JP4500032B2 - 燃料電池システムの起動方法 - Google Patents

燃料電池システムの起動方法 Download PDF

Info

Publication number
JP4500032B2
JP4500032B2 JP2003347002A JP2003347002A JP4500032B2 JP 4500032 B2 JP4500032 B2 JP 4500032B2 JP 2003347002 A JP2003347002 A JP 2003347002A JP 2003347002 A JP2003347002 A JP 2003347002A JP 4500032 B2 JP4500032 B2 JP 4500032B2
Authority
JP
Japan
Prior art keywords
fuel cell
gas
water
flow rate
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003347002A
Other languages
English (en)
Other versions
JP2005116257A (ja
Inventor
順一 横山
晃 松岡
裕記 大河原
孝一 桑葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2003347002A priority Critical patent/JP4500032B2/ja
Publication of JP2005116257A publication Critical patent/JP2005116257A/ja
Application granted granted Critical
Publication of JP4500032B2 publication Critical patent/JP4500032B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

この発明は、水素リッチな燃料ガスと、酸化ガスとの供給を受け、それら燃料ガス及び酸化ガスを電気化学反応させることにより発電する燃料電池を備えた燃料電池システムの起動方法に関する。
一般に、燃料電池は自己発熱により自己暖機が可能である。しかしながら、低温起動時には、燃料電池の内部で生成水が凝縮する現象(フラッディング)が起きるおそれがある。このフラッディングが起きると、凝縮水がガス流路を閉塞して水素や酸素等が電解質に十分に供給されなくなる。この結果、燃料電池に発電不良や性能低下が生じ、燃料電池が発電不能となったり、損傷を受けたりするおそれがある。特に、定置式の燃料電池システムでは、発電効率向上(補機効率向上)のために、低圧システムに設計することがある。この低圧システムでは、ガス圧により生成水を排出する等のフラッディング対策が困難となる。また、ガス圧が低いことから、水蒸気として燃料電池から持ち去られる水分量が少なく、車両用等の高圧システムに比べてフラッディングが起こりやすい。このため、低温起動時には、燃料電池を暖機してから発電させる必要があった。
ここで、低温起動時に燃料電池を暖機するのに、加熱用の電気ヒータを設けることが考えられる。しかし、電気ヒータにより加熱する構成では、電気ヒータ駆動時のエネルギーロスが大きく、起動時間が長引く傾向があった。
そこで、下記の特許文献1には、電気ヒータの代わりに、改質器を通過した可燃性ガス(オフガス)を燃焼させ、その燃焼熱と熱交換することで燃料電池冷却水を昇温させるオフガス燃焼器及びそれに関連した配管等を備え、低温起動時には、オフガス燃焼器で昇温された燃料電池冷却水で燃料電池の昇温を行う燃料電池発電装置が記載されている。この装置によれば、低温起動時に燃料電池を昇温させて暖機できることから、フラッディング対策に有効である。
特開2003−109635号公報(第3頁,図1) 特開平8−315843号公報 特開平8−293312号公報
ところが、上記の特許文献1に記載の装置では、オフガス燃焼器及びそれに関連した配管等を設ける必要があり、その分だけシステム構成の部品点数やコストが増え、システムが大型化するという問題があった。
この発明は上記の事情に鑑みてなされたものであって、その目的は、オフガス燃焼器等の特別な機器を設けることなく、低温起動時にフラッディングを防止することを可能とした燃料電池システムの起動方法を提供することにある。
上記目的を達成するために、請求項1に記載の発明は、水素リッチな燃料ガスと、酸化ガスとの供給を受け、それら燃料ガス及び酸化ガスを電気化学反応させることにより発電する燃料電池を備えた燃料電池システムを起動させる起動方法であって、
前記燃料電池の内部で生成水に凝縮のおそれがある低温起動時に、前記燃料電池が自己発熱により暖機されるまで、前記燃料電池の発電電力が増加するにつれてエアストイキが減少するように従来の標準流量より過大な流量の酸化ガスを前記燃料電池へ供給することを趣旨とする。
上記発明の構成によれば、燃料電池の内部で生成水に凝縮のおそれがある低温起動時に、燃料電池が自己発熱により暖機されるまで、燃料電池の発電電力が増加するにつれてエアストイキが減少するように従来の標準流量より過大な流量の酸化ガスが燃料電池へ供給される。従って、燃料電池が暖機されるまでの間で、燃料電池の内部における生成水の多くが酸化ガスの過大な流れにより燃料電池の外へ持ち去られる。
請求項1に記載の発明によれば、オフガス燃焼器等の特別な機器を設けることなく、低温起動時にフラッディングを防止することができ、延いては、燃料電池システムを簡易化・小型化することができ、同システムの製造コストを低減させることができる。
[第1実施形態]
以下、本発明の「燃料電池システムの起動方法」を具体化した第1実施形態を図面を参照して詳細に説明する。
図1に、燃料電池コージェネレーションシステムの概略構成図を示す。燃料電池コージェネレーションシステムは、燃料電池(FC)1を含む燃料電池システム2と、燃料電池1の廃熱を給湯に利用するための貯湯槽3とを備える。燃料電池システム2は、燃料電池1の他に、改質器4、燃焼器5、改質ガス凝縮器6、アノード凝縮器7、カソード凝縮器8、FC熱交換器9及び燃焼排気ガス熱交換器10を基本構成として備える。
改質器4は、化石燃料である天然ガスを水素リッチな燃料ガス(改質ガス)に改質する。改質器4には、燃料ライン11A,11Bを通じて天然ガスと水蒸気との混合気が供給される。燃料ライン11Bには、第1のポンプ12、脱硫器13、第1の開閉弁14及び混合器15が設けられる。天然ガスと水蒸気は、混合器15により混合される。この混合気を改質器4にて、水蒸気改質反応及びシフト反応することにより、水素リッチな燃料ガス(改質ガス)が生成される。混合器15には、第1のポンプ12により圧送され、脱硫器13にて脱硫される天然ガスが、第1の開閉弁14を介して供給される。混合器15には、第1の水タンク16に貯えられた水が、水ライン17を通じて水蒸気として供給される。水ライン17には、第2のポンプ18、純水器19及び第2の開閉弁20が設けられる。第1の水タンク16から第2のポンプ18により圧送される水は、純水器19で不純物が取り除かれた後、改質器4の発熱により加熱されて蒸発し、水蒸気となって混合器15に供給される。第1の水タンク16には、水道ライン21を通じて水道水が補給される。水道ライン21には、第3の開閉弁22が設けられる。
改質器4に設けられる燃焼器5は、改質器4における上記水蒸気改質反応及びシフト反応に必要な熱を供給するために改質器4を加熱する。燃焼器5には、燃料ライン11Aを通じ燃焼用ガスとして天然ガスが供給されると共に、燃焼エアライン23を通じて燃焼エアが供給される。燃焼器5には、点火用のイグナイタ24が設けられる。燃料ライン11Aには、第4の開閉弁25、第5の開閉弁26、第3のポンプ27及び第6の開閉弁28が設けられる。燃焼器5には、第3のポンプ27により圧送される天然ガスが、第6の開閉弁28を介して供給される。燃焼エアライン23には、第4のポンプ29、第7の開閉弁30及び第8の開閉弁31が設けられる。燃焼器5には、第4のポンプ29により圧送される燃焼エアが第7及び第8の開閉弁30,31を介してその一部あるいは全部(開閉弁31により切り替え)を改質器4の冷却に使用した後供給される。燃焼器5には、アノードライン32を通じて、アノード凝縮器7を通過したアノードオフガスが供給される。ここでは、アノードオフガス中の未反応の水素を燃焼器5にて燃焼させるようになっている。
燃料電池1は、燃料ガスと酸化ガスとの供給を受け、それら燃料ガス及び酸化ガスを電気化学反応させることにより発電する。燃料電池1により発電され、出力される直流電力は、インバータ44にて交流電力に変換され、補機45等へ供給される。
図2に燃料電池1を構成する単セル100を部分断面図により示す。この実施形態で、燃料電池1は、単セル100を複数積層してなる固体高分子型として構成される。単セル100は、電解質膜101と、この膜101を挟持するアノード102及びカソード103と、アノード102に燃料ガスを供給する燃料ガス供給路104を有するセパレータ105と、カソード103に酸化ガスを供給する酸化ガス供給路106を有するセパレータ107とから構成される。セパレータ105,107は、隣り合う単セル100との隔壁をなす。アノード102は、触媒電極102a及びガス拡散電極102bから構成される。カソード103は、同じく、触媒電極103a及びガス拡散電極103bから構成される。各単セル100のアノード102には、燃料ガスが供給され、各単セル100のカソード103には、FCエア(酸化ガス)が供給される。これにより、各単セル100では、燃料ガス中の水素と酸化ガス中の酸素との電気化学反応により発電が行われる。
改質ガス凝縮器6は、燃料電池1に供給される燃料ガスを冷却して凝縮するためのものであり、本発明の冷却手段に相当する。
アノード凝縮器7は、燃料電池1から排出されるアノードオフガス中に含まれる水蒸気を凝縮する。この凝縮器7は、アノードライン32を流れるアノードオフガスの凝縮潜熱を奪うことによって熱を回収し、水分を凝縮させて同ガスを低湿度化する。この凝縮器7にて集められた水分は、第2の水タンク33に回収され、更に第1の水タンク16に回収される。
改質器4から燃料電池1までのアノードライン32には、上記した改質ガス凝縮器6の他に、第9の開閉弁34が設けられる。燃料電池1から燃焼器5までのアノードライン32には、第10の開閉弁35と上記アノード凝縮器7が設けられる。また、アノードライン32において、改質ガス凝縮器6の上流側と、燃料電池1の下流側との間には、燃料電池1を迂回するFC迂回通路36が設けられる。この迂回通路36には、第11の開閉弁37が設けられる。
燃料電池1には、FCエアライン38を通じてFCエア(酸化ガス)が供給される。このエアライン38には、第5のポンプ39が設けられる。この燃料電池1より下流のカソードライン40には、上記したカソード凝縮器8が設けられる。FCエアライン38及びカソードライン40には、燃料電池1に供給される酸化ガスを加湿するための本発明の加湿手段としての加湿器41が設けられる。FCエアライン38には、加湿器41を迂回する加湿器迂回通路42が設けられる。これらFCエアライン38と加湿器迂回通路42には、一対をなす第12Aの開閉弁43A及び第12Bの開閉弁43Bが設けられる。これらの開閉弁43A,43Bにより、酸化ガスが加湿器41か加湿器迂回通路42かのどちらかを通るように切り替えることができる。また、両方の開閉弁43A,43Bを開くことにより、加湿量をコントロールすることもできる。ここで、一対の開閉弁43A,43Bの代わりに三方比例弁を用いてもよい。第5のポンプ39により圧送されるFCエアは、加湿器41にて加湿され、燃料電池1を通過した後、カソード凝縮器8を介して外部へ排出される。
カソード凝縮器8は、燃料電池1から排出されるカソードオフガスを凝縮する。この凝縮器8は、カソードライン40を流れるカソードオフガスの凝縮潜熱を奪うことにより熱を回収し、水分を凝縮させて同ガスを低湿度化する。この凝縮器8にて集められた水分は、第1の水タンク16に回収される。また、燃料電池1に供給されるFCエア中の余分な水分は、第1の水タンク16に回収される。
FC熱交換器9は、燃料電池1と湯循環通路51との間に設けられる。FC熱交換器9は、間接的に燃料電池1との間で熱交換を行う。燃焼排気ガス熱交換器10は、燃焼器5からの燃焼排気ガスの熱回収をすると共に排ガス温度を低下させるために熱交換を行う。燃料電池1とFC熱交換器9との間には、燃料電池1に冷却水を流すための本発明の冷却水通路としての冷却水循環通路46が設けられる。この冷却水循環通路46には、第6のポンプ47が設けられる。このポンプ47には、第3の水タンク48より水が補給される。この水としては、純水や不凍液(LLC)などが使用される。燃料電池1の入口側の冷却水循環通路46には、入口側水温センサ49が設けられる。燃料電池1の出口側の冷却水循環通路46には、出口側水温センサ50が設けられる。
貯湯槽3に対して設けられた湯循環通路51は、貯湯槽3に貯えられた湯を巡回させるためのものである。この湯循環通路51には、その上流側から順に、アノード凝縮器7、改質ガス凝縮器6、カソード凝縮器8、燃焼排ガス熱交換器10及びFC熱交換器9が直列に設けられる。順序は変更可能である。各機器7,6,8,10,9は、湯循環通路51に設けられることにより、同通路51との間で熱交換可能に設けられる。貯湯槽3とアノード凝縮器7との間の湯循環湯通路51には、その上流側から順に、第13の開閉弁52、第7のポンプ53、第1の三方比例弁54及びラジエータ55が設けられる。湯循環通路51には、ラジエータ55を迂回するラジエータ迂回通路56が設けられる。第1の三方比例弁54は、ラジエータ55の上流側にて、湯の流れをラジエータ55又はラジエータ迂回通路56へ切り替えると共に、その流量を可変とする。
湯循環通路51には、改質ガス凝縮器6を迂回する凝縮器迂回通路57が設けられる。改質ガス凝縮器6の上流側には、第2の三方比例弁58が設けられる。この三方比例弁58は、改質ガス凝縮器6の上流側にて、湯の流れを同凝縮器6又は凝縮器迂回通路57へ切り替えると共に、その流量を可変とする。
湯循環通路51には、FC熱交換器9を迂回する熱交換器迂回通路59が設けられる。FC熱交換器9の上流側には、第3の三方比例弁60が設けられる。この三方比例弁60は、FC熱交換器9の上流側にて、湯の流れを同熱交換器9又は熱交換器迂回通路59へ切り替えると共に、その流量を可変とする。
湯循環通路51には、貯湯槽3を迂回する貯湯槽迂回通路61が設けられる。この迂回通路61には、第14の開閉弁62が設けられる。貯湯槽3には、水道ライン63を通じて水道水が補給される。
この実施形態で、上記した第1〜第14の開閉弁14,20,22,25,26,28,30,31,34,35,37,43,52,62、第1〜第3の三方比例弁54,58,60及び第1〜第7のポンプ12,18,27,29,39,47,53は、それぞれ電動式の機器である。
この他、燃料電池システム2は、コントローラ70を備える。コントローラ70は、第1〜第14の開閉弁14,20,22,25,26,28,30,31,34,35,37,43,52,62、第1〜第3の三方比例弁54,58,60及び第1〜第7のポンプ12,18,27,29,39,47,53を駆動制御する。コントローラ70は、所定の制御プログラムを格納し、その制御プログラムに基づき燃料電池システム2の起動制御を実行する。
図3に、上記した燃料電池システム2の主要構成を概略的に示す。コントローラ70には、FCエア用の第5のポンプ39と、冷却水用の第6のポンプ47と、貯湯槽3の湯を循環させるための第7のポンプ53がそれぞれ接続される。また、コントローラ70には、入口側水温センサ49及び出口側水温センサ50がそれぞれ接続される。コントローラ70は、燃料電池システム2の低温始動時に、各水温センサ49,50の検出値等に基づき、各ポンプ39,47,53を制御する。
この実施形態で、コントローラ70は、燃料電池システム2の低温起動時に次のような制御方法を実行する。コントローラ70は、燃料電池システム2の低温起動時に、燃料電池1が自己発熱により暖機されるまで、従来の標準流量より過大な流量の酸化ガスを燃料電池1へ供給するようにしている。すなわち、図4において、発電開始時刻t1に燃料電池1が発電を開始すると、燃料電池1の発電電力は、図4(a)に示すように、所定電力P1まで増大する。この過程で、冷却水循環通路46を流れる冷却水(FC冷却水)も、燃料電池1の発電による自己発熱により暖められ、そのFC冷却水温度が上昇する。この実施形態では、FC冷却水温度が所定温度T1に上昇するまでFCエア流量を、以下のように制御する。
すなわち、従来では、図4(b),(c)に破線で示すように、発電開始時刻t1からFCエアストイキが一定となるように、発電電力に対してFCエア流量を増大させていた。これに対し、この実施形態では、図4(b),(c)に実線で示すように、FCエア流量を、従来のFCエア流量より過大な一定流量となるように(発電電力に対しエアストイキが変動するように)、燃料電池1の発電開始時刻t1から時刻t2まで制御する。コントローラ70は、燃料電池1の発電開始時刻t1と同時にこの制御を開始するために第5のポンプ39の吐出量を制御し、各水温センサ49,50の検出値が所定温度T1となる時刻t2にて、この制御を終了する。その後、コントローラ70は、最適運転条件となるようFCエア流量を所定流量にするために第5のポンプ39を制御する。
このように、燃料電池システム2の低温起動時に、FCエア流量を従来の標準流量よりも過大にすることにより、燃料電池1が自己発熱により暖機されるまで、標準流量より過大な流量の酸化ガスが燃料電池1へ供給される。従って、燃料電池1が暖機されるまでの間で、燃料電池1の内部における生成水の多くが酸化ガスの過大な流れにより燃料電池1の外部へ持ち去られる。このため、従来とは異なり、アノードオフガスを燃焼させ、FC冷却水を暖めるためのオフガス燃焼器等の特別な機器を設けることなく、低温起動時における燃料電池1のフラッディングを防止することができる。これにより、燃料電池システム2を簡易化・小型化することができ、同システム2の製造コストを低減することができる。また、上記のように燃料電池システム2に係る部品点数を削減できることから、システムとしての信頼性向上と安全性を図ることができる。
また、この実施形態で、コントローラ70は、図4における発電開始時刻t1から、燃料電池1の発電電力が所定電力P1に達するまで、第11の開閉弁37を開き、第9及び第10の開閉弁34,35を閉じることにより、図5に示すように、改質器4からの燃料ガス(改質ガス)の全部を、燃料電池1へは流さずに、FC迂回通路36に流した後、アノード凝縮器7を介して燃焼器5へ流すようにしている。更に、燃料電池1の発電電力が所定電力P1に達した後は、コントローラ70は、第11の開閉弁37を閉じ、第9及び第10の開閉弁9,10を開くことにより、図6に示すように、改質器4からの燃料ガス(改質ガス)の全部を、燃料電池1に流した後、アノード凝縮器7を介して燃焼器5へ流すようにしている。
従って、燃料電池システム2の低温起動時には、燃料電池1が自己発熱により暖機されるまで、改質器4からの燃料ガスの全部が燃焼器5へ流される。従って、燃料電池1が自己発熱により暖機されるまで、燃料ガスが燃焼器5での燃焼に供され、有効利用される。そして、燃料ガスが燃焼器5で燃焼される分だけ、改質器4に供給される燃焼用天然ガスを少なくできる。このため、燃料電池システム2の起動エネルギーを低減することができる。更に、燃料ガスを燃焼するためにオフガス燃焼器等の特別な機器やそれに関連した配管部品等を設ける必要がない。この意味でも、燃料電池システム2を簡易化・小型化することができ、同システム2の製造コストを低減させることができる。また、燃料電池システム2に係る部品点数を削減できることから、システムとしての信頼性向上と安全性を図ることができる。
[第2実施形態]
次に、本発明の「燃料電池システムの起動方法」を具体化した第2実施形態を図面を参照して詳細に説明する。ここでは、図3の概略構成図及び図7,8のタイムチャートを参照して説明する。
従来は、図3に示す燃料電池システムにおいて、図7に示すように、起動時刻t1から、各水温センサ49,50により検出される入口側水温Tin及び出口側水温Toutが所定温度に達する時刻t2までの間で、冷却水循環通路46を流れるFC冷却水流量を所定の一定流量としていた。これにより、出口側水温Toutと入口側水温Tinとの水温差ΔTが発電開始時刻t1から時刻t2までの間で、徐々に増加していた。
これに対し、この実施形態では、低温起動時には、燃料電池1が自己発熱により暖機されるまで、FC冷却水流量を従来の標準流量より減少させて冷却水循環通路46に流すようにしている。すなわち、図8に示すように、コントローラ70は、発電開始時刻t1から、従来のFC冷却水流量より少ない流量で、燃料電池1の発電電力に対してFC冷却水流量を徐々に増大させるために第6のポンプ47を制御する。これにより、図8(a),(b)に示すように、上記水温差ΔTを、従来より増大させている。FCエア(酸化ガス)の流れとFC冷却水の流れが同一方向に近い場合、燃料電池1の内部では、FCエアの温度がFC冷却水の温度に支配されるため、上記水温差ΔTは、燃料電池1に対するFCエアの入口側温度と出口側温度との差に近づく。このため、FCエアの出口側温度を上げることにより、燃料電池1の出口のFCエアの飽和水蒸気量が上昇し、持ち去り水量が増大し、燃料電池1の内部で生成水が凝縮し難くなる。この結果、低温起動時における燃料電池1のフラッディングを防止することができる。
[第3実施形態]
次に、本発明の「燃料電池システムの起動方法」を具体化した第3実施形態を図面を参照して詳細に説明する。この実施形態では、図3の概略構成図及び図7,9のタイムチャートを参照して説明する。
この実施形態では、前記第2実施形態の制御方法とは、FC冷却水流量の制御方法が異なる。すなわち、この実施形態では、図9に示すように、コントローラ70は、発電開始時刻t1から、従来のFC冷却水流量より少ない流量で、水温差ΔTが所定値ΔT1になるようにFC冷却水流量を増大させるために第6のポンプ47を制御する。これにより、図9(a),(b)に示すように、上記水温差ΔTを従来よりも増大させている。FCエア(酸化ガス)の流れとFC冷却水の流れが同一方向に近い場合、燃料電池1の内部では、FCエアの温度がFC冷却水の温度に支配されるため、上記水温差ΔTは、燃料電池1に対するFCエアの入口側温度と出口側温度との差に近づく。このため、FCエアの出口側温度を上げることにより、燃料電池1の出口のFCエアの飽和水蒸気量が上昇し、持ち去り水量が増大し、燃料電池1の内部で生成水が凝縮し難くなる。この結果、低温起動時における燃料電池1のフラッディングを防止することができる。
[第4実施形態]
次に、本発明の「燃料電池システムの起動方法」を具体化した第4実施形態を図面を参照して詳細に説明する。この実施形態では、図3の概略構成図、図10のマップ及び図11のタイムチャートを参照して説明する。
この実施形態では、前記第2及び第3の実施形態の制御方法とは、FC冷却水流量の制御方法が異なる。すなわち、この実施形態で、コントローラ70は、図10に示すような入口側水温Tinと水温差ΔTとの関係を予め定めた関数データ(マップ)を格納している。そして、コントローラ70は、図11に示すように、発電開始時刻t1から、従来のFC冷却水流量より少ない流量で、入口側水温Tinと水温差ΔTとの関係が、図10のマップの関係となるように、第6のポンプ47を制御することによりFC冷却水流量を増大させる。これにより、図11(a),(b)に示すように、水温差ΔTを従来よりも増大させる。FCエア(酸化ガス)の流れとFC冷却水の流れが同一方向に近い場合、燃料電池1の内部では、FCエアの温度がFC冷却水の温度に支配されるため、上記水温差ΔTは、燃料電池1に対するFCエアの入口側温度と出口側温度との差に近づく。このため、FCエアの出口側温度を上げることにより、燃料電池1の出口のFCエアの飽和水蒸気量が上昇し、持ち去り水量が増大し、燃料電池1の内部で生成水が凝縮し難くなる。この結果、低温起動時における燃料電池1のフラッディングを防止することができる。
[第5実施形態]
次に、本発明の「燃料電池システムの起動方法」を具体化した第5実施形態を図面を参照して詳細に説明する。この実施形態では、図3の概略構成図及び図12のタイムチャートを参照して説明する。
この実施形態では、低温起動時に、燃料電池1が自己発熱により暖機されるまで、燃料電池1に供給される燃料ガスを改質ガス凝縮器6により冷却するようにしている。すなわち、図12に示すように、コントローラ70は、発電開始時刻t1から、第7のポンプ53の回転数を最大に制御することにより、湯循環通路51における循環湯流量を大流量Q1とし、改質ガス凝縮器6を通過する燃料ガス(改質ガス)を最大限に冷却している。コントローラ70は、各水温センサ49,50により検出される各水温Tin,Tout(FC冷却水温度)が、所定温度に達する時刻t2に、第7のポンプ53に係る回転数の最大制御を停止する。これにより、図12(c)に示すように、発電開始時刻t1から時刻t2までの間で、燃料電池1の入口側における燃料ガスの温度(アノード入口温度)を低下させている。このアノード入口温度の低下に伴い、改質ガス凝縮器6にて燃料ガス中の水蒸気が凝縮して燃料ガス中の水分が減少し、燃料電池1に投入される水蒸気量が減少する。この結果、燃料電池1の内部で凝縮水を減少させることができ、低温起動時における燃料電池1のフラッディングを防止することができる。
コントローラ70は、FC冷却水温度が所定温度に達する時刻t2以降には、第7のポンプ53により循環湯流量を調整することにより、図12(c)に示すように、アノード入口温度を所定温度T3に制御する。これにより、燃料電池1を最適湿潤条件で運転することができる。
[第6実施形態]
次に、本発明の「燃料電池システムの起動方法」を具体化した第6実施形態を図面を参照して詳細に説明する。この実施形態では、図13の概略構成図及び図14のタイムチャートを参照して説明する。
図13に示すように、この実施形態では、一対をなす第12Aの開閉弁43A及び第12Bの開閉弁43Bが、FCエアライン38と加湿器迂回通路42に設けられる。そして、低温起動時に、燃料電池1が自己発熱により暖機されるまで、燃料電池1に供給される酸化ガスにつき加湿器41による加湿を停止するようにしている。すなわち、図14に示すように、コントローラ70は、発電開始時刻t1には、一方の開閉弁43Aを閉じ、他方の開閉弁43Bを開く。これにより、FCエア(酸化ガス)を加湿器41を迂回して加湿器迂回通路42へ流し、燃料電池1に加湿されないFCエアを供給する。一方、コントローラ70は、各水温センサ49,50により検出される各水温Tin,Tout(FC冷却水温度)が所定温度に達する時刻t2には、一方の開閉弁43Aを開き、他方の開閉弁43Bを閉じる。これにより、FCエアを加湿器41へ流し、燃料電池1へ加湿されたFCエアを供給する。従って、図14(c)に示すように、低温起動時には、燃料電池1の内部におけるカソード加湿量が低減する。この結果、燃料電池1の内部で凝縮水を減少させることができ、低温起動時における燃料電池1のフラッディングを防止することができる。また、所定温度に達した以降は、FCエア(酸化ガス)の加湿量をコントロールするために一対の開閉弁34A,43Bの両方を開く場合があってもよい。
尚、この発明は前記各実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で以下のように実施することもできる。
(1)前記第1実施形態では、燃料電池システム2の低温起動時におけるFCエア流量を、暖機完了後の運転時における流量と同じ一定量に制御している。これに対し、燃料電池システム2の低温起動時に、FCエア流量を、暖機完了後のFCエア流量よりも多くなるように増大させてもよい。これによれば、燃料電池1の内部から酸化ガスの流れにより外部へ持ち去られる生成水が増えることになり、より確実にフラッディングを防止することができる。
(2)前記第6実施形態では、一対の開閉弁43A,43Bの開閉を切り替えることにより、FCエアの流れを加湿器41と加湿器迂回通路42とへ切り替えるようにした。これに対し、FCエアラインと加湿器迂回通路との分岐部分に三方弁を設け、その三方弁によりFCエアの流れを加湿器と加湿器迂回通路とへ切り替えるようにしてもよい。また、吸湿材を用いたハニカムロータ式の加湿器を用いた場合は、加湿器迂回通路42及び開閉弁43A,43Bを省略し、その代わりに、加湿器のロータ回転数をゼロにすることにより、FCエアに対する加湿を停止するようにしてもよい。
(3)前記第1実施形態では、燃料電池システム2の発電開始時刻t1からは、図5に示すように、改質器4からの燃料ガス(改質ガス)の全部を、燃料電池1に流さずに、FC迂回通路36に流す。そして、燃料電池1の発電電力が所定電力P1に達した後は、図6に示すように、改質器4からの燃料ガス(改質ガス)の全部を、燃料電池1に流している。このような起動方法を、前記第2〜第6の実施形態において実施してもよい。
燃料電池コージェネレーションシステムを示す概略構成図。 燃料電池の単セルを示す部分断面図。 燃料電池システムの主要構成を示す概略図。 FCエア(酸化ガス)の制御方法等を示すタイムチャート。 燃料電池システムの部分構成を示す概略図。 燃料電池システムの部分構成を示す概略図。 従来のFC冷却水流量の制御方法等を示すタイムチャート。 FC冷却水流量の制御方法等を示すタイムチャート。 FC冷却水流量の制御方法等を示すタイムチャート。 入口側水温と水温差との関係を示すマップ。 FC冷却水流量の制御方法等を示すタイムチャート。 アノード入口温度等の制御方法を示すタイムチャート。 燃料電池システムの主要構成を示す概略図。 カソード加湿量等の制御方法を示すタイムチャート。
符号の説明
1 燃料電池
2 燃料電池システム
3 貯湯槽
4 改質器
5 燃焼器
6 改質ガス凝縮器(冷却手段)
41 加湿器(加湿手段)
46 冷却水循環通路(冷却水通路)

Claims (1)

  1. 水素リッチな燃料ガスと、酸化ガスとの供給を受け、それら燃料ガス及び酸化ガスを電気化学反応させることにより発電する燃料電池を備えた燃料電池システムを起動させる起動方法であって、
    前記燃料電池の内部で生成水に凝縮のおそれがある低温起動時に、前記燃料電池が自己発熱により暖機されるまで、前記燃料電池の発電電力が増加するにつれてエアストイキが減少するように従来の標準流量より過大な流量の酸化ガスを前記燃料電池へ供給することを特徴とする燃料電池システムの起動方法。
JP2003347002A 2003-10-06 2003-10-06 燃料電池システムの起動方法 Expired - Fee Related JP4500032B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347002A JP4500032B2 (ja) 2003-10-06 2003-10-06 燃料電池システムの起動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347002A JP4500032B2 (ja) 2003-10-06 2003-10-06 燃料電池システムの起動方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008112450A Division JP2008210813A (ja) 2008-04-23 2008-04-23 燃料電池システムの起動方法

Publications (2)

Publication Number Publication Date
JP2005116257A JP2005116257A (ja) 2005-04-28
JP4500032B2 true JP4500032B2 (ja) 2010-07-14

Family

ID=34539742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347002A Expired - Fee Related JP4500032B2 (ja) 2003-10-06 2003-10-06 燃料電池システムの起動方法

Country Status (1)

Country Link
JP (1) JP4500032B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101024B2 (ja) 2006-02-09 2012-12-19 本田技研工業株式会社 燃料電池システムおよび燃料電池の制御方法
JP5407132B2 (ja) * 2007-10-15 2014-02-05 日産自動車株式会社 燃料電池システムの起動制御装置及び起動制御方法
JP5262183B2 (ja) * 2008-02-28 2013-08-14 トヨタ自動車株式会社 燃料電池システム
KR100952838B1 (ko) * 2008-04-15 2010-04-15 삼성에스디아이 주식회사 연료전지 시스템 및 그 제어 방법
JP5600893B2 (ja) * 2009-06-18 2014-10-08 トヨタ自動車株式会社 燃料電池システム
JP2020077494A (ja) * 2018-11-06 2020-05-21 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP2005116257A (ja) 2005-04-28

Similar Documents

Publication Publication Date Title
EP2215679B1 (en) Fuel cell system
US6833209B2 (en) Fuel-cell co-generation system, of electrical energy and hot water
JP5320617B2 (ja) 燃料電池システムの運転制御方法
JP2889807B2 (ja) 燃料電池システム
JP4575693B2 (ja) 燃料電池システム
JP4500032B2 (ja) 燃料電池システムの起動方法
JP2006318750A (ja) 燃料電池システム
JP4845899B2 (ja) 燃料電池システム
US20230155148A1 (en) Fuel cell system
JP2005116256A (ja) 燃料電池コージェネレーションシステム
JP4854953B2 (ja) 燃料電池システムと燃料電池システムの低温始動方法
JP4106356B2 (ja) 燃料電池システム
JP4087840B2 (ja) 燃料電池システム
JP6226922B2 (ja) 燃料電池コージェネレーションシステムの起動方法及びその運転方法
JP2008210813A (ja) 燃料電池システムの起動方法
JP2004103457A (ja) 燃料電池システム
JP4886238B2 (ja) 燃料電池ユニット
JP2008269930A (ja) 燃料電池システム
JP5171103B2 (ja) 燃料電池コージェネレーション装置
JP2007103034A (ja) 燃料電池システム及びその起動方法
JP2008293756A (ja) 燃料電池システム及びその運転方法
JP2005116310A (ja) 燃料電池システム
JP2010161080A (ja) 燃料電池システム
JP2010129454A (ja) 燃料電池ユニット
WO2021059351A1 (ja) 燃料電池システム及び燃料電池システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080703

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080808

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4500032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees