JP2004119483A - 素子内蔵基板 - Google Patents

素子内蔵基板 Download PDF

Info

Publication number
JP2004119483A
JP2004119483A JP2002277597A JP2002277597A JP2004119483A JP 2004119483 A JP2004119483 A JP 2004119483A JP 2002277597 A JP2002277597 A JP 2002277597A JP 2002277597 A JP2002277597 A JP 2002277597A JP 2004119483 A JP2004119483 A JP 2004119483A
Authority
JP
Japan
Prior art keywords
capacitor element
capacitor
substrate
built
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002277597A
Other languages
English (en)
Other versions
JP4207517B2 (ja
Inventor
Kenji Kawamoto
河本 憲治
Masahisa Tonegawa
利根川 雅久
Jin Sato
佐藤 尽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002277597A priority Critical patent/JP4207517B2/ja
Publication of JP2004119483A publication Critical patent/JP2004119483A/ja
Application granted granted Critical
Publication of JP4207517B2 publication Critical patent/JP4207517B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】本発明は、チップ部品を基板に内蔵するにあたって実装面積が小さく、部品内蔵層厚が薄くできる素子内蔵基板用キャパシター素子、及び回路基板に微細な配線パターンを形成しつつ、配線パターンとの接続を形成しながらLCR等のチップ受動部品を正確に実装、内蔵する素子内蔵基板の製造方法を提供することを課題とする。
【解決手段】本発明の素子内蔵基板は、1層以上の絶縁層を有するプリント配線板であって、絶縁層内にキャパシター素子を内蔵し、当該キャパシター素子は複数の電極と誘電体層を交互に積層した構成であることを特徴とする。さらに前記キャパシター素子の誘電体層を、少なくとも熱可塑性樹脂及び/又は熱硬化性樹脂と、誘電体フィラーを含むものとすれば、適度な可撓性のある素子内蔵基板を得ることができる。
【選択図】図9

Description

【0001】
【発明の属する技術分野】
本発明は、受動素子が電気絶縁性基板の内部に配置されるキャパシター素子等の受動素子内蔵モジュールおよび受動素子内蔵基板とその製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の高性能化、小型化、高周波化の要求に伴い、半導体のさらなる高密度、高機能化が要請されている。このため、前記半導体の他にコンデンサ(C)、インダクタ(L)、抵抗(R)等の受動部品自体も小型化しており、さらにこれら特性が保証されたチップ受動部品を実装するための回路基板も、さらに小型高密度なものが必要とされている。
【0003】
これらの要求に対し、例えば、LSI間や実装部品間の電気配線を、最短距離で接続できる基板層間の電気接続方式であるインナービアホール(以下、IVHとする。)接続法が、最も回路の高密度配線化が可能であることから、各方面で開発が進められている。一般に、このようなIVH構成の配線基板としては、例えば、多層セラミック配線基板、ビルドアップ法による多層プリント配線基板、樹脂と無機フィラーとの混合物からなる多層コンポジット配線基板等があげられる。
【0004】
前記多層セラミック配線基板は、例えば、以下に示すようにして作製できる。まず、アルミナ等のセラミック粉末、有機バインダおよび可塑剤からなるグリーンシートを複数枚準備し、前記各グリーンシートにビアホールを設け、前記ビアホールに導電性ペーストを充填した後、このグリーンシートに配線パターン印刷を行い、前記各グリーンシートを積層する。そして、この積層体を、脱バインダおよび焼成することにより、前記多層セラミック配線基板を作製できる。このような多層セラミック配線基板は、IVH構造を有するため、極めて高密度な配線パターンを形成でき、電子機器の小型化等に最適である。
【0005】
また、この多層セラミック配線基板の構造を模した、前記ビルドアップ法によるプリント配線基板も各方面で開発されている。例えば、特開平9−116267号公報、特開平9−51168号公報等には、一般的なビルドアップ法として、従来から使用されているガラス−エポキシ基板をコアとし、この基板表面に感光性絶縁層を形成した後、フォトリソグラフィー法でビアホールを設け、さらにこの全面に銅メッキを施し、前記銅メッキを化学エッチングして配線パターンを形成する方法が開示されている。
【0006】
また、特開平9−326562号公報には、前記ビルドアップ法と同様に、前記フォトリソグラフィー法により加工したビアホールに、導電性ペーストを充填する方法が開示され、特開平9−36551号公報、特開平10−51139号公報等には、絶縁性硬質基材の一表面に導体回路を、他方表面に接着剤層をそれぞれ形成し、これに貫通孔を設けて、導電性ペーストを充填した後、複数の基材を重ねて積層する多層化方法が開示されている。
【0007】
また、特許第2601128号、特許第2603053号、特許第2587596号は、アラミド−エポキシプリプレグにレーザ加工により貫通孔を設け、ここに導電性ペーストを充填した後、銅箔を積層してパターニングを行い、この基板をコアとして、導電性ペーストを充填したプリプレグでさらに挟み多層化する方法である。
【0008】
以上のように、例えば、樹脂系プリント配線基板をIVH接続させれば、前記多層セラミック配線基板と同様に、必要な各層間のみの電気的接続が可能であり、さらに、配線基板の最上層に貫通孔がないため、より実装性にも優れる。
【0009】
しかしながら上記のように、高密度配線化された多層配線基板においても、コンデンサ、抵抗器など配線基板の表面に実装される電子部品の占める割合は依然として高く、電子機器の小型化に対して、大きな課題となっている。このような課題の解決策として配線基板内に電子部品を埋設して高密度実装化を図ろうとする提案が開示されている。
【0010】
例えば、プリント基板に設けた透孔内にリードレス部品を埋設した構成が特開昭54−38561号公報、絶縁基板に設けた貫通孔内にセラミックコンデンサ等の受動素子を埋設した構成が特公昭60−41480号公報、半導体素子のバイパスコンデンサをプリント配線基板の孔に埋設した構成が特開平4−73992号公報および特許文献1等に開示されている。
【0011】
また、セラミック配線基板に設けたビアホール(IVH)内に導電性物質と誘電性物質を充填して同時焼成した特許文献2、有機系絶縁基板に設けた貫通孔に電子部品形成材料を埋め込んだ後、固化させてコンデンサや抵抗器を形成した構成が特許文献3等に開示されている。
【0012】
上記従来の開示技術はいずれも二つの方式に大別できる。すなわちその一つは配線基板に設けられた貫通孔にチップ抵抗器またはチップコンデンサ等の既に完成されたリードレス部品を埋設した後、このリードレス部品の電極と配線基板上の配線パターンとを導電性ペイントまたは半田付けによって接続するものである。また、他の一つは有機系配線基板の場合、配線基板に設けた貫通孔にコンデンサ等の電子部品形成材料を埋め込み、固化させることによって所望のコンデンサとした後、その上下の端面にメッキを施して電極を形成して電子部品内蔵配線基板を形成させ、また無機系配線基板の場合は、セラミックグリーンシートに設けられたビアホール(IVH)内に誘電体ペーストや導電性ペーストを充填した後、高温で焼成することにより、所望のコンデンサを内蔵した配線基板を形成したものである。
なお、ここで貫通孔とは、プリント配線板を構成する層のいずれかを貫通する穴をいう。
【0013】
しかしながら、これらの貫通孔を利用して焼成あるいは固化したコンデンサで大容量を得ることは困難である。一方、あらかじめ、大容量が確保されているチップコンデンサ等を貫通孔を利用して埋設、実装する場合は、現行、最小サイズの0603チップを用いた場合でも0.6mmの層厚みが必ず伴い、薄い多層基板を実現することが困難となる。
【0014】
また、チップ部品単体でみた場合、市場には、1005,0603に代表される側面に電極が構成されたチップ部品が代表的であり、それらを基板に内蔵した例は、特許文献4(米国特許第6,038,133号明細書)などに既に提案されているが、内蔵用に特性、形状を考慮して構造を対応させたもの、またそれを基板に内蔵させた形態は、まだ提案されていない。さらに、チップ部品単体でみた場合、上下面に電極を有する素子としては、単層チップコンデンサや薄膜積層コンデンサがあるが、これらはいずれも表面実装する事しか想定されておらず、電極間をワイヤーボンドで接続したり、リボンリードで接続したりすることが一般的に用いられている。従って、これらチップ部品を基板に内蔵することや、及び内蔵させたときに配線パターンと精度良く接続させる有効な製造方法は未だ提案されていなかった。
【0015】
一方で両面を銅箔で挟んだ誘電体層シートを用いて、多層プリント配線板の内層の一層全面に誘電体層を設けた構造のもの(特許文献5、特許文献6、特許文献7)も提案されている。本構造のものは単層であるためチップ部品と比べると単位面積あたりの静電容量が極めて低いが、電極面積を大きくすることにより必要な容量が得られる。また、上述したチップ部品の埋め込みタイプと違い、多層プリント基板製造の積層工程を用いることができることから、製造上有利である。欠点としては大面積で基板に内蔵する関係上、焼成したセラミック系の誘電体材料を用いることができない。すなわち誘電体フィラーを樹脂に混練したものを使用せざるを得なく、材料の誘電率は無機材料と比較して2桁以上低くなり、単位容量あたりのコンデンサー一個面積が莫大になり基板を小さくできないこと、一層に複数個のキャパシターを埋め込み難いことが問題となっていた。
【0016】
【特許文献1】
特開平5−218615号公報(第2頁、段落7)
【特許文献2】
特開平8−222656号公報(第3頁、段落11―14)
【特許文献3】
特開平10−56251号公報(第3頁、段落7―8)
【特許文献4】
特開平11−220262号公報(第7―8頁、段落42―54)
【特許文献5】
米国特許第5079069号
【特許文献6】
米国特許第5155655号
【特許文献7】
米国特許第5161086号
【0017】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑み発明されたものでチップ部品を基板に内蔵するにあたって実装面積が小さく、部品内蔵層厚が薄くできる素子内蔵基板用キャパシター素子、及び回路基板に微細な配線パターンを形成しつつ、配線パターンとの接続を形成しながらLCR等のチップ受動部品を正確に実装、内蔵する素子内蔵基板の製造方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明は以上の課題を解決するためになされたものであり、請求項1に係る第1の発明は、1層以上の絶縁層を有するプリント配線板であって、前記絶縁層内にキャパシター素子を内蔵し、当該キャパシター素子は複数の電極と誘電体層を交互に積層した構成であることを特徴とする素子内蔵基板である。
【0019】
請求項2に係る第2の発明は、前記キャパシター素子を内蔵した絶縁層の厚みが50〜300μmの範囲であることを特徴とする素子内蔵基板である。
【0020】
請求項3に係る第3の発明は、前記誘電体層の一層の厚みが100μm以下であり、かつ前記キャパシター素子全体の厚みが200μm以下であることを特徴とする請求項1又は2のいずれかに記載の素子内蔵基板である。
【0021】
請求項4に係る第4の発明は、前記キャパシター素子の誘電体層が、少なくとも熱可塑性樹脂及び/又は熱硬化性樹脂と、誘電体フィラーを含むことを特徴とする請求項1から3のいずれかに記載の素子内蔵基板である。
【0022】
請求項5に係る第5の発明は、前記キャパシター素子の誘電体層として積層セラミックキャパシター用のグリーンシートを用いたことを特徴とする請求項1か3のいずれかに記載の素子内蔵基板である。
【0023】
請求項6に係る第6の発明は、前記キャパシター素子は、異なる形状の複数の電極と、誘電体層を交互に積層した構成であることを特徴とする請求項1から5のいずれかに記載の素子内蔵基板である。
【0024】
請求項7に係る第7の発明は、前記キャパシター素子を構成する複数の電極の導通を、一部とらない構成としたことを特徴とする請求項1から6のいずれかに記載の素子内蔵基板である。
【0025】
請求項8に係る第8の発明は、前記キャパシター素子の端子電極が、当該キャパシター素子の同じ面上にあることを特徴とする請求項1から7のいずれかに記載の素子内蔵基板である。
【0026】
請求項9に係る第9の発明は、前記誘電体層に含まれる誘電体フィラーが、
BaTiO、SrTiO、CaTiO、MgTiO、ZnTiO、LaTi、NdTi、PbTiO、CaZrO、BaZrO、PbZrO、BaTi1−xZr、PbZrTi1−x(0≦x≦1)
から選ばれる、1種あるいは2種類以上であることを特徴とする請求項4に記載の素子内蔵基板である。
【0027】
請求項10に係る第10の発明は、絶縁基板上に請求項1から9のいずれかに記載のキャパシター素子が配設された素子内蔵基板において、当該絶縁基板と前記キャパシター素子との界面に接着性樹脂が存在することを特徴とする請求項1から9のいずれかに記載の素子内蔵基板である。
【0028】
請求項11に係る第11の発明は、絶縁基板上に請求項1から10のいずれかに記載のキャパシター素子を、当該絶縁基板上の配線パターンと重ならない位置に配設したことを特徴とする請求項1から10のいずれかに記載の素子内蔵基板である。
【0029】
請求項12に係る第12に発明は、同じ絶縁層内に複数のキャパシター素子を内蔵することを特徴とする請求項1から11のいずれかに記載の素子内蔵基板である。
【0030】
請求項13に係る際13の発明は、請求項1から12のいずれかに記載のキャパシター素子を被覆した絶縁材料上に、配線パターンを設けたことを特徴とする請求項1から12のいずれかに記載の素子内蔵基板である。
【0031】
【発明の実施の形態】
本発明は1層以上の絶縁層を有するプリント配線板であって、絶縁層内にキャパシター素子を内蔵し、当該キャパシター素子は2層以上の誘電体層を有するものであることを特徴とする素子内蔵基板である。またキャパシター素子の誘電体層が、少なくとも熱可塑性樹脂及び/又は熱硬化性樹脂と、誘電体フィラーを混練してなり、前記誘電体層の一層の厚みが100μm以下であり、かつキャパシター素子全体の厚みが200μm以下であることを特徴とするキャパシター素子を用いて製造された素子内蔵基板である。
【0032】
図1に従来のプレーナータイプのキャパシター素子内蔵基板の模式構成部分断面図を示す。従来の誘電体フィラーをバインダー樹脂に練り込んだ誘電体層105を基板全面に設け上下に電極パターンを設けたいわゆるプレーナータイプキャパシターは素子の静電容量が小さいことが問題になっていた。また、表面実装で用いられる積層セラミックチップキャパシターは基板に内蔵することを目的として製造されていないため、小型ではあるものの厚さが不適であり、キャパシター素子の端子電極形状も内蔵には不向きであった。
【0033】
本発明は素子内蔵基板に用いるための必要な静電容量を確保し、多層プリント配線板の製造工程を考慮した最適構造を有するキャパシター素子を提供し、埋め込み信頼性に優れた素子内蔵基板を提供するものである。
すなわち、単層で達成できなかった素子の静電容量を電極面積を広げることと多層化することによって確保し、さらに多層プリント配線板への内蔵に適するよう樹脂材料を用いて行うものである。
【0034】
本発明で述べるキャパシター素子は誘電体層と電極とを順次積層して形成される。製造工程の一例を図2〜図9に示す。誘電体層201は熱可塑性樹脂もしくは熱硬化性樹脂、またはそれらを混合したものに誘電フィラーを混練したものが望ましい(図2(a))。この理由としてはたとえばシート状に焼成させたセラミックを用いると誘電率が高く静電容量を稼げる一方で、薄くすると割れやすく多層プリント配線板の製造工程でクラックなどを生じ機能しなくなる恐れがあるためである。これに対して樹脂材料は誘電率は低いがある程度の可とう性を有することから素子内蔵基板に適している。
【0035】
本発明では熱可塑性樹脂としてポリエステル、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルケトン、ポリスチレン、ポリエチレン、ポリプロピレンなどを用いることができる。
また、本発明では熱硬化性樹脂としてエポキシ樹脂、フェノール樹脂、ウレタン樹脂、メラミン樹脂、アクリル樹脂などの三次元硬化物を用いることができる。
【0036】
本発明では上述した熱可塑性樹脂、または熱硬化性樹脂、あるいはそれらの混合物に誘電フィラーを混練して誘電体層として用いる。この際、必要に応じて溶剤、分散剤、カップリング剤などの添加剤を用いても良い。また、熱硬化性樹脂が成分として入っている場合は誘電体層形成後、加熱により熱硬化させて用いる。
本発明では誘電フィラーとしてBaTiO、SrTiO、CaTiO、MgTiO、ZnTiO、LaTi、NdTi、PbTiO、CaZrO、BaZrO、PbZrO、BaTi1−xZr、PbZrTi1−x(0≦x≦1)などを用いることができ、単独で用いても、必要に応じてそれらを混合して用いても良い。
本発明で述べる誘電体層の樹脂と誘電フィラーの割合は必要とするキャパシター素子の容量に応じてその比率を変えることが出来る。よって特に限定されるものではないが、高容量を得るためには通常は50wt%以上の誘電フィラーを入れることが望ましい。
【0037】
本発明で述べるキャパシター素子に用いる電極204は導電性であれば特に限定されるものではなく、金属箔、もしくはカーボンや金属微粒子等の導電性微粒子を樹脂に混練した導電性ペーストで形成されたものが利用できる(図2(b))。
【0038】
本発明で述べるキャパシター素子を作製する方法としては、あらかじめ誘電フィラーを混練した樹脂からなる誘電体シート203を用意し、電極で挟む、あるいは誘電体シートに導電性ペーストで電極を印刷したのち、次の誘電体層を順次積層して形成する。この際に各誘電体層、電極との密着性を増すために必要に応じて加熱、加圧下でプレスすることが望ましい。また、未硬化の熱硬化性樹脂が成分として含まれる場合は、積層過程で加熱硬化させるか、もしくはプリント基板に内蔵後一括して熱硬化させて使用する(図3)。
【0039】
本発明で述べるキャパシター素子の厚さは200μm以下であることが特に好ましい。この理由は素子をプリント基板に内蔵する際、これより厚いとキャパシター素子が絶縁層一層に収まりきらなくなるため、この段差を絶縁材料213で埋めることが困難となり、キャパシター層の平滑性を確保しにくくなるためである。
【0040】
本発明のキャパシターは少なくとも2層以上の誘電体層201を有し、従って誘電体層を挟む電極204は3枚以上有するものとする。好ましくは3層以上の誘電体層を有することが望まれる。この理由は樹脂系の誘電体層は誘電率が低いため、1層のみでは必要とするキャパシター素子の容量を得るためには大面積にならざるを得ず、埋め込める容量、および個数に制約を受けるためである。多層にすることでキャパシター容量を大きくすることができる。また、本発明のキャパシター素子の誘電体層201の厚みは一層あたり100μm以下であることが好ましく、50μm以下であることがさらに望ましい。この理由はキャパシター素子207自体の厚さが薄くなるほど、プリント配線板に埋め込みやすいことと、静電容量は電極間距離に反比例するため薄いほど大きな静電容量を得ることが出来るためである。
【0041】
本発明のキャパシター素子207の端子電極206は、当該キャパシター素子の同じ面上にあることが望ましい(図4)。この理由としてはキャパシター素子の異なる面に端子電極が有るとき、例えば上下に別れて電極がある場合は、キャパシター素子の上面端子電極は絶縁層214を介して上層パターンと接続することになり、上下配線層の中間位置にビアホールを形成して導通を図らねばならず技術的に困難なためである。
【0042】
本発明のキャパシター素子の各層の電極204は所定位置に貫通孔205をあけたのち、導電性樹脂ペーストを埋め込む、あるいは孔内を金属でメッキすることなどにより上下間の導通を得る(図4)。貫通孔205を開ける方法としてはドリル法、パンチ法、ピン挿入法、レーザー加工などによって行うことが出来る。
【0043】
また電極204の形状は貫通孔205を開ける位置によって任意の電極と接続できるよう各層ごとの重なりを考えた形状とすることが望ましい。例えば図17及び図20(a)から(d)に示すように各層におけるコンデンサ電極204の形状と、貫通孔形成位置219の組合せの例を示す。これを積層しておき、例えば図18や図20(e)に示すように貫通孔205を形成する位置を選択することで、任意の電極のみについて導通をとることができ、結果、同じ積層体(例えば図3や図10に示されるように、誘電体層と電極を交互に積層した状態のもの)から、異なる静電容量を有するキャパシター素子を製造することができる。このため、回路設計上も生産効率的にも非常に有利になる。
また、本発明のキャパシター素子は、貫通孔の形成位置だけではなく、貫通孔の深さを変えることで導通を取るコンデンサ電極の数を任意とすることができ、これによっても静電容量を調節することができる(図19)。貫通孔の形成位置と深さを組み合わせ、任意の容量のキャパシター素子を得ることもできる。
【0044】
本発明のキャパシター素子207を基板に内蔵しやすくするために、キャパシター素子と直接絶縁基板との界面の一部もしくは全面に接着性樹脂が存在することが好ましい(図5)。この接着性樹脂の層(接着性樹脂層208)はキャパシター素子207と絶縁基板210を接着させるためのものであり(図6)、各種接着剤や、加熱によって軟化し接着性を示す各種熱可塑性樹脂をキャパシター素子または絶縁基板の必要な部分にコーティングして用いられる。あらかじめキャパシター素子の片面に接着性樹脂層208を設けておけば、加熱等の簡便な操作により絶縁基板210へキャパシター素子207を配設することができ、プリント配線板への素子の内蔵を容易にすることが出来る。
【0045】
また、本発明のキャパシター素子を特に簡便に得る方法としては、積層セラミックコンデンサーの製造に用いるグリーンシートをキャパシター素子の誘電体層として利用することもできる。製造工程の一例を図10〜図16に示す。グリーンシートとは誘電フィラーが樹脂に混練された焼成前のシートを示し、通常チタン酸バリウムのような誘電フィラーがポリビニルブチラールやポリエチレンなどに練り込まれたシートに導電性ペーストなどで電極が印刷された後、多層に積層されている。チップキャパシターとしても用いるためにはこれを300℃〜500℃に加熱して樹脂成分を加熱分解除去(脱バインダー工程)した後、さらに900℃〜1400℃の温度で焼成させチップ部品とする。脱バインダー工程を経ると誘電フィラーのみと電極剤のみとなり、焼成させないと形状が保持できない。また、焼成すると割れやすくなるので大きな面積では用いることができない。そこで、本発明のキャパシター素子として用いる場合は焼成前のグリーンシートの状態で使用するのが望ましい。この場合、グリーンシートに用いられる樹脂の軟化点が低いため、出来るだけキャパシター素子の設けられた絶縁層214(図14)を素子内蔵基板の内層に配置すること、および製品となる素子内蔵基板の使用時の温度に対して注意が必要である。特に耐熱性が要求される用途では耐熱性の樹脂で構成される誘電体層を用いることが好ましい。
【0046】
本発明で述べるキャパシター素子を絶縁基板上に設ける方法としては、接続配線パッド上にキャパシターを直接実装せず、かつ配線パターン209がない箇所に、すなわち絶縁基板210上にキャパシター素子207を設けることが望ましい(図6)。たとえば、表面実装と同様にキャパシター端子の両端を接続パッド(すなわち絶縁基板210の配線パターン209)上に直接実装した場合、パッドとパッド間にわずかな隙間が生じる可能性があり、上層を形成して内蔵部品となったときに信頼性の点で問題を生じる恐れがある。本発明では接続パッドや配線パターン209がない絶縁基板210上にキャパシター素子207を設けることにより、キャパシター素子207と絶縁基板210面に隙間を空けることなく、信頼性に優れた接合が実現できると共に、配線パターン209上にキャパシター素子207を設けた場合は、絶縁層214の最小層厚がキャパシター素子207の厚みに配線パターン209である導体層の厚みを加えたものになるのに対して、本発明の方法ではキャパシター207の厚みのみが絶縁層214の最小厚みとなり、キャパシター素子を配設した絶縁層214を薄くできる点で有利である。
【0047】
本発明ではキャパシター素子の端子電極206と配線パターン209の接続パッドとの導通は導電性ペースト212を用いたり(図7)、上層をめっき後にエッチングして配線パターン及び導通電極を形成するなどして行うことが出来る。
【0048】
本発明の素子内蔵基板は、絶縁基板210上にキャパシター素子207を配設後、絶縁材料213で被覆して絶縁層214を形成し、導電性ペースト212等で行った配線の絶縁およびキャパシター素子被覆面の平滑化を行うことが望ましい。ここで用いる絶縁材料213としては導体回路やキャパシター素子による絶縁層表面の段差が小さくなるよう、加熱加圧によりレベリング性を示すものであればよく、例えばプリント配線板の積層に用いるプリプレグ、ビルトアップ層形成に用いる樹脂絶縁シートなどがあげられ、また樹脂ワニスなどを用いてもよい。
【0049】
本発明のキャパシター素子は非常に薄型でコンパクトであるため、同じプリント配線板内に複数個内蔵することはもちろん、プリント配線板の同じ絶縁基板上に複数個配置することも可能である。
本発明の素子内蔵基板はキャパシター素子の他に抵抗素子やインダクター素子を同時に、あるいは別の層に埋め込んで用いても良い。
本発明の素子内蔵基板は通常のプリント配線板と同様に基板上にチップコンデンサー、抵抗、ICなどの各種表面実装部品を設けて使用することが出来る。
【0050】
【実施例】
(実施例1)
本発明の実施例1を図面を用いて説明する。誘電体シート203の製造方法を図2で示す。熱可塑性のバインダー樹脂としてポリエーテルスルホン(住友化学工業社製:商品名スミカエクセル5003P)20重量部、高誘電フィラーとしてチタン酸バリウム(堺化学工業社製:商品名BT05)80重量部とをγ−ブチロラクトンとN−メチルピロリドンの混合溶剤を用いて十分に分散させたのち、支持体202としてポリイミドシート上にコーターを用いて塗布後、乾燥して溶剤を除去し、約25μmの厚さの誘電体層201を設けた誘電体シート203を得た(図2(a))。次にこの誘電体層201上に導電性ペーストでコンデンサ電極部分が1cmとなるように作製したパターンを用いて、スクリーン印刷により電極204を形成した(図2(b))。
【0051】
次に誘電体シート203から支持体202であるポリイミドシートを剥がし、電極204が1cmの重なりをもって交互にずれるように誘電体層を6枚重ねたのち、約280℃で熱プレスした(図3)。上下の電極が一つおきに接続される位置にドリルを用いて形成した0.2mmφの貫通孔205に導電性ペーストを充填するとともに上部に端子電極206を形成しキャパシター素子207を作製した(図4)。
【0052】
図5のようにキャパシター素子207下部にエポキシ系接着樹脂層208を設け、図6のように配線パターン209を避けた絶縁基板210上に配設した。
図7のようにキャパシター素子の端子電極206と配線パターン209を導電性ペースト212によって接続した。
次にキャパシター素子が設けられた絶縁基板210面上に層間絶縁材料213(太陽インキ製造社製:HBI−200)をダイコーターにて約150μmの厚さで塗工した。
プリント配線板の必要箇所にビアホール211を形成、ホールめっき、穴埋め、パネルメッキ後、配線パターン209及び導通電極215をエッチングにより形成して図9の素子内蔵基板を製造した。
端子A−B間の静電容量をLCRメーターにて測定したところ、6.69nFであった。
【0053】
(実施例2)
誘電体シート203の製造方法を示す(図2)。熱可塑性のバインダー樹脂として可溶性ポリイミド樹脂溶液(新日本理化社製:商品名リカコートPN20)に高誘電フィラーとしてチタン酸バリウムジルコネート(堺化学工業社製:商品名BTZ−05−8020)を樹脂との固形分比で80wt%になるように十分に分散させたのち、支持体202としてポリイミドシート上にコーターを用いて塗布後、乾燥して溶剤を除去し、約25μmの厚さの誘電体層201を設けた誘電体シート203を得た(図2(a))。次にこの誘電体層201上に導電性ペーストでコンデンサ電極部分が1cmになるように作製したパターンを用いて、スクリーン印刷により電極204を形成した(図2(b))。
【0054】
次に誘電体シート203から支持体202であるポリイミドシートを剥がし、電極が1cmの重なりをもって交互にずれるように誘電体層を4枚重ねたのち、約300℃で熱プレスした(図3)。上下の電極が一つおきに接続される位置にドリルを用いて形成した0.2mmφの貫通孔205に導電性ペーストを充填するとともに上部に端子電極206を形成しキャパシター素子207を作製した(図4)。
【0055】
図5のようにキャパシター素子207下部にエポキシ系接着樹脂層208を設け、図6のように配線パターン209を避けた絶縁基板210上に配設した。
図7のようにキャパシター素子の端子電極206と配線パターン209を導電性ペースト212によって接続した。
次にキャパシター素子が設けられた絶縁基板210面上に層間絶縁材料213(太陽インキ製造社製:商品名HBI−200)をダイコーターにて約100μmの厚さで塗工した。
プリント配線板の必要箇所にビアホール211を形成、ホールめっき、穴埋め、パネルメッキ後、配線パターン209及び導通電極215をエッチングにより形成して図9の素子内蔵基板を製造した。
端子A−B間の静電容量をLCRメーターにて測定したところ、3.75nFであった。
【0056】
(実施例3)
誘電体シート203の製造方法を示す(図2)。熱硬化性のバインダー樹脂としてエポキシ樹脂A(日本化薬社製:商品名EPPN502H)80重量部、エポキシ樹脂B(昭和高分子社製:商品名エピコート802)20重量部、硬化剤(荒川化学工業社製:商品名タマノル)62重量部を溶剤(ダイセル化学工業社製:商品名メトアセ)に溶解させ、高誘電フィラーとしてチタン酸バリウム(堺化学工業社製:商品名BT−05)を樹脂分(含硬化剤)との固形分比で80wt%になるように十分に分散させたのち、支持体202としてポリイミドシート上にコーターを用いて塗布後、80℃30分で乾燥して溶剤を除去しBステージ状態の約20μmの厚さの誘電体層201を設けた誘電体シート203を得た(図2(a))。次にこの誘電体層201上に導電性ペーストでコンデンサ電極部分が1cmになるように作製したパターンを用いて、スクリーン印刷により電極204を形成した(図2(b))。
【0057】
次に誘電体シート203から支持体202であるポリイミドシートを剥がし、電極が1cmの重なりをもって交互にずれるように誘電体層を4枚重ねたのち、約120℃で熱プレスした(図3)。上下の電極が一つおきに接続される位置にCO2レーザーを用いて形成した0.15mmφの貫通孔205に導電性ペーストを充填するとともに上部に端子電極206を形成しキャパシター素子207を作製した(図4)。
【0058】
図5のようにキャパシター素子207下部にエポキシ系接着樹脂層208を設けて図6のように配線パターン209を避けて絶縁基板210上に配設した。
図7のようにキャパシター素子の端子電極206と配線パターン209を導電性ペースト212によって接続した。
次にキャパシター素子が設けられた絶縁基板210面上に層間絶縁材料213(太陽インキ製造社製:HBI−200)をダイコーターにて約100μmの厚さで塗工した(図8)。
多層プリント基板の必要箇所にビアホール211を形成、パネルメッキ後、配線パターン209及び導通電極215をエッチングにより形成して図9の素子内蔵基板を製造した。
端子A−B間の静電容量をLCRメーターにて測定したところ、5.48nFであった。
【0059】
(実施例4)
誘電体シートとして誘電フィラー含有ポリエチレン樹脂のグリーンシート(帝人ディーエスエム・ソルティック社製:商品名ソルフィル)膜厚約30μmを用いた。
コンデンサ電極204として厚さ約3μmのNi箔をグリーンシート217(誘電体層)と交互に電極間の重なりが90mmになるように配置し、電極6層、グリーンシート5層を160℃で熱プレスしてキャパシター素子を得た(図10)。このときの厚さは約85μmになった。
上下の電極が一つ置きに接続されるようドリルを用いてを用いて形成した0.2mmφの貫通孔205に導電性ペーストを充填するとともに上部に端子電極206を形成しキャパシター素子207を作製した(図11)。
図12のようにキャパシター素子207下部にエポキシ系接着樹脂層208を設けて図13のように配線パターン209を避けた絶縁基板210上に配設し、導電性ペースト212によって一方の端子電極206と配線パターン209とを接続した。
次に厚みが約50μmである層間絶縁材料シート218(味の素テクノファイン社:商品名ABF−SH)を加熱真空プレス機により2度貼りした(図14)。
図15のようにキャパシター素子207の上部の絶縁層214に導通を取るためにUVレーザーを用いて約50μmのビア216を設けた。
絶縁層214上にフィルドビア法にてパネルメッキを行いエッチングし、図16のように導通電極215を形成し素子内蔵基板を完成させた。
端子A−B間の静電容量をLCRメーターにて測定したところ、6.40nFであった。
【0060】
(実施例5)
誘電体シート203の製造方法を示す。熱可塑性のバインダー樹脂としてポリエーテルスルホン(住友化学工業社製:商品名スミカエクセル5003P)20重量部、高誘電フィラーとしてチタン酸バリウム(堺化学工業社製:商品名BT05)80重量部とをγ−ブチロラクトンとメチルピロリドンの混合溶剤を用いて十分に分散させたのち、支持体202としてポリイミドシート上にコーターを用いて塗布後、乾燥して溶剤を除去し、約25μmの厚さの誘電体層201を設けた誘電体シート203を得た。次にこの誘電体層201上に電極204として導電性ペーストであらかじめ重なりが1cmになるように作製したパターンを用いてスクリーン印刷により形成した(図2)。このときの電極204の構造を図17(a)から(f)のように第1層から第6層までパターン形状を変えてそれぞれ作製した。
次に誘電体シート201から支持体202であるポリイミドシートを剥がし、電極が1cmの重なりをもって交互にずれるように誘電体層を6枚重ねたのち、約280℃で熱プレスした。各層の電極を接続するために図18(a)に示したイとニの位置にドリルを用いて形成した0.2mmφの貫通孔205に導電性ペーストを充填するとともに上部に端子電極206を形成してキャパシター素子207を作製し、キャパシタ素子207下部にエポキシ系接着樹脂層208を設けた(図16)。
その後、実施例1と同様に素子内蔵基板を完成させた。さらに貫通孔205の位置をロ−ニ、ロ−ホ、ハ−ホ、ハ−ヘと変えて形成したキャパシター素子(図18)を実施例1と同様に絶縁層に内蔵した素子内蔵基板も同様に作製した。この素子内蔵基板の構造は、キャパシター素子の容量を除いては図9と同じである。端子A−B間の静電容量をLCRメーターにて測定した。その結果、貫通孔の位置がイ−ニのものは1.34nF、ロ−ニのものは2.68nF、ロ−ホのものは4.01nF、ハ−ホのものは5.35nF、ハ−ヘのものは6.66nFであった。
【0061】
(実施例6)
実施例5と同様に誘電体シートを得た。次にこの上に電極204として導電性ペーストであらかじめ重なりが1cmになるように作製したパターンを用いてスクリーン印刷により形成した(図2)。このときの電極204の構造を図20(a)から(d)のように第1層から第4層までパターン形状を変えてそれぞれ作製した。
次に誘電体シート201から支持体202であるポリイミドシートを剥がし、電極が1cmの重なりをもって交互にずれるように誘電体層を4枚重ねたのち、約280℃で熱プレスした。各層の電極を接続するために図20に示したリとヌの位置にドリルを用いて形成した0.2mmφの貫通孔205に導電性ペーストを充填するとともに上部に端子電極206を形成してキャパシター素子207を作製し、キャパシタ素子207下部にエポキシ系接着樹脂層208を設けた(図20(e))。
その後、実施例1と同様に素子内蔵基板を完成させた。さらに貫通孔205の位置をリ−チ、リ−ルと変えて形成したキャパシター素子を実施例1と同様に絶縁層に内蔵した素子内蔵基板も同様に作製した。この素子内蔵基板の構造は、キャパシター素子の容量を除いては図9と同じである。端子A−B間の静電容量をLCRメーターにて測定した。その結果、貫通孔の位置がリ−ヌのものは1.33nF、リ−チのものは0.67nF、リ−ルのものは0.33nFであった。
【0062】
【発明の効果】
以上のように本発明の素子内蔵基板およびその製造方法によれば、プリント配線板内に静電容量の大きなキャパシター素子を通常のビルトアップ工法を用いて簡便に内蔵することができ、種々の多層プリント配線板やモジュール基板の特性を向上させることが出来る。
【0063】
【図面の簡単な説明】
【図1】従来のプレーナータイプのキャパシター素子内蔵基板の模式構成部断面図である。
【図2】本発明の素子内蔵基板に内蔵するキャパシター素子の製造工程の一例を示す説明図である。
【図3】本発明の素子内蔵基板に内蔵するキャパシター素子の製造工程の一例を示す説明図である。
【図4】本発明の素子内蔵基板に内蔵するキャパシター素子の製造工程の一例を示す説明図である。
【図5】本発明の素子内蔵基板に内蔵するキャパシター素子の製造工程の一例を示す説明図である。
【図6】本発明の素子内蔵基板の製造工程の一例を示す説明図である。
【図7】本発明の素子内蔵基板の製造工程の一例を示す説明図である。
【図8】本発明の素子内蔵基板の製造工程の一例を示す説明図である。
【図9】本発明の素子内蔵基板の製造工程の一例を示す説明図である。
【図10】本発明の素子内蔵基板に内蔵するキャパシター素子の製造工程の他の例を示す説明図である。
【図11】本発明の素子内蔵基板に内蔵するキャパシター素子の製造工程の他の例を示す説明図である。
【図12】本発明の素子内蔵基板に内蔵するキャパシター素子の製造工程の他の例を示す説明図である。
【図13】本発明の素子内蔵基板の製造工程の他の例を示す説明図である。
【図14】本発明の素子内蔵基板の製造工程の他の例を示す説明図である。
【図15】本発明の素子内蔵基板の製造工程の他の例を示す説明図である。
【図16】本発明の素子内蔵基板の製造工程の他の例を示す説明図である。
【図17】本発明の素子内蔵基板に内蔵するキャパシター素子の電極形状と貫通孔形成位置の一例を示した説明図である。
【図18】本発明の素子内蔵基板に内蔵するキャパシター素子の貫通孔形成位置と電極の導通状態を示した説明図である。
【図19】本発明の素子内蔵基板に内蔵するキャパシター素子の電極の導通状態を示した断面図である。
【図20】本発明の素子内蔵基板に内蔵するキャパシター素子の電極形状と貫通孔形成位置の一例を示した説明図である。
【符号の説明】
101…キャパシター素子
102…配線パターン
103…ビアホール(IVH)
104…絶縁層
105…誘電体層
201…誘電体層
202…支持体
203…誘電体シート
204…導体層(電極)
205…貫通孔
206…端子電極
207…キャパシター素子
208…接着樹脂層
209…配線パターン
210…絶縁基板
211…ビアホール(IVH)
212…導電性ペースト
213…絶縁材料
214…絶縁層
215…導通電極
216…ビア
217…グリーンシート
218…層間絶縁材料シート
219…貫通孔形成位置

Claims (13)

  1. 1層以上の絶縁層を有するプリント配線板であって、前記絶縁層内にキャパシター素子を内蔵し、当該キャパシター素子は複数の電極と誘電体層を交互に積層した構成であることを特徴とする素子内蔵基板。
  2. 前記キャパシター素子を内蔵した絶縁層の厚みが50〜300μmの範囲であることを特徴とする素子内蔵基板。
  3. 前記誘電体層の一層の厚みが100μm以下であり、かつ前記キャパシター素子全体の厚みが200μm以下であることを特徴とする請求項1又は2のいずれかに記載の素子内蔵基板。
  4. 前記キャパシター素子の誘電体層が、少なくとも熱可塑性樹脂及び/又は熱硬化性樹脂と、誘電体フィラーを含むことを特徴とする請求項1から3のいずれかに記載の素子内蔵基板。
  5. 前記キャパシター素子の誘電体層として積層セラミックキャパシター用のグリーンシートを用いたことを特徴とする請求項1から3のいずれかに記載の素子内蔵基板。
  6. 前記キャパシター素子は、異なる形状の複数の電極と、誘電体層を交互に積層した構成であることを特徴とする請求項1から5のいずれかに記載の素子内蔵基板。
  7. 前記キャパシター素子を構成する複数の電極の導通を、一部とらない構成としたことを特徴とする請求項1から6のいずれかに記載の素子内蔵基板。
  8. 前記キャパシター素子の端子電極が、当該キャパシター素子の同じ面上にあることを特徴とする請求項1から7のいずれかに記載の素子内蔵基板。
  9. 前記誘電体層に含まれる誘電体フィラーが、
    BaTiO、SrTiO、CaTiO、MgTiO、ZnTiO、LaTi、NdTi、PbTiO、CaZrO、BaZrO、PbZrO、BaTi1−xZr、PbZrTi1−x(0≦x≦1)
    から選ばれる、1種あるいは2種類以上であることを特徴とする請求項4に記載の素子内蔵基板。
  10. 絶縁基板上に請求項1から9のいずれかに記載のキャパシター素子が配設された素子内蔵基板において、当該絶縁基板と前記キャパシター素子との界面に接着性樹脂が存在することを特徴とする請求項1から9のいずれかに記載の素子内蔵基板。
  11. 絶縁基板上に請求項1から10のいずれかに記載のキャパシター素子を、当該絶縁基板上の配線パターンと重ならない位置に配設したことを特徴とする請求項1から10のいずれかに記載の素子内蔵基板。
  12. 同じ絶縁層内に複数のキャパシター素子を内蔵することを特徴とする請求項1から11のいずれかに記載の素子内蔵基板。
  13. 請求項1から12のいずれかに記載のキャパシター素子を被覆した絶縁材料上に、配線パターンを設けたことを特徴とする請求項1から12のいずれかに記載の素子内蔵基板。
JP2002277597A 2002-09-24 2002-09-24 素子内蔵基板 Expired - Fee Related JP4207517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277597A JP4207517B2 (ja) 2002-09-24 2002-09-24 素子内蔵基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277597A JP4207517B2 (ja) 2002-09-24 2002-09-24 素子内蔵基板

Publications (2)

Publication Number Publication Date
JP2004119483A true JP2004119483A (ja) 2004-04-15
JP4207517B2 JP4207517B2 (ja) 2009-01-14

Family

ID=32273152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277597A Expired - Fee Related JP4207517B2 (ja) 2002-09-24 2002-09-24 素子内蔵基板

Country Status (1)

Country Link
JP (1) JP4207517B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310983A (ja) * 2004-04-20 2005-11-04 Dt Circuit Technology Co Ltd キャパシタ内蔵配線板、キャパシタ内蔵配線板の製造方法
JP2005353868A (ja) * 2004-06-11 2005-12-22 Dt Circuit Technology Co Ltd キャパシタ内蔵配線板、配線板内蔵型キャパシタ素子
WO2006100833A1 (ja) * 2005-03-23 2006-09-28 Murata Manufacturing Co., Ltd. 複合誘電体シートおよびその製造方法ならびに積層型電子部品
KR100630145B1 (ko) 2005-02-02 2006-09-29 삼성전자주식회사 박막형 다층 저항, 그 제조 방법 및 인쇄회로기판
JP2007005531A (ja) * 2005-06-23 2007-01-11 Murata Mfg Co Ltd 複合成形体、その製造方法及びフィルムコンデンサ
KR100765022B1 (ko) * 2006-08-29 2007-10-09 엘지이노텍 주식회사 플렉시블 기판 및 그 제조방법
JP2007287783A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 集積回路実装基板および電力線通信装置
JP2008034189A (ja) * 2006-07-27 2008-02-14 Daikin Ind Ltd コーティング組成物
CN102412310A (zh) * 2011-05-23 2012-04-11 上海华力微电子有限公司 一种提高电容密度的多层堆叠结构及其制造方法
CN105514093A (zh) * 2016-01-22 2016-04-20 天津大学 基于硅通孔技术的半导体电容器及其制造方法、封装结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851895B (zh) * 2015-04-17 2018-08-17 宁波微能物联科技有限公司 一体式能量采集与存储器件结构及其制备方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310983A (ja) * 2004-04-20 2005-11-04 Dt Circuit Technology Co Ltd キャパシタ内蔵配線板、キャパシタ内蔵配線板の製造方法
JP4536413B2 (ja) * 2004-04-20 2010-09-01 大日本印刷株式会社 キャパシタ内蔵配線板、キャパシタ内蔵配線板の製造方法
JP2005353868A (ja) * 2004-06-11 2005-12-22 Dt Circuit Technology Co Ltd キャパシタ内蔵配線板、配線板内蔵型キャパシタ素子
JP4515160B2 (ja) * 2004-06-11 2010-07-28 大日本印刷株式会社 キャパシタ内蔵配線板、配線板内蔵型キャパシタ素子
KR100630145B1 (ko) 2005-02-02 2006-09-29 삼성전자주식회사 박막형 다층 저항, 그 제조 방법 및 인쇄회로기판
US7635519B2 (en) 2005-03-23 2009-12-22 Murata Manufacturting Co., Ltd. Composite dielectric sheet, method for producing composite dielectric sheet, and multilayer electronic component
WO2006100833A1 (ja) * 2005-03-23 2006-09-28 Murata Manufacturing Co., Ltd. 複合誘電体シートおよびその製造方法ならびに積層型電子部品
JP4697226B2 (ja) * 2005-03-23 2011-06-08 株式会社村田製作所 複合誘電体シートおよびその製造方法ならびに積層型電子部品
JPWO2006100833A1 (ja) * 2005-03-23 2008-08-28 株式会社村田製作所 複合誘電体シートおよびその製造方法ならびに積層型電子部品
JP2007005531A (ja) * 2005-06-23 2007-01-11 Murata Mfg Co Ltd 複合成形体、その製造方法及びフィルムコンデンサ
JP4650119B2 (ja) * 2005-06-23 2011-03-16 株式会社村田製作所 積層型電子部品
JP2007287783A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 集積回路実装基板および電力線通信装置
US8310837B2 (en) 2006-04-13 2012-11-13 Panasonic Corporation Circuit module and power line communication apparatus
JP2008034189A (ja) * 2006-07-27 2008-02-14 Daikin Ind Ltd コーティング組成物
US8779047B2 (en) 2006-07-27 2014-07-15 Daikin Industries, Ltd. Coating composition
KR100765022B1 (ko) * 2006-08-29 2007-10-09 엘지이노텍 주식회사 플렉시블 기판 및 그 제조방법
CN102412310A (zh) * 2011-05-23 2012-04-11 上海华力微电子有限公司 一种提高电容密度的多层堆叠结构及其制造方法
CN105514093A (zh) * 2016-01-22 2016-04-20 天津大学 基于硅通孔技术的半导体电容器及其制造方法、封装结构

Also Published As

Publication number Publication date
JP4207517B2 (ja) 2009-01-14

Similar Documents

Publication Publication Date Title
KR100812515B1 (ko) 용량성/저항성 디바이스 및 이러한 디바이스를 통합하는인쇄 배선 기판, 그리고 그 제작 방법
TW511405B (en) Device built-in module and manufacturing method thereof
US6872893B2 (en) Wiring board provided with passive element and cone shaped bumps
US7186919B2 (en) Printed circuit board including embedded capacitors and method of manufacturing the same
JP3956851B2 (ja) 受動素子内蔵基板及びその製造方法
KR100716824B1 (ko) 하이브리드 재료를 이용한 커패시터 내장형 인쇄회로기판및 그 제조방법
JPH1145955A (ja) 素子内蔵多層配線基板およびその製造方法
WO2003034494A1 (en) Module component
KR101401863B1 (ko) 커패시터 내장형 인쇄회로기판 및 그 제조방법
JP3946578B2 (ja) 受動素子を備えた配線板の製造方法、受動素子を備えた配線板
CN101207971B (zh) 电容器用粘结片和电容器内置型印刷布线板的制造方法
JP4207517B2 (ja) 素子内蔵基板
JP3199664B2 (ja) 多層配線基板の製造方法
JP2002344106A (ja) 回路部品内蔵基板とその製造方法
JP2003188538A (ja) 多層基板、および多層モジュール
JP4269657B2 (ja) 誘電体積層シート、基板内蔵キャパシターシート及び素子内蔵基板
KR100645613B1 (ko) 캐패시터 내장형 인쇄회로기판 및 그 제조 방법
JP2000340955A (ja) 受動部品内蔵複合多層配線基板およびその製造方法
JP2003142832A (ja) 部品内蔵モジュールおよびパッケージ部品、並びにその製造方法
JP2005045228A (ja) 光学情報記録媒体とその製造方法
JP2004095804A (ja) 受動素子内蔵プリント配線板及びその製造方法
JP4515477B2 (ja) 受動素子を備えた配線板の製造方法
JP2003318065A (ja) 積層電子部品およびその製造方法
JP2004311987A (ja) 多層基板
JP2002271028A (ja) コイル内蔵多層基板及びその製造方法並びに積層コイルの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees