

Publication Number Publication Date
JP2004140576A true JP2004140576A (ja) 2004-05-13

Family

ID=32451008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303127A Pending JP2004140576A (ja) 2002-10-17 2002-10-17 電圧比較器およびリーク電流検出装置

Country Status (1)

Country Link
JP (1) JP2004140576A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091548A (zh) * 2013-01-09 2013-05-08 电子科技大学 一种电源电压检测电路
CN104897949A (zh) * 2015-05-25 2015-09-09 上海华虹宏力半导体制造有限公司 电压检测电路
JP2016027336A (ja) * 2015-08-27 2016-02-18 ラピスセミコンダクタ株式会社 比較回路及び半導体装置
CN105554212A (zh) * 2015-12-03 2016-05-04 上海斐讯数据通信技术有限公司 一种移动终端漏电检测方法及漏电检测方法的移动终端
CN110196397A (zh) * 2018-02-27 2019-09-03 精工爱普生株式会社 电源电压检测电路、半导体装置以及电子设备

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091548A (zh) * 2013-01-09 2013-05-08 电子科技大学 一种电源电压检测电路
CN103091548B (zh) * 2013-01-09 2014-12-24 电子科技大学 一种电源电压检测电路
CN104897949A (zh) * 2015-05-25 2015-09-09 上海华虹宏力半导体制造有限公司 电压检测电路
JP2016027336A (ja) * 2015-08-27 2016-02-18 ラピスセミコンダクタ株式会社 比較回路及び半導体装置
CN105554212A (zh) * 2015-12-03 2016-05-04 上海斐讯数据通信技术有限公司 一种移动终端漏电检测方法及漏电检测方法的移动终端
CN105554212B (zh) * 2015-12-03 2018-05-18 上海斐讯数据通信技术有限公司 一种移动终端漏电检测方法及漏电检测方法的移动终端
CN110196397A (zh) * 2018-02-27 2019-09-03 精工爱普生株式会社 电源电压检测电路、半导体装置以及电子设备
CN110196397B (zh) * 2018-02-27 2023-04-21 精工爱普生株式会社 电源电压检测电路、半导体装置以及电子设备

Similar Documents

Publication Publication Date Title
US7259543B2 (en) Sub-1V bandgap reference circuit
JP3966016B2 (ja) クランプ回路
JP3358459B2 (ja) 温度検出回路
JP3864864B2 (ja) クランプ回路
US20110169561A1 (en) Fast start-up low-voltage bandgap reference voltage generator
JP4556795B2 (ja) 電源回路
JP2011146902A (ja) リンギング抑制回路
US20080197912A1 (en) Circuit arrangement for generating a temperature-compensated voltage or current reference value
US7642840B2 (en) Reference voltage generator circuit
JP2009147495A (ja) 負荷制御装置
JP2004140576A (ja) 電圧比較器およびリーク電流検出装置
US5886510A (en) Circuit for diagnosing the state of an electrical load
US20030090249A1 (en) Power supply circuit
JP2013062721A (ja) 過電流検出装置
JPH09128080A (ja) 電圧調整器回路
JP2004312993A (ja) Dc/dcコンバータ用電流検出回路
US20120153997A1 (en) Circuit for Generating a Reference Voltage Under a Low Power Supply Voltage
JPH07321621A (ja) 半導体集積回路
JP3834480B2 (ja) クランプ回路および入力インターフェース回路
JP2003015749A (ja) 電圧レギュレータ
JP2010011012A (ja) クランプ機能付コンパレータ
JP2009159800A (ja) 異常保護装置
JP7257164B2 (ja) クランプ回路
JP2018061115A (ja) イネーブル信号生成回路
JP2008228266A (ja) 半導体集積回路装置およびスイッチ入力回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808