JP2004059352A - 燃料改質システム - Google Patents

燃料改質システム Download PDF

Info

Publication number
JP2004059352A
JP2004059352A JP2002217545A JP2002217545A JP2004059352A JP 2004059352 A JP2004059352 A JP 2004059352A JP 2002217545 A JP2002217545 A JP 2002217545A JP 2002217545 A JP2002217545 A JP 2002217545A JP 2004059352 A JP2004059352 A JP 2004059352A
Authority
JP
Japan
Prior art keywords
reformed gas
heat exchanger
refrigerant
side passage
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002217545A
Other languages
English (en)
Inventor
Akira Shimozono
下薗 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002217545A priority Critical patent/JP2004059352A/ja
Publication of JP2004059352A publication Critical patent/JP2004059352A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】簡単な構成で改質ガスおよび触媒の温度を抑制することができる燃料改質システムを提供する。
【解決手段】COを含む改質ガスを生成する改質器4と、改質器4で生成された高温の改質ガスを冷却する熱交換器2と、冷却側通路1c、および、改質ガス中のCOの発熱反応を促進する触媒を担持した加熱側通路1hを有した熱交換型の反応器、例えばCO除去装置1と、を備える。熱交換器2において冷却した改質ガスを冷却側通路1cに流通させてから加熱側通路1hに流通させる。これにより、加熱側通路1hにおける発熱反応に伴って生じる熱を、冷却側通路1cを流通する改質ガスに吸収させて、加熱側通路1hの温度上昇を抑制する。
【選択図】   図1

Description

【0001】
【産業上の利用分野】
本発明は、燃料改質システムに関する、特に、燃料改質システムの反応器であるCO除去装置およびCO変成器の温度制御システムに関する。
【0002】
【従来の技術】
燃料改質システムに供せられる反応器の冷却方法として、特開2000−072403号公報に開示されているCO除去部の冷却方法が知られている。ここでは、改質部とCO除去部との間に熱交換器を設け、CO除去部を分割した触媒付き熱交換器で構成している。さらに、熱交換器およびCO除去部に供給される冷媒の流量をそれぞれ流量制御弁で制御して、改質ガスおよび触媒層を冷却している。
【0003】
【発明が解決しようとしている問題点】
しかしながら、特開2000−072403号公報においては、CO除去部を分割した触媒付き熱交換器で構成するので、触媒層温度を均一にするのに有効であるが、CO除去部を分割しているので構成が複雑である。また、改質ガス流量に比例してCO酸化反応も増大するので、冷媒流量を制御する複数の制御弁を改質器の負荷に応じて制御する必要があり、冷媒流量のバランス調整が困難であった。
【0004】
そこで本発明は、簡単な構成で反応器の冷却を行うことができる燃料改質システムを提供することを目的とする。
【0005】
【問題点を解決するための手段】
本発明は、COを含む水素リッチな改質ガスを生成する改質器と、前記改質器で生成された高温の改質ガスを冷却する熱交換器と、冷却側通路、および、前記改質ガス中のCOの発熱反応を促進する触媒を担持した加熱側通路を有した熱交換型の反応器と、を備える。前記熱交換器において冷却した改質ガスを前記冷却側通路に流通させてから前記加熱側通路に流通させる。これにより、前記加熱側通路における発熱反応に伴って生じる熱を、前記冷却側通路を流通する改質ガスに吸収させて、前記加熱側通路の温度上昇を抑制する。
【0006】
【作用及び効果】
熱交換器において冷却した改質ガスを冷却側通路に流通させてから加熱側通路に流通させる。これにより、加熱側通路における発熱反応に伴って生じる熱を、冷却側通路を流通する改質ガスに吸収させて、加熱側通路の温度上昇を抑制することができ、簡単な構成で反応器の冷却を行うことができる。
【0007】
【発明の実施の形態】
第1の実施形態における燃料電池システムの構成ブロックを図1に示す。
【0008】
空気ブロア6は、酸素含有ガス、ここでは空気を燃料電池システムに導入する装置である。改質器4は、空気ブロア6により供給された空気の一部と、燃料、ここではメタノール燃料と水とを反応させて水素リッチな改質ガスを生成する反応器である。このとき、改質器4に供給する空気流量は、空気ブロア6と改質器4との間に配置したバルブ52により調整する。
【0009】
熱交換器2は、改質器4で生成された改質ガス温度を調整する装置であり、後述するCO除去装置1における反応に伴う熱を吸収可能な温度にまで改質ガスを冷却する。ここでは、図示しない冷媒供給システムから供給される冷媒を用いて改質ガスを冷却する。混合器3は、熱交換器2において冷却した改質ガスに空気を混入する装置である。混入させる空気として、空気ブロア6により燃料改質システムに取り入れる空気の一部を用い、空気ブロア6と混合器3との間に備えたバルブ51により混入させる空気流量を調整する。
【0010】
CO除去装置1は、改質ガス中のCOを選択酸化反応により二酸化炭素に変換してCO濃度を低減する反応器であり、冷却側通路1cと加熱側通路1hを有する。加熱側通路1hにはCO選択酸化触媒を担持させ、ここを改質ガスが通過すことによりCOの低減を行う。また、冷却側通路1cと加熱側通路1hとの間で熱交換が可能であるように構成とする。さらに、冷却側通路1cの排出側と加熱側通路1hの供給側を連通させる通路間流路1aを備え、改質ガスは冷却側通路1cを通過後、通路間流路1aを介して加熱側通路1hを通過するように構成する。本実施形態では、この通路間流路1aはCO除去装置1内に構成するが、外部に配管を備えてもよい。
【0011】
冷却側通路1cには、熱交換器2および混合器3により十分に冷却され且つ空気が混合された改質ガスを供給する。改質ガスは、冷却側流路1cを流れる際に加熱側流路1hにおけるCO選択酸化反応に伴って生じる熱を吸収することにより昇温する。昇温した改質ガスは通路間流路1aを介して加熱側通路1hに供給され、担持した触媒によりCO選択酸化反応を生じ、改質ガス中のCO濃度を低減する。ここで、改質ガスを熱交換器2において十分に冷却するというのは、改質ガスを冷却側通路1cに流通させることにより加熱側通路1hに担持したCO選択酸化触媒を活性温度に維持できる温度に冷却することを示す。
【0012】
例えば、図示しないCO変成器によりCO濃度を1〜2%に低減した改質ガスをCO除去装置1に供給するような場合には、CO除去装置1においては、CO濃度を後流に配置した燃料電池5の被毒を回避できる程度、例えば40ppm程度まで低減する。
【0013】
燃料電池5は、水素と酸素の電気化学反応により起電力を生じる発電装置である。上記のようにCO濃度を低減させた水素リッチな改質ガスを燃料極に、空気ブロア6により導入される空気の一部を空気極に供給して、電極間をプロトンイオンが移動することにより発電を行う。このとき、燃料電池5に供給する空気の流量は、空気ブロア6と空気極との間に設けたバルブ53により調整する。
【0014】
次に、上記のように冷却側通路1cおよび加熱側通路1hを有するCO除去装置1の構成を図20に示す。本実施形態ではCO除去装置1として、冷却側通路1cと加熱側通路1hを平行に構成する平行流式熱交換器を用いる。
【0015】
ここでは、冷却側通路1cを平行に複数形成した層と、加熱側通路1hを平行に複数形成した層とを交互に積層する。このとき、冷却側通路1cの改質ガスを加熱側通路1hに供給できるように通路間流路1aを形成するが、冷却側通路1c内と加熱側通路1h内の改質ガスの流れ方向が同じになるように構成する。
【0016】
このように燃料改質システムを構成することで、本実施形態は以下のような効果を得ることができる。
【0017】
改質ガスを生成する改質器4と、改質器4で生成した高温の改質ガスを冷却する熱交換器2と、冷却側通路1c、および、改質ガス中のCOの発熱反応を促進する触媒を担持した加熱側通路1hを有した熱交換型の反応器、ここではCO除去装置1と、を備える。熱交換器2において冷却した改質ガスを冷却側通路1cに流通させてから加熱側通路2hに流通させることにより、加熱側通路1hにおける発熱反応に伴って生じる熱を、冷却側通路1cを流通する改質ガスに吸収させる。これにより加熱側通路1hの温度上昇を抑制することができるので、反応器の外部冷却システムを設けずに、簡単な構成で触媒が昇温するのを抑制することができる。
【0018】
特に触媒をCO選択酸化触媒とし、反応器をCO除去装置1とすることで、CO除去装置1内には改質ガスのみが流れる。これにより、僅かな内部通路漏れは致命的な問題とならず、製作や検査が容易となりコストを低減できる。
【0019】
ここでは、熱交換器2において冷却した改質ガスの外気を混入する混合器3を、冷却側通路1cの上流に備えるので、温度が均一の改質ガスをCO除去装置1に供給することができ、加熱側通路1hの冷却を均一化することができる。また、空気を冷却側通路1cの上流側で混入することで、冷却側通路1cへ供給する改質ガスの温度をさらに低温にすることができ、熱交換器2に要求される冷却の程度を軽減し、消費エネルギを低減することができる。
【0020】
さらに冷却側通路1cと加熱側通路1hとで、改質ガスの流れる方向を同一となるように構成する。ここで、加熱側通路1hに導入した改質ガスは触媒の作用により発熱するが、改質ガス中のCO濃度が最も高い入口付近で反応が激しく、図18に示すように発熱量(温度上昇率に相当)も多くなる。そこで、冷却側通路1cと加熱側通路1h内の改質ガスの流れ方向を同一とすることで、冷却側通路1cと加熱側通路1hに流れる改質ガスの温度差を上流側、特に入口付近で最も大きくすることができる。その結果、発熱量の多い上流側、特に入口付近で冷却効果を向上することができ、加熱側通路1hを流れる改質ガスの温度上昇を上流側、特に入口部分で抑制することができる。
【0021】
本実施形態における改質ガスの温度変化を図19に示す。このように加熱側通路1hを流れる改質ガスの温度を均一化することができ、CO選択酸化触媒を全体的に活性温度に保つことができる。
【0022】
次に、第2の実施形態について説明する。燃料改質システムの構成を図2のブロック図に示す。ここでは、改質ガス中のCOを低減するための反応器としてCO除去装置1に加えてCO変成器9を備え、このCO変成器9に対して本発明を適用する。
【0023】
改質器4の下流に改質ガスを冷却する熱交換器7、水蒸気を混入する混合器8、CO濃度を低減するCO変成器9を備える。改質器4で生成した改質ガスを熱交換器7において十分に冷却してから混合器8に供給する。混合器8では、図示しない供給源から供給される水蒸気を改質ガスに混入する。ここで混入する水蒸気量は、供給源と混合器8との間に配置したバルブ55により調整する。
【0024】
CO変成器9は、改質ガス中のCOと混合器8で混入された水とを用いてシフト反応を生じてCOを低減する反応器であり、冷却側通路9cと加熱側通路9hを備える。冷却側通路9cには、十分に冷却し且つ水蒸気を混入した改質ガスを供給し、加熱側通路9hで生じる熱を吸収する。熱を吸収することにより昇温した改質ガスを通路間流路9aを介して加熱側通路9hに供給する。加熱側通路9hにはCO変成触媒を担持させ、流通する改質ガス中に含まれるCOと水蒸気(HO)とを反応させてCOとHを生成し、例えばCOを1〜2%程度まで低減する。
【0025】
CO変成器9においてCOを低減した改質ガスを、熱交換器2、混合器3に供給し、温度調整と酸素供給を行ってからCO除去装置1に供給する。CO除去装置1において、CO濃度を40ppm程度にまで低減してから燃料電池5の燃料極に供給する。このときCO除去装置1を、第1の実施形態と同様に、改質ガスを冷媒として用いた熱交換型のCO除去装置1としてもよい。
【0026】
ここで用いるCO変成器9の構成は、第1の実施形態におけるCO除去装置1の構成(図20)と同様とする。ただし、加熱側通路1hに担持する触媒をCO変成触媒とする。
【0027】
次に本実施形態の効果を説明する。ここでは、第1の実施形態と異なる効果のみを説明する。
【0028】
反応器としてCO変成触媒を担持したCO変成器9を用いる。これにより、CO変成器9には外部の冷却システムが不要となり、簡単な構成でCO変成触媒の過度な昇温を抑制することができる。また、CO変成器9内には改質ガスのみが流れるので、僅かな内部通路漏れは致命的な問題とならず、作成や検査が容易となりコストを低減できる。
【0029】
次に第3の実施形態について説明する。燃料電池システムの構成を第1の実施形態と同様とし、本発明を適用するCO除去装置1を直行流式熱交換器とし、その構成を図22に示す。
【0030】
CO除去装置1を、冷却側通路1cを形成した層と、加熱側通路1hを形成した層とが交互に積層するように構成する。このとき、冷却側通路1cと加熱側通路1hが直行し、かつ、冷却側通路1cが加熱側通路1hの上流部側のみを冷却するように構成する。ここでは加熱側通路1hの上流側を熱交換型とし、下流側を断熱型とする。また、冷却側通路1cが加熱側通路1hの上流部のみに重なるように構成してもよい。
【0031】
さらに、冷却側通路1cの入口が加熱側通路1hを形成した層を挟んで一層毎に対向するように構成する。つまり、加熱側通路1hを介して隣り合う冷却側通と1c内の改質ガスの流れが対向するように構成する。
【0032】
次に本実施形態における効果を説明する。ここでは、第1実施形態に記載した効果と異なる効果のみを説明する。
【0033】
冷却側通路1cと加熱側通路1hとを直行に、かつ、冷却側通路1cは加熱側通路1hの上流部のみを冷却するように構成する。これにより発熱反応が激しく生じて温度が上昇し易い上流部、特に入口部を集中的に冷却することができ、加熱側通路1hの改質ガス温度を均一化し、ひいてはそこに担持した触媒の温度も均一化することができる。
【0034】
また、冷却側通路1cを形成した層と加熱側通路1hを構成した層を交互に積層し、加熱側通路1hを構成した層を介して隣接する冷却側通路1c内を流通する改質ガスの流れを対向させる。ここで、冷却側通路1c内を流れる改質ガスは、入口から出口に向かうにつれて温度が上昇する。これに対して本実施形態では、加熱側通路1hを挟んで隣り合う冷却側通路1c内の改質ガスの流れを対向させるので、一層内に並ぶ加熱側通路1hのうち両端に配置される加熱側通路1h内の改質ガス温度を平均化することができる。つまり、一つの層内の加熱側通路1hの改質ガス温度、ひいてはCO選択酸化触媒の温度を均一化することができ、触媒性能を向上することができる。
【0035】
ここで、図21に、本実施形態に用いる燃料電池システムにおける改質ガス温度の変化を示す。また、図17に従来の直行流式熱交換器のCO除去装置、図18には従来の断熱型CO除去装置の改質ガス温度変化を示す。
【0036】
図17においては、改質ガス温度は入口側で急激に上昇し、その後低下してから下流側では触媒活性温度域の低温の域に維持される。一方、図18においては、反応に伴う熱の除去を行わないため、改質ガス温度は入口部で急激に温度が上昇し、その後も徐々に上昇するので、触媒活性温度域から大きく外れる。
【0037】
これらに対して、図21に示すように、本実施形態ではCO除去装置1は上流部が直行流式で下流部が断熱型なので、加熱側通路1hを流れる改質ガス温度が触媒活性温度域の中央域に近づくようになる。
【0038】
なお、ここではCO除去装置1を用いたが、第2の実施形態と同様の構成とし、CO変成器9に適用してもよい。
【0039】
次に、第4の実施形態について説明する。ここで用いる燃料電池システムの構成を図4に示す。燃料改質システムの構成を第1の実施形態と同様とし、熱交換器2に供給する冷媒を以下のようなシステムで制御する。
【0040】
冷媒を熱交換器2に供給する冷媒循環ポンプ10、冷媒を冷却する放熱器11、冷媒の不足を防ぐための冷媒タンク12を備える。
【0041】
冷媒循環ポンプ10を熱交換器2の冷媒入口の上流側に配置し、冷媒を熱交換器2に圧送する。冷媒は熱交換器2において改質ガスの熱を吸収し、高温の状態で排出される。排出された高温冷媒は二方向に分岐し、一方は冷媒温度を調整する放熱器11に供給される。放熱器11において再び低温になった冷媒は三方バルブ54に供給される。また、熱交換器2から排出され分岐したもう一方の高温冷媒は、高温のまま三方バルブ54に供給される。つまり三方バルブ54の開度を調整して、放熱器11を介して供給される低温冷媒と高温冷媒との混合率を調整することにより冷媒の温度を調整する。言い換えれば、三方バルブ54は、全冷媒流量に対する放熱器11において冷却される冷媒流量の割合を調整している。そのため、三方バルブ54を熱交換器2の下流側の分岐点に配置することもできる。温度調整を行った冷媒を再度冷媒循環ポンプ10を介して熱交換器2に供給し、改質ガスの冷却に利用する。
【0042】
また、放熱器11により冷却された冷媒を三方バルブ54に供給する際に、冷媒を貯蔵する冷媒タンク12内の冷媒を混入できるように構成する。冷媒が不足するような場合には、冷媒タンク12から供給される冷媒流量を調整するバルブ12aを開くことにより、低温冷媒側に冷媒タンク12内の冷媒を混入する。
【0043】
このような冷却システムの制御を行うために、加熱側通路1hの排出側に温度センサ73を配置する。また、冷媒循環ポンプ10を運転し、冷媒の流量および三方バルブ54で混合される低温冷媒と高温冷媒の割合を制御するコントローラ91を備える。
【0044】
次にコントローラ91における、放熱器11へ供給されて低温冷媒となる冷媒全冷媒に対する分配率の制御を図5の制御ブロック図を用いて説明する。ここで、コントローラ91には予め実験等により求めた運転負荷等に応じた制御目標温度、ここではCO除去装置1から排出される改質ガスの制御目標温度を記憶させておく。
【0045】
まず、運転負荷等に応じた制御目標温度と、温度センサ73により測定したCO除去装置1から排出された改質ガスの温度とを、それらの温度差を検出する温度差検出手段101に入力する。温度差検出手段101において温度差を検出したら、その出力に基づいて冷媒分配率決定手段102において放熱器11において冷却する冷媒流量と、熱交換器2からの高温の冷媒流量の分配率を既知のPID制御演算により求める。
【0046】
次に、冷媒制御バルブ開度変換手段103では、図15に示すような分配率とバルブ開度の関係(流量―開度テーブルデータ)から分配率に対応したバルブの開度を求める。このバルブ開度を指令値として三方バルブ54を操作することにより冷媒温度を制御し、ひいては改質ガスの温度を制御する。
【0047】
ここでは、CO除去装置1の冷却側通路1cに供給される改質ガス温度が、加熱側通路1hで生じる反応熱を吸収するのに十分な温度となり、また加熱側通路1hが活性温度を維持できるように制御する。そのため、制御の基準となる改質ガス温度は、熱交換器2から排出されてから、CO除去装置1から排出されるまでの少なくとも一箇所の改質ガス温度を用いることができる。ここでは温度センサ73を用いたが、混合器3と冷却側通路1cとの間に配置した温度センサ71、冷却側通路1cと加熱側通路1hとの間に配置した温度センサ72等を用いてもよい。ただしその場合は、温度センサの位置に応じた制御目標温度を予め記憶させておく必要がある。
【0048】
次に、本実施形態における効果を説明する。ここでは第1の実施形態と異なる効果のみを説明する。
【0049】
冷媒循環ポンプ10と、高温冷媒の一部を冷却する放熱器11と、高温冷媒と低温冷媒との分配率を調整する三方バルブ54と、改質ガスの温度を検出する温度センサ73(71、72)と、を備える。また、温度センサ73(71、72)の出力に基づいて高温冷媒と低温冷媒との分配率を計算する冷媒分配率決定手段102と、その分配率を三方バルブ54の指令開度に変換する冷媒制御バルブ開度変換手段103と、を備える。三方バルブ54を指令開度に設定し、低温冷媒と高温冷媒を三方バルブ54において混合し、混合した冷媒を循環ポンプ7により熱交換器2に圧送することにより改質ガスの温度を調整する。
【0050】
このように構成することで、制御目標温度と実際の改質ガスの温度との差に応じて冷媒の温度を調整することができるので、CO除去装置1の改質ガス温度を適切に制御できる。また、起動時には、循環経路の冷媒のみの暖機ですむので、暖機時間を短縮できる。
【0051】
なお、CO除去装置1の替わりにCO変成器9に適用することもできる。
【0052】
次に、第5の実施形態について説明する。燃料電池システムの構成を図6に示す。以下、第4の実施形態と異なる点のみを説明する。
【0053】
ここでは、冷媒タンク12から三方バルブ56へ冷媒を供給する配管を備え、冷媒タンク12と三方バルブ56との間には冷媒、ここでは水の流量を調整する供給ポンプ13を配置する。三方バルブ56からは、熱交換器2に冷媒を供給する冷媒供給流路31と、熱交換器2をバイパスして熱交換器2の出口側に接続するバイパス流路32を構成する。つまり、三方バルブ56は熱交換器2における冷却に用いる冷媒の、供給ポンプ13から圧送される全冷媒に対する流量割合を調整している。熱交換器2を流通した冷媒は高温冷媒となり、また熱交換器2をバイパスした冷媒は低温のままとなる。
【0054】
この高温冷媒と低温冷媒は熱交換器2の下流側で合流し、改質反応に用いる水を蒸発させる蒸発器15の蒸発側の通路に供給されて水蒸気となる。このとき、燃料電池5の下流側には、燃料電池5からの排出ガスを燃焼する燃焼器14を備え、この燃焼器14で生成した燃焼ガスを蒸発器15における蒸発の熱源として利用する。
【0055】
蒸発器15で生成された水蒸気は改質器4に供給され、改質反応に利用される。なお、ここでは冷媒として水を用いているが、メタノール燃料等を用いることもできる。
【0056】
ここで、供給ポンプ13は改質器4に必要な水を圧送するが、改質反応に用いる水全てを熱交換器2に通過させると、熱交換器2から排出される改質ガス温度が低下し過ぎてCO除去装置1の加熱側通路1h内を流れる改質ガスの温度が極度に低下する。その結果、CO選択酸化触媒の活性を低下させるおそれがあるので、一部の水を三方バルブ56でバイパスさせて改質ガスを最適な温度に制御する。ここでは、三方バルブ56を冷媒の分岐点に配置したが、第4の実施形態と同様に冷媒の合流点に配置してもよい。
【0057】
このような冷媒システムを制御するコントローラ92を備え、温度センサ73(71、72)の出力に応じて三方バルブ56の開度を制御する。図7にコントローラ92における制御のブロック図を示す。
【0058】
ここでは、冷媒分配率決定手段104において、温度差検出手段101の出力から供給ポンプ13からの水を熱交換器2に通過させる流量とバイパスさせる流量の分配率を既知のPID制御演算により求める。その他の制御は、第4の実施形態における制御(図5)と同様の制御を行う。
【0059】
次に、実施形態における効果を説明する。ここでは特に第4の実施形態の効果と異なる部分を説明する。
【0060】
熱交換器2の冷媒として、改質反応に用いる燃料または水を用いる。冷媒を熱交換器2に供給する冷媒供給流路31と、熱交換器2のバイパス流路32と、熱交換器2に供給する冷媒の流量割合を調整する三方バルブ56を備える。さらに、温度センサ73(71、72)の出力に基づいて、冷媒供給流路31とバイパス流路32とを流れる冷媒の分配率を計算する冷媒分配率決定手段104と、その冷媒分配率を三方バルブ56の指令開度に変換する開度変換手段103と、を備える。三方バルブ56を指令開度に設定し、三方バルブ56において熱交換器2に供給される冷媒の流量を調整することにより、CO除去装置1に供給する改質ガスの温度を調整する。
【0061】
このように改質ガス温度に応じて改質ガスを冷却する冷媒の流量を調整するので、CO除去装置1の改質ガス温度を適切に制御できる。また、熱交換器2では、CO除去装置1で発生する反応熱分も先取りするので、燃料または水の加熱に利用できる熱が多くなり燃料改質システムのシステム効率を向上することができる。
【0062】
次に、第6の実施形態の燃料改質システムの構成を図8を用いて説明する。
【0063】
第5の実施形態において熱交換器2の下流側に気水分離器16を備え、分離した水を供給ポンプ13の上流側に供給する。また、改質器4と熱交換器2との間には熱交換器7、混合器8、CO生成器9を備える。さらに、蒸発器15から改質器4へ水蒸気を供給する流路から混合器8に分岐する流路を備え、分岐点と混合器8との間にバルブ57を備える。これにより、蒸発器15で生成した水蒸気を改質器4と混合器8、ひいてはCO変成器9に分配する。
【0064】
熱交換器2では改質ガスの温度が低下するので、改質ガス中の水蒸気が凝縮する。この凝縮水を気水分離器16で回収し、改質器4やCO変成器9における反応に利用することで、水の利用効率を向上することができる。
【0065】
なお、ここでは回収した凝縮水を供給ポンプ13の上流側に供給したが、冷媒タンク12等に回収してもよい。
【0066】
このように、熱交換器2の下流側で改質ガス中の凝縮水を回収する気水分離器16を備え、気水分離器16で回収した水分を、改質器4またはCO変成器9の少なくとも一方における反応に用いることで、改質器4やCO変成器9に用いる原料として水を再利用することができる。また、CO除去装置1の触媒層が凝縮水により被服されることがなくなり、触媒の性能低下を防止できる。
【0067】
次に、第7の実施形態について説明する。ここで用いる燃料改質システムの構成を図9に示す。
【0068】
第6の実施形態において、CO除去装置1の上流側に配置した混合器3に空気を供給する空気ブロア17を備える。空気ブロア17は、改質器4や燃料電池5に供給する空気ブロア6とは独立して制御する。
【0069】
空気ブロア17による空気供給の制御を行うコントローラ94を備え、改質器4に供給される燃料量、水分量、空気量から混合器3、ひいてはCO除去装置1に供給する空気量を求める。
【0070】
図10に、コントローラ94における空気ブロア17の供給空気流量の制御ブロック図を示す。
【0071】
負荷量決定手段105を備え、負荷量決定手段105では改質器4へ供給する燃料と水、空気の合計流量である負荷量を計算する。ここで、負荷量は、燃料、水、空気のいずれか一つの量としてもよい。
【0072】
また、空気流量決定手段106を備え、求めた負荷量と変換係数または負荷―空気流量テーブルデータから空気流量を示す流量指令値を求める。変換係数を用いる場合には、負荷量に変換係数を乗算して空気流量指令値を求める。一方、負荷―空気流量テーブルデータを用いる場合には、図16に示すような負荷量と空気流量の関係マップを実験等により予め求めてコントローラ94に記憶させておき、負荷量決定手段105で求めた負荷量に応じて空気量指令値を決定する。この空気量指令値は、改質器4で生成されるCOを燃料電池5の被毒の原因とならない程度まで低減し、且つ、改質ガス中の水素の酸化反応が許容範囲に収まるような酸素を含む空気流量を示す値である。
【0073】
さらに、指令値同期化手段107を備え、空気流量指令値を、例えば蒸発器15と改質器4とCO変成器9の応答遅れに相当するフィルタに通過させることで空気流量指令値を補正する。これにより、空気ブロア17で供給される空気と、改質器4で生成されるCOとの同期化を図る。ただし、改質器4とCO除去器9とが一体に構成されている場合等、本実施形態と構成がことなる場合には、この応答遅れは、改質器4に燃料、空気、水が供給されてから、混合器3に供給されるまでの時間にほぼ相当する。
【0074】
次に、この同期化された空気量指令値を基に、空気流量―回転数変換手段109において、空気流量を空気ブロア17の回転数に変換して空気ブロア17の回転数を制御し、改質器4の負荷に応じて空気の供給流量を制御する。
【0075】
ここでは、混合器3への空気供給に空気ブロア17を用いたが、第1〜6の実施形態と同様に空気ブロア6から供給された空気をバルブ51により分配してもよい。このときには、同期化された空気量指令値を基に、空気流量―開度変換手段108においてバルブ51の開度を求め、CO除去装置1に供給する空気流量を制御する。
【0076】
このように、改質器4へ供給する燃料または水の少なくとも一方を蒸発させる蒸発器15と、CO変成器9と、CO除去装置1に供給する改質ガス中の空気量を調整する空気供給手段、ここでは空気ブロア17と、を備える。また、改質器4に供給する燃料・水・空気のいずれかの量、又は、合計の流量である負荷量に変換係数を乗算して得られた値、または、予め求めた負荷量と空気流量の関係マップから得られた値、を空気流量指令値とする空気流量決定手段106を備える。さらに、空気流量指令値を蒸発器15や改質器4等の応答遅れに相当する時間により補正する指令値同期化手段107を備える。指令値同期化手段107により補正した空気流量指令値に基づいて、空気ブロア17により改質ガス中の空気量を調整する。これにより、空気流量を改質器4の負荷変化に応じて高応答で精度よく制御できる。ここでは、CO変成器9を備えているので、このCO変成器9における応答遅れについても補正し、より高応答で精度よく制御できる。
【0077】
空気供給手段として空気ブロア17を用いる場合には、空気ブロア17の回転数を調整することにより空気流量を調整する。空気供給手段として空気制御バルブ51を用いる場合には、空気制御バルブ51の開度または空気ブロア6の回転数を調整することによりCO除去装置1に供給する空気流量を調整する。
【0078】
次に、第8の実施形態について説明する。ここで用いる燃料改質システムの構成を第7の実施形態に用いた燃料改質システムの構成(図9)と同様とする。ただし、CO除去装置1の上流側にCOセンサ74を配置し、CO除去装置1に供給される改質ガス中のCO濃度を検出する。この検出結果は、空気ブロア17を制御するコントローラ94に入力する。ここで、COセンサ74はCO変成器9の出口から加熱側通路1hの入口の間の改質ガスのCO濃度を測定するものであればよい。
【0079】
次に、コントローラ94における空気流量制御について、図11に示す制御ブロック図を用いて説明する。
【0080】
第7の実施形態と同様に空気ブロア17の回転数を制御するが、負荷量決定手段105において改質器4の負荷量を計算する際に、改質器4に供給する燃料、水、空気の合計流量にCO除去装置1の入口のCO濃度を乗算したものを負荷量とする。空気流量決定手段106においてこの負荷量に応じて空気流量指令値を決定し、空気ブロア17の回転数を制御する。ここで、負荷量として、燃料、空気、水のいずれか一つの流量にCO除去装置1の入口のCO濃度を乗算したものを用いてもよい。
【0081】
このように、CO除去装置1に供給される改質ガス中のCO濃度を検出するCOセンサ74を備え、改質器4に供給する燃料・水・空気のいずれかの量、又は、合計の流量に、COセンサ74による出力を乗算させた値を負荷量とする。このような負荷量から空気流量指令値を決定する空気流量決定手段106と、空気流量指令値を応答遅れに相当する時間により補正する指令値同期化手段107とを備える。指令値同期化手段107により補正した空気流量指令値に基づいて、改質ガス中の空気量を調整することで、空気流量を改質器4の負荷変化およびCO濃度変化に対応して高応答で精度よく制御することができる。
【0082】
次に、第9の実施形態について説明する。ここで用いる燃料電池システムの構成を第7の実施形態に用いた燃料電池システムの構成(図9)と同様とする。ただし、CO除去装置1の下流側にCOセンサ75を配置し、CO除去装置1から排出される改質ガス中のCO濃度を検出する。この検出結果は、空気ブロア17を制御するコントローラ94に入力する。
【0083】
次に、コントローラ94における空気流量制御について、図12に示す制御ブロック図を用いて説明する。
【0084】
ここでは、コントローラ94にCO補正空気流量決定手段110を備え、CO除去装置1の出口CO濃度と目標CO濃度、例えば40ppmとの差を求め、この差に応じてCO補正空気流量を既知のPID制御演算により求める。ここで、目標CO濃度は、改質ガス中のCOによる燃料電池5の被毒を回避できる濃度とする。
【0085】
空気流量決定手段106で求めた基本の空気流量指令値にCO補正空気流量を加算して、その結果を指令値同期化手段107に通し、空気流量―回転数変換手段109で空気ブロア17の回転数に変換する。
【0086】
このように、加熱側通路1hから排出される改質ガスのCO濃度を検出するCOセンサ75と、COセンサ75の出力に基づいて、空気供給手段、ここでは空気ブロア17により改質ガスに供給する空気の補正量を算出するCO補正空気流量決定手段110と、を備える。空気流量決定手段106で求めた空気流量指令値にCO補正空気流量決定手段110で求めた補正量を加算してから、指令値同期化手段107により補正を行う。この結果、空気ブロア17の回転数を制御することにより、燃料電池5に供給する改質ガス中のCO濃度を一定化することができるので、燃料電池5の被毒を回避することができる。
【0087】
次に、第10の実施形態について説明する。ここで用いる燃料電池システムの構成を第7の実施形態に用いた燃料電池システムの構成(図9)と同様とする。ただし、CO除去装置1の下流側にOセンサ76を配置し、CO除去装置1から排出される改質ガス中の酸素濃度を検出する。この検出結果は、空気ブロア17を制御するコントローラ94に入力する。
【0088】
ここでは、コントローラ94にO補正空気流量決定手段111を備え、CO除去装置1の出口O濃度と目標O濃度、例えば0.5%との差を求め、この差に応じてO補正空気流量を既知のPID制御演算により求める。ここで、目標O濃度は、改質ガス中のCOがCO除去装置1において十分に消費されOが消費されていると推定できる濃度とする。
【0089】
このように、加熱側通路1hの出口流路に配置したOセンサ76と、Oセンサ76の出力に基づいて改質ガスに供給する空気の補正量を算出するO補正空気流量決定手段111と、を備える。空気流量決定手段106において求めた空気流量指令値にO補正空気流量決定手段111で求めたCO補正空気流量を加算してから、指令値同期化手段107により補正を行う。このように空気供給量を制御することで、CO除去装置1で消費されるO濃度に応じて空気流量を高精度に制御できるので、燃料電池5に供給するCO濃度を一定化、例えば燃料電池5の被毒を回避できる40ppm程度に維持することができる。
【0090】
次に、第11の実施形態について説明する。ここで用いる燃料電池システムの構成を図14に示す。第1の実施形態に用いた燃料電池システムに、以下のような構成を加えたことを特徴とする。
【0091】
改質ガスが熱交換器2を迂回できるようにバイパス経路34を備え、バイパス経路34と熱交換器2の出口側との合流部に三方バルブ58を配置する。この三方バルブ58の開度は、三方バルブ58の下流側に配置した温度センサ77の出力に応じてコントローラ95に応じて行う。
【0092】
改質器4で生成された一部、または全ての改質ガスを熱交換器2に供給し、改質ガスの冷却を選択的に行う。例えば起動時には、温度センサ77により検出される改質ガス温度は低いので、三方バルブ58をバイパス経路34側に100%の開度に設定する。これにより起動時に低温の改質ガスが熱交換器2でさらに冷却されるのを避けることができる。
【0093】
改質器4が活性化して温度センサ77の出力が所定温度、例えば50℃を超えたら、そのまま50℃を維持するように三方バルブ58を徐々に熱交換器2側に切替え、一度バイパス量が0%となったら停止するまでその状態を維持する。
【0094】
また、冷却側通路1cの上流からは、冷却側通路1cをバイパスして加熱側通路1hの上流側に接続するバイパス経路35を備える。ここで、バイパス経路35と、冷却側通路1cの出口側との合流部には三方バルブ59を配置し、改質ガスによる加熱側通路1hの冷却を選択的に行う。このような選択を行うために、CO除去装置1の下流側には温度センサ78を備え、この出力に応じてコントローラ96でバルブ59の開度を制御する。
【0095】
例えば起動時にはCO除去装置1の出口温度が低いので、加熱側通路1hへはバイパス経路35側からの改質ガスのみを供給するように三方バルブ59をバイパス経路35側に100%開く。CO選択酸化反応が始まり、温度センサ78の検出温度がCO選択酸化触媒の活性温度、例えば120℃を超えたら、120℃を維持するように三方バルブ59を徐々に冷却側通路1c側に切替える。三方バルブ59が100%冷却側通路1cに設定され、冷却側通路1cをバイパスする改質ガスが0%になったら、運転が停止されるまでそのままの状態を維持する。
【0096】
次に本実施形態の効果を説明する。
【0097】
バイパス流路35と、冷却側通路1cとバイパス流路35を流れる流量の割合を調整する三方バルブ59と、加熱側通路1hから排出される改質ガス温度を検出する温度センサ78と、温度センサ78の出力に基づいて、三方バルブ59の開度を調整する開度調整手段、ここではコントローラ96と、を備える。CO除去装置1の暖機時には、三方バルブ59をバイパス流路35側に設定し、暖機終了後には、三方バルブ59を冷却側通路1c側に切替える。ここでは、温度センサ78の出力が所定値、例えば120℃を超えたら三方バルブ59を徐々に冷却側通路1c側に切替える。
【0098】
このように制御することで、起動時には加熱側通路1hの冷却が行われないので、CO除去装置1本体および触媒層温度を素早く上昇させられる。暖機後はCO酸化反応熱を、冷却した改質ガスで吸収することができるので加熱側通路1hの改質ガス温度を均一化し、そこに担持された選択酸化触媒層の温度も均一化して触媒性能を向上できる。
【0099】
また、バイパス流路34と、熱交換器2とバイパス流路34を流れる流量の割合を調整する三方バルブ58と、CO除去装置1に供給される改質ガス温度を測定する温度センサ77と、温度センサ77の出力に基づいて三方バルブ58の開度を調整する開度調整手段、ここではコントローラ95と、を備える。CO除去装置1の暖機時には、三方バルブ58をバイパス流路34側に設定し、温度センサ77の出力が所定値に達したら三方バルブ58を、熱交換器2側に切替えることにより、起動時には熱交換器2の改質ガス出口温度が過大に低下するのを防止することができる。これにより、下流に配置したCO除去装置1が暖機時に冷却されるのを防ぐことができる。
【0100】
なお、本発明は上記実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術思想の範囲内で様々な変更を成し得ることは言うまでもない。
【図面の簡単な説明】
【図1】第1の実施形態における燃料改質システムの構成図である。
【図2】第2の実施形態における燃料改質システムの構成図である。
【図3】第3の実施形態における燃料改質システムの構成図である。
【図4】第4の実施形態における燃料改質システムの構成図である。
【図5】第4の実施形態における冷媒温度調整の制御を示すブロック図である。
【図6】第5の実施形態における燃料改質システムの構成図である。
【図7】第5の実施形態における冷媒温度調整の制御を示すブロック図である。
【図8】第6の実施形態における燃料改質システムの構成図である。
【図9】第7の実施形態における燃料改質システムの構成図である。
【図10】第7の実施形態における空気供給流量の制御方法を示すブロック図である。
【図11】第8の実施形態における空気供給流量の制御方法を示すブロック図である。
【図12】第9の実施形態における空気供給流量の制御方法を示すブロック図である。
【図13】第10の実施形態における空気供給流量の制御方法を示すブロック図である。
【図14】第11の実施形態における燃料改質システムの構成図である。
【図15】冷媒分配率に対するバルブ開度を示す図である。
【図16】負荷率に対する空気量指令値を示す図である。
【図17】従来の直行流式熱交換器のCO除去装置の改質ガス温度変化を示す図である。
【図18】従来の断熱型CO除去装置の改質ガス温度変化を示す図である。
【図19】第1実施形態における改質ガス温度変化を示す図である。
【図20】第1の実施形態に用いる平行流式のCO除去装置の見取り図である。
【図21】第3の実施形態における改質ガス温度変化を示す図である。
【図22】第3の実施形態に用いる直行流式のCO除去装置の見取り図である。
【符号の説明】
1  CO除去装置
1c、9c 冷却側通路
1h、9h 加熱側通路
2、7  熱交換器
4  改質器
9  CO変成器
10 冷媒循環ポンプ(循環ポンプ)
11 放熱器
15 蒸発器
16 気水分離器
17 空気ブロア(空気供給手段)
31 冷媒供給流路
32 バイパス流路(冷媒バイパス流路)
34 バイパス経路(熱交換器バイパス流路)
35 バイパス経路(反応器バイパス流路)
54 三方バルブ(放熱器三方バルブ)
56 三方バルブ(熱交換器冷媒三方バルブ)
58 三方バルブ(熱交換器三方バルブ)
59 三方バルブ(反応器三方バルブ)
71〜73 温度センサ(改質ガス温度センサ)
74 COセンサ(第一COセンサ)
75 COセンサ(第二COセンサ)
76 Oセンサ
77 温度センサ(第一温度センサ)
78 温度センサ(第二温度センサ)
95 コントローラ(第二開度調整手段)
96 コントローラ(第一開度調整手段)
102 冷媒分配率決定手段(放熱器冷媒分配率決定手段)
103 冷媒制御バルブ開度変換手段(開度変換手段)
104 冷媒分配率決定手段(熱交換器冷媒分配率決定手段)
106 空気流量決定手段
107 指令値同期化手段
110 CO補正空気流量決定手段
111 O2補正空気流量決定手段

Claims (15)

  1. COを含む水素リッチな改質ガスを生成する改質器と、
    前記改質器で生成された高温の改質ガスを冷却する熱交換器と、
    冷却側通路、および、改質ガス中のCOの発熱反応を促進する触媒を担持した加熱側通路を有した熱交換型の反応器と、を備え、
    前記熱交換器において冷却した改質ガスを前記冷却側通路に流通させてから前記加熱側通路に流通させることにより、前記加熱側通路における発熱反応に伴って生じる熱を、前記冷却側通路を流通する改質ガスに吸収させて、前記加熱側通路の温度上昇を抑制することを特徴とする燃料改質システム。
  2. 前記触媒を、改質ガス中のCOを選択的に酸化するCO選択酸化触媒とし、前記熱交換型の反応器をCO除去装置とする請求項1に記載の燃料改質システム。
  3. 前記触媒を、改質ガス中のCOをシフト反応により低減するCO変成触媒とし、前記熱交換型の反応器をCO変成器とする請求項1に記載の燃料改質システム。
  4. 前記反応器を、前記冷却側通路を流れる改質ガスと前記加熱側通路を流れる改質ガスとが同一方向に流れるように構成した平行流式熱交換器とする請求項1から3のいずれか一つに記載の燃料改質システム。
  5. 前記反応器を、前記冷却側通路と前記加熱側通路とを直行に、かつ、前記冷却側通路は前記加熱側通路の上流部のみを冷却するように構成した直行式熱交換器とする請求項1から3のいずれか一つに記載の燃料改質システム。
  6. 前記反応器を、前記冷却側通路を形成した層と前記加熱側通路を構成した層を交互に積層することにより構成し、
    前記加熱側通路を構成した層を介して隣接する前記冷却側通路内を流通する改質ガスの流れを対向させる請求項5に記載の燃料改質システム。
  7. 前記熱交換器を、冷媒を用いて改質ガスを冷却する熱交換器とし、
    前記冷媒を前記熱交換器に圧送する循環ポンプと、
    前記熱交換器において熱を吸収した高温冷媒の少なくとも一部を冷却して低温冷媒とする放熱器と、
    前記循環ポンプにより循環する冷媒のうち、前記放熱器に供給される割合を調整する放熱器三方バルブと、
    前記熱交換器から排出されてから、前記反応器から排出されるまでの間の少なくとも一箇所の改質ガスの温度を検出する改質ガス温度センサと、
    前記改質ガス温度センサの出力に基づいて、前記循環ポンプにより循環する冷媒のうち前記放熱器に供給される割合を示す冷媒分配率を決定する放熱器冷媒分配率決定手段と、
    前記放熱器冷媒分配率決定手段により決定した冷媒分配率を前記放熱器三方バルブの指令開度に変換する開度変換手段と、を備え、
    前記放熱器三方バルブを前記指令開度に設定し、前記低温冷媒と前記高温冷媒を混合することにより温度調整した冷媒を前記循環ポンプにより前記熱交換器に圧送して改質ガスの温度を調整する請求項1から6のいずれか一つに記載の燃料改質システム。
  8. 前記熱交換器を、前記改質器における改質反応に用いる燃料または水を冷媒として改質ガスを冷却する熱交換器とし、
    前記冷媒を前記熱交換器に供給する冷媒供給流路と、前記熱交換器をバイパスさせる冷媒バイパス流路と、前記冷媒供給流路と前記冷媒バイパス流路を流れるそれぞれの冷媒流量の割合を調整する熱交換器冷媒三方バルブと、を備え、
    さらに、前記熱交換器から排出されてから前記反応器から排出されるまでの間の少なくとも一箇所の改質ガスの温度を検出する改質ガス温度センサと、
    前記改質ガス温度センサの出力に基づいて、前記冷媒供給流路と前記冷媒バイパス流路と、を流れる冷媒の割合を示す冷媒分配率を決定する熱交換器冷媒分配率決定手段と、
    前記熱交換器冷媒分配率決定手段により決定した冷媒分配率を、前記熱交換器冷媒三方バルブの指令開度に変換する開度変換手段と、を備え、
    前記熱交換器冷媒三方バルブを前記指令開度に設定し、前記熱交換器冷媒三方バルブにおいて前記熱交換器に供給する冷媒の流量を調整することにより改質ガスの温度を調整する請求項1から6のいずれか一つに記載の燃料改質システム。
  9. 前記熱交換器の下流側に配置した改質ガス中の凝縮水を回収する気水分離器と、
    改質ガス中のCOをシフト反応により低減するCO変成器と、を備え、
    前記気水分離器で回収した水分を、前記改質器または前記CO変成器の少なくとも一方における反応に用いる請求項3に記載の燃料改質装置。
  10. 前記改質器へ供給する燃料または水の少なくとも一方を蒸発させる蒸発器と、
    前記CO除去装置に供給する改質ガス中の空気量を調整する空気供給手段と、
    前記改質器に供給する燃料・水・空気のいずれかの量、又は、合計流量を負荷量とし、前記負荷量に変換係数を乗算して得られた値、または、予め求めた前記負荷量と空気流量との関係マップから得られた値、を空気流量指令値として決定する空気流量決定手段と、
    前記空気流量指令値を少なくとも前記蒸発器や前記改質器の応答遅れに相当する時間により補正する指令値同期化手段と、を備え、
    前記指令値同期化手段により補正した空気流量指令値に基づいて、前記空気供給手段により改質ガス中の空気量を調整する請求項3に記載の燃料改質システム。
  11. 前記熱交換器の入口側から前記CO除去装置の加熱側通路入口側までの間の少なくとも一箇所の改質ガスのCO濃度を検出する第一COセンサと、
    前記改質器へ供給する燃料または水の少なくとも一方を蒸発させる蒸発器と、
    前記CO除去装置に供給する改質ガス中の空気量を調整する空気供給手段と、
    前記改質器に供給する燃料・水・空気のいずれかの量、又は、合計の流量に、前記第一COセンサからの出力を乗算させた値を負荷量とし、前記負荷量に変換係数を乗算して得られた値、または、予め求めた前記負荷量と空気流量の関係マップから得られた値、を空気流量指令値として決定する空気流量決定手段と、
    前記空気流量指令値を少なくとも前記蒸発器や前記改質器の応答遅れに相当する時間により補正する指令値同期化手段と、を備え、
    前記指令値同期化手段により補正した空気流量指令値に基づいて、前記空気供給手段により改質ガス中の空気量を調整する請求項3に記載の燃料改質システム。
  12. 前記CO除去装置の加熱側通路から排出されるCO低減後の改質ガスのCO濃度を検出する第二COセンサと、
    前記第二COセンサの出力に基づいて、前記空気供給手段により改質ガスに供給する空気の補正量を決定するCO補正空気流量決定手段と、を備え、
    前記空気流量決定手段において求めた空気流量指令値に前記CO補正空気流量決定手段で求めた補正量を加算してから、前記指令値同期化手段による補正を行う請求項10または11に記載の燃料改質システム。
  13. 前記CO除去装置の加熱側通路から排出されるCO低減後の改質ガスのO濃度を検出するOセンサと、
    前記Oセンサの出力に基づいて、前記空気供給手段により改質ガスに供給する空気の補正量を決定するO補正空気流量決定手段と、を備え、
    前記空気流量決定手段において求めた空気流量指令値に前記O補正空気流量決定手段で求めた補正量を加算してから、前記指令値同期化手段による補正を行う請求項10または11に記載の燃料改質システム。
  14. 前記反応器の冷却側通路をバイパスさせる反応器バイパス流路と、
    前記冷却側通路と前記反応器バイパス流路を流れる流量の割合を調整する反応器三方バルブと、
    前記反応器の加熱側通路の下流側に配置した第一温度センサと、
    前記第一温度センサの出力に基づいて、前記反応器三方バルブの開度を調整する第一開度調整手段と、を備え、
    前記反応器の暖機時には、前記反応器三方バルブを前記反応器バイパス側に設定し、暖機終了後には、徐々に、前記反応器三方バルブを前記冷却側通路に切替える請求項1から13のいずれか一つに記載の燃料改質システム。
  15. 前記熱交換器の改質ガスの迂回路となる熱交換器バイパス流路と、
    前記熱交換器と前記熱交換器バイパス流路を流れる流量の割合を調整する熱交換器三方バルブと、
    前記熱交換器から排出される改質ガスと前記熱交換器バイパス流路との合流部の下流に配置した第二温度センサと、
    前記第二温度センサの出力に基づいて前記熱交換器三方バルブの開度を調整する第二開度調整手段と、を備え、
    前記反応器の暖機時には、前記熱交換器三方バルブを前記熱交換器バイパス流路側に設定し、前記第二温度センサの出力が所定値に達したら前記熱交換器三方バルブを、前記熱交換器側に切替える請求項1から4のいずれか一つに記載の燃料改質システム。
JP2002217545A 2002-07-26 2002-07-26 燃料改質システム Pending JP2004059352A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217545A JP2004059352A (ja) 2002-07-26 2002-07-26 燃料改質システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217545A JP2004059352A (ja) 2002-07-26 2002-07-26 燃料改質システム

Publications (1)

Publication Number Publication Date
JP2004059352A true JP2004059352A (ja) 2004-02-26

Family

ID=31938963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217545A Pending JP2004059352A (ja) 2002-07-26 2002-07-26 燃料改質システム

Country Status (1)

Country Link
JP (1) JP2004059352A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116311A (ja) * 2003-10-07 2005-04-28 Hitachi Ltd 一酸化炭素除去用触媒の劣化評価手段を備えた燃料電池システム及びその運転方法
JP2006120626A (ja) * 2004-09-24 2006-05-11 Toshiba Corp 水素製造装置および燃料電池システム
JP2007269525A (ja) * 2006-03-30 2007-10-18 Osaka Gas Co Ltd 水素含有ガス生成装置
JP2008081326A (ja) * 2006-09-25 2008-04-10 Idemitsu Kosan Co Ltd Co変成装置、その方法、ならびに燃料電池システムおよびその運転制御方法
JP2012012255A (ja) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Co除去システム、及び、co除去方法
JP2015120642A (ja) * 2013-12-20 2015-07-02 株式会社堀場エステック 連続反応装置及びこれを用いる連続合成方法
KR101845591B1 (ko) * 2015-10-23 2018-04-04 대우조선해양 주식회사 수중운동체 개질시스템의 냉각장치 및 방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116311A (ja) * 2003-10-07 2005-04-28 Hitachi Ltd 一酸化炭素除去用触媒の劣化評価手段を備えた燃料電池システム及びその運転方法
JP2006120626A (ja) * 2004-09-24 2006-05-11 Toshiba Corp 水素製造装置および燃料電池システム
JP2007269525A (ja) * 2006-03-30 2007-10-18 Osaka Gas Co Ltd 水素含有ガス生成装置
JP2008081326A (ja) * 2006-09-25 2008-04-10 Idemitsu Kosan Co Ltd Co変成装置、その方法、ならびに燃料電池システムおよびその運転制御方法
JP2012012255A (ja) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Co除去システム、及び、co除去方法
JP2015120642A (ja) * 2013-12-20 2015-07-02 株式会社堀場エステック 連続反応装置及びこれを用いる連続合成方法
KR101845591B1 (ko) * 2015-10-23 2018-04-04 대우조선해양 주식회사 수중운동체 개질시스템의 냉각장치 및 방법

Similar Documents

Publication Publication Date Title
EP2215679B1 (en) Fuel cell system
JP2005100873A (ja) 燃料電池システム
JP4243322B2 (ja) 燃料電池及び燃料電池システム
JP2019132477A (ja) コージェネレーションシステム及びその運転方法
JP2004059352A (ja) 燃料改質システム
JP3575932B2 (ja) 燃料電池スタックの冷却装置
JP4690101B2 (ja) 燃料電池システム
JP2003068337A (ja) 燃料電池システム
JP2005116256A (ja) 燃料電池コージェネレーションシステム
JP2001185197A (ja) 燃料電池システム
JP7323065B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP4500032B2 (ja) 燃料電池システムの起動方法
JP2006318798A (ja) 燃料電池システム
JP3747855B2 (ja) 燃料改質装置
JP2005050639A (ja) 燃料電池システム
JP5371842B2 (ja) 燃料電池システム
JP2007103034A (ja) 燃料電池システム及びその起動方法
JP2008269930A (ja) 燃料電池システム
JP5212895B2 (ja) 燃料電池システム
JP2003286006A (ja) 燃料改質システム
JP2004303495A (ja) 燃料電池発電給湯システム
JP2005116310A (ja) 燃料電池システム
JP2010257822A (ja) 燃料電池システム
JP2008243633A (ja) 燃料電池システム及びその運転方法
JP2004119044A (ja) 移動体用燃料電池システム