JP2004074411A - ガスバリア性フィルム及びこれを含む積層体 - Google Patents

ガスバリア性フィルム及びこれを含む積層体 Download PDF

Info

Publication number
JP2004074411A
JP2004074411A JP2002199927A JP2002199927A JP2004074411A JP 2004074411 A JP2004074411 A JP 2004074411A JP 2002199927 A JP2002199927 A JP 2002199927A JP 2002199927 A JP2002199927 A JP 2002199927A JP 2004074411 A JP2004074411 A JP 2004074411A
Authority
JP
Japan
Prior art keywords
gas barrier
based mineral
swellable synthetic
barrier film
synthetic fluoromica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002199927A
Other languages
English (en)
Other versions
JP4052889B2 (ja
Inventor
Osamu Hashimoto
橋本 修
Michiko Hori
堀 美智子
Susumu Sakata
坂田 進
Masao Fujita
藤田 真夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rengo Co Ltd
Original Assignee
Rengo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rengo Co Ltd filed Critical Rengo Co Ltd
Priority to JP2002199927A priority Critical patent/JP4052889B2/ja
Publication of JP2004074411A publication Critical patent/JP2004074411A/ja
Application granted granted Critical
Publication of JP4052889B2 publication Critical patent/JP4052889B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】煩雑な工程を行うことなく、高湿度下でのガスバリア性を十分向上させ、かつ透明性、平滑性に優れたフィルムを提供することを目的とする。
【解決手段】水溶性高分子、及び平均粒子径が0.05〜10μmであり、粉末X線回折分析から得られる回折ピークの相対強度が、[Id=9.6Å]/[Id=12.4Å]×100≦2、かつ[Id=4.0Å]/[Id=12.4Å]×100≦20である膨潤性合成フッ素雲母系鉱物を含有した塗工用組成物を、熱可塑性フィルムの少なくとも片面に塗工したガスバリア性フィルムを用いる。
【選択図】 なし

Description

【0001】
【発明の属する技術分野】
この発明は、ガスバリア性フィルムに関する。
【0002】
【従来の技術】
食品や薬品の包装分野において、内容物の品質劣化を防ぐ目的で、酸素ガスバリア性等のガスバリア性に優れている包装材料が使用されている。このようなガスバリア性フィルムとしては、ポリ塩化ビニリデンを積層したフィルム、ポリビニルアルコール系樹脂を用いたフィルム等が知られている。特に、上記ポリ塩化ビニリデンを積層したフィルムは、食品包装用として幅広く使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記ポリ塩化ビニリデンを積層したフィルムは、近年のダイオキシンをはじめとする環境問題から、使用が控えられる傾向にある。
【0004】
また、上記ポリビニルアルコール系樹脂を用いたフィルムは、ポリビニルアルコール系樹脂が水酸基を含有するため、高湿度下でのガスバリア性が低下する問題点を有する。これに対し、高湿度下でのガスバリア性を向上させる方法として、無機層状化合物を高水素結合性樹脂に均一分散させた塗工用組成物を用いたフィルムが多数開示されている。
【0005】
例えば、特開平6−93133号公報には、5μm以下の無機層状化合物を水に十分膨潤させた状態で、高水素結合性樹脂あるいはその水溶液に添加する方法などが開示されている。しかし、この公報においては、市販の層状ケイ酸塩をそのまま使用しているが、一般に酸化ケイ素などの不純物を少量含むことが多く、結果として得られるフィルムの高湿度下でのガスバリア性は十分でない。
【0006】
さらにまた、特開平11−228817号公報には、層状珪酸塩をナイロン6樹脂中に分子レベルで均一に分散し、ガスバリア性を向上させる方法が開示されている。しかし、この方法では、層状ケイ酸塩に含まれる合成時の原料や副生物などの粗大粒子をジェットミルで微粉砕し、さらにふるいによる分級を行って所定の粒子を得ている。しかし乾式での方法のため、不純分の分離が十分ではない。さらにポリアミド系樹脂中へ分散させているので、最終的に得られるフィルムの高湿度下でのガスバリア性は十分でない。
【0007】
そこで、この発明は、煩雑な工程を行うことなく、高湿度下でのガスバリア性を十分向上させ、かつ透明性、平滑性に優れたフィルムを提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明は、水溶性高分子、及び平均粒子径が0.05〜10μmであり、粉末X線回折分析から得られる回折ピークの相対強度が、[Id=9.6Å]/[Id=12.4Å]×100≦2、かつ[Id=4.0Å]/[Id=12.4Å]×100≦20である膨潤性合成フッ素雲母系鉱物を含有した塗工用組成物を、熱可塑性フィルムの少なくとも片面に塗工したガスバリア性フィルムを用いることにより、上記の課題を解決したのである。
【0009】
また、所定の回折ピークの相対強度を有する膨潤性合成フッ素雲母系鉱物は、市販のものを遠心分離又はデカンテーションによる精製法を用いて得ることができる。
【0010】
所定の回折ピークの相対強度を有する膨潤性合成フッ素雲母系鉱物を用いるので、これを含有する塗工用組成物を、熱可塑性フィルムの少なくとも片面に塗工した際、この膨潤性合成フッ素雲母系鉱物が均一に熱可塑性フィルム上に配され、得られるフィルムのガスバリア性、特に高湿度下のガスバリア性がより向上する。
【0011】
また、この所定の回折ピークの相対強度を有する膨潤性合成フッ素雲母系鉱物を、遠心分離又はデカンテーションによる精製法を用いて得る場合は、製造工程が容易となる。
【0012】
【発明の実施の形態】
以下において、この発明について詳細に説明する。
この発明にかかるガスバリア性フィルムは、水溶性高分子及び膨潤性合成フッ素雲母系鉱物を含有した塗工用組成物を、熱可塑性フィルムの少なくとも片面に塗工したフィルムである。
【0013】
上記水溶性高分子とは、水溶性を有する高分子物質をいい、官能基として、水酸基、アミノ基、酸アミド基、チオール基、カルボキシル基、スルホン酸基、リン酸基等を有するものがあげられる。この水溶性高分子の例としては、ポリビニルアルコール系重合体、エチレン−ビニルアルコール共重合体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシメチルセルロース、アミロース、アミロペクチン、プルラン、カードラン、ザンタン、キチン、キトサン、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリベンゼンスルホン酸、ポリベンゼンスルホン酸ナトリウム、ポリエチレンイミン、ポリアリルアミン、ポリアクリルアミド等や、これらの共重合体、変性体等の誘導体があげられる。これらの中でも、ポリビニルアルコール系重合体またはその誘導体が好ましい。また高湿度下でのガスバリア性をより向上させるためには、けん化度95モル%以上のポリビニルアルコール系重合体が好ましく、さらにけん化度98モル%以上のポリビニルアルコール系重合体がより好ましい。さらにまた分子にシリル基を少量含有する変性ポリビニルアルコールなどが特に好ましい。
【0014】
上記膨潤性合成フッ素雲母系鉱物とは、下記の式(2)を満たす人工鉱物であり、SiO正四面体を基本にして、この四面体が六角網目の板状に連なっており、この上下2枚の板の間に八面体配位をとるイオンがイオン結合し、サンドイッチ層を形成している。このサンドイッチ層とサンドイッチ層の間に層間イオンと呼ばれるアルカリ金属またはアルカリ土類金属イオンが非常に弱いイオン結合で配位している構造を有する。
0.331.010  (2)
なお、ここで、Xは配位数12の陽イオン、Yは配位数6の陽イオン、Zは配位数4の陽イオンを表す。具体的には、Xは、Na、K、Ca2+、Ba2+、Rb2+、Sr2+、Liから選ばれる1種または2種以上の陽イオン、また、Yは、Mg2+、Fe2+、Ni2+、Mn2+、Al3+、Fe3+、Liから選ばれる1種または2種以上の陽イオン、さらに、Zは、Si4+、Ge4+、Al3+、Fe3+、B3+から選ばれる1種または2種以上の陽イオンである。
【0015】
また、一般式Zに入るSiの数により、上記膨潤性合成フッ素雲母系鉱物には、二ケイ素型(ジシリシックタイプ)、三ケイ素型(トリシリシックタイプ)、四ケイ素タイプ(テトラシリシック)の各タイプが存在する。これらの中でも、四ケイ素タイプであり、上記X、すなわち、層間イオン種がNa或いはLiであり、結晶構造中において電荷のバランスを層間イオンが補っている四ケイ素雲母は、膨潤性を有しており、特に好ましい。
【0016】
この膨潤性合成フッ素雲母系鉱物の具体例としては、ナトリウムテトラシリシックマイカ[NaMg2.5(Si10)F]、ナトリウム又はリチウムテニオライト[(NaまたはLi)MgLi(Si10)F]、ナトリウム又はリチウムヘクトライト[(NaまたはLi)0.33Mg2.67Li0.33(Si10)F]などが挙げられ、経済性の観点からナトリウムテトラシリシックマイカが好適に用いられる。これらは1種のみでも2種以上混合しても使用することができる。なお、上記の膨潤性合成フッ素雲母系鉱物の具体例についてのそれぞれの組成式については、理想的な組成を示しており、厳密に一致している必要はない。
【0017】
上記合成フッ素雲母系鉱物は、原料として、目的とする膨潤性フッ素雲母の化学組成となるように、シリカ、マグネシア、フッ化マグネシウム、ケイフッ化ナトリウム、フッ化ナトリウム、フッ化リチウム、炭酸ナトリウム及び炭酸リチウム等を調合し、これを内燃式電気炉中、1400〜1500℃で溶融後、溶融体を鋳型に流出させて冷却する過程で、鋳型内にフッ素雲母系鉱物を結晶成長させる、いわゆる溶融法といわれる公知の方法によって合成することができる。
【0018】
また、他の合成方法として、特開平2−149415号公報に開示されているような、タルクを出発物質として用い、これにアルカリ金属イオンをインターカレーションして、膨潤性フッ素雲母系鉱物を得る方法をあげることができる。この方法では、タルクに珪フッ化アルカリあるいはフッ化アルカリを混合し、磁性ルツボ内で約700〜1200℃で短時間加熱処理することによって膨潤性フッ素雲母系鉱物が得られる。
【0019】
上記の溶融法によって膨潤性合成フッ素雲母系鉱物を製造する場合、通常数重量%程度又はそれ以上のオーダーで、合成フッ素雲母系鉱物とはいえない副生成物(以下、単に「副生成物」と称する。)や未反応原料等が混在する。また、この溶融法での製造時には、結晶自体は大きく良好なものが得られるが、上記副生成物として、主にクリストバライト等が混在する。
【0020】
上記のインターカレーション法によって膨潤性合成フッ素雲母系鉱物を製造する場合、溶融法に比べて、副生成物や未反応原料等の不純物が少なく比較的純度の高いものが得られるものの、合成フッ素雲母系鉱物に類縁する副生物(以下、単に「副生物」と称する。)が混在する。この副生物の例としては、膨潤性に乏しい相からなる合成フッ素雲母系鉱物があげられる。
【0021】
市販されている膨潤性合成フッ素雲母系鉱物の中には、副生成物や未反応原料等をあるレベルまで減少させたものがあるが、これらの市販品には、副生成物や副生物が少量含まれている。
【0022】
これら副生成物や副生物を少量含む膨潤性合成フッ素雲母系鉱物を水溶性高分子と混合分散し、フィルムに塗工した場合、高湿度下でのガスバリア性を低下させたり、さらにまた透明性、平滑性なども低下させ、非常に重要な問題となる。
【0023】
これらの存在は、X線回折分析により得られる回折ピークで確認することができる。すなわち、膨潤性に乏しい相(非膨潤性合成フッ素雲母)については、面間隔dがほぼ9.6Åのピークで確認することができる。また、クリストバライトについては、面間隔dがほぼ4.0Åのピークで確認することができる。また、膨潤性合成フッ素雲母系鉱物については、面間隔dがほぼ12.4Åのピークで確認することができる。測定は、120℃で10時間以上乾燥した後、23℃−50%RH状態にて24時間以上放置したサンプルについて行われる。なお、サンプルの粒度は、100メッシュのふるいを通過するものに揃えた。
【0024】
(1)粉末X線回折分析条件
装置:理学電機(株)製RINT2000シリーズ、X線:Cu Kα線 (40kV−30mA)
カウンタモノクロメータ:全自動モノクロメータ、発散スリット:1°、散乱スリット:1°、受光スリット:0.15mm、スキャンスピード:4°/分、スキャンステップ:0.01°、走査軸:2θ/θ
【0025】
(2)ピーク強度Iの算出条件
平滑化(点数9)、バックグラウンド除去(曲率0.00)、Kα2除去(Kα2/Kα1 0.5)
【0026】
具体的には上記粉末X線回折分析において、膨潤性に乏しい相(非膨潤性合成フッ素雲母)を示す面間隔dがほぼ9.6Åの回折ピーク強度を[Id=9.6Å]、クリストバライトを示す面間隔dがほぼ4.0Åの回折ピーク強度を[Id=4.0Å]、及び膨潤性合成フッ素雲母系鉱物を示す面間隔dがほぼ12.4Åの回折ピーク強度を[Id=12.4Å]としたとき、各回折ピークの相対強度が、[Id=9.6Å]/[Id=12.4Å]×100≦2、かつ[Id=4.0Å]/[Id=12.4Å]×100≦20を満たすのがよく、さらに[Id=9.6Å]/[Id=12.4Å]=0、かつ[Id=4.0Å]/[Id=12.4Å]×100≦10であるのが好ましい。[Id=9.6Å]/[Id=12.4Å]×100>2である場合や、[Id=4.0Å]/[Id=12.4Å]×100>20である場合は、十分なガスバリア性が得られないだけでなく、透明性や平滑性が著しく悪くなる。
【0027】
さらに本発明における上記膨潤性合成フッ素雲母系鉱物の純度とは以下に示す粒子の沈降テストにより求めた値が所定の条件を満たす必要がある。イオン交換水中に膨潤性合成フッ素雲母系鉱物の固形分が1.5重量%となるように加え、ホモジナイザーを用いて20分間撹拌を行って十分分散させる。その水分散液50mlを50mlメスシリンダー(胴径25mmφ×全長220mm)に入れ、静置する。6時間経過後、容器の底面に完全沈降した粒子の量を測定する。このとき、上記メスシリンダー中の上記膨潤性合成フッ素雲母系鉱物の全量をA重量部、完全沈降した粒子の量をB重量部としたとき、下記の式(1)を満たすのがよい。
(A−B)/A×100≧90 (1)
また、上記式(1)の左辺の値が、92以上が好ましく、95以上がより好ましい。上記式(1)の左辺の値が、90より小さいと、十分なガスバリア性が得られないだけでなく、透明性や平滑性が著しく悪くなる。
【0028】
なお、上記の容器の底面に完全沈降したか否かは、目視で判断し、メスシリンダーの底面に接触しているものと目視で判断されたものを完全沈降した粒子とする。また、粒子が、3層以上に分離した場合であっても、完全に沈降した粒子のみを対象とし、これらの重量を測定する。
【0029】
上記に示したX線回折分析から得られる相対強度が前述の範囲内にある場合、高湿度下でのガスバリア性、透明性、平滑性ともに優れたガスバリア性フィルムが得られる。さらに、上記沈降テストにおける純度が前述の値を満たす場合には、高湿度下でのガスバリア性、透明性、平滑性ともにより優れたガスバリア性フィルムが得られる。
【0030】
上記所定の回折ピークの相対強度を有する膨潤性合成フッ素雲母系鉱物、すなわち、X線回折分析から得られる相対強度が前述の条件を満たす膨潤性合成フッ素雲母系鉱物を得るためには、以下の精製方法を採用することができる。上記膨潤性合成フッ素雲母系鉱物の精製、すなわち、上記の非膨潤性合成フッ素雲母系鉱物等の副生物や、クリストバライト等の副生成物、未反応原料等(以下、「不純物等」と称する。)の除去は、遠心分離又はデカンテーションにより行うことができる。具体的には、上記遠心分離は、精製前の上記膨潤性合成フッ素雲母系鉱物をホモジナイザーなどで十分水に分散したものを、10〜50000G、好ましくは30〜5000G、より好ましくは50〜3000Gの範囲で、0.5〜30分間の条件で行い、沈殿した不純物等を取り除くことができる。遠心力が上記範囲から外れると、不純物等との分離が困難となる傾向がある。
【0031】
また、上記デカンテーションは、精製前の上記膨潤性合成フッ素雲母系鉱物の固形分濃度が3重量%以下、より好ましくは2重量%以下となるよう水に分散させ、ホモジナイザーなどを用いて十分分散させたものを、1〜240時間、好ましくは3時間〜120時間、より好ましくは5時間〜36時間静置させることにより、沈殿した不純物等を取り除くことができる。これらのいずれの方法でも、上澄みの懸濁液から膨潤性合成フッ素雲母系鉱物を回収することにより、上記の高純度の膨潤性合成フッ素雲母系鉱物を得ることができる。1時間より短いと、不純物等との分離が十分に行われない場合がある。また、240時間より長いと、生産性の低下を招くだけでなく、収率も低下する傾向がある。
【0032】
上記の精製処理に供与される膨潤性合成フッ素雲母系鉱物の平均粒径は、デカンテーション法を用いる場合、6μm以上が好ましく、10μm以上がより好ましい。6μm未満であると不純分等との分離が非常に悪く、取り除くことが困難となる場合がある。遠心分離法を用いる場合、2μm以上であるのが好ましく、6μm以上がより好ましい。2μm未満であると不純分等との分離が非常に悪く、取り除くことが困難となる場合がある。
【0033】
また、上記膨潤性合成フッ素雲母系鉱物の遠心分離やデカンテーションによる精製の前に、ガスバリア性、透明性、平滑性などの物性を損なわない範囲であれば、分散剤等を少量添加して分散処理をしてもよい。この場合、膨潤性合成フッ素雲母系鉱物を分散媒に分散して分散液を調製し、これに上記分散剤を添加して分散処理をすることができる。
【0034】
上記インターカレーション法によって製造した膨潤性合成フッ素雲母系鉱物の場合には、水に長時間浸漬することにより、膨潤性に乏しい相がある程度、膨潤する相に変化していく。この状態のものについて、上記デカンテーション及び遠心分離処理により上澄み分を採取することにより、所定の膨潤性フッ素雲母系鉱物を得ることができる。このとき、上記デカンテーション及び遠心分離処理の前に上記分散処理を施すと、所定の膨潤性フッ素雲母系鉱物を短時間で効率よく得ることができる。
【0035】
上記分散剤の種類としては、高分子型、界面活性型、及び無機型のもの等が例示できるが、中でもポリカルボン酸型高分子を用いるのが好ましい。ポリカルボン酸型高分子を用いる理由としては、上記デカンテーション及び遠心分離処理時の収率がよく、さらに最終的に得られるフィルムの高湿度下でのガスバリア性、透明性、平滑性ともに優れたものが得られる。
この上記ポリカルボン酸型高分子としては、平均分子量は1000〜100万のナトリウム塩やアンモニウム塩を好適に用いることができる。
【0036】
上記分散媒としては、イオン交換水が好ましい。また、膨潤性合成フッ素雲母系鉱物を上記分散媒に分散させるときの膨潤性合成フッ素雲母系鉱物の固形分濃度は、0.5〜15重量%が好ましく、1〜10重量%がより好ましい。0.5重量%より少ないと、生産効率の低下を招く場合がある。一方、15重量%より多いと、粘度が高くなりすぎ、分散しにくくなる傾向がある。
【0037】
上記膨潤性合成フッ素雲母系鉱物を分散媒に分散させた分散液への上記分散剤の添加量は、膨潤性合成フッ素雲母系鉱物100重量部に対して、0.1〜10重量部が好ましく、0.2〜5重量部がより好ましい。0.1重量%より少ないと、分散性能が発揮されない場合がある。一方、10重量%より多くても、期待されたほどの分散性能が発揮されない場合がある。
【0038】
上記分散剤を添加した分散液の分散処理方法としては、既知の分散機を用いて、撹拌等の分散処理することができるが、高速ホモジナイザー等を使用するのが好ましい。分散時間については特に制限は無いが、10分〜1時間程度の比較的短時間で十分である。
【0039】
上記の精製処理によって不純分等を取り除いた後の膨潤性フッ素雲母系鉱物の平均粒径は、0.05〜10μmがよく、0.1〜8μmがより好ましい。0.05μmより小さいと、高湿度下でのガスバリア性が十分発現されず、一方、10μmより大きいと、塗工面の透明性や平滑性が失われるため実用上好ましくない。なお、この平均粒径は、堀場製作所(株)製レーザー回折・散乱粒度分布測定装置LA920を使用し、分散媒としてイオン交換水を用いて測定することができる。なお本発明でいう平均粒径とはメジアン径(粒子径基準は体積)を意味する。
【0040】
上記塗工用組成物は、水溶性高分子と膨潤性合成フッ素雲母系鉱物とを水系溶媒に溶解及び懸濁することによって形成される。この水系溶媒としては、水が好適に用いられる。また水を主な成分とし、メタノール、プロパノール、イソプロパノール等を添加されていてもよい。
【0041】
また、ガスバリア性、透明性及び平滑性などを損なわない範囲であれば、各種の添加剤を混合してもよい。各種の添加剤としては、分散剤、消泡剤、酸化防止剤、耐候剤、滑剤、紫外線吸収剤、着色剤などがあげられる。
【0042】
上記水溶性高分子及び膨潤性合成フッ素雲母系鉱物の上記水系溶媒への合計固形分は、総固形分として0.5〜15重量%が好ましい。さらに、塗工液の粘度とフィルムへの塗工適性、塗工厚み、ガスバリア性など考慮すると2〜10重量%が更に好ましい。0.5重量%より少ないと、フィルムへの塗工時に乾燥不十分となる場合がある。一方15重量%より多いと、塗工液の粘度が高くなりすぎる場合がある。
【0043】
上記の水溶性高分子と膨潤性合成フッ素雲母系鉱物との添加割合は任意であるが、水溶性高分子/膨潤性合成フッ素雲母系鉱物(重量比)で99.5/0.5〜20/80がよく、99/1〜30/70が好ましい。膨潤性合成フッ素雲母系鉱物が0.5重量%より少ないと、ガスバリア性が十分でなく、80重量%より多いとコーティング膜の強度が弱くなる場合がある。
【0044】
上記の水溶性高分子と膨潤性合成フッ素雲母系鉱物の混合方法はどのような手順で調製しても良い。即ち、▲1▼膨潤性合成フッ素雲母系鉱物を水系溶媒に分散させた後、水溶性高分子を固体のまま添加して溶解させる。▲2▼水溶性高分子を水系溶媒に溶解させたあと、膨潤性合成フッ素雲母系鉱物を添加する。▲3▼膨潤性合成フッ素雲母系鉱物分散液と水溶性高分子水溶液とを混合する。このうちどの手順によって混合しても良い。
【0045】
なお、上記の膨潤性合成フッ素雲母系鉱物の精製を、上記の水溶性高分子と膨潤性フッ素雲母系鉱物の混合の前後のいずれで行ってもよい。すなわち、上記の膨潤性フッ素雲母系鉱物の精製を行った後に上記▲1▼〜▲3▼の混合を行ってもよく、また、まず、上記▲1▼〜▲3▼の混合を行い、その後、上記の膨潤性フッ素雲母の精製を行ってもよい。
【0046】
上記塗工用組成物には、必要に応じて、架橋剤を添加することができる。この架橋剤を添加することにより、耐熱水性を向上させることができる。上記架橋剤としては、アルデヒド化合物、エポキシ化合物、カルボジイミド化合物、イソシアネート化合物、チタンやジルコニウム等の有機金属塩又は無機金属等があげられる。
【0047】
上記アルデヒド化合物の具体例としては、グリオキザール、マロンジアルデヒド、スクシンアルデヒド、グルタルアルデヒド、ヘキサンジアール、ヘプタンジアール、オクタンジアール、ノナンジアール、デカンジアール、ドデカンジアール、2,4−ジメチルヘキサンジアール、5−メチルヘプタンジアール、4−メチルオクタンジアール、2,5−ジメチルオクタンジアール、3,6−ジメチルデカンジアール、オルトフタルアルデヒド等があげられる。
【0048】
上記エポキシ化合物の具体例としては、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル、テトラエチレングリコールジグリシジルエーテル、ノナエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ジプロジレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセロールジグリシジルエーテル等のジグリシジルエーテル類、グリセロールトリグリシジルエーテル等のトリグリシジルエーテル類、ペンタエリスリトールテトラグリシジルエーテル等のテトラグリシジルエーテル類などがあげられる。
【0049】
上記カルボジイミド化合物の具体例としては、カルボジイミド基を有する重合体(例えば日清紡績(株)製、商品名 カルボジライト)等があげられる。
【0050】
上記イソシアネート化合物の具体例としては、ブロック化イソシアネート化合物(例えば第一工業製薬(株)製、商品名 エラストロン、エラストロンBNシリーズ)、トリレンジイソシアネート、4,4‘−ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、4,4’−メチレンビスシクロへキシルジイソシアネート、イソホロンジイソシアネート等があげられる。
【0051】
上記チタン化合物の具体例としてはテトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2−エチルへキシル)チタネート、テトラメチルチタネート、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、ポリチタンアセチルアセトネート、チタンエチルアセトアセテート、チタンオクタンジオレート、チタンラクテート、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等があげられる。
【0052】
上記ジルコニウム化合物の具体例としてはジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムビスアセチルアセトネート、ジルコニウムモノエチルアセトアセテート、ジルコニウムアセチルアセトネートビスエチルアセトアセトネート、ジルコニウムアセテート、ジルコニウムトリブトキシステアレート等の有機ジルコニウム化合物、オキシ塩化ジルコニウム、ヒドロキシ塩化ジルコニウム、四塩化ジルコニウム、臭化ジルコニウムなどのハロゲン化ジルコニウム、硫酸ジルコニウム、塩基性硫酸ジルコニウム、硝酸ジルコニウムなどの鉱酸ジルコニウム塩、炭酸ジルコニウムアンモニウム、硫酸ジルコニウムナトリウム、酢酸ジルコニウムアンモニウム、シュウ酸ジルコニウムナトリウム、クエン酸ジルコニウムナトリウム、クエン酸ジルコニウムアンモニウムなどのジルコニウム錯塩があげられる。
【0053】
上記架橋剤の添加量は、特に限定されないが、この架橋剤を添加しすぎるとガスバリア性が低下してしまうので低下しない範囲で添加することができる。架橋剤の添加量は架橋される官能基(水酸基など)に対して、モル比で1/1000〜1/2の範囲で添加するのがよく、1/500〜1/10の範囲で添加するのがより好ましい。添加量が1/1000より少ないと得られるフィルムの耐熱水性が低くなり、一方1/2より多いと得られるフィルムのガスバリア性が低くなる傾向がある。
【0054】
上記塗工用組成物を塗工する熱可塑性フィルムとしては、ナイロン6、ナイロン66、ナイロン46等のポリアミド樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリエステル樹脂、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、またはそれらの混合物よりなるフィルム、またはそれらのフィルムの積層体があげられる。この熱可塑性フィルムは、未延伸フィルムであってもよく、また、延伸フィルムであってもよい。
【0055】
なお、上記熱可塑性樹脂製フィルムの表面には、接着性を向上させるため、公知のコロナ放電処理、火炎処理、紫外線処理、アンカーコート剤塗布処理などを行ってもよい。
【0056】
上記塗工用組成物を上記熱可塑性フィルムに塗工する方法は、特に限定されないが、グラビアロールコーティング、リバースロールコーティング、ワイヤーバーコーティング、ダイコーティング等の通常の塗工方法を採用することができる。なお、コーティングはフィルムの延伸前であっても延伸後であってもよい。
上記塗工用組成物を上記熱可塑性フィルムに塗工することによって形成されるガスバリアコート層の乾燥は特に限定されないが、熱可塑性樹脂フィルムの融点及び軟化点以下の温度で行なうことができる。上記ガスバリアコート層は、高温・長時間での熱処理を必要としないため、150℃以下、数秒の比較的低温・短時間での乾燥・熱処理で十分である。
【0057】
この発明にかかるガスバリア性フィルムは、高湿度下、具体的には23℃、90%RHでのガスバリア性が良好である。このガスバリアコート層1μmあたりの23℃、90%RHでの酸素透過度は、10cc/m・day・atm以下がよく、8cc/m・day・atm以下が好ましい。10cc/m・day・atmより大きいと、ガスバリア性包装材料とした場合の実用性に欠ける。
【0058】
またこの発明にかかるガスバリア性フィルムの透明性はヘイズ値で10%以下がよく、5%以下が好ましく、透明性が非常に高いものとなる。
さらにまたこの発明にかかるガスバリア性フィルムの塗工面の平滑性はざらつき感が全くなく、平滑性に優れたものとなる。
透明性と平滑性に優れるため、塗工面への印刷加工や他のフィルムとのラミネート加工時には悪影響を示さない利点を有する。
【0059】
この発明にかかるガスバリア性フィルムは、そのままガスバリア性フィルムとして使用することができ、また、このガスバリア性フィルムを他のフィルム又はシートに積層して、ガスバリア性を有する積層体として使用することができる。
【0060】
【実施例】
以下に実施例及び比較例をあげてこの発明をさらに具体的に説明する。まず、使用原料、精製方法及び評価方法について下記に示す。
【0061】
[使用原料]
(水溶性高分子)
・ポリビニルアルコール…(株)クラレ製PVA117(以下、「PVA117」と略する。)
・変性ポリビニルアルコール…(株)クラレ製AQ−4105(以下、「AQ4105」と略する。)
【0062】
(無機層状化合物)
・膨潤性合成フッ素雲母系鉱物…トピー工業(株)製NTSゾル(固形分10重量%、平均粒径13.5μm、8.6μm、2.8μmの3種類)(以下、「NTS」と略する。)
・精製モンモリロナイト…クニミネ工業(株)製クニピアG(平均粒径1.2μm)(以下、「クニピアG」と略する。)
・膨潤性合成フッ素雲母系鉱物…コープケミカル(株)製ソマシフME100(平均粒径4.7μm)(以下、「ソマシフME」と略する。)
【0063】
(熱可塑性フィルム)
・二軸延伸ポリエステルフィルム…東洋紡積(株)製ポリエステルフィルムE5100(厚みは12μm、ヘイズは3.2%である。以下「PET」と略する。)
・二軸延伸ポリプロピレンフィルム…東洋紡積(株)製OPPフィルムP2161(厚みは20μ、ヘイズは2.4%である。以下「OPP」と略する。)
【0064】
[精製及び混合の方法]
無機層状化合物の精製方法として、下記に示すデカンテーション法又は遠心分離法を用いた。
A:デカンテーション法
無機層状化合物が1.5重量%となるようにイオン交換水中にホモジナイザーを用いて20分間撹拌し、分散させた。その後、分散液を静置し、所定時間経過後、上澄み分を取り出した。
B:遠心分離法
無機層状化合物が1.5重量%となるようにイオン交換水中にホモジナイザーを用いて20分間撹拌し、分散させた。その後、所定の遠心力で5分間遠心分離を行い、上澄み分を取り出した。
【0065】
また、下記の方法で無機層状化合物と水溶性高分子を混合した。
▲1▼精製した無機層状化合物を乾燥しないで水系媒体に懸濁したまま水溶性高分子を加えて加温し、溶解させた。
▲2▼精製した無機層状化合物を乾燥した後、水溶性高分子溶液を加えた。
【0066】
表2に示す各実施例及び比較例で行った精製及び混合の方法の記号について、表1に示す。なお、ここで「A→▲1▼」は、Aにかかる精製方法をした後、▲1▼にかかる混合方法を行ったことを意味する。
【0067】
【表1】
Figure 2004074411
【0068】
[無機層状化合物の評価]
(平均粒径)
(株)堀場製作所製LA920を用いて、レーザー回折散乱法を用いて分析し、メジアン径を平均粒子径とした。なお分散媒にはイオン交換水を用いた。
【0069】
(相対強度)
理学電機(株)製RINT2000を用いて、粉末X線回折法により分析し、各ピークの強度から算出した。
サンプルについては120℃で10時間以上乾燥した後、23℃−50%RH状態にて24時間以上放置したサンプルについて測定した。
なお、表2において、相対強度A及び相対強度Bは以下のピーク比を示す。
相対強度A:[Id=9.6Å]/[Id=12.4Å]×100
相対強度B:[Id=4.0Å]/[Id=12.4Å]×100
【0070】
<測定条件>
X線:Cu Kα線 (40kV−30mA)、カウンタモノクロメータ:全自動モノクロメータ、発散スリット:1°、散乱スリット:1°、受光スリット:0.15mm、スキャンスピード:4°/分、スキャンステップ:0.01°、走査軸:2θ/θ
<ピーク強度Iの算出条件>
平滑化(点数9)、バックグラウンド除去(曲率0.00)、Kα2除去(Kα2/Kα1 0.5)
【0071】
(純度試験)
以下に示す粒子の沈降テストにより、純度を求めた。
精製した又は未精製の無機層状化合物を1.5重量%となるように、イオン交換水中でホモジナイザーを用いて20分間撹拌を行い、イオン交換水に十分分散させ、その水分散液50mlを50mlメスシリンダーに入れて静置し、6時間経過後、容器の底面に完全沈降した粒子の量を測定する。このとき、上記メスシリンダー中の上記膨潤性合成フッ素雲母系鉱物の全量をA重量部、完全沈降した粒子の量をB重量部としたとき、下記式により純度を算出する。
純度[%]=(A−B)/A×100
【0072】
[評価方法]
(フィルムのガスバリア性)
酸素透過試験器(Modern Contorol社製、OX−TRAN2/20)により、23℃、相対湿度90%の雰囲気下における酸素透過度を測定した。
フィルムのガスバリア性は基材のフィルムの種類や厚み、およびコート層の厚みにより変化するため、下記の式に従って、ガスバリアコート層1μmあたりの酸素透過度(Psamp1e)(単位:cc・1μm/m・day・atm)を算出した。
1/Ptotal=1/Psamp1e+1/Pbase
total;実施例及び比較例で得られた積層フィルムの測定結果(酸素透過度)
base;基材フィルムの酸素透過度
samp1e;ガスバリアコート層の酸素透過度
【0073】
(透明度)
日本電色工業(株)製NDH2000を用いて、JIS K7105に従い、ヘイズを測定した。
【0074】
[コート面の平滑性]
塗工用組成物の塗工面を指でなぞり、下記の基準で評価した。
○:ザラツキ感なし
×:ザラツキ感あり
【0075】
(実施例1〜11、比較例1〜8)
表2に記載の無機層状化合物及び樹脂を用い、表1に示す方法を用いて無機層状化合物の精製、及び無機層状化合物及び樹脂の混合を行い、塗工用組成物を得た。このとき、A→▲2▼、B→▲2▼の方法を用いる場合、無機層状化合物の固形分濃度1.5重量%、水溶性高分子の固形分濃度3.5重量%となるように混合分散した。A→▲1▼の方法を用いる場合、水溶性高分子の固形分濃度が3.5重量%となるように混合分散した。なおA→▲1▼の場合、Aの操作後にあらかじめ、無機層状化合物の固形分濃度を測定しておき、最終的な混合比を求めた。比較例の精製なしの無機層状化合物を用いる場合、固形分濃度が3.5重量%の水溶性高分子溶液に無機層状化合物の固形分濃度が1.5重量%となるように混合分散した。混合分散時は、いずれの方法でも、ホモジナイザーを用いて20分間撹拌を行い、混合分散液を調製した。
精製なし又は精製後の無機層状化合物については、上記測定方法による平均粒径、粉末X線回折分析による相対強度、粒子の沈降試験による純度を求めた。
室温状態の塗工用組成物をメイヤーバーを用いて乾燥塗工厚みが約1μmになるように表2に示す熱可塑性フィルムのコロナ処理面へ塗工した。乾燥は100℃、1分間行った。得られた積層フィルムを用いて上記の方法で評価した。その結果を表2に示す。
【0076】
(実施例12)
ソマシフMEをイオン交換水中に3重量%となる濃度で添加し、ソマシフMEの固形分100重量部に対して、分散剤としてポリカルボン酸型高分子であるアクアリックHL415(日本触媒(株)製、ポリアクリル酸(平均分子量1万))のナトリウム塩を固形分で1重量部添加し、ホモジナイザーで20分間撹拌した。その後、表2に記載の樹脂を用い、表1に示す方法を用いてソマシフMEの精製、及び樹脂との混合を実施例1と同様に行い、塗工用組成物を得た。これ以降の操作についても実施例1と同様に行い、評価した。
【0077】
(比較例9)
ソマシフMEを5日間、イオン交換水中へ1.5重量%となる濃度で浸漬処理を行ったものについて、一旦乾燥して使用した。この場合、固形分濃度が3.5重量%の水溶性高分子溶液にソマシフMEの固形分濃度が1.5重量%となるように、ホモジナイザーを用いて20分間撹拌を行い、混合分散液を調製した。これ以降の操作は、実施例1と同様に行い、評価した。
【0078】
【表2】
Figure 2004074411
【0079】
【発明の効果】
この発明にかかるガスバリア性フィルムは、所定の回折ピークの相対強度を有する膨潤性合成フッ素雲母系鉱物を用いるので、これを含有する塗工用組成物を、熱可塑性フィルムの少なくとも片面に塗工した際、この膨潤性合成フッ素雲母系鉱物が均一に熱可塑性フィルム上に配され、得られるフィルムのガスバリア性、特に高湿度下のガスバリア性がより向上し、透明性や平滑性にも優れる。
【0080】
また、この所定の回折ピークの相対強度を有する膨潤性合成フッ素雲母系鉱物を、遠心分離又はデカンテーションによる精製法を用いて得る場合は、製造工程が容易となる。

Claims (7)

  1. 水溶性高分子、及び平均粒子径が0.05〜10μmであり、粉末X線回折分析から得られる回折ピークの相対強度が、[Id=9.6Å]/[Id=12.4Å]×100≦2、かつ[Id=4.0Å]/[Id=12.4Å]×100≦20である膨潤性合成フッ素雲母系鉱物を含有した塗工用組成物を、熱可塑性フィルムの少なくとも片面に塗工したガスバリア性フィルム。
  2. イオン交換水中に上記膨潤性合成フッ素雲母系鉱物の固形分が1.5重量%となるように加え、ホモジナイザーを用いて20分間撹拌を行って十分に分散させ、その水分散液50mlを50mlメスシリンダーに入れて静置して6時間経過後、容器の底面に完全沈降した粒子の量を測定したとき、下記の式(1)を満たす請求項1に記載のガスバリア性フィルム。
    (A−B)/A×100≧90 (1)
    (上記式において、Aは、上記メスシリンダー中の上記膨潤性合成フッ素雲母系鉱物の全量(重量部)を示し、Bは、完全沈降した粒子の量(重量部)を示す。)
  3. 上記所定の回折ピークの相対強度を有する膨潤性合成フッ素雲母系鉱物は、遠心分離又はデカンテーションにより精製したものである請求項1又は2に記載のガスバリア性フィルム。
  4. 上記所定の回折ピークの相対強度を有する膨潤性合成フッ素雲母系鉱物は、分散剤を用いて分散処理した後、遠心分離又はデカンテーションにより精製したものである請求項1又は2に記載のガスバリア性フィルム。
  5. 上記膨潤性合成フッ素雲母系鉱物が四ケイ素雲母である請求項1乃至4のいずれかに記載のガスバリア性フィルム。
  6. 上記水溶性高分子がポリアルコール系重合体である請求項1乃至5のいずれかに記載のガスバリア性フィルム。
  7. 請求項1乃至6のいずれかに記載のガスバリア性フィルムを少なくとも1層含む積層体。
JP2002199927A 2002-06-17 2002-07-09 ガスバリア性フィルム及びこれを含む積層体 Expired - Fee Related JP4052889B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199927A JP4052889B2 (ja) 2002-06-17 2002-07-09 ガスバリア性フィルム及びこれを含む積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002175502 2002-06-17
JP2002199927A JP4052889B2 (ja) 2002-06-17 2002-07-09 ガスバリア性フィルム及びこれを含む積層体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002356272A Division JP2004075975A (ja) 2002-06-17 2002-12-09 ガスバリア性塗工用組成物及びこれを用いたガスバリア性フィルム

Publications (2)

Publication Number Publication Date
JP2004074411A true JP2004074411A (ja) 2004-03-11
JP4052889B2 JP4052889B2 (ja) 2008-02-27

Family

ID=32032408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199927A Expired - Fee Related JP4052889B2 (ja) 2002-06-17 2002-07-09 ガスバリア性フィルム及びこれを含む積層体

Country Status (1)

Country Link
JP (1) JP4052889B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335273A (ja) * 2004-05-28 2005-12-08 Rengo Co Ltd ガスバリア性積層体
JP2010095440A (ja) * 2008-09-19 2010-04-30 Asahi Kasei Corp 層状無機化合物を含有する分散体及びその製造方法
JP2010155752A (ja) * 2008-12-26 2010-07-15 Asahi Kasei Corp 層状無機化合物を含有する固体材料の製造方法、固体材料及びこれを用いて形成された形成体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335273A (ja) * 2004-05-28 2005-12-08 Rengo Co Ltd ガスバリア性積層体
JP2010095440A (ja) * 2008-09-19 2010-04-30 Asahi Kasei Corp 層状無機化合物を含有する分散体及びその製造方法
JP2010155752A (ja) * 2008-12-26 2010-07-15 Asahi Kasei Corp 層状無機化合物を含有する固体材料の製造方法、固体材料及びこれを用いて形成された形成体

Also Published As

Publication number Publication date
JP4052889B2 (ja) 2008-02-27

Similar Documents

Publication Publication Date Title
Shchukina et al. Nanocontainer-based self-healing coatings: current progress and future perspectives
US8658278B2 (en) Gas barrier multilayer film
JP4812382B2 (ja) ガスバリア性積層フィルム
JP4812552B2 (ja) ガスバリア性積層フィルム
JP5081417B2 (ja) ガスバリア性積層体および積層物
TWI410325B (zh) 氣體阻障性積層體
TWI510434B (zh) A chain-like silica-based hollow fine particles and a method for producing the same, a coating liquid for forming a transparent film containing the fine particles, and a substrate coated with a transparent film
WO2007034940A1 (ja) ガスバリア性積層体
JP4750651B2 (ja) ガスバリア性積層フィルム
JP2004217766A (ja) ガスバリア性組成物及びこれを用いたガスバリア性フィルム
JP2001323204A (ja) ガスバリア性コート剤およびフィルム
WO2017119446A1 (ja) マット調ポリアミド系フィルム及びその製造方法
JP6261504B2 (ja) ガスバリア性積層体、それを有するガスバリア性複合体、およびそれらを含む包装体
JP4052889B2 (ja) ガスバリア性フィルム及びこれを含む積層体
JP4303945B2 (ja) ガスバリア性フィルム
JP2004124028A (ja) ガスバリア性樹脂組成物
JP2004075975A (ja) ガスバリア性塗工用組成物及びこれを用いたガスバリア性フィルム
JP2004175011A (ja) ガスバリア性積層体
JP2004131608A (ja) ガスバリア性樹脂組成物
JP2014037122A (ja) マット調ガスバリア性ポリアミド系樹脂フィルム
JP2004175007A (ja) ガスバリア性フィルム
JP4903370B2 (ja) ガスバリア性積層体
JP2004059768A (ja) ガスバリア性樹脂組成物
JP2004331460A (ja) 膨潤性合成フッ素雲母系鉱物及びこれを用いたガスバリア性積層体
JP2002194265A (ja) ガスバリア性コート剤、組成物および積層フィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees