JP2004058001A - 排気ガス浄化用触媒及びその製造方法 - Google Patents

排気ガス浄化用触媒及びその製造方法 Download PDF

Info

Publication number
JP2004058001A
JP2004058001A JP2002223062A JP2002223062A JP2004058001A JP 2004058001 A JP2004058001 A JP 2004058001A JP 2002223062 A JP2002223062 A JP 2002223062A JP 2002223062 A JP2002223062 A JP 2002223062A JP 2004058001 A JP2004058001 A JP 2004058001A
Authority
JP
Japan
Prior art keywords
exhaust gas
purifying catalyst
gas purifying
oxide powder
cerium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002223062A
Other languages
English (en)
Inventor
Sumiaki Hiramoto
平本 純章
Shinji Yamamoto
山本 伸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002223062A priority Critical patent/JP2004058001A/ja
Publication of JP2004058001A publication Critical patent/JP2004058001A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】Siの貴金属への付着を抑制し、貴金属のシンタリングによる浄化触媒の機能低下を防止して、特にコールドHCを効率良く浄化する排気ガス浄化用触媒及びその製造方法を提供すること。
【解決手段】担体上に、ゼオライトを含むHC吸着材層と浄化触媒成分層とをこの順番に積層して成り、触媒1L当たりの酸素吸蔵量とゼオライト中のケイ素量とのモル比O/Siが、O/Si≧1.0×10−3で表される排気ガス浄化用触媒である。
担体にゼオライトを含むHC吸着材を被覆してHC吸着材層を形成し、セリウム酸化物粉末を900℃で4時間処理し、これに白金、ロジウム及びパラジウムなどの貴金属を担持させたものを混和した浄化触媒成分を該HC吸着材層上に被覆して浄化触媒成分層を形成する排気ガス浄化用触媒の製造方法である。
【選択図】    なし

Description

【0001】
【発明の属する技術分野】
本発明は、排気ガス浄化用触媒及びその製造方法に係り、更に詳細には、自動車(ガソリン車、ディーゼル車)及びボイラーなどの内燃機関から排出される排気ガス中の炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOx)を浄化する排気ガス浄化用触媒及びその製造方法に関し、特にエンジン始動直後の排気ガス浄化に着目したものである。
【0002】
【従来の技術】
近年、内燃機関のエンジン始動時の低温域で大量に排出される炭化水素(以下、「コールドHC」と略す)の浄化を目的に、HC吸着材にゼオライトを用いたHC吸着型三元触媒(HC吸着機能付き三元触媒)が開発されている。該触媒は、三元触媒が活性化しないエンジン始動時の低温域において、大量に排出されるHCを一時的に吸着、保持し、次に排気ガス温度上昇により三元触媒が活性化した時に、HCを徐々に脱離し、しかも浄化するものである。
【0003】
HC吸着材としては、例えば、特開平2−56247号公報に、ゼオライトを主成分とする第一層をハニカム担体上に形成した後、更にその上に、Pt、Pd及びRh等の貴金属を主成分とする第二層を設けた構造の排気ガス浄化用触媒が提案されている。
また、かかるHC吸着材を用いた発明としては、例えば、特開平7−96183号公報には、ゼオライトと浄化層の間に多孔質バリア層を配置することにより、ゼオライト上に配置されたPd含有浄化層が高温下に曝されても劣化しないようにすることが提案されている。更に、特開平9−38500号公報には、ハニカム担体上にHC吸着材層を形成した後に、適量の貴金属化合物と酸化ネオジウムからなる触媒活性種を担持させることにより、ゼオライトの吸着機能を維持し、浄化層の劣化を抑制することが提案されている。
【0004】
【発明が解決しようとする課題】
HC吸着材を用いた自動車用触媒としては、HC吸着保持効率の観点から、吸着に最適な細孔径と複雑な立体構造を有するゼオライトを用いるのが一般的となっている。
【0005】
しかし、活性種としてPt、Pd及びRhなどの貴金属成分を含有する浄化触媒層と、SiとAlを主成分とするゼオライトを含有する吸着材層が直接接触し、長時間高温に曝されると、貴金属の粒成長(シンタリング)が起こりやすく、触媒層の浄化機能が著しく低下するという問題点があった。これは、コート層界面近傍で吸着材層からのSiが貴金属に付着した場合は、貴金属自体がメタル化し易くなる影響で、使用環境下での雰囲気変動中に貴金属粒子同士の会合頻度が高まり、シンタリングが促進され易いためと推測される。
【0006】
本発明は、このような従来技術に鑑みてなされたものであり、その目的とするところは、Siの貴金属への付着を抑制し、貴金属のシンタリングによる浄化触媒の機能低下を防止して、特にコールドHCを効率良く浄化する排気ガス浄化用触媒及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、触媒が吸蔵できる酸素量及び触媒が含有するSi量に一定の関係を満足させることにより、上記課題が解決できることを見出し、本発明を完成するに至った。
【0008】
【発明の実施の形態】
以下、本発明の排気ガス浄化用触媒について詳細に説明する。なお、本明細書において「%」は、特記しない限り質量百分率を示す。
【0009】
上述のように、本発明の排気ガス浄化用触媒は、担体にHC吸着材層と浄化触媒成分層を積層して成る。また、HC吸着材層はゼオライトを含み、触媒1L当たりの酸素吸蔵量(以下「OSC量」と略す)とゼオライト中のケイ素量とのモル比O/Siが、次式
O/Si≧1.0×10−3
を満たすようにする。
これより、規定量のOSC量によるRedox効果(酸化還元効果)でSi元素の付着が緩和され、貴金属のシンタリングが防止される。また、浄化触媒層の耐久性が向上する。シンタリング抑制効果の観点からは、O/Si比が1.5×10−3以上であるのがより好ましい。
なお、OSC量は、加熱前の触媒の質量とH還元雰囲気下で室温から800℃まで昇温して酸素を放出したときの当該触媒の質量との差から換算できる。
【0010】
ここで、上記浄化触媒成分層は、セリウム(Ce)酸化物粉末を含み、このセリウム酸化物粉末は1g当たり2×10−4mol以上の酸素を吸蔵しうることが好適である。これは、酸素吸蔵材料の主成分としてCe酸化物を使用すれば、Ce酸化物自体のOSC量を上記範囲に確保してSi元素の貴金属への付着及び貴金属のシンタリングを防止できるためである。Ce酸化物のOSC量は1g当たり3.5×10−4molであることがより好ましく、このときは浄化触媒成分層当たりのCe酸化物使用量に対する耐久性向上効果が充分となり、効果的である。
【0011】
また、上記Ce酸化物は、900℃で4時間処理したときのBET比表面積が10m−2/g以上であることが好適である。これより、貴金属とCe酸化物との接触面積が増大し、シンタリング抑制効果を効率良く発現させ得る。特にBET比表面積が20m−2/g以上であることがより好ましい。
【0012】
更に、上記Ce酸化物は、ジルコニウム(Zr)、イットリウム(Y)、プラセオジム(Pr)、ランタン(La)、ネオジム(Nd)、テルビウム(Tb)、サマリウム(Sm)又はイッテルビウム(Yb)、及びこれらの任意の組合せに係る元素を、1〜50原子%且つ固溶状態で含むことが好適である。これより、Ce酸化物の熱的安定性が向上するとともに規定したOSC量の確保が可能となる。また、固溶状態を良好に得るためには、Ce前駆体と上記添加元素の前駆体を混合溶液としてpH調整により複合状態の沈殿物を得る共沈法により製造するのが望ましい。
【0013】
また、上記浄化触媒成分層はジルコニウム(Zr)酸化物を更に含有し、このZr酸化物がCe、Nd、La、Pr又はY、及びこれらの任意の組合せに係る元素を金属換算で1〜50原子%、より好ましくは15〜35原子%含むことが好適である。Zr酸化物はCe酸化物と同様に、浄化触媒層の貴金属表面酸化状態を調節する効果を有し、HC浄化を補助し活性を促進させうるからである。
【0014】
更に、上記浄化触媒成分層に、アルカリ金属及び/又はアルカリ土類金属を更に含有することが好適である。アルカリ金属及びアルカリ土類金属の電子供与性により金属表面状態を変化させ、浄化に適した表面が得られ、またシンタリング抑制効果も付加されるため、耐久後活性を向上させうる。上記アルカリ金属及び/又はアルカリ土類金属としては、代表的には、セシウム(Cs)、カリウム(K)又はナトリウム(Na)、及びこれらの任意の組合せに係る元素が例示でき、特にCsが望ましい。なお、アルカリ金属やアルカリ土類金属は、炭酸塩、酸化物又は水酸化物などの形態で使用できる。
【0015】
上記HC吸着材層は、Si/2Al比が10〜1000のH型βゼオライトを含有することが好適である。また、H型βゼオライトのSi/2Al比は20〜300であることがより好ましく、35〜150であることが特に好ましい。これより、広い温度範囲のHCが吸着できる。また、耐熱性が高いので、吸着保持性能の持続性、吸着材層の耐久性が良好になりうる。
【0016】
次に、本発明の排気ガス浄化用触媒の製造方法について詳細に説明する。
この製造方法では、まず担体にゼオライトを含むHC吸着材を被覆してHC吸着材層を形成する。次いで、セリウム酸化物粉末に白金(Pt)、ロジウム(Rh)又はパラジウム(Pd)、及びこれらの任意の組合せに係る貴金属を担持させたものを混和した浄化触媒成分を該HC吸着材層上に被覆して浄化触媒成分層を形成する。これより、Siの貴金属への付着及び貴金属のシンタリングを抑制しうる排気ガス浄化用触媒が得られる。
【0017】
なお、本発明の排気ガス浄化用触媒に用いられる担体としては、公知の触媒担体を構成する材料から適宜選択することができる。特に一体構造型担体を使用するのが望ましい。例えば、代表的なセラミックスなどのコージェライト質の材料を用いたハニカム担体や、フェライト系ステンレス等の金属材料を用いたハニカム担体が挙げられる。なお、コージェライト製担体を用いるときは、低温からの浄化性能の発現を考慮して、低熱容量となる100μm以下の薄壁化担体として使用するのが望ましい。
【0018】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0019】
(実施例1)
Si/2Al=25のβ−ゼオライト粉末160gとシリカゾル(日産化学製ST−OS)を200g(固形分濃度20%)と純水300gをアルミナ製ボールミルポットに投入し、60分間粉砕してスラリー液を得た。このときの平均粒子径は4〜6μmであった。このスラリー液をコーディエライト製モノリス担体(400セル/6ミル、触媒容量0.12L)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて、100℃の空気流通下30分間乾燥した後、400℃で1時間焼成した。このときの塗布量としては、焼成後に200g/Lになるまでコーティング作業を繰り返し、触媒−aを得た。
【0020】
Ce3mol%を含むアルミナ粉末(Al:97mol%)に、硝酸パラジウム水溶液を含浸或いは高速撹拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Pd担持アルミナ粉末(粉末a)を得た。この粉末aのPd濃度は3.0%であった。
Zr30mol%含有セリウム酸化物粉末(Ce70mol%)に、硝酸パラジウム水溶液を含浸或いは高速撹拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Pd担持セリウム酸化物粉末(粉末b)を得た。この粉末bのPd濃度は2.0%であった。なお、このZr30mol%含有セリウム酸化物粉末を900℃で4時間処理した時のBET表面積は28m−2/gである。
上記Pd担持アルミナ粉末(粉末a)250g、Pd担持セリウム酸化物粉末(粉末b)125g、硝酸酸性アルミナゾル250g(ベーマイトアルミナ10%に10%の硝酸を添加することによって得られたゾルでAl換算で25g)を純水175gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このときの平均粒子径は3〜5μmであった。このスラリー液を上記コート触媒−aに付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成し、コート層重量80.0g/Lを塗布し、触媒−bを得た。このときの触媒の貴金属担持量は、Pd2.0g/Lであった。
【0021】
Zr3mol%を含むアルミナ粉末(Al:97mol%)に硝酸ロジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Rh担持アルミナ粉末(粉末c)を得た。この粉末cのRh濃度は1.5%であった。
上記粉末c330gと、Ce20mol%含有ジルコニウム酸化物粉末(Zr80mol%)を100g、硝酸酸性アルミナゾル200g(ベーマイトアルミナ10%に10%の硝酸を添加することによって得られたゾルでAl換算で20g)を純水370gを磁性ボールミルに投入し、混合・粉砕してスラリー液を得た。このときの平均粒子径は4〜5μmであった。このスラリー液を先ほどの触媒−bに更に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。Rhスラリー45g/L、コート層総重量325g/L−担体の排気ガス浄化用触媒(触媒−d)を得た。このときのRhの担持量は0.5g/L(Pd/Rh比は5/1)であった。
【0022】
(実施例2)
Zr30mol%含有セリウム酸化物粉末(Ce70mol%)から、Pr20mol%含有セリウム酸化物粉末(Ce80mol%)に変更したこと以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒(触媒−e)を得た。なお、このPr20mol%含有セリウム酸化物粉末を900℃で4時間処理した時のBET表面積は12m−2/gである。
【0023】
(実施例3)
Zr30mol%含有セリウム酸化物粉末(Ce70mol%)から、Y10mol%含有セリウム酸化物粉末(Ce90mol%)に変更したこと以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒(触媒−f)を得た。なお、このY10mol%含有セリウム酸化物粉末を900℃で4時間処理した時のBET表面積は24m−2/gである。
【0024】
(実施例4)
Zr30mol%含有セリウム酸化物粉末(Ce70mol%)から、La40mol%含有セリウム酸化物粉末(Ce60mol%)に変更したこと以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒(触媒−g)を得た。なお、このLa40mol%含有セリウム酸化物粉末を900℃で4時間処理した時のBET表面積は32m−2/gである。
【0025】
(実施例5)
Zr30mol%含有セリウム酸化物粉末(Ce70mol%)から、Tb30mol%含有セリウム酸化物粉末(Ce70mol%)に変更したこと以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒(触媒−i)を得た。なお、このTb30mol%含有セリウム酸化物粉末を900℃で4時間処理した時のBET表面積が16m−2/gである。
【0026】
(実施例6)
Zr30mol%含有セリウム酸化物粉末(Ce70mol%)から、Zr15mol%、Nd15mol%含有セリウム酸化物粉末(Ce70mol%)に変更したこと以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒(触媒−j)を得た。なお、このZr15mol%、Nd15mol%含有セリウム酸化物粉末を900℃で4時間処理した時のBET表面積は31m−2/gである。
【0027】
(実施例7)
Zr30mol%含有セリウム酸化物粉末(Ce70mol%)から、Zr15mol%、Pr15mol%含有セリウム酸化物粉末(Ce70mol%)に変更したこと以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒(触媒−k)を得た。なお、このZr15mol%、Pr15mol%含有セリウム酸化物粉末を900℃で4時間処理した時のBET表面積が18m−2/gである。
【0028】
(実施例8)
Zr30mol%含有セリウム酸化物粉末(Ce70mol%)から、Y15mol%、Pr15mol%含有セリウム酸化物粉末(Ce70mol%)に変更したこと以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒(触媒−l)を得た。なお、このY15mol%、Pr15mol%含有セリウム酸化物粉末を900℃で4時間処理した時のBET表面積が21m−2/gである。
【0029】
(比較例1)
Pd担持セリウム酸化物粉末を用いず、セリウム酸化物粉末に担持したPd量をCeアルミナに追加したこと以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒(触媒−m)を得た。
【0030】
(比較例2)
Zr30mol%含有セリウム酸化物粉末(Ce70mol%)から、活性セリウム酸化物粉末(Ce100mol%)に変更したこと以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒(触媒−n)を得た。なお、この活性セリウム酸化物粉末を900℃で4時間処理した時のBET表面積が8m−2/gである。
【0031】
<評価方法>
下記耐久条件にて各触媒を急速劣化させ、そのサンプルをモデルガスにより評価し、HC浄化性能を比較した。
【0032】
・耐久条件
エンジン排気量    3000cc
燃料         ガソリン(日石ダッシュ)
触媒入口ガス温度   800℃
耐久時間       30時間
【0033】
・評価条件
評価温度 :350℃
NO :1000ppm
CO :0.5%
2  :0.4%
6 :500ppm
 :10%
CO2 :14%
残部N
サンプル容量 :40cc
サンプルガス流量 :50L/min
【0034】
【表1】
Figure 2004058001
【0035】
【表2】
Figure 2004058001
【0036】
表1及び表2に示すように、実施例1〜8で得られた排気ガス浄化用触媒は本発明の好適形態であり、優れたHC浄化率を示すことがわかる。これに対して、比較例1及び2で得られた触媒はO/Si比が本発明の要件を満たさないため、HC浄化率が低いことがわかる。
【0037】
【発明の効果】
以上説明したように、本発明によれば、触媒が吸蔵できる酸素量及び触媒が含有するSi量に一定の関係を満足させることとしたため、Siの貴金属への付着を抑制し、貴金属のシンタリングによる浄化触媒の機能低下を防止して、特にコールドHCを効率良く浄化することができる。

Claims (9)

  1. 担体上に、ゼオライトを含むHC吸着材層と浄化触媒成分層とをこの順番に積層して成る排気ガス浄化用触媒であって、
    触媒1L当たりの酸素吸蔵量とゼオライト中のケイ素量とのモル比O/Siが、次式
    O/Si≧1.0×10−3
    で表されることを特徴とする排気ガス浄化用触媒。
  2. 上記浄化触媒成分層が、1g当たり2×10−4mol以上の酸素を吸蔵しうるセリウム酸化物粉末を含むことを特徴とする請求項1に記載の排気ガス浄化用触媒。
  3. 上記セリウム酸化物粉末を900℃で4時間処理したときのBET比表面積が10m−2/g以上であることを特徴とする請求項2に記載の排気ガス浄化用触媒。
  4. 上記セリウム酸化物粉末が、ジルコニウム、イットリウム、プラセオジム、ランタン、ネオジム、テルビウム、サマリウム及びイッテルビウムから成る群より選ばれた少なくとも1種の元素を、1〜50原子%且つ固溶状態で含むことを特徴とする請求項1〜3のいずれか1つの項に記載の排気ガス浄化用触媒。
  5. 上記浄化触媒成分層が、ジルコニウム酸化物を更に含有し、このジルコニウム酸化物にセリウム、ネオジム、ランタン、プラセオジム及びイットリウムから成る群より選ばれた少なくとも1種の元素を金属換算で1〜50原子%含むことを特徴とする請求項1〜4のいずれか1つの項に記載の排気ガス浄化用触媒。
  6. 上記浄化触媒成分層に、アルカリ金属及び/又はアルカリ土類金属を更に含有したことを特徴とする請求項1〜5のいずれか1つの項に記載の排気ガス浄化用触媒。
  7. 上記HC吸着材層が、Si/2Al比が10〜1000のH型βゼオライトを含有することを特徴とする請求項1〜6のいずれか1つの項に記載の排気ガス浄化用触媒。
  8. 上記酸素吸蔵量が、加熱前の触媒の質量とH還元雰囲気下で室温から800℃まで昇温して酸素を放出したときの当該触媒の質量との差であることを特徴とする請求項1〜7のいずれか1つの項に記載の排気ガス浄化用触媒。
  9. 請求項2〜8のいずれか1つの項に記載の排気ガス浄化用触媒を製造する方法であって、
    担体にゼオライトを含むHC吸着材を被覆してHC吸着材層を形成し、
    セリウム酸化物粉末に白金、ロジウム及びパラジウムから成る群より選ばれた少なくとも1種の貴金属を担持させたものを混和した浄化触媒成分を該HC吸着材層上に被覆して浄化触媒成分層を形成することを特徴とする排気ガス浄化用触媒の製造方法。
JP2002223062A 2002-07-31 2002-07-31 排気ガス浄化用触媒及びその製造方法 Pending JP2004058001A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223062A JP2004058001A (ja) 2002-07-31 2002-07-31 排気ガス浄化用触媒及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223062A JP2004058001A (ja) 2002-07-31 2002-07-31 排気ガス浄化用触媒及びその製造方法

Publications (1)

Publication Number Publication Date
JP2004058001A true JP2004058001A (ja) 2004-02-26

Family

ID=31942933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223062A Pending JP2004058001A (ja) 2002-07-31 2002-07-31 排気ガス浄化用触媒及びその製造方法

Country Status (1)

Country Link
JP (1) JP2004058001A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221091A (ja) * 2009-03-19 2010-10-07 Dowa Electronics Materials Co Ltd 排ガス浄化触媒用複合酸化物および排ガス浄化触媒用塗料とディーゼル排ガス浄化用フィルタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221091A (ja) * 2009-03-19 2010-10-07 Dowa Electronics Materials Co Ltd 排ガス浄化触媒用複合酸化物および排ガス浄化触媒用塗料とディーゼル排ガス浄化用フィルタ

Similar Documents

Publication Publication Date Title
JP3855266B2 (ja) 排気ガス浄化用触媒
JP3724708B2 (ja) 排気ガス浄化用触媒
JP5322526B2 (ja) 自動車から排出される排気ガスを浄化するためのハニカム構造型触媒及びその製造方法、並びに、その触媒を使用した排気ガス浄化方法
JP4648089B2 (ja) 排ガス浄化用触媒
US20080045404A1 (en) Catalyst containing little or no rhodium for purifying exhaust gases of internal combustion engine
CN102341174A (zh) 废气净化用催化剂
EP2692436B1 (en) Exhaust gas purification catalyst
WO2013136821A1 (ja) 排気ガス浄化用触媒組成物および自動車用排気ガス浄化用触媒
WO2017203863A1 (ja) ガソリンエンジン排気ガスの浄化用三元触媒
JP3965676B2 (ja) 排ガス浄化用触媒及び排ガス浄化システム
JP4923412B2 (ja) 排ガス浄化触媒
JP2011038405A (ja) 内燃機関の排気浄化装置
JP3640130B2 (ja) 排ガス浄化用触媒及びその製造方法
JP4412299B2 (ja) 排ガス浄化触媒及びその製造方法
JP2004114014A (ja) 排気ガス浄化用触媒及びその製造方法
JP2004275814A (ja) 排ガス浄化触媒、その製造方法及び排ガス浄化装置
JP5328133B2 (ja) 排ガス浄化用触媒
JP2003135970A (ja) 排気ガス浄化用触媒
JP2004058001A (ja) 排気ガス浄化用触媒及びその製造方法
JP2004209324A (ja) 排気ガス浄化触媒
JP2004230241A (ja) 排気ガス浄化触媒及びその製造方法
WO2022209154A1 (ja) 排ガス浄化用触媒及び排ガス浄化システム
JP4106762B2 (ja) 排気ガス浄化用触媒装置及び浄化方法
JP7228451B2 (ja) 自動車用排ガス浄化触媒
JP3743600B2 (ja) 排ガス浄化用触媒の製造方法