JP2004131368A - 光学リソグラフィ用フッ化物結晶のアニール炉 - Google Patents

光学リソグラフィ用フッ化物結晶のアニール炉 Download PDF

Info

Publication number
JP2004131368A
JP2004131368A JP2003275729A JP2003275729A JP2004131368A JP 2004131368 A JP2004131368 A JP 2004131368A JP 2003275729 A JP2003275729 A JP 2003275729A JP 2003275729 A JP2003275729 A JP 2003275729A JP 2004131368 A JP2004131368 A JP 2004131368A
Authority
JP
Japan
Prior art keywords
crystal
fluoride crystal
furnace
optical
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003275729A
Other languages
English (en)
Inventor
John Harold Brennan
ジョン ハロルド ブレナン
Michael William Price
マイケル ウィリアム プライス
Juergen Tinz
ジュエルゲン ティンツ
Liming Wang
リミン ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2004131368A publication Critical patent/JP2004131368A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1016Apparatus with means for treating single-crystal [e.g., heat treating]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】
 光学フッ化物結晶をアニールして、250nm未満の紫外線を透過する、小さい複屈折値を有する大径の光学リソグラフィ用フッ化物結晶を得る。
【解決手段】
 加熱エレメント22,24を備えたアニール炉20内の室12内に光学フッ化物結晶16を配置し、この光学フッ化物結晶16をその最短熱伝達経路に沿って加熱してアニール温度まで熱し、この光学フッ化物結晶16をアニール温度に保った後、この光学フッ化物結晶16を徐冷する。
【選択図】図2A

Description

優先権
 本願は、「光学リソグラフィ用フッ化物結晶のアニール炉」と題して2002年7月17日付けで出願された米国仮特許出願第60/396779号の優先権を主張した出願である。
 本発明は、光学結晶を作成するための方法および装置に関し、特に、光学結晶、特に250nm未満の紫外線を透過させるための光学リソグラフィ用フッ化物結晶をアニールするための方法および装置に関するものである。
 光学結晶は一般にストックバーガー・ブリッジマン法を用いて成長させる。ストックバーガー・ブリッジマン法において、光学結晶は、縦型炉内において溶融した結晶材料を炉内の温度勾配を有する領域を通って移動させることによって成長せしめられる。この方法を、図1Aおよび図1Bを参照して下記に説明する。
 図1Aは、上部領域2および下部領域3を有する縦型炉1を示す。加熱ジャケット4,5が上部領域2および下部領域3にそれぞれ設けられている。加熱ジャケット4,5は、上部領域2と下部領域3との間に温度勾配を有する領域6が生じるように作動される。成長工程の初めに、結晶原材料Fを収容した坩堝7が上部領域2に取り付けられる。結晶原材料Fは、加熱ジャケット4からの熱によって溶融される。結晶原材料Fの溶融後、坩堝7は、図1Bに示すように、下部領域3に向って下降せしめられる。坩堝7が上部領域2から下部領域3内に移動するときに、溶融材料Mが温度勾配を有する領域6を通過する。温度勾配を有する領域6を通過するときに、溶融材料M内の温度遷移によって、結晶化前線CFが生成される。結晶化前線CFは、坩堝7が下方へ移動している限り、坩堝7内部で溶融材料M中を伝播する。
 上述の方法を用いて成長せしめられた結晶は、温度勾配を有する領域6を下部領域3内へ移されるのにつれて、急激な部分冷却にさらされる。急激な部分冷却により、結晶内に歪(または応力)が生じ、結晶の複屈折値が容認できないほど大きな値になる可能性がある。結晶内の永久熱的歪を低減するために、結晶は成長炉の下部領域においてアニールされる。アニールサイクルは、結晶をその融点よりも低い温度に再加熱し、急激な部分冷却によって生じた熱的歪が消散するまで結晶をその温度に保ち、次いでこの結晶を、さらに室温まで冷却しても結晶内には一時的な歪しか発生しないような温度以下にまで徐々に冷却する各工程を含む。
 アニールサイクルの継続時間は結晶の量に左右される。結晶の量が増大すると、結晶の複屈折値が仕様に適合するように結晶を成長炉内で完全にアニールする能力が減少する。例えば、マイクロリソグラフィ工程における露光システムでは、複屈折値が3nm/cm以下の光学結晶、主にフッ化物結晶を必要とする。多量の結晶のかかる仕様を満足させるためには、成長炉は長時間拘束されなければならず、市場要求を満足する能力に大きな悪影響を与えることになる。したがって、実際には、成長炉内での結晶のアニールは比較的短時間に留めなければならない。次に結晶の複屈折を測定する。もし結晶が許容できない高い複屈折値を有する場合には、成長炉とは別の炉内で結晶をさらにアニールする。この工程は、通常後アニールと呼ばれる。
 典型的なアニール炉は、後アニール中、密閉された個別の容器の垂直な積重ね体を内部に保持する縦型炉である。この炉は、所望の温度プロファイルを炉内に生じさせるためのヒーターを備えている。この作業では、アニールされるべき結晶を密閉容器内に入れ、密閉容器をアニール炉内に入れる。密閉容器内は、真空、不活性またはフッ素化雰囲気とされる。アニール工程は、結晶をその融点よりも低い温度で加熱することによって開始される。結晶は、室温まで徐々に冷却されるに先立って、所定時間この温度に保たれる。通常この工程で使用されるヒーターは、個々の容器の周りを取り囲む環状ヒーターである。これに加えて、容器積重ね体の上下には、ヒーターまたは断熱材を配置しても差支えない。
 もし積み重ねられた結晶の直径が小さい場合、例えば150mm未満の場合、アニールサイクルは比較的短い。これは、熱が加えられる結晶の周辺部から結晶の中心部までの熱伝達経路が短いからである。したがって、室温からアニール温度までの加熱速度およびアニール温度から室温までの冷却速度を比較的速くすることができる。しかしながら、結晶の直径が増大するにつれて結晶の周辺部から結晶の中心部までの熱伝達経路が長くなる。その結果、結晶中に所望の複屈折レベルが得られるような完全なアニールに要する時間が長くなる。現在では、直径が300mm以上の光学フッ化物結晶が要求される。したがって、種々の大きな直径を有する(結晶ブランクディスクの径が150mmを超える、好ましくは250mm以上、より好ましくは300mm以上)結晶を妥当な時間枠内でアニールすることが望ましい。
 本発明は、一つの態様において、250nm未満の紫外線を透過させる光学リソグラフィ用フッ化物結晶の作成方法に関し、この方法は、(a)選択された光学フッ化物ディスク結晶の最短熱伝達経路に沿って熱を加え、(b)この光学フッ化物結晶をアニール温度まで熱し、(c)この光学フッ化物結晶の温度をアニール温度に保ち、(d)この光学フッ化物結晶を徐冷して、250nm未満の紫外線を透過させるための、3nm/cmよりも小さい複屈折値を有する低複屈光学フッ化物結晶を提供する各工程を含む。
 本発明は、別の態様において、250nm未満の紫外線を透過させる光学リソグラフィ用フッ化物結晶の作成方法に関し、この方法は、(a)複数の選択された光学フッ化物ディスク結晶を炉内に一層に配置し、(b)選択された光学フッ化物ディスク結晶の最短熱伝達経路に沿って熱を加え、(c)これら光学フッ化物結晶をアニール温度まで熱し、(d)これら光学フッ化物結晶の温度を上記アニール温度に保ち、(e)これら光学フッ化物結晶を徐冷して、250nm未満の紫外線を透過させるための低複屈光学フッ化物結晶を提供する各工程を含む。
 本発明は、別の態様において、250nm未満の紫外線を透過させる光学リソグラフィ用フッ化物結晶の作成方法に関し、この方法は、(a)3nm/cmを超える複屈折値を有する光学フッ化物ディスク結晶を提供し、(b)これら光学フッ化物ディスク結晶の最短熱伝達経路に沿って熱を加え、(c)これら光学フッ化物結晶をアニール温度まで熱し、(d)これら光学フッ化物結晶の温度を上記アニール温度に保ち、(e)これら光学フッ化物結晶を徐冷して、3nm/cmより大きくない複屈折値を有する光学フッ化物結晶を提供する各工程を含む。
 本発明は、別の態様において、低複屈折光学フッ化物結晶を作成するための装置に関し、この装置は、炉と、少なくとも一つの光学フッ化物ディスク結晶を収容するために上記炉内に支持された一つの室と、この室の外部に配置されたすくなくとも一つのヒーターとを備え、このヒーターは、上記光学フッ化物ディスク結晶の最短熱伝達経路に沿って熱を加えるように構成されている。
 本発明は、別の態様において、光学結晶をアニールする装置に関し、この装置は、炉と、少なくとも一つの光学結晶を収容するために上記炉内に支持された一つの室と、この室の外部に配置された少なくとも1対のヒーターとを備え、これらヒーターは、上記光学結晶の最短熱伝達経路に沿って熱を提供するように構成されている。
 本発明は、別の態様において、光学結晶をアニールする装置に関し、この装置は、炉と、複数の光学結晶を収容するために上記炉内に支持された複数の室と、各室の外部に配置された少なくとも1対のヒーターとを備え、これらヒーターは、上記光学結晶の最短熱伝達経路に沿って熱を提供するように構成されている。
 本発明は、別の態様において、光学結晶をアニールする装置に関し、この装置は、光学結晶を支持するための表面を備えた一つの室と、この室の外部に配置されて、上記光学結晶の最短熱伝達経路に沿って熱を提供するように構成され少なくとも一つのヒーターと、このヒーターと上記光学結晶との間の輻射エネルギーの交換性能を高める手段とを備えている。
 本発明の方法および装置を用いると、光学フッ化物結晶に対するアニール工程中、上記結晶の最短熱伝達経路に沿って熱を一様に分布させることができる。また本発明は、アニール工程中、上記結晶から熱を一様に除去することができる。その結果、アニールされた結晶が低い複屈折値を有し、かつアニールサイクルが短縮される。
 さらに、例えば、直径が300mm以上で直径/厚さ比が3.0以上の結晶、好ましくは光学フッ化物結晶ディスクを本発明の方法および装置を用いて処理することができる。より小径の結晶も本発明の方法および装置によって提供される利点を利用することができる。
 本発明の他の特徴および利点は、下記の詳細な説明と請求項の記載から明らかになるであろう。
 本発明の実施の形態は、大径の結晶、特に光学フッ化物ディスク結晶をアニールするための方法および装置を提供するものである。本発明は、最短の熱伝達経路に沿って、光学結晶に熱を一様に加えかつ光学結晶から熱を一様に取り去る工程を含む。最短の熱伝達経路は結晶の最小寸法に沿っている。直径/厚さ比が1よりも大きい円形結晶については、最短の熱伝達経路は結晶の厚さ方向に沿っている。以下の記載は特定の実施の形態についての説明である。
 図2Aは、本発明の一つの実施の形態によるアニール装置10を示す。この装置10は、1枚以上のディスク結晶16を支持する面14を備えた水平室(容器)12を有する。水平室12は密閉されてなく、ガス透過性を有することが好ましい。水平室12は、グラファイト、窒化硼素、または炭化ケイ素のような不活性材料で形成されている。結晶16はいかなるタイプの光学フッ化物結晶であってもよい。マイクロリソグラフィのような用途については、CaF,BaF,SrF,LiF,MgF,またはNaFの単結晶のようなフッ化物結晶、またはこれらの材料の固溶体から作られた混合フッ化物結晶が対象となる。
 目的から考えると、結晶16はディスク状であることが想定される。しかしながら本発明はディスク状結晶に限定されるものではない。本発明の好ましい実施の形態においては、光学フッ化物結晶がディスクである。結晶16は室12の面14上に一層に配置される。結晶16が大径の場合、すなわち、直径が150mm以上で直径/厚さ比が1.0以上の場合には、一層配置が好ましい。もし結晶16が小径の場合、すなわち、直径が150mm未満で直径/厚さ比が1.0未満の場合には、面14上に2層以上配置することが可能であろう。一般に結晶は、それらに加えられる熱の大部分(好ましくは少なくとも90%)が最短の熱伝達経路に沿って、すなわち最小寸法(直径または厚さ)に沿って伝達されるように配置されるべきである。
 図2Aにおいて、結晶16の底面18は水平室12の面14に直接接触している。別の実施の形態では、結晶16が、水平室12の面14上に支持され得る結晶容器(図示せず)内に配置される。別の実施の形態では、下記に記載されているように、結晶16の底面18が水平室12の面14から間隔をおいて配置されて、水平室12を構成するのに用いられている材料による汚染を軽減ないし防止している。
 水平室12は炉20の内部に支持されている。水平室12のための支持構造(図示せず)は、水平室12の内部で検出できるような熱輻射の「影」を放射しないことが好ましい。炉20は真空炉が好ましい。炉20は、水冷ステンレス鋼鋳物または他の適当な材料で構成される。炉20は、炉20内の雰囲気を制御することができる一つ以上のポート(図示せず)を備えていることが好ましい。例えば、これらポートは、雰囲気制御ガスの炉20内への導入および炉20内の温度および圧力の測定に用いられる。炉20内へ供給される処理ガスから酸素および水分を取り除くために、ガス清浄化・乾燥システム(図示せず)を備えていることが好ましい。炉20内の水分レベルは1ppb 未満に制御されることが好ましい。炉内雰囲気から水分を取り除くのには、触媒・吸収体・ゲッターシステムを用いるのがよい。
 炉20内において、水平室12はヒーター22,24の間に支持されている。ヒーター22,24は、水平室12の上下表面26,28にそれぞれ略平行である。ヒーター22,24は、グラファイトまたは他の適当な不活性材料から形成された抵抗加熱要素が好ましい。ヒーター22,24は単一加熱要素とすることができる。他の実施の形態においては、図2Bに示されているように、複合加熱エレメント22a,24aが水平室12の上下表面26,28にそれぞれ略平行に取り付けられる。複合加熱エレメントは、水平室12の長手方向に沿った温度の制御に柔軟性を与えることを可能にする。別の実施の形態においては、図2Cに示されているように、ヒーター30,32が水平室12の側面34,36に平行に取り付けられている。別の実施の形態においては、図2Dに示されているように、水平室12が一つ以上の螺旋状ヒーター34の内部に配置される。
 図2Aに戻って、ヒーター22,24は、結晶16を室温からアニール温度にまで高めるのに用いられる熱の大部分を提供する。もし、結晶16の直径/厚さ比が1よりも大きく、かつ結晶16が一層に配置されているならば、ヒーター22,24から発生する熱は、結晶16の最短熱伝達経路に沿って熱伝達されるはずである。熱の大部分を結晶16の最短熱伝達経路に沿って提供すると、結晶が垂直方向に積み重ねて配置されている場合に比較して、加熱速度が増大する結果となる。また、結晶16の一層配置により、結晶16を、アニールサイクルの冷却期間全体を通じて高い冷却速度をもって均一に冷却できるであろう。結晶16の一層配置により、結晶16を取り巻く処理ガスを均一に分布させることができるであろう。
 輻射性能を高めることは、結晶16上のラディエーション・ビュー・ファクターを増大させ、かつ結晶16内の全体の熱均一性を改善するのに用いることができる。「ラディエーション・ビュー・ファクター(radiation view factor)」とは、第1物体の表面を離れ、第2物体の表面に達する熱エネルギーの部分のことであり、もっぱら幾何学的要件から決定される。換言すれば、結晶16上の「ラディエーション・ビュー・ファクター」は、水平室12から見た結晶16の部分を言う。一つの実施の形態において輻射性能を高めるものは、水平室12の内面の表面構造または表面の形状を含む。例えば図3は、水平室12の内面上に形成されたコップ型窪み36を示している。窪み36の両側面は、結晶16上のラディエーション・ビュー・ファクターを高めるのに十分な角度が付けられている。
 輻射性能を高めるものはまた、結晶16のより均一な加熱または冷却が達成されるように結晶16の特定部分に対してより多くの放射エネルギーを印加するのに利用することができる。上述の実施の形態におけるように、輻射性能を高めるものは、水平室12および/またはヒーター22,24の内表面上に形成された凹凸形状とすることができる。図4Aは、ヒーター22,24に内面上に形成された凹部40を示す。凹部40は、より多くの輻射エネルギーを結晶の中心部に向って加え、均一加熱を促進する。図4Bは、ヒーター22,24に内面上に形成された凸部38を示す。結晶16に中心付けられた凸部38は、より多くの輻射エネルギーを結晶の周辺部に向って加え、均一冷却を促進する。
 アニール工程は、図2Aに示されているように、光学フッ化物結晶16を水平室12内に装填することによって開始される。次に水平室12を炉20内に装填する。必要に応じて処理ガスを結晶16の周囲に流すことが可能なように、水平室12は一般に密閉されていない。水平室12を炉20内に装填した後、炉20を密閉し、真空、不活性雰囲気、またはフッ素化雰囲気のような所望の雰囲気を炉20内に生成させる。所望の雰囲気を炉20内に生成させた後に加熱エレメント22,24を作動させて、結晶16を、一般に結晶16の融点よりも低い温度であるアニール温度まで熱する。加熱工程は、多数の加熱区間および熱保持区間を含んでもよい。結晶16を所定の期間上記アニール温度に保ち、次いで制御された冷却速度をもって室温まで冷却する。一般にこの冷却工程は、ヒーター22,24によって提供される熱を徐々に減らすことを含む。アニール期間中、炉20内の雰囲気がプログラムされたレベルになるように、制御システム(図示せず)により監視されかつ制御される。
 下記の説明は、フッ化カルシウム結晶に関する本発明の装置を用いたアニール工程の概要である。特に、加熱および冷却スケジュールについては、処理される光学フッ化物結晶のタイプおよび要求される複屈折レベルに応じて、種々の修正が可能である。アニール工程の概要は下記の通り、
 (イ)炉20内に水平室12を装填し、炉20を密閉する。
 (ロ)炉20内を真空度10−5Torrに達するまで減圧する。
 (ハ)炉20内を真空度10−5Torrに30分間保つ。
 (ニ)供給されるガスの温度が炉20の温度に一致するように予熱された窒素またはアルゴンまたは窒素とアルゴンの混合ガスを、1時間当り5容積が交換される連続的なプログラムされた速度をもって炉20に再充填する。
 (ホ)炉20を、室12の外部のいかなる点においても温度差が±10℃以内になるようにして室温から300℃まで5.5時間かけて加熱する。
 (ヘ)炉20を、熱保持の開始によって室12の外部のいかなる点においても温度差が±5℃以内になるようにして温度300℃に1時間保つ。
 (ト)熱保持の開始時点において炉20内の減圧を開始して、真空度10−5Torrに達するまで炉20内を減圧する。
 (チ)炉20内を真空度10−5Torrに30分間保つ。
 (リ)供給されるガスの温度が炉20の温度に一致するように予熱された窒素またはアルゴンまたは窒素とアルゴンの混合ガスを、1時間当り容積の5倍の量が交換される連続的なプログラムされた割合で炉20に再充填する。
 (ヌ)炉20を、室12の外部のいかなる点においても温度差が±2.5℃以内になるようにして300℃から1200℃まで18時間かけて加熱する。
 (ル)炉20を、熱保持の開始から4時間以内は室12の外部のいかなる点においても温度差が±1℃以内になるようにして温度1200℃に72時間保ち、熱保持の終了まで同じ±1℃の温度差を持続させる。
 (ヲ)炉20を、室12の外部のいかなる点においても温度差が±1℃以内になるようにして800℃まで200時間かけて冷却する。
 (ワ)炉20を、熱保持の終了まで室12の外部のいかなる点においても温度差が±1℃以内になるようにして温度800℃に24時間保つ。
 (カ)炉20を、この熱冷却期間全体に亘って室12の外部のいかなる点においても温度差が±2.5℃以内になるようにして、室温まで150時間かけて冷却する。
 大径の結晶は大きな表面積を有するので、アニール工程中に結晶が膨張および収縮するときに、結晶と水平室の支持面との間の摩擦抗力を増大させる結果となるであろう。本発明の実施の形態は、アニール工程中の結晶と水平室の支持面との間の摩擦抗力を低減させる方法を提供するものである。
 図5は、本発明の一つの実施の形態による結晶16と水平室12の支持面14との間の摩擦抗力を低減させる方法を示す。この方法は、結晶16と水平室12の支持面14との間に犠牲ディスクまたはスペーサ42を挿入する工程を含む。このスペーサ42は、光学フッ化物結晶16と同一または類似の材料で作成されていることが好ましい。スペーサ42の厚さは0.125〜1インチ以上(3.2mm〜25.4mm以上)の範囲とすることができる。一般に、結晶16とフッ化物結晶材料製スペーサ42との間の面摩擦は、結晶16が水平室12の支持面14に直接接触している場合に観察される面摩擦よりもはるかに低い。
 結晶16と水平室12の支持面14との間にフッ化物結晶材料製ディスクスペーサ42を設けることの利点の一つは、結晶16内部がより均一に冷却される点にある。結晶16が水平室12の支持面14から上に離れているので、より均一な冷却が達成される。結晶16を持ち上げると、結晶16の内部温度に対する支持面14の高温スポットおよび低温スポットの影響を軽減し、結晶16の内部全体を均一な温度にすることができる。スペーサ42はまた、結晶16と水平室12との間の直接接触を避けることにより、結晶表面の汚染を排除ないし軽減する。
 図6は、本発明の実施の形態による結晶16と水平室12の支持面14との間の摩擦抗力を低減させるための別の方法を示す。この方法は、結晶16と水平室12の支持面14との間に緩く詰め込まれた円形断面を有する球形スペーサ44を配置する工程を含む。一般には、円筒のような円形断面を有するスペーサを、結晶16と支持面14との間に詰め込めばよい。円形断面を備えた球形スペーサ44は、グラファイトまたは光学結晶16と同一または類似のフッ化物結晶材料のような、高品質、高密度不活性材料で形成することができる。
 円形断面を備えた球形スペーサ44は、結晶16と水平室12の支持面14との間の接触面積を減少させ、これによって上記表面摩擦を著しく低下させて、結晶16が自由に膨張および収縮するのを可能にする。球形スペーサ44はまた、結晶16の下方を処理ガスが流れるのを許容して、結晶16の表面に対し、より均質な雰囲気環境を提供する。この結晶16の下方をガスが流れることは、冷却サイクルを短縮して生産量を増大させる二面冷却を可能にする。球形スペーサ44の表面積の増大は、結晶16上のラディエーション・ビュー・ファクタをも増大させ、結晶16の内部温度に対する支持面14の高温または低温スポットの影響を著しく低減する。球形スペーサ44はまた、結晶16と水平室12との間の直接接触を避けることにより、結晶表面の汚染を排除ないし軽減する。
 当業者であれば、熱が結晶の最短熱伝達経路に沿って伝達されるのを可能にする別の結晶配置があることを認識しているであろう。換言すれば、本発明は、水平室12内部で結晶16を水平方向に向けて取り付けることに限定されるものではない。例えば図7Aは、結晶16が垂直室48の内部に垂直方向に向けて取り付けられている別の構成を示す。結晶16は、室48内で支持体46上に取り付けられている。室48の周縁部50は炉20内で支持体52に取り付けられている。これら垂直室48は円形断面を有するものとして示されているが、これは結晶16を垂直方向に向けて取り付けるために必要な条件ではない。垂直室48は例えば箱型であってもよい。
 図7Bは、図7Aに示された構成の7B−7B線に沿った縦断面図である。図示のように、加熱エレメント54が室48の垂直面56の近傍に配置されて、結晶16の最短熱伝達経路に沿って、すなわち結晶16の厚さ方向に沿って熱を伝達することができる。このことは、結晶16の直径/厚さ比が1よりも大きいことを意味する。室48の垂直面56および/またはヒーター54は、前述したような輻射性能を高める表面構造を備えても差支えない。
 室48を作成するのに用いられる材料は、不活性材料でかつ耐熱性を有することが好ましい。一つの実施の形態においては、室48の垂直面56が高い熱伝導性を有する材料で作成され、室48の周縁部50が低い熱伝導性を有する材料で作成される。垂直面56を作成するのに適した材料は、熱伝導率が139W/m・kのグラファイト材料である。周縁部50を作成するのに適した材料は、熱伝導率が50W/m・kのグラファイト材料である。低い熱伝導性を有する材料と高い熱伝導性を有する材料との組合せにより、室48に加えられる熱の大部分が、結晶16の最短熱伝達経路に沿って伝達されることが保証される。
 室48が炉20内の絶縁された室64内に取り付けられていることにより、結晶16の加熱・冷却を大きく制御することを可能にする。絶縁された室64が密閉されていないことに注目すべきである。図において、結晶16と加熱エレメント54とは、それらの周縁部16a,54aがそれぞれ炉20の丸い部分21に対し90度回転した方向を向いている。図7Cのような別の実施の形態においては、結晶16および加熱エレメント54は、それらの周縁部16a,54aが炉20の丸い部分21に対しそれぞれ同一方向を向いている。この状態でも、熱は結晶16の最短熱伝達経路に沿って伝達される。この構成は一般に、結晶16を横切る熱の均一性を提供するものである。
 結晶16を過ぎる均一な熱の分布が望ましい。図8Aは、結晶16内部の望ましい均一温度勾配の場を示す。実際には、結晶16の内部、特に結晶16の周縁部60近傍では温度分布に多少の変化が存在するであろう。図8Bは、結晶16の周縁部60近傍における温度勾配の場の「消失」を示す。一つの実施の形態においては、室48の周縁部50と結晶16の周縁部60との間に、高純度グラファイトファイバのような結晶エッジ絶縁材料62を配置することによって、上記消失を最小にすることができる。この絶縁材料62は、結晶16の周縁部60における急激な熱の消失を防止するのみでなく、ポート66において室48内に導入されるガスの分布をも援助する。別の実施の形態においては、周縁部60の近傍に加えられる部分的加熱により上記消失が最小にされる。
 図7Aを参照すると、室48は、処理ガスを結晶16に伝達するポート66を備えている。一つの実施の形態では、流体ライン67がポート66に連結されている。この流体ライン67は、炉20のポート68を通過して炉20の外部に通じている。流体ライン67は、炉20の外部の処理ガスシステム(図示せず)に連結することができ、室48内の雰囲気の独立的な制御を可能にする。例えばフッ素化ガスは一般に結晶16から酸素を排除するのに用いられる。好ましくは室48内に正圧のフッ素化ガスが存在して、ガス状反応生成物(特に排除された酸素)を室48の外部に、かつアニールされた光学フッ化物結晶から追い払うように、本発明では、炉20にフッ素化剤を充填し次いでこのフッ素化剤を室48の内部に流す代わりに、フッ素化剤で満たすべき、結晶16が存在する室48内に先ずフッ素化剤を流し、フッ素化剤とともに汚染物反応生成物が室48外に出て、室48外の炉20の内部に流入するようにしている。炉20内に多数の室48が装填される場合には、室48内のポート66と炉20の外部との間の連結部材67により、多数の室48内で維持される雰囲気条件を異ならせることができる。室48は密閉されないことが好ましく、これにより、室の内部と炉の内部との間の流通が可能になる。
 図9は、室48をガスタンク70,72に接続する処理ガスシステムを示す。ガスタンク70,72は、例えばフッ素化ガスまたはその他の処理ガスの供給源である。フッ素化ガスは不活性ガスと混合される。ガスタンク70,72から室48へのガスの流量を制御するために流量制御器(MFC)71,73が用いられている。室48内を所望の湿度に保つために清浄器74が設けられている。
 炉20はガスタンク78に接続されている。このガスタンク78は、アルゴンのような
不活性ガスの供給源である。これによって、アニール工程中に炉20内を不活性雰囲気に保つことができる。スタンク78から炉20へのガスの流量を制御するために流量制御器79が用いられている。炉20内を所望の湿度に保つために清浄器80が設けられている。必要に応じて真空ポンプ76が炉20内を真空状態に保つ。
 図示されてはいないが、この処理ガスシステムは、システム内を流れるガスを制御するために種々のバルブおよびレギュレータをも備えている。炉20および室48の内部に所望の雰囲気条件が得られるように、流量制御器、バルブ、レギュレータ、清浄器、および真空ポンプを制御するために、制御システム(図示せず)を用いてもよい。排気流路82が必要に応じて室48および炉20からのガスの排出を可能にする。パージガス供給ライン84によりパージガスを室48および炉20に必要に応じて供給する。
 図9に示された処理ガスシステムは、室48および炉20へのガスの供給および室48および炉20からのガスの排出を独立的に行なうことができる。図10は、図9に示された処理ガスシステムを用いたアニールサイクルの一例を示す。このアニールサイクルは、アニール工程中の種々の時点で選択されかつ室48および炉20内に導入される種々のタイプのガスを示している。SFおよびCFのようなフッ素化ガスが、フッ化カルシウム結晶から酸素を排除するのに最も有効な温度で室48内に導入される。使用される可能性のある他のフッ素化ガスの例としては、NF,BF,C,およびFが挙げられる。
 以上の説明から明らかなように、本発明は多くの利益を提供する。特に本発明は、1枚または複数枚のディスク、例えば光学フッ化物結晶に対するアニール工程中、上記結晶の最短熱伝達経路に沿って熱が一様に分布されるのを可能にする。また本発明は、アニール工程中、上記結晶から熱が一様に除去されるのを可能にする。その結果、アニールされた結晶が低い複屈折値を有し、かつアニールサイクルが短縮される。
光学結晶を成長させるための従来の工程を示す図である。 光学結晶を成長させるための従来の工程を示す図である。 本発明の実施の形態によるアニール装置を示す縦断面図である。 水平のアニール室の上下表面に平行に取り付けられた複合加熱エレメントを示す断面図である。 水平のアニール室の上下・両側表面に平行に取り付けられたヒーターを示す、図2Aの2C−2C線に沿った断面図である。 水平のアニール室を取り囲む螺旋状ヒーターを示す断面図である。 水平のアニール室の内面に形成された窪みを示す断面図である。 水平のアニール室の上下面に平行に取り付けられた凹面を有するヒーターを示す断面図である。 水平のアニール室の上下面に平行に取り付けられた凸面を有するヒーターを示す断面図である。 光学結晶と水平のアニール室の内面との間に介挿されたディスクスペーサを示す断面図である。 光学結晶と水平のアニール室の内面との間に介挿された多数の球状スペーサを示す断面図である。 炉内に垂直方向に配置された光学結晶を示す断面図である。 図7Aに示されたアニール装置の7B−7B線に沿った縦断面図である。 光学結晶の周縁部が炉の丸い部分と同一の方向を向いた状態で炉内に垂直方向に配置された光学結晶を示す断面図である。 光学結晶内の一様な温度分布を示す図である。 光学結晶内の周縁部近傍の温度分布を示す図である。 アニール工程で使用する処理ガスシステムを示す図である。 アニールサイクルでのガスの選択を示すグラフである。
符号の説明
 10  アニール炉
 12  水平室
 14  水平室の結晶支持面
 16  結晶
 20  炉
 22,24  ヒーター(加熱エレメント)
 36  窪み
 38  凸部
 40  凹部
 42  スペーサ
 48  垂直室

Claims (24)

  1.  250nm未満の紫外線を透過させる光学リソグラフィ用フッ化物結晶の作成方法において、
     少なくとも一つの加熱エレメントを備えたアニール炉内の一つの室内に、一つまたは複数の選択された光学フッ化物結晶を配置し、
     3nm/cmよりも大きい複屈折値を有する選択された光学フッ化物結晶の最短熱伝達経路に沿って熱を加え、
     前記光学フッ化物結晶をアニール温度まで熱し、
     前記光学フッ化物結晶の温度を前記アニール温度に保ち、
     前記光学フッ化物結晶を徐冷して、250nm未満の紫外線を透過させるための、3nm/cmよりも小さい低複屈折値を有する低複屈光学フッ化物結晶を提供する、
    各工程を有してなることを特徴とする光学リソグラフィ用フッ化物結晶の作成方法。
  2.  前記選択された光学フッ化物結晶の最短熱伝達経路に沿った加熱工程が、前記光学フッ化物結晶を、選択された状態で前記室内の一面上に配置する工程を含み、
     前記選択された態様が、
     (a)前記結晶を水平方向に向けること、または、
     (b)前記結晶を垂直方向に向けること、
    よりなることを特徴とする請求項1記載の方法。
  3.  前記結晶を水平方向に向けた状態での前記選択された光学フッ化物結晶の最短熱伝達経路に沿った加熱工程が、
     (a)少なくとも一つの加熱エレメントを前記光学フッ化物結晶の一つの面の近傍に配置する工程、または
     (b)少なくとも一対の略平行な加熱エレメント間に前記光学フッ化物結晶を配置する工程、
    のいずれかを含むことを特徴とする請求項2記載の方法。
  4.  前記光学フッ化物結晶と水平室の表面との間に一つまたは複数のスペーサが配設され、該スペーサが不活性材料またはフッ化物結晶材料で形成されていることを特徴とする請求項3記載の方法。
  5.  前記結晶を垂直方向に向けた状態での前記選択された光学フッ化物結晶の最短熱伝達経路に沿った加熱工程が、一対の略平行な加熱エレメント間に前記光学フッ化物結晶を配置する工程をさらに含むことを特徴とする請求項2記載の方法。
  6.  前記光学フッ化物結晶をアニール温度まで加熱する工程が、
     (a)前記光学フッ化物結晶の中心部に向って加えられる輻射エネルギーの量を増大させる工程、または
     (b)前記光学フッ化物結晶の周辺部に向って加えられる輻射エネルギーの量を増大させる工程、
    をさらに含むことを特徴とする請求項1記載の方法。
  7.  前記光学フッ化物結晶をアニール温度まで加熱する工程に、前記光学フッ化物結晶の加熱および温度の保持の多数区分が用いられることを特徴とする請求項1記載の方法。
  8.  前記光学フッ化物結晶の周囲の温度変動が約10℃以内に制御されることを特徴とする請求項1記載の方法。
  9.  前記光学フッ化物結晶が真空雰囲気中で加熱されることを特徴とする請求項1記載の方法。
  10.  前記光学フッ化物結晶が不活性雰囲気中で加熱されることを特徴とする請求項1記載の方法。
  11.  前記光学フッ化物結晶をアニール温度まで加熱する工程が、該光学フッ化物結晶を所定温度においてフッ素化剤に曝す工程をさらに含むことを特徴とする請求項1記載の方法。
  12.  前記フッ素化剤が、CF,NF,BF,SF,C,F,およびそれらの混合物からなる群から選択されることを特徴とする請求項11記載の方法。
  13.  前記光学フッ化物結晶が、CaF,BaF,SrF,MgF,LiFおよびNaF、ならびにこれら材料の固溶体から作成された混合金属フッ化物結晶からなる群から選択されることを特徴とする請求項1記載の方法。
  14.  リソグラフィに適した、250nm未満の紫外線を透過させる光学フッ化物結晶の作成方法において、
     3nm/cmよりも大きい複屈折値を有する一つまたは複数の選択された光学フッ化物結晶を提供し、
     該結晶を、該結晶のアニールに適した炉内の一つまたは複数の室内に配置し、
     前記選択された結晶の最短熱伝達経路に沿って熱を加え、この場合、前記炉内の一つまたは複数の独立的に制御可能な加熱ユニットの作動によって、前記熱が前記炉内の一つまたは複数の室に加えられ、
     前記炉および該炉内の結晶を第1の選択された温度まで加熱し、かつ該結晶を第1の選択された時間の間前記第1の選択された温度に保ち、
     前記炉を、前記選択された結晶の融点よりも低いアニール温度まで加熱し、かつ該炉を第2の選択された時間の間前記アニール温度に保ち、
     前記アニールされた結晶を選択された速度で選択された期間に亘って冷却して、3nm/cmよりも小さい複屈折値を有する、250nmよりも低い紫外線を透過させるのに適した光学フッ化物結晶を提供する、
    各工程を有してなり、
     前記炉が、温度プローブの随意的な使用、ガスの出入、および真空の適用のための複数のポートを備え、かつ
     前記室が密閉されておらず、これにより、前記室の内部と前記炉の内部との間のガスの流通を可能にすることを特徴とする前記方法。
  15.  前記炉内のヒーターが、前記結晶の中心部または該結晶の周辺部のいずれかに熱を導くような表面構造を有することを特徴とする請求項14記載の方法。
  16.  前記アニール工程の間、フッ素化ガスが前記炉に導入され、該ガスが、CF,NF,BF,SF,C,F,およびそれらの混合物からなる群から選択されることを特徴とする請求項14記載の方法。
  17.  低複屈折の光学フッ化物結晶を作成するための装置において、
     炉と、
     少なくとも一つの光学フッ化物結晶を収容するために、光学フッ化物結晶を支持するための一面を備えて前記炉内に支持された一つまたは複数の室と、
     該一つまたは複数の室の外部に配設され、前記光学フッ化物結晶の最短熱伝達経路に沿って熱を加えるように構成された少なくとも一つのヒーターと、
     温度プローブの随意的な使用、ガスの出入、および真空の適用のために前記炉に設けられた複数のポートとを備え、
     前記室が密閉されておらず、これにより、前記室の内部と前記炉の内部との間のガスの流通を可能にすることを特徴とする、低複屈折の光学フッ化物結晶を作成するための装置。
  18.  前記光学フッ化物結晶が前記室の内部で水平方向に向けられていることを特徴とする請求項17記載の装置。
  19.  前記光学フッ化物結晶が前記室の内部で垂直方向に向けられていることを特徴とする請求項17記載の装置。
  20.  前記ヒーターおよび/または前記室が、該ヒーターおよび/または前記室と前記結晶との間の熱交換性能を高めるための表面構造を備えていることを特徴とする請求項17記載の装置。
  21.  前記ヒーターの表面構造が凹状または凸状をなしていることを特徴とする請求項20記載の装置。
  22.  前記室の表面構造が、前記光学フッ化物結晶の近傍の室表面の複数の窪みを含むことを特徴とする請求項20記載の装置。
  23.  前記光学結晶と前記室表面との間の直接接触を防止するためのスペーサをさらに備えていることを特徴とする請求項18記載の装置。
  24.  前記光学結晶が、前記炉内で垂直方向に向けられて支持手段によって支持され、前記光学結晶の面近傍の室部分が、前記光学結晶のエッジ近傍の室部分よりも高い熱伝導性を有することを特徴とする請求項19記載の装置。
JP2003275729A 2002-07-17 2003-07-17 光学リソグラフィ用フッ化物結晶のアニール炉 Withdrawn JP2004131368A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US39677902P 2002-07-17 2002-07-17

Publications (1)

Publication Number Publication Date
JP2004131368A true JP2004131368A (ja) 2004-04-30

Family

ID=29780541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275729A Withdrawn JP2004131368A (ja) 2002-07-17 2003-07-17 光学リソグラフィ用フッ化物結晶のアニール炉

Country Status (3)

Country Link
US (2) US6997987B2 (ja)
EP (1) EP1382722A3 (ja)
JP (1) JP2004131368A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643301A (zh) * 2013-12-20 2014-03-19 中国科学院上海硅酸盐研究所 一种对大尺寸氟化钙晶体进行退火的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727588B2 (en) * 2003-09-05 2010-06-01 Yield Engineering Systems, Inc. Apparatus for the efficient coating of substrates
DE102004008752A1 (de) * 2004-02-23 2005-09-08 Schott Ag Herstellung von großvolumigen CaF2-Einkristallen für die Verwendung als optische Bauelemente mit einer optischen Achse parallel zur (100) oder (110)-Kristallachse
CN104695025A (zh) * 2013-12-05 2015-06-10 长春理工大学 抗热冲击快速升温CaF2晶体退火装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878201B2 (en) * 1996-03-22 2005-04-12 Canon Kabushiki Kaisha Methods of making fluoride crystal and fluoride crystal lens
JP3337638B2 (ja) * 1997-03-31 2002-10-21 キヤノン株式会社 フッ化物結晶の製造方法及び光学部品の製造方法
US6201634B1 (en) * 1998-03-12 2001-03-13 Nikon Corporation Optical element made from fluoride single crystal, method for manufacturing optical element, method for calculating birefringence of optical element and method for determining direction of minimum birefringence of optical element
JP2000026198A (ja) * 1998-07-10 2000-01-25 Nikon Corp 単結晶蛍石または単結晶フッ化物の熱処理装置及び熱処理方法
JP3631063B2 (ja) * 1998-10-21 2005-03-23 キヤノン株式会社 フッ化物の精製方法及びフッ化物結晶の製造方法
JP3466948B2 (ja) * 1999-03-11 2003-11-17 キヤノン株式会社 フッ化物結晶の熱処理方法及び光学部品の作製方法
US6309461B1 (en) 1999-06-07 2001-10-30 Sandia Corporation Crystal growth and annealing method and apparatus
EP1154046B1 (en) * 2000-05-09 2011-12-28 Hellma Materials GmbH & Co. KG Fluoride crystalline optical lithography lens element blank
RU2001111055A (ru) * 2001-04-16 2003-04-10 Репкина Тать на Александровна Многосекционный контейнер для выращивания монокристаллов фторида кальция
FR2827616B1 (fr) * 2001-07-20 2003-10-03 Corning Inc Purification anionique de fluorures de metaux alcalins ou alcalino-terreux,preparation de (mono) cristaux

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643301A (zh) * 2013-12-20 2014-03-19 中国科学院上海硅酸盐研究所 一种对大尺寸氟化钙晶体进行退火的方法

Also Published As

Publication number Publication date
US20050109270A1 (en) 2005-05-26
US6997987B2 (en) 2006-02-14
EP1382722A3 (en) 2006-05-03
EP1382722A2 (en) 2004-01-21
US20050139152A1 (en) 2005-06-30
US7198673B2 (en) 2007-04-03

Similar Documents

Publication Publication Date Title
US5897311A (en) Support boat for objects to be processed
US5414244A (en) Semiconductor wafer heat treatment apparatus
US5001327A (en) Apparatus and method for performing heat treatment on semiconductor wafers
US8030599B2 (en) Substrate processing apparatus, heating device, and semiconductor device manufacturing method
EP0781865B1 (en) Process for producing polycrystalline semiconductors
JP2000034193A (ja) フッ化物単結晶の熱処理方法及び製造方法
EP1748962A2 (en) Closed cassette and method for heat treating glass sheets
JP2001210631A (ja) 熱処理装置
KR20170109081A (ko) 조절된 압력하에서 헬륨을 사용하는 고온 처리 방법
TW201531598A (zh) 用於控制晶體成長裝置中的溫度均勻性的技術
US7198673B2 (en) Optical lithography fluoride crystal annealing furnace
JPS59136429A (ja) 高温箱焼鈍炉
CN1322172C (zh) 一种纯静态双加热温梯法晶体生长装置
JP2002293526A (ja) 多結晶シリコンの製造装置
JP2006342029A (ja) フッ化金属単結晶を熱処理するために用いるアニール炉及びフッ化金属単結晶のアニール方法
JP3691615B2 (ja) 有機材料用蒸発源
JP4301921B2 (ja) フッ化金属用単結晶引き上げ装置
JPH088220B2 (ja) 半導体ウェハの熱処理装置、及び熱処理方法
JPH10265300A (ja) 蛍石単結晶の熱処理装置および熱処理方法
JPH11240787A (ja) 蛍石の製造方法及び光リソグラフィー用の蛍石
JPH11240798A (ja) 蛍石の製造方法及び光リソグラフィー用の蛍石
JPH10231194A (ja) 蛍石単結晶の熱処理装置および熱処理方法
JPH10101484A (ja) 結晶製造装置及び方法
JP2004339053A (ja) 光学フッ化物結晶を製造する方法
JP2004228462A (ja) ウエーハの熱処理方法及び熱処理装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003