JP2004045840A - 光走査方法および装置および画像形成装置 - Google Patents

光走査方法および装置および画像形成装置 Download PDF

Info

Publication number
JP2004045840A
JP2004045840A JP2002204164A JP2002204164A JP2004045840A JP 2004045840 A JP2004045840 A JP 2004045840A JP 2002204164 A JP2002204164 A JP 2002204164A JP 2002204164 A JP2002204164 A JP 2002204164A JP 2004045840 A JP2004045840 A JP 2004045840A
Authority
JP
Japan
Prior art keywords
light
optical scanning
scanning device
optical
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002204164A
Other languages
English (en)
Inventor
Migaku Amada
天田  琢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002204164A priority Critical patent/JP2004045840A/ja
Priority to CA 2435001 priority patent/CA2435001C/en
Priority to US10/617,033 priority patent/US7145589B2/en
Publication of JP2004045840A publication Critical patent/JP2004045840A/ja
Priority to US11/566,591 priority patent/US7505060B2/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】マルチビーム走査方式やタンデム方式の画像形成装置において、走査線ピッチや走査線の曲がり・傾きを補正するとともに、この補正に伴う光スポットの光強度の変化を有効に補正する。
【解決手段】被走査面16上における光スポット位置を、光スポット位置調整手段40a、40bにより調整可能とし、光スポット位置調整手段による光スポット位置の調整に伴う光スポットの光強度変化を、光パワー補正手段11a、11bにより補正する。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
この発明は、光走査方法および装置および画像形成装置に関する。
【0002】
【従来の技術】
光走査装置は、光プリンタ、デジタル複写機、ファクシミリ、光プロッタ等の画像形成装置の書き込み系として広く実施されている。光走査の方式も、従来からのシングルビーム走査方式に留まらず、同一の被走査面を同時に複数の光スポットで光走査するマルチビーム走査方式が実現されつつある。
【0003】
被走査面となる感光性媒体も単一のもののみならず、ドラム状あるいはベルト状に形成された光導電性の感光体を、トナー画像転写媒体の経路にそって配列され、各感光体に形成されるトナー画像を共通の記録シートに転写して合成的に画像を得るタンデム式の画像形成装置が、カラー画像形成装置等として実現されている。タンデム式の画像形成装置において、各感光体をマルチビーム走査方式で走査することも意図されている。
【0004】
「走査線」は、被走査面上における「光走査に伴う光スポットの移動軌跡」であり、主走査方向に直線的であることが理想である。しかしながら実際上は、理想上の走査線を実現することは不可能に近く、光走査装置の組立てを如何に精度良く行ったとしても、実際の走査線には「曲がりや傾き」が残存する。なお、走査線の傾きは「走査線の曲がりの1態様」であるので、以下に於いては、特に断らない限り、走査線の傾きを含めて一般に「走査線の曲がり」あるいは「走査線曲がり」と言うことにする。
【0005】
走査線の曲がりが存在したとしても微小であれば、シングルビーム走査方式で単色の画像を形成する場合には実用上の問題は殆ど無い。シングルビーム走査方式で形成された単色の画像では、走査線における微小な曲がりは、実際上視認されないからである。
【0006】
マルチビーム走査方式においても、走査する被走査面が1面であれば、走査線の曲がりが存在したとしても「各走査線の曲がり具合が揃って」いれば、画像への影響は殆ど無い。
【0007】
マルチビーム走査方式で問題となるのは、複数の走査線の走査線間隔(走査線ピッチ)が変化する場合である。走査線ピッチが1画像内で副走査方向に変化すると、形成される画像に「歪みや濃度むら」を惹起し、これら画像の歪みや濃度むらは形成された画像の像質を著しく低下させる。
【0008】
また、タンデム式の画像形成装置でカラー画像を形成するような場合、各感光体における走査線の曲がり具合が揃っていないと、形成されたカラー画像に「色ずれや濃度むら、あるいは色相のむら」が現れ、画質を損なう。
【0009】
マルチビーム走査方式における走査線ピッチは、仮令初期において十分正確に設定したとしても経時的な変化は避けられない。タンデム式の画像形成装置で、感光体ごとの走査線の曲がり具合を、初期において感光体相互で正確に揃えても、これら走査線相互の曲がり具合に経時的な差異が生じるのは避け難い。
【0010】
特に、光源から被走査面に至る光路上に樹脂性のレンズが含まれる場合には、温・湿度の変化により樹脂性のレンズが変形したりして、上記走査線ピッチを変動させたり、走査線の曲がりが、感光体間での異なったものとなりやすい。
【0011】
走査線ピッチや、走査線の曲がり具合は、被走査面を走査する光スポットの集光位置を副走査方向に調整することで補正することができ、このような光スポット位置の調整を行う方法も種々提案されている。
【0012】
例えば、特開平9−189873号公報には、マルチビーム走査において、各光源から射出した光ビームを、光偏向手段への途上でガルバノミラーにより反射し、ガルバノミラーによる反射角で、被走査面上の光スポット位置を副走査方向へ移動させて走査線ピッチを高精度に調整することが開示されている。
【0013】
また、液晶偏向素子を用い、被走査面上の光スポットの集光位置を副走査方向に調整して、走査線の曲がりを補正し、あるいは、走査線ピッチを補正することも意図されている。
【0014】
これらの方法は、走査線ピッチの調整や走査線の曲がりの補正には有効であるが、集光位置を調整された光スポットの光強度を変化させてしまうという副作用が存在する。
【0015】
例えば、上記特開平9−189873号公報記載の調整方法の場合、光ビームに対してビーム整形を行うためのアパーチュアが、ガルバノミラーよりも被走査面側にある場合、ガルバノミラーにより副走査方向へ方向を転ぜられた光ビームの一部がアパーチュアにより遮光されて光スポットの光強度を低下させることがあり得る。
【0016】
また、液晶偏向素子を用いる場合にも、偏向角の変化が液晶偏向素子の透過率を変化させ、光スポットの光強度を変動させる原因となる。
【0017】
例えば、マルチビーム走査方式の場合、光スポットの光強度が走査線間で不均一になると、特にハーフトーン画像等に顕著な画像劣化が現れる恐れがある。また、タンデム式のカラー画像形成の場合には、光スポットの光強度の不均一により、感光体を走査する露光量が感光体ごとに異なると、カラー画像の色相を変化させ、カラー再現性を低下させる。
【0018】
【発明が解決しようとする課題】
この発明は、上述したところに鑑み、特に、マルチビーム走査方式やタンデム方式の画像形成装置において、走査線ピッチや走査線の曲がり(傾きを含む)を補正するとともに、この補正に伴う光スポットの光強度の変化を有効に補正することを課題とする。
【0019】
【課題を解決するための手段】
この発明の光走査方法は「光源から射出した光ビームを光偏向手段により偏向させ、被走査面上に集光して光スポットを形成し、被走査面を光走査する光走査方法」であって、以下の如き特徴を有する(請求項1)。
【0020】
即ち、被走査面上における光スポット位置を、光スポット位置調整手段により調整可能とし、光スポット位置調整手段による光スポット位置の調整に伴う光スポットの光強度変化を、光パワー補正手段により補正する。
請求項1記載の光走査方法は、マルチビーム走査方式のみならず、シングルビーム走査方式に対しても適用することができる。例えば、タンデム式の画像形成装置においては、複数の感光体に対する各光走査はシングルビーム走査方式で行うこともあり、そのような場合、各感光体に対する光走査に対して請求項1記載の光走査方法を実施することができる。
【0021】
請求項2記載の光走査方法は、請求項1記載の光走査方法において「光スポット位置調整手段が、光源と光偏向手段との間に配置され、マルチビーム走査方式による光走査における走査線間隔の調整を行う」ことを特徴とする。
【0022】
上記請求項1記載の光走査装置においてはまた「光スポット位置調整手段を、光偏向手段と被走査面との間に配置し、走査線の曲がりを補正する」ことができる(請求項3)。
【0023】
この発明の光走査装置は「光源から射出した光ビームを光偏向手段により偏向させ、偏向光ビームを走査結像光学系により被走査面上に集光して光スポットを形成し、被走査面を光走査する光走査装置」であって、光スポット位置調整手段と、光パワー補正手段とを有する(請求項4)。
【0024】
「光スポット位置調整手段」は、被走査面上における光スポット位置を調整する手段である。
「光パワー補正手段」は、光スポット位置調整手段による光スポット位置の調整に伴う、光スポットの光強度変化を補正する手段である。
【0025】
請求項4記載の光走査装置は、光走査をN(≧2)個の光源から放射される光ビームによるマルチビーム走査方式で行い、光スポット位置調整手段が「少なくともN−1個の光源から光偏向手段に向かう光ビームを副走査方向へ偏向させる、少なくともN−1個のビーム偏向手段」を「光源と光偏向手段との間」に有するように構成し、これらビーム偏向手段によりマルチビーム走査の走査線間隔を調整するようにすることができる(請求項5)。
【0026】
この場合、例えば、N個の光源の個々が半導体レーザであり、各光源から1本の光ビームが放射されるものとすると、被走査面はN個の光スポットにより、1度にN本の走査線を光走査されることになる。すると、走査線間隔の数はN−1であるから、走査線間隔を調整するのには、N−1個のビーム偏向手段により、基準となる1本の光ビームに対して、他の光ビームを副走査方向に偏向させることにより実行することができる。
【0027】
請求項5記載の発明におけるN個の光源の個々は、上記のような単一の光ビームを放射するものに限らない。例えば、個々の光源は「n個の半導体レーザ発光源をアレイ配列した半導体レーザアレイ」であることもできる。このような場合、被走査面はN・n本の走査線が同時に走査される。その場合、各半導体レーザアレイから放射されるn本の光ビームにより走査されるn本の走査線を1グループとして、Nグループ間で走査線ピッチを調整する必要が生じる場合があり、このような場合には、N−1個のビーム偏向手段により、n本の光ビームをグループ単位で偏向させ、走査線グループ間の走査線間隔を調整することができる。
【0028】
勿論、ビーム偏向手段をN−1個でなく、N個用いれば、例えばN本の走査線を同時走査する場合に、N本の走査線全体を副走査方向へ変位させることができるので、タンデム式の画像形成装置において、各感光体の光走査をマルチビーム走査方式で行う場合には、各感光体から転写されるトナー画像相互の位置関係を良好に調整することが可能である。
【0029】
上記請求項5記載の光走査装置における「ビーム偏向手段」として、液晶偏向素子を好適に利用できる(請求項6)。
請求項5記載の「ビーム偏向手段」はまた、「半導体レーザとカップリングレンズとをホルダで一体化してなり、ホルダがカップリングレンズの光軸に平行な軸の回りに回転調整可能で且つ、半導体レーザの発光源が、光軸に対して偏心している」ものを用いることができる(請求項7)。この場合、ビーム偏向手段のホルダに「カップリングレンズによりカップリングされた光ビームをビーム整形するアパーチュア」を一体化し、このアパーチュアの開口を「半導体レーザから放射され、カップリングレンズの中心を通る光線を中心とする」ように開口させることができる(請求項8)。
【0030】
請求項4〜8の任意の1に記載の光走査装置は、光スポット位置調整手段もしくはその一部として「光ビームを副走査方向へ偏向させる機能を持つ液晶偏向素子を、主走査方向へアレイ配列してなる液晶偏向素子アレイ」を、光偏向手段と被走査面との間に有することができる(請求項9)。
【0031】
液晶偏向素子アレイは、走査線の曲がり(傾きを含む)を補正することができる。液晶偏向素子アレイは、それ自体を光スポット位置調整手段として用いることができ、各感光体にシングルビーム走査方式で光走査を行うタンデム式の画像形成装置における各感光体での走査線の曲がりを調整するのに有効である。
【0032】
このような場合、感光体の数をm個とすれば、液晶偏向素子アレイの数はm−1個もしくはm個となる。即ち、特定の感光体における走査線の曲がりを基準とし、他の感光体における走査線の曲がりを上記基準に合わせて揃えるようにするのであれば、液晶偏向素子アレイの数はm−1で良い。
【0033】
前述したように、光スポット位置調整手段により光スポット位置の調整を行うと、この調整に伴い、調整された光スポットにおける光強度が変化し、他の光スポットの光強度とのバランスが崩れ、光スポット相互の光強度が不均一になるので、このバランスの変化を「光パワー補正手段」により補正する。
【0034】
一般には、光スポット位置調整手段により光スポット位置の調整を行う場合、その調整量により光スポットの光強度が「どの程度変化するか」は、理論的もしくは実験的に予め知ることができるので、光パワー補正手段による補正は、このような「予め知られた変化量(理論値あるいは実験値)」に基づいて行えば良いが、光走査装置や画像形成装置の実機においては、上記理論値(設計値)や実験値は、部品ばらつき、組み付けばらつき、又は経時的な組付け精度の劣化等により変動する恐れがある。
【0035】
この点を考慮すると、上記請求項4〜9の任意の1に記載された光走査装置は「光ビームの光強度を検出する光強度検出手段」を有することが好ましい(請求項10)。このような光強度検出手段は「光走査の同期検知手段を兼ねる」ことができる(請求項11)。
【0036】
上記請求項4〜11の任意の1に記載の光走査装置における「光パワー補正手段」は、光源の発光強度を調整する手段を有することができる(請求項12)。また、光源と光偏向手段との間に「ビーム整形用のアパーチュア」を配する場合には、光パワー補正手段が「ビーム整形用のアパーチュアを変位させる手段」を有することもできる(請求項13)。
【0037】
請求項4〜13の任意の1に記載の光走査装置における「光パワー補正手段」はまた「光源と光偏向手段との間に配置された透過率調整手段」を有することができる(請求項14)。即ち、請求項12〜14の任意の1に記載の光パワー補正手段は単独で用いることもできるし、互いに組合わせて用いることもできる。
【0038】
請求項4〜14の任意の1に記載の光走査装置は、光源から被走査面に至る光路中に「樹脂レンズ」を有することができる(請求項15)。樹脂製レンズは、温・湿度の変化の影響で光学特性が変化して、光スポットの集光位置が変化し、走査線の曲がりを助長するという弱点があるが、複雑なレンズ面が容易に形成可能で、低コストであるという大きな利点がある。
【0039】
この発明の光走査装置では、上記の如く、光スポット位置調整手段により光スポットの位置を調整できるので、樹脂製レンズの上記弱点を有効に補い、樹脂製レンズの利点を有効に生かすことができる。
【0040】
この発明の画像形成装置は「感光性媒体に光走査により画像書き込みを行う方式の画像形成装置」であって、感光性媒体に画像書き込みを行う光走査装置として請求項4〜15の任意の1に記載の光走査装置を用いることを特徴とする(請求項16)。
【0041】
請求項16記載の画像形成装置において、感光性媒体を光導電性の感光体とし、光走査により書き込まれて形成される静電潜像をトナー画像として可視化する構成とすることができる(請求項17)。この場合、光走査装置として請求項5〜8の任意の1に記載のものを用い、光導電性の感光体をマルチビーム走査方式で光走査するように構成することができる(請求項18)。
【0042】
勿論、この請求項18記載の画像形成装置も、光スポット位置調整手段もしくはその一部として、請求項9記載の「液晶偏向素子アレイ」を光偏向手段と被走査面との間に有することができ、光ビームの強度を検出する光強度検出手段を有することが好ましい。
【0043】
光強度検出手段は「光走査の同期検知手段を兼ねる」ことができる。「光パワー補正手段」は光源の発光強度を調整する手段であることも、請求項13記載の「ビーム整形用のアパーチュアを変位させる手段」であることも、請求項14記載の「光源と光偏向手段との間に配置された透過率調整手段」であることでき、あるいはこれらの2以上を併せ持つこともできる。そして、光源から被走査面に至る光路中に、樹脂レンズを有することができることは勿論である。
【0044】
上記請求項16記載の画像形成装置はまた「ドラム状もしくはベルト状に形成された1以上の感光体が、トナー画像転写媒体の経路にそって配列され、各感光体に形成されるトナー画像を共通の記録シートに転写して合成的に画像を得るタンデム式の画像形成装置」で、光走査装置として、請求項4〜15の任意の1に記載の光走査装置を用いる構成とすることができる(請求項19)。この場合、感光体の数を3または4とし、マゼンタ・シアン・イエローの各色トナー画像もしくはこれらと黒色トナー画像とによりカラー画像を形成するものとすることができる(請求項20)。上記マゼンタ・イエロー・シアンの3色に代えて、赤・緑・青を用いることもできる。
【0045】
上記「トナー画像転写媒体」は、中間転写ベルトのような中間転写媒体あるいは上記記録シートである。記録シートは、転写紙やOHPシート(オーバヘッドプロジェクタ用のプラスチックシート)等である。
【0046】
上記の如く、この発明では、被走査面上の光スポットの位置を調整し、この調整に伴う「光スポットの光強度の変化」を補正するので、マルチビーム走査方式における走査線間の露光量差や、タンデム式の画像形成装置における感光体ごとの露光量差を有効に防止もしくは軽減できる。
【0047】
【発明の実施の形態】
図1は、この発明をマルチビーム走査方式の光走査装置として実施した実施の1形態を示している。
【0048】
光源である半導体レーザ11a、11bは各々1本の発散性の光ビームを放射する。これら光ビームは、それぞれカップリングレンズ12a、12bにより、以下の光学系に適した光束形態に変換される。この実施の形態においては、カップリングレンズ12a、12bは各光ビームを平行光ビームに変換するが、これに限らず、弱い発散性もしくは弱い集束性の光ビームに変換するようにすることもできる。
【0049】
カップリングレンズ12a、12bから射出した各光ビームは、「光スポット位置調整手段」を構成するビーム偏向手段40a、40bをそれぞれ透過し、シリンドリカルレンズ13を透過すると、それぞれ副走査方向に集束され、「光偏向手段」をなす回転多面鏡のポリゴンミラー14の偏向反射面位置に「主走査方向に長い線像」として結像する。このとき、各光光ビームが結像する線像は、副走査方向に所定の微小距離分離している。
【0050】
ポリゴンミラー14の等速回転に伴ない、反射された各光ビームは、等角速度的に偏向しつつレンズ151と152を透過し、折り返しミラー153により反射され、ドラム状に形成された光導電性の感光体16の感光面上に、副走査方向に所定の間隔で分離した2個の光スポットとして集光し、(被走査面の実体をなす)感光体16上で2走査線を同時に光走査する。
【0051】
レンズ151と152とは「fθレンズ」を構成する。fθレンズは「走査結像光学系」であり、レンズ151、152は共に「樹脂レンズ」である。fθレンズと折り返しミラー153とは走査光学系15を構成する。
【0052】
偏向された各光ビームは、感光体16の光走査に先立ち、書き込み領域外に設けられた光センサ19に入射する。そして、光センサ19の出力により光走査開始の同期が取られる。即ち、光センサ19は「光走査の同期検知手段」である。
【0053】
光センサ19はまた、各光ビームの光強度を検出する「光強度検出手段」である。即ち、図1の実施の形態において、光走査装置は、光ビームの強度を検出する光強度検出手段19を有し、この光強度検出手段が、光走査の同期検知手段を兼ねている。
【0054】
光センサ19はまた「走査線ピッチ検出手段」を兼ねている。
即ち、図1(c)に示すように、光センサ19のセンサ部は「1方向に長い線状の受光面」を持つ2つのピンフォトダイオード191、192を有する。ピンフォトダイオード191は受光面の長手方向を副走査方向に平行にして、ピンフォトダイオード192は受光面の長手方向を副走査方向に対して傾けてそれぞれ設けられている。上記同期検知や光強度検出の目的には、ピンフォトダイオード191の出力が用いられる。
【0055】
走査線ピッチの調整を行うときには、各半導体レーザから光ビームを別個に放射させて、光センサ19のピンフォトダイオード191と192の「出力の時間差」を検出する。ピンフォトダイオード191、192の間隔が副走査方向(図1(c)において上下方向)に直線的に変化しているので、上記時間差により、光ビームが光センサ19を副走査方向において横切る位置を知ることができる。
【0056】
例えば、半導体レーザ11aからの光ビームが光センサ19のピンフォトダイオード191、192間を横切る時間が設計上時間:t1に設定され、半導体レーザ11bからの光ビームが光センサ19のピンフォトダイオード191、192間を横切る時間が設計上時間:t2に設定されている状況において、これらの光ビームがピンフォトダイオード191、192間を横切る時間として、t1’、t2’が検出されたとすると、時間:t1’−t1、t2’−t2により、各光ビームによる走査線の「副走査方向におけるずれ」を検出することができる。
【0057】
このような光ビームごとの「走査線位置のずれの情報」は、図1(b)に示す制御手段10に取り込まれる。制御手段10はCPUやマイクロコンピュータで構成されるが、光走査装置全体、もしくは光走査装置を用いる画像形成装置全体を制御する制御手段の機能の一部として設定することもできる。
【0058】
制御手段10は時間:Δt1=t1’−t1、Δt2=t2’−t2を演算する。この演算の結果、Δt1からは「半導体レーザ11aからの光ビームの走査線位置の補正量」が得られ、同様にΔt2からは「半導体レーザ11bからの光ビームの走査線位置の補正量」が得られる。
【0059】
演算手段10はこの補正量に基づき、ビーム偏向手段40a、40bを制御して各光ビームを副走査方向に偏向させ、被走査面上において適正な走査線ピッチが得られるようにする。図1の実施の形態において、ビーム偏向手段40a、40bとしては「液晶偏向素子」を想定している。
液晶偏向素子については後述する。
【0060】
光ビームの副走査方向への偏向角:φと、光スポットの副走査方向への変位量:ΔZ(説明中の例では、走査線自体の副走査方向への変位量である)とは、光源と被走査面との間にある全光学系の「副走査方向における横倍率:m」、カップリングレンズ12a、12bの焦点距離:fcpと、上記φ、ΔZ、m、fcpの間に成り立つ関係:
ΔZ=fcp・m・tanφ
から、
φ=tan−1{ΔZ/(fcp×m)}
として得ることができる。
【0061】
このとき、光ビームをビーム偏向手段により副走査方向へ偏向させたことに伴い、光ビームの光強度が変化する場合(強度の変化は光センサ19で検出できる)には、制御手段10は、半導体レーザ11a、11bを駆動するドライバ回路11a1、11b1を制御して、被走査面上における各光スポットの光強度が実質上同一となるようにする。
【0062】
図1に実施の形態を示した光走査装置は、光源11a、11bから射出した光ビームを光偏向手段14により偏向させ、偏向光ビームを走査結像光学系151、152、153により被走査面16上に集光して光スポットを形成し、被走査面を光走査する光走査装置において、被走査面上における光スポット位置を調整する光スポット位置調整手段40a、40bと、この光スポット位置調整手段による光スポット位置の調整に伴う、光スポットの光強度変化を補正する光パワー補正手段11a1、11b1とを有する(請求項4)。
【0063】
また、光走査が、N(=2)個の光源11a、11bから放射される光ビームによるマルチビーム走査方式で行われ、光スポット位置調整手段が、N(=2)個の光源から光偏向手段に向かう光ビームを副走査方向へ偏向させるN(=2)個のビーム偏向手段40a、40bを、光源11a、11bと光偏向手段14との間に有し、これらビーム偏向手段40a、40bによりマルチビーム走査の走査線間隔を調整する(請求項5)。ビーム偏向手段40a、40bは「液晶偏向素子」である(請求項6)。
【0064】
さらに、光ビームの強度を検出する光強度検出手段19を有し(請求項10)、光強度検出手段19が、光走査の同期検知手段を兼ね(請求項11)、光パワー補正手段11a1、11b1が「光源11a、11bの発光強度を調整する手段」であり(請求項12)、光源から被走査面に至る光路中に、樹脂レンズ151、152を有する(請求項15)。
【0065】
ここで、図1の実施の形態において「光スポット位置調整手段」を構成するビーム偏向手段40a、40bとして想定した「液晶偏向素子」について簡単に説明する。液晶偏向素子は「液晶の作用を利用して、透過光ビームの方向を偏向させる光学素子」であり、種々のタイプのものが知られている。
【0066】
液晶偏向素子は、電気的な信号で駆動されるものと、磁気的な信号で駆動されるものとが知られ、この発明を実施する上でビーム偏向手段として用いる液晶偏向素子は「電気的な信号で駆動するもの」でも「磁気的な信号で駆動するもの」でも良いが、ここでは、図1のビーム偏向手段に適した1例として、電気的な信号で駆動されるものを例にとって説明する。
【0067】
電気的な信号による駆動で光ビームを偏向させる液晶偏向素子は、大別すると、電気信号により「屈折率を変化させる」方式のものと、電気信号により「回折作用を起こさせる」方式のものとの2種に分けられる。ここで説明するのは前者である。
【0068】
この種のものは、例えば特開昭63−240533号公報に記載されており、1例を示すと図2の如くである。
【0069】
図2(b)において、液晶1は「誘電異方性が正のネマチック液晶」で、スペーサ3により所定間隙に保たれた1対の透明配向膜2A、2B間に薄層状に密封されている。符号1Aで示す液晶分子は「分子軸方向に長い形状」である。配向膜2Aは、液晶分子1Aの分子軸が配向膜表面に対して直交方向となるように配向処理され、配向膜2Bは、液晶分子1Aの分子軸が配向膜表面に対して平行方向となるように配向処理されている。
【0070】
配向膜2Aの外側にはZnO等による透明な電気抵抗膜4が形成されている。
透明な電気抵抗膜4、配向膜2A、2Bおよび液晶1は、図2(b)に示す如く1対の透明なガラス基板5A、5Bにより挟持されている。ガラス基板5Bの配向膜2B側の面にはITO等による透明な電極膜6が一面に形成されている。
【0071】
一方、ガラス基板5Aの配向膜2A側の面には、図2(a)に示すようなパターンの電極7A、7Bが形成され、これら電極7A、7Bは(b)に示す如く、電気抵抗膜4に接している。
【0072】
電極7A、7Bは、これらが「光ビームの透過領域にかかる場合」にはITO等により透明電極として形成されるが、電極7A、7Bが光ビームの透過領域にかからなければ(電極7A、7Bが光ビームを遮らなければ)金属薄膜等により不透明な電極として形成することもできる。図2の例では、電極7A、7Bは透明電極として形成されている。
【0073】
図2(b)の状態において、電極膜6と電極7Bを接地し、図2(a)に示す電極7A、7Bの端子A、B間に電圧:Vを印加すると、電気抵抗膜4の電位は、電極7Aの側から電極7Bの側へ直線的に低下する。このため、電気抵抗膜4と透明な電極膜6との間には「図2(b)の上方から下方へ向かって、直線的に減少する電界(向きは図の左右方向を向いている)」が作用する。
【0074】
この電界は液晶1に作用し、液晶分子1Aを「その分子軸が電界に平行になるよう」に回転させる。液晶分子1Aの回転角は「電界の強さに直線的に比例」するので、上記電界が作用すると、電極7Aの側では液晶分子1Aの分子軸は電界の方向(図の左右方向)により近くなるが、電極7Bの側では電界が実質的に0であるので、液晶分子1Aの分子軸は殆ど電極膜6に平行のままである。
【0075】
液晶分子1Aの誘電率は、分子軸に平行な方向において大きく、分子軸に直交する方向において小さい。このため、屈折率は分子軸に平行な方向においてより大きくなる。上記電界の作用により、上述の如き「液晶分子1Aの分子軸の向きの分布」が生じると、液晶1における「屈折率」は、分子軸が電界に略平行となる電極7Aの側で高く、電極7Bの側では低くなり、図2(c)に示すように電極7Aの側から電極7Bの側へ直線的に減少する。
【0076】
従って、このような屈折率分布が生じている液晶偏向素子に、図2(b)の左側から光ビームを入射させて液晶偏向素子を透過させると、透過光ビームは屈折率分布の作用により、屈折率の高い側(図2(b)で上方)へ偏向される。
接地する電極を電極7Bから7Aに変えて、端子A、B間に印加する電圧の向きを上記と逆にすれば、図2の場合と逆に「電極7Bの側から電極7Aの側へ向かって減少する屈折率分布」が得られ、透過光ビームを図1の下方へ偏向させることができる。
【0077】
以上が、屈折率変化を利用した液晶偏向素子による光束偏向の原理である。
偏向の程度である偏向量、即ち「偏向角」は、液晶偏向素子に固有の値で飽和し、飽和するとそれより大きな偏向角は生じない。液晶偏向素子を駆動する電気信号としては「直流電圧」を用いても良いが、液晶偏向素子の寿命の面から考えると、電気信号は「パルス状または正弦波状に変調された信号で、平均電圧が0V近傍であるもの」が好ましい。
【0078】
偏向角を変化させるには、端子A、B間の電位差:Vの増減によって行うこともできるが、上記パルス信号を駆動信号とする場合は「パルスのデュ−ティ比」を変えることによっても行うことができる。
【0079】
上に説明したような「ネマティック型の液晶偏向素子」では、液晶1に印加する駆動電圧により常光線と異常光線の屈折率の異方性:Δn(=ne−no)を変化させることで屈折率を変化させ、光ビームの偏向を行っている。このため屈折率の異方性に従い、透過率は、光ビームの偏向角に応じて図2(d)に示すように周期的に増減する。
【0080】
即ち、液晶1の厚さ:d、光ビームの波長:λと上記異方性:Δnとにより、変数:uを「u=2Δn・d・λ」のように定義すると、液晶1を透過する光ビームの透過率:Tは、
T=1−[sin{(π/2)(1+u1/2}]/(1+u
で与えられる。図2(d)における横軸は正確には上記変数:uである。
【0081】
このように、液晶偏向素子によるビーム偏向手段40a、40bを用いた場合、図1の制御手段10が「光ビームを偏向させるべき偏向角」を決定して、ビーム偏向手段40a、40bの駆動電圧を制御すると、ビーム偏向手段40a、40bを透過した光ビームの透過率も上記理論式により得られるので、予め「光ビーム偏向量から光強度の補正量を算出するテーブル」を用意しておき、制御手段10が上記テーブルに基づき補正量を決定してドライバ回路11a1、11b1により半導体レーザ11a、11bの発光強度を制御するようにすることもでき、その場合「原理的には」光センサ19による「光スポットの光強度の検出」は不要である。
【0082】
しかし、液晶透過率:Tに関する上記理論値は、実機においては、部品ばらつきや組み付けばらつき、あるいは経時的な劣化等により変動する可能性がある。この点を鑑みると、光センサ19により光スポットの光強度を検出し、その結果に基づいて上述の光強度補正を行うことが好ましい。
【0083】
なお、上記の例において、走査線の位置を個別に補正するので無く、走査線ピッチのみ、即ち、一方の走査線に対する他方の走査線の相対的な位置関係のみを補正するのであれば、ビーム偏向手段40a、40bのうちの一方のみ(光源数:Nに対してN−1個のビーム偏向手段)を用いれば良い。その場合、光強度の補正も、一方の半導体レーザの発光強度を調整するのみでたりる。
【0084】
上には、光スポット位置調整手段として液晶偏向素子を用いる場合を説明したが、光スポット位置調整手段は、上記のものに限らず種々の構成のものが可能である。
【0085】
例えば、光ビームをポリゴンミラーの偏向反射面位置に線像に結像させるシリンドリカルレンズを光ビームごとに設け、これらを主走査方向に平行な軸の回りに回転させたり、副走査方向へシフトさせたりしてもよい。あるいは、電気光学素子やAOM(音響光学素子)を利用して光ビーム偏向を行うこともできるし、半導体レーザとカップリングレンズの間に配設された透明平行平板を、主走査方向に平行な軸の回りに回転させる方法も考えられる。
【0086】
図1に図示されていないが、光走査装置においては一般に「ビーム整形用のアパーチュア」が用いられる。図1の実施の形態で、このアパーチュアを「半導体レーザとビーム偏向手段」との間に配置する場合には、ビーム偏向手段で光ビームを副走査方向に偏向させてもアパーチュアによる光束遮断は影響されない。
【0087】
しかし「アパーチュアをビーム偏向手段よりもポリゴンミラー側に配置する場合」は、光ビームの偏向により、光ビームとアパーチュア開口部の位置関係が副走査方向にずれ、アパーチュアによる光束遮断量が変化し、光スポットの光強度を変化させる原因となる。
【0088】
光スポットのこのような光強度変化を補正するのに、上に説明した半導体レーザの発光強度を制御する方法も可能であるが、ビーム整形用のアパーチュアの機能が「被走査面上に所望形状の光スポットを形成すること」にあることを鑑みると、このような場合、上記発光強度の制御とともに「ビーム整形用のアパーチュアを副走査方向へ変位させる手段」を設け、アパーチュアを副走査方向へ変位させ、偏向された光ビームの光軸光線が常にアパーチュアの開口部の中心を通るようにするのが好ましい(請求項13)。
【0089】
このような「アパチュアの変位による光スポットの光強度の補正」の実施の形態を、図3を参照して説明する。
図3(a)〜(c)に、ビーム整形用のアパーチュア27を、ビーム偏向手段40とポリゴンミラー14の間に配設した状態を示す。この図は、図1(a)の状態において「ビーム偏向手段40a、40bのシリンドリカルレンズ13側にアパーチュアを配設した状態」を一般化して示している。符号11は、半導体レーザ11a、11bを一般化して示し、符号12はカップリングレンズ12a、12bを一般化して示し、符号40はビーム偏向手段40a、40bを一般化して示している。
【0090】
図3(a)はビーム偏向手段40による光ビームの偏向を行っていないときの状態を示し、カップリングレンズ12の光軸は、アパーチュア27の開口の中心部を通り、半導体レーザ11の発光源はカップリングレンズ12の光軸上に位置する。従って、半導体レーザ11から放射された光ビームの主光線は、カップリングレンズ12の光軸に合致し、アパーチュア27の開口の中央部を通る。
【0091】
図3(b)は、ビーム偏向手段40により、光ビームを副走査方向(図の上下方向)へ偏向させた状態を示す。このとき、アパーチュア27が図3(a)と同じ位置にあると、図のように、偏向された光ビーム(光軸光線に対称的なガウス型の強度分布を持つ)の一部がアパーチュア27により遮断され、ポリゴンミラー側へ通過する光量が減少し、光スポットの光強度が減少する。
【0092】
そこで、ビーム偏向手段40により光ビームを偏向させたときは、図3(c)に示すように、アパーチュア27を、ビーム偏向角:θに従い、距離:Δだけシフトさせ、偏向された光ビームの主光線がアパーチュア27の開口の中央部を通るようにする。このとき、アパーチュア27のシフト量:Δは、ビーム偏向手段40とアパーチュア27との間隔を図の如く:Lとすれば「Δ=L×tanθ」である。
【0093】
アパーチュア27をこのようにシフトさせることにより、光スポット位置の調整に伴う光スポットの光強度の変化のうち、アパーチュア27によるビーム遮断量変化に起因する部分について補正することができる。ビーム偏向手段40における透過率変化に起因する部分については、前述したように半導体レーザ11の発光強度を調整することで補正できる。
【0094】
光スポット位置調整手段としてのビーム偏向手段の別例として「半導体レーザとカップリングレンズとをホルダで一体化してなり、且つホルダが、カップリングレンズによりカップリングされた光ビームをビーム整形するアパーチュアを一体化され、このアパーチュアの開口が、半導体レーザから放射され、カップリングレンズの中心を通る光線を中心とするように開口しているもの(請求項8)」を、図4を参照して説明する。
【0095】
図4において、半導体レーザ11とカップリングレンズ12とビーム整形用のアパーチュア27はホルダHLにより互いに一体化され、ホルダHLは、光走査装置の光学系を収納するハウジングHOUに嵌合して設けられている。
【0096】
ホルダHLに保持された半導体レーザ11、カップリングレンズ12、アパーチュア27の位置関係は、以下のように定められる。
即ち、半導体レーザ11の発光源は、カップリングレンズ12の光軸から所定の微小距離(図4(a)で図面に直交する方向へ)偏心している。半導体レーザ11は、圧入によりホルダHLに固定され、カップリングレンズ12は半導体レーザ11との相対位置を調整された後、接着により固定されている。
【0097】
この状態において、半導体レーザ11の発光源がカップリングレンズ12の光軸から偏心しているため、半導体レーザ11から放射されて、カップリングレンズ12を透過する光ビームのうち、カップリングレンズ12の中心を通る光線は、カップリングレンズ12の光軸に対して傾くことになる。
【0098】
そして、アパーチュア27は、その開口が「半導体レーザ11から放射され、カップリングレンズ12の中心を通る光線を中心とするように開口」するように位置関係を定められる。
【0099】
ホルダHLは、ハウジングHOUに嵌合された状態において「カップリングレンズ12の光軸に平行で半導体レーザ11の発光源を通る軸」を回転軸として回転可能であり、図4(b)はこのような回転を行った状態を示している。この回転において、カップリングレンズ12によりカップリングされた光ビームにおける「カップリングレンズ12の中心を通った光線(実線で示す)」の方向は、上記回転軸の周りに「歳差運動」的に変化するので、この方向変化により光ビームを偏向させることができる。
【0100】
半導体レーザ11、カップリングレンズ12およびアパーチュア27の位置関係はホルダHLにより固定されているので、上記の如く光ビームが偏向しても、偏光された光ビームにおける「カップリングレンズの中心を通った光線」は、常にアパーチュアの開口の中央を通り、上記偏向された光ビームの「アパーチュア27による遮光量」は変動しない。
【0101】
即ち、この実施の形態においては「ビーム偏向手段による光ビームの偏向に応じて、アパーチュアが、半導体レーザおよびカップリングレンズと位置関係を保って一体に変位する構成」であることが「光パワー補正手段」を構成している。
【0102】
図4の実施の形態で、ホルダにより一体化するのを半導体レーザ11とカップリングレンズ12とし、アパーチュア27はこれらと別体としても良い(請求項7)。その場合には、ホルダの回転に伴う光ビームの偏向に合わせ、アパーチュア27を別の変位機構により円弧状の変位軌跡で変位させ、「カップリングレンズの中心を通った光線」がアパーチュアの開口の中央を通るようにする。
【0103】
図4に示した実施の形態の場合、ホルダHLの回転と共に、光ビームは「回転軸の周りに歳差運動的に偏向」するので、この偏向に伴い、光スポット位置は、副走査方向のみならず主走査方向にも変位することになる。実際的検知からすると、この場合の「主走査方向の変位」は微小であり、副走査方向の変位成分で走査線ピッチを有効に補正できる。
【0104】
光スポットの主走査方向における変位の書き込みへの影響は、同期検出により除去できる。また、主走査方向への変位が走査線ピッチの補正に影響するような場合には、前述した液晶偏向素子等により光スポット位置を主走査方向に調整できるようにし、ホルダの回転に伴う「光スポットの主走査方向の変位」を、上記液晶偏向素子等により補正するようにすればよい。
【0105】
上には「光パワー補正手段」として「半導体レーザにおける発光強度を制御するもの」、「アパーチュアを変位させるもの」、「半導体レーザとカップリングレンズの回転に、アパーチュアを一体化させるもの」を例として説明したが、光パワー補正手段はこれらに限らず他にも種々の構成が可能である。以下には「光パワー補正手段」が、光源と光偏向手段との間に配置された「透過率調整手段」である(請求項14)場合の例を説明する。
【0106】
図5は、図1に即して説明した実施の形態に、請求項14記載の光パワー補正手段を適用した実施の形態における特徴部分のみを示している。ポリゴンミラー以後の構成は、図1(a)に示すものと同じである。
【0107】
図5の例では、光パワー補正手段をなす透過率調整手段43a、43bが、ビーム偏向手段40a、40bを透過した光ビームの光路中に配置されている。
【0108】
透過率調整手段43a、43bは、これを透過する光ビームの透過率を調整することにより「被走査面上における光スポットの光強度を実質的に同じ強度とするもの」である。このような透過率調整手段としては種々のものが可能である。
【0109】
半導体レーザ11a、11bから放射される光ビームは実質的な直線偏光状態にあるので、透過率調整手段43a、43bとして「偏光子」を用い、これらを図示されない駆動手段(駆動量は制御手段により決定される)により回転させることにより、透過率を調整することができる。
【0110】
あるいは、回転により「透過率がグラデーションをなして変化」する回転式のグラデーションNDフィルタを透過率調整手段43a、43bとして用い、これらを図示されない駆動手段により回転させて透過率を調整することもできる。
【0111】
単に、被走査面上における光スポットの光強度を互いに等しくする目的のためには、透過率調整手段は単一でもよい。
【0112】
液晶偏向素子には、先に説明した屈折率変化による偏向を行うもののほかに、回折を利用して光ビームの偏向を行うものもあり、このような液晶偏向素子をビーム偏向手段に用いる場合には、回折格子のピッチに従い回折効率が変化することにより透過率が変動する。
【0113】
このような場合にも、図5における透過率調整手段43a、43bを「2本の光ビームの光路の少なくとも一方」に配設すればよい。
【0114】
上には、光スポット位置調整手段として「液晶偏向素子等のビーム偏向手段」を光源と光偏向手段の間に配置する例を説明した。以下には、光スポット位置調整手段もしくはその一部として「光ビームを副走査方向へ偏向させる機能を持つ液晶偏向素子を、主走査方向へアレイ配列してなる液晶偏向素子アレイ」を、光偏向手段と被走査面との間に配設する(請求項9)場合の例を説明する。
【0115】
ビーム偏向手段を光源と光偏向手段との間に設けた場合、走査線ピッチの補正は可能であるが、走査線の「曲がり」を補正することは困難である。他方、「液晶偏向素子アレイを光偏向手段と被走査面との間に配設する場合」は、走査線の曲がり(傾きを含む)は補正可能であるが、走査線ピッチの補正は困難である。
【0116】
従って、光スポット位置調整手段として「液晶偏光素子アレイのみ」を用いるのは、タンデム式の画像形成装置で、各感光体の光走査をシングルビーム走査方式で行う場合や、各感光体の光走査を「半導体レーザアレイからの複数光ビームによるマルチビーム走査方式(この場合、走査線ピッチの変化は光源の回転調整で補正できる)で行う場合に適している。
【0117】
図6は、請求項9記載の光走査装置の実施の1形態を要部のみ略示している。煩雑を避けるため、混同の虞がないと思われるものについては、図1におけると同一の符号を付した。
【0118】
符号60は光源部を示す。光源部は半導体レーザとカップリングレンズ、ビーム整形用のアパーチュアを有し、カップリングされて例えば平行光束となった光ビームをビーム整形して射出させる。
【0119】
光源部60から放射された光ビームは、ビーム偏向手段40(図1に即して説明したビーム偏向手段40a、40bと同様のものである)を透過し、シリンドリカルレンズ13により光偏向手段である回転多面鏡のポリゴンミラー14の偏向反射面位置に「主走査方向に長い線像」として結像し、ポリゴンミラー14の回転に伴ない偏向されてfθレンズによる走査結像光学系15Aにより、被走査面の実体をなすドラム状の感光体16上に光スポットを形成しシングルビーム走査を行う。
【0120】
光センサ19は、図1(b)示した如きもので、光スポットの光強度と、走査線の副走査方向の位置(2個のピンフォトダイオードの検出時間差で検出できる)を検出する機能を持ち、光走査開始のための同期検知機能を持つ。
【0121】
走査結像光学系15Aを透過した光ビームは液晶偏向素子アレイ40Aを透過する。図6には図示されていないが、液晶偏向素子アレイ40Aを透過した光ビームはその一部が(ハーフミラー等で)感光体への光路から分岐されて検出光ビームとなり、図示されない「走査線曲がり検出手段」へ導光される。
【0122】
この実施の形態においては、走査線の副走査方向の位置に対しては、ビーム偏向手段40により光ビームを副走査方向へ偏向させて補正を行い、走査線の曲がり(傾きを含む)は、液晶偏向素子アレイ40Aにより補正を行う。
【0123】
図7を参照して、液晶偏向素子アレイ40Aによる「光スポットの位置調整」を説明する。
【0124】
図7(a)において左右方向は主走査方向である。符号Li(i=1〜10)は「電気信号で駆動される液晶偏向素子」を示している。即ち、この例では10個の液晶偏向素子L1〜L10が主走査方向に、互いに密接して連続的に配列されている。また、この例において液晶偏向素子Liは互いに同サイズで等ピッチ配列されている。
液晶偏向素子Liは、図2に即して説明したタイプのものとする。
【0125】
符号Di(i=1〜10)は液晶偏向素子Liを駆動するドライバ回路を示している。これらドライバ回路Diはコントローラ22により制御駆動される。コントローラ22は例えば、図1に示した制御手段10であることができる。
液晶偏向素子Liの偏向方向は副走査方向に設定されている。
【0126】
若干補足すると、個々の液晶偏向素子Liは対応するドライバ回路Diにより個別独立に駆動されるが、この例において、液晶とこれを挟持する配向膜、さらに透明電極は互いに共通している。そして、図2に示す駆動電圧を印加される電極とこれらを連結する透明抵抗膜の部分が液晶偏向素子Li(i=1〜10)ごとに独立している。
【0127】
図7(b)は先に説明した「走査線曲がり検出手段」の1形態を示している。
走査線曲がり検出手段23には、前述の如く、液晶偏向素子アレイ40Aを透過した光ビームの一部が「検出光ビーム」として感光体16への光路から分岐されて導光される。
【0128】
走査線曲がり検出手段は、図6に図示されていないが、上記分岐された検出光ビームにつき「感光体60と光学的に等価な位置」に配置されている。従って、検出光ビームは走査線曲がり検出手段の受光面上に光スポットとして結像する。
【0129】
図7(b)に示す走査線曲がり検出手段23は、液晶偏向素子Liと同数のエリアセンサP1〜P10の受光面が主走査方向に配列し、各エリアセンサPiの受光面が「被走査面(感光体16の感光面)と光学的に等価な位置」を占めるように配設され、偏向光ビームの一部を分離した検出光ビームで光走査される。
【0130】
エリアセンサPiの受光面は、液晶偏向素子アレイ40Aにおける液晶偏向素子Liと対応し、設計上の光スポットがエリアセンサPiの中心に結像するとき、光スポットを形成する偏向光ビームが「対応する液晶偏向素子Liの中心」を通るように、液晶偏向素子アレイ40Aとの位置関係を定められている。
【0131】
エリアセンサPiは固定板23Sに固定的に設けられている。固定板23Sは熱膨張率:1.0×10−5/℃以下の材質、具体的には、ガラス(熱膨張率0.5×10−5/℃)や、アルミナ等のセラミック材質(熱膨張率:0.7×10−5/℃、炭化珪素(熱膨張率:0.4×10−5/℃)等からなり、温度変動による影響(エリアセンサPiの受光面位置の移動、相対位置関係の変動により正確な検出が妨げられる)を実質的になくしている。
【0132】
また、エリアセンサPi相互間に発生する電気ノイズの影響をなくすため、固定板23Sの材質は上記の如き「非導電性材料」が好適である。図7(b)における領域RYは被走査面における「有効書込幅に対応する領域」である。
【0133】
ここで、液晶偏向素子アレイ40Aで「走査線の曲がり」を補正する場合を説明する。
【0134】
例えば、光走査による画像形成プロセスを行うに先立ち、ポリゴンミラー14を回転させ、光源部60の光源を発光させる。光源の発光は時間的に間欠的に行い、発光ごとに検出光ビームが、走査線曲がり検出手段23の各エリアセンサP1〜P10に順次に入射するようにする。走査線曲がり検出手段23はエリアセンサPi(i=1〜10)が検出する光スポットの「副走査方向の位置」をコントローラ22に向けて出力する。
【0135】
図7(c)において「10個の黒丸」が、このように検出された副走査方向の位置を示している。この図における破線は「理想上の走査線」で、主走査方向に直線的である。コントローラ22は、検出された10個の「副走査方向の光スポット位置(走査位置)」に基づき、最小2乗法等により、走査線の形態を「多項式」として近似する。この多項式が「検出された走査線曲がり」であり、これを図7(c)に実線で示す。
【0136】
コントローラ22は次いで、このような走査線曲がりを補正するため、副走査液晶偏向素子アレイ40Aの、液晶偏向素子Liにおける「副走査方向の偏向の向きと偏向角」を算出する。図7(c)の領域Si(i=1〜10)は、副走査液晶偏向素子アレイにおける液晶偏向素子Liが「偏向光ビームを偏向させるべき領域(「担当補正領域」)」を示し、各領域Siにおける上向き若しくは下向きの矢印は「偏向の向き」を表している。
【0137】
コントローラ22は、液晶偏向素子Liに上記「偏向の向きと偏向量」を実現すべき信号を決定し、ドライバ回路Di(i=1〜10)に印加する。この例では、液晶偏向素子Liに印加する電圧の正負と接地させる電極の選定により「偏向の向き」を制御し、この電圧をパルス電圧として印加しつつ、そのデュ−ティ比を調整することにより「偏向角」を制御する。
【0138】
このようにして、画像形成プロセスの開始される以前に、液晶偏向素子アレイ40Aの液晶偏向素子Li(i=1〜10)における調整偏向量とを実現する。勿論、検出された走査線曲がりが「補正を必要としない程度に微小」である場合には、副走査液晶偏向素子アレイによる走査線曲がりの補正を行う必要は無い。
【0139】
図7(d)は、副走査液晶偏向素子アレイにより補正された走査線の状態を示している。Yi(i=1〜10)は、被走査面上の走査領域における「各液晶偏向素子Liが補正を担当する部分(補正担当領域)」を示している。
【0140】
実線で示す走査線は若干「ギクシャク」しているように見えるが、これは図7(c)において走査線曲がりを「極端に強調」して描いたことに起因する。現実の走査線曲がりは最大の場合でも0.1〜0.2mm程度であるので、例えば、1個の液晶偏向素子Liが「30mmの走査領域」の補正を担当するものとしても、実質的に直線状態の走査線を実現できる。
【0141】
副走査液晶偏向素子アレイにおける液晶偏向素子の数を更に増やし、液晶偏向素子Liの担当補正領域を小さくすることにより走査線曲がりを「より精緻」に補正できることは当然である。
【0142】
特に、副走査液晶偏向素子アレイにおける副走査液晶偏向素子Liの主走査方向の幅を十分に小さく(例えば2〜5mm程度)することにより、隣接する液晶偏向素子間の偏向量変化を「実質的に連続的な変化」と見なし得るようにでき、走査線を「実質的に連続した直線」に補正することもできる。
【0143】
走査線曲がりの形態の1つである「走査線の傾き」も、上記と同様にして補正できることは容易に理解されるであろう。
【0144】
上の説明では、走査線曲がり検出手段により光スポットの走査位置を検出して「補正すべき走査線曲がり」を特定し、これに合わせて液晶偏向素子Liの調整偏向量を設定している。このようにすると、走査線曲がりが経時的に変化したり、fθレンズ16を樹脂レンズとして構成した場合に環境変化で走査線曲がりが変化したりしても、走査位置検出を随時行うことにより、補正すべき走査線曲がりに応じて、常に適正な補正を行うことが可能である。
【0145】
図1、図3、図4、図5、図6に示した実施の形態では、光源から射出した光ビームを光偏向手段により偏向させ、被走査面上に集光して光スポットを形成し、被走査面を光走査する光走査方法において、被走査面16上における光スポット位置を、光スポット位置調整手段により調整可能とし、光スポット位置調整手段による光スポット位置の調整に伴う光スポットの光強度変化を、光パワー補正手段により補正する光走査方法(請求項1)が実施される。
【0146】
また、図1、図3、図4に示した実施の形態では、光スポット位置調整手段40a、40b、40等が、光源と光偏向手段14との間に配置され、マルチビーム走査方式による光走査における走査線間隔の調整が行われる(請求項2)。
【0147】
また、図6に実施の形態を示した光走査装置では、光スポット位置調整手段40Aが、光偏向手段14と被走査面16との間に配置され、走査線の曲がりを補正する(請求項3)。
【0148】
以下、画像形成装置の実施の形態を説明する。
図8は画像形成装置の実施の1形態を示している。この画像形成装置はモノクロームのレーザプリンタであり、感光性媒体が光導電性の感光体で、光走査により形成される静電線像を可視化して得られるトナー画像を、記録シートに転写・定着する。
【0149】
レーザプリンタは、感光性媒体111として「ドラム状に形成された光導電性の感光体」を有している。感光体111の周囲には、帯電手段としての帯電ローラ112、現像装置113、転写チャージャ114、クリーニング装置115が配備されている。帯電手段としては帯電ローラ112に代えて「コロナチャージャや帯電ブラシ」を用いることもでき、転写チャージャ114に代えて「転写ローラ等、接触式の転写手段」を用いることもできる。
【0150】
光走査装置117は、帯電ローラ112と現像装置113との間で「光書込による露光」を行うようになっている。さらに、符号116は定着装置、符号Sは「記録シート」としての転写紙を示している。
【0151】
画像形成プロセスが実行されるとき、光導電性の感光体111が時計回りに等速回転され、その表面が帯電ローラ112により均一帯電され、光走査装置117の光ビームによる露光を受けて静電潜像が形成される。形成された静電潜像は所謂「ネガ潜像」であって画像部が露光されている。この静電潜像は現像装置113により反転現像され、感光体111上にトナー画像が形成される。
【0152】
転写紙Sは、感光体111上のトナー画像が転写位置へ移動するのにタイミングを合わせて転写部へ送り込まれ、転写部においてトナー画像と重ね合わせられ転写チャージャ114の作用によりトナー画像を静電転写される。トナー画像を転写された転写紙Sは定着装置116へ送られ、定着装置116においてトナー画像を定着され、装置外へ排出される。トナー画像転写後の像担持体111の表面は、クリーニング装置115によりクリーニングされ、残留トナーや紙粉等が除去される。
【0153】
光走査装置117として、例えば、図1に即して説明したマルチビーム走査方式のものを用いることができ、この場合、走査線ピッチの経時的な変動等を良好に補正し、且つ、各走査線の光走査の露光エネルギー(光スポットの光強度)を実質的に等しくして、良好な画像形成を行うことができる。
【0154】
即ち、図8の画像形成装置において、図1の光走査装置を用いたものは、感光性媒体111に光走査により画像書き込みを行う方式の画像形成装置において、感光性媒体111に画像書き込みを行う光走査装置として、請求項4記載の光走査装置を用いるものであり(請求項16)、感光性媒体111が光導電性の感光体で、光走査により書き込まれて形成される静電潜像がトナー画像として可視化される(請求項17)。
【0155】
図9は、画像形成装置の実施の別形態として「タンデム式のカラー画像形成装置」を示している。図8に、符号100で示す部分(図中の破線で囲った部分)を「画像形成ユニット」と呼ぶことにすると、図9に示すタンデム式のカラー画像形成装置は、トナー画像転写媒体である転写紙Sの経路に沿って4つの画像形成ユニット100Y、100M、100C、100Kが配列されている。
【0156】
各画像形成ユニット100Y〜100Kは同一構造で図8に示す如きものであるが、これらは、その現像装置において用いるトナーの色が異なっている。即ち、画像形成ユニット100Yではイエロートナーによる現像が行われ、画像形成ユニット100M、100C、100Kではそれぞれ、マゼンタ、シアン、黒の各色トナーによる現像が行われる。
【0157】
各画像形成ユニットにおける光走査装置としては、図6に即して説明した如きものが用いられている。従って、これら画像形成ユニットでは、各感光体の光走査はシングルビーム走査方式で行われるが、走査線の副走査方向への位置調整や走査線の曲がりが「画像形成ユニットごとに補正される」ので、画像形成ユニット相互における走査線相互の位置関係や、走査線の曲がり具合を揃えることができ、色ずれや色相変化の無い良好なカラー画像を形成できる。
【0158】
即ち、画像形成ユニット100Yでは、感光体にイエロー成分画像の静電潜像が書き込まれてイエロートナーによりイエロートナー画像として可視化される。同様に、画像形成ユニット100M、100C、100Kでは、それぞれ、感光体にマゼンタ、シアン、ブラックの成分画像の静電潜像が書き込まれ、対応する色のトナーで可視化される。
【0159】
転写紙Sは、搬送ベルト90により図の右方から左方へ搬送され、各転写位置において順次、イエロートナー画像、マゼンタトナー画像、シアントナー画像、黒トナー画像を転写される。これらは転写紙S上で重なり合ってカラー画像を形成し、定着装置116により転写紙Sに定着される。
【0160】
即ち、図9の画像形成装置は、ドラム状に形成された1以上の感光体が、トナー画像転写媒体Sの経路に沿って配列され、各感光体に形成されるトナー画像を共通の記録シートSに転写して合成的にカラー画像を得るタンデム式の画像形成装置で、光走査装置として請求項9記載の光走査装置を用いたものであり(請求項19)、感光体の数が4で、マゼンタ・シアン・イエローの各色トナー画像と黒色トナー画像とによりカラー画像を形成するものである(請求項20)。
【0161】
前述のマルチビーム走査方式の光走査装置の実施の形態においては、2個の半導体レーザからの光ビームを用いる2走査線同時走査方式の場合を説明したが、この発明はこのような場合に限定されるものではなく、半導体レーザとカップリングレンズの組合せを3以上用い、3走査線以上を同時走査する場合にも適用できることは勿論である。
【0162】
【発明の効果】
以上に説明したように、この発明によれば新規な光走査方法および装置および画像形成装置を実現できる。
この発明の光走査方法および装置では、走査線ピッチや走査線の曲がりを補正できるが、その際に生じる光スポットの光強度の変化を有効に補正できるので、マルチビーム走査における走査線間の露光量の不均一や、タンデム式の画像形成装置における感光体間の露光量の不均一を有効に防止して良好な光走査を実現でき、したがって、かかる光走査装置を用いる画像形成装置は良好な画像形成を行うことができる。
【図面の簡単な説明】
【図1】光走査装置の実施の1形態を説明するための図である。
【図2】ビーム偏向手段としての液晶偏向素子を説明するための図である。
【図3】光スポット位置調整手段による光スポット位置の調整に伴う光スポットの光強度変化を補正する光パワー補正手段の実施の1形態を説明するための図である。
【図4】請求項8記載の発明の特徴部分を説明するための図である。
【図5】請求項14記載の発明の特徴部分を説明するための図である。
【図6】光走査装置の実施の別形態を説明するための図である。
【図7】液晶偏向素子アレイによる走査線の曲がりの補正を説明するための図である。
【図8】画像形成装置の実施の1形態を説明するための図である。
【図9】画像形成装置の実施の別形態を説明するための図である。
【符号の説明】
11a、11b   半導体レーザ
12a、12b   カップリングレンズ
13   シリンドリカルレンズ
40a、40b   ビーム偏向手段

Claims (20)

  1. 光源から射出した光ビームを光偏向手段により偏向させ、被走査面上に集光して光スポットを形成し、上記被走査面を光走査する光走査方法において、
    被走査面上における光スポット位置を、光スポット位置調整手段により調整可能とし、上記光スポット位置調整手段による光スポット位置の調整に伴う光スポットの光強度変化を、光パワー補正手段により補正することを特徴とする光走査方法。
  2. 請求項1記載の光走査方法において、
    光スポット位置調整手段が、光源と光偏向手段との間に配置され、マルチビーム走査方式による光走査における走査線間隔の調整を行うことを特徴とする光走査方法。
  3. 請求項1記載の光走査装置において、
    光スポット位置調整手段が、光偏向手段と被走査面との間に配置され、走査線の曲がりを補正することを特徴とする光走査方法。
  4. 光源から射出した光ビームを光偏向手段により偏向させ、偏向光ビームを走査結像光学系により被走査面上に集光して光スポットを形成し、上記被走査面を光走査する光走査装置において、
    被走査面上における光スポット位置を調整する光スポット位置調整手段と、
    この光スポット位置調整手段による光スポット位置の調整に伴う、光スポットの光強度変化を補正する光パワー補正手段とを有することを特徴とする光走査装置。
  5. 請求項4記載の光走査装置において、
    光走査が、N(≧2)個の光源から放射される光ビームによるマルチビーム走査方式で行われ、
    光スポット位置調整手段が、少なくともN−1個の光源から光偏向手段に向かう光ビームを副走査方向へ偏向させる、少なくともN−1個のビーム偏向手段を、光源と光偏向手段との間に有し、これらビーム偏向手段によりマルチビーム走査の走査線間隔を調整することを特徴とする光走査装置。
  6. 請求項5記載の光走査装置において、
    ビーム偏向手段が液晶偏向素子であることを特徴とする光走査装置。
  7. 請求項5記載の光走査装置において、
    ビーム偏向手段が、半導体レーザとカップリングレンズとをホルダで一体化してなり、上記ホルダが上記カップリングレンズの光軸に平行した軸の回りに回転調整可能で且つ、上記半導体レーザの発光源が、上記光軸に対して偏心していることを特徴とする光走査装置。
  8. 請求項7記載の光走査装置において、
    ビーム偏向手段のホルダが、カップリングレンズによりカップリングされた光ビームをビーム整形するアパーチュアを一体化され、このアパーチュアの開口が、半導体レーザから放射され、上記カップリングレンズの中心を通る光線を中心とするように開口していることを特徴とする光走査装置。
  9. 請求項4〜8の任意の1に記載の光走査装置において、
    光スポット位置調整手段もしくはその一部として、光ビームを副走査方向へ偏向させる機能を持つ液晶偏向素子を、主走査方向へアレイ配列してなる液晶偏向素子アレイを、光偏向手段と被走査面との間に有することを特徴とする光走査装置。
  10. 請求項4〜9の任意の1に記載の光走査装置において、
    光ビームの強度を検出する光強度検出手段を有することを特徴とする光走査装置。
  11. 請求項10記載の光走査装置において、
    光強度検出手段が、光走査の同期検知手段を兼ねることを特徴とする光走査装置。
  12. 請求項4〜11の任意の1に記載の光走査装置において、
    光パワー補正手段が、光源の発光強度を調整する手段を有することを特徴とする光走査装置。
  13. 請求項4〜12の任意の1に記載の光走査装置において、
    光源と光偏向手段との間に、ビーム整形用のアパーチュアを有し、
    光パワー補正手段が、上記ビーム整形用のアパーチュアを変位させる手段を有することを特徴とする光走査装置。
  14. 請求項4〜13の任意の1に記載の光走査装置において、
    光パワー補正手段が、光源と光偏向手段との間に配置された透過率調整手段を有することを特徴とする光走査装置。
  15. 請求項4〜14の任意の1に記載の光走査装置において、
    光源から被走査面に至る光路中に、樹脂レンズを有することを特徴とする光走査装置。
  16. 感光性媒体に光走査により画像書き込みを行う方式の画像形成装置において、
    感光性媒体に画像書き込みを行う光走査装置として、請求項4〜15の任意の1に記載の光走査装置を用いることを特徴とする画像形成装置。
  17. 請求項16記載の画像形成装置において、
    感光性媒体が光導電性の感光体であり、光走査により書き込まれて形成される静電潜像がトナー画像として可視化されることを特徴とする画像形成装置。
  18. 請求項17記載の画像形成装置において、
    光走査装置が請求項5〜8の任意の1に記載のものであり、光導電性の感光体がマルチビーム走査方式で光走査されることを特徴とする画像形成装置。
  19. 請求項16記載の画像形成装置において、
    ドラム状もしくはベルト状に形成された1以上の感光体が、トナー画像転写媒体の経路にそって配列され、各感光体に形成されるトナー画像を共通の記録シートに転写して合成的に画像を得るタンデム式の画像形成装置であり、光走査装置として、請求項4〜15の任意の1に記載の光走査装置を用いることを特徴とする画像形成装置。
  20. 請求項19記載の画像形成装置において、
    感光体の数が3または4であり、マゼンタ・シアン・イエローの各色トナー画像もしくはこれらと黒色トナー画像とによりカラー画像を形成するものであることを特徴とする画像形成装置。
JP2002204164A 2002-07-12 2002-07-12 光走査方法および装置および画像形成装置 Pending JP2004045840A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002204164A JP2004045840A (ja) 2002-07-12 2002-07-12 光走査方法および装置および画像形成装置
CA 2435001 CA2435001C (en) 2002-07-12 2003-07-07 Fault-tolerant computer system, re-synchronization method thereof and re-synchronization program thereof
US10/617,033 US7145589B2 (en) 2002-07-12 2003-07-11 Light scanning apparatus having a liquid crystal deflector and image forming apparatus using the same
US11/566,591 US7505060B2 (en) 2002-07-12 2006-12-04 Light scanning apparatus having a liquid crystal deflector and image forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204164A JP2004045840A (ja) 2002-07-12 2002-07-12 光走査方法および装置および画像形成装置

Publications (1)

Publication Number Publication Date
JP2004045840A true JP2004045840A (ja) 2004-02-12

Family

ID=31184270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204164A Pending JP2004045840A (ja) 2002-07-12 2002-07-12 光走査方法および装置および画像形成装置

Country Status (2)

Country Link
JP (1) JP2004045840A (ja)
CA (1) CA2435001C (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292349A (ja) * 2004-03-31 2005-10-20 Ricoh Co Ltd 光走査装置及び画像形成装置及び液晶素子の駆動方法
JP2006313268A (ja) * 2005-05-09 2006-11-16 Canon Inc 光走査装置及びそれを用いた画像形成装置
JP2007093945A (ja) * 2005-09-28 2007-04-12 Brother Ind Ltd 光結合器及び画像表示装置
JP2007114518A (ja) * 2005-10-20 2007-05-10 Ricoh Co Ltd 光走査装置、画像形成装置及び副走査位置補正方法
JP2008076556A (ja) * 2006-09-19 2008-04-03 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2008233562A (ja) * 2007-03-20 2008-10-02 Brother Ind Ltd 光走査装置及び光走査型画像表示装置及び網膜走査型画像表示装置
US7990406B2 (en) 2008-03-04 2011-08-02 Ricoh Company, Ltd. Optical scanning device having a pitch adjustment device for adjusting a beam pitch and image forming apparatus including same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115167933B (zh) * 2022-09-08 2022-12-02 深圳市恒运昌真空技术有限公司 一种双处理器设备及其控制方法和处理器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292349A (ja) * 2004-03-31 2005-10-20 Ricoh Co Ltd 光走査装置及び画像形成装置及び液晶素子の駆動方法
JP2006313268A (ja) * 2005-05-09 2006-11-16 Canon Inc 光走査装置及びそれを用いた画像形成装置
JP4677277B2 (ja) * 2005-05-09 2011-04-27 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置
JP2007093945A (ja) * 2005-09-28 2007-04-12 Brother Ind Ltd 光結合器及び画像表示装置
JP2007114518A (ja) * 2005-10-20 2007-05-10 Ricoh Co Ltd 光走査装置、画像形成装置及び副走査位置補正方法
JP2008076556A (ja) * 2006-09-19 2008-04-03 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2008233562A (ja) * 2007-03-20 2008-10-02 Brother Ind Ltd 光走査装置及び光走査型画像表示装置及び網膜走査型画像表示装置
US7990406B2 (en) 2008-03-04 2011-08-02 Ricoh Company, Ltd. Optical scanning device having a pitch adjustment device for adjusting a beam pitch and image forming apparatus including same

Also Published As

Publication number Publication date
CA2435001C (en) 2008-12-23
CA2435001A1 (en) 2004-01-12

Similar Documents

Publication Publication Date Title
USRE42865E1 (en) Image forming system employing effective optical scan-line control device
JP3600228B2 (ja) 光走査装置および画像形成装置
US7333254B2 (en) Optical scanning apparatus, illuminant apparatus and image forming apparatus
JP5181552B2 (ja) 回折光学素子および光ビーム検出手段および光走査装置および画像形成装置
JP5903894B2 (ja) 光走査装置及び画像形成装置
JP4428953B2 (ja) 光走査装置およびカラー画像形成装置
JP5729545B2 (ja) 光走査装置及び画像形成装置
JP2004045840A (ja) 光走査方法および装置および画像形成装置
JP3833542B2 (ja) 光走査装置・画像形成装置および画像形成方法
JP4077209B2 (ja) 光走査装置および画像形成装置
JP3647723B2 (ja) 露光装置
JP2007114518A (ja) 光走査装置、画像形成装置及び副走査位置補正方法
JP2007225844A (ja) 光走査装置、画像形成装置および光走査装置におけるレーザビーム検出方法
JP4369658B2 (ja) 光走査装置および画像形成装置
JP4425779B2 (ja) 露光装置
JP4170637B2 (ja) 光走査装置および画像形成装置
JP4197431B2 (ja) 光走査装置及び画像形成装置
JP2004184527A (ja) 光走査装置及び画像形成装置
JP2006133287A (ja) 光走査装置および画像形成装置
JP5273559B2 (ja) 光走査装置および画像形成装置
JP5108478B2 (ja) 光走査装置および画像形成装置
JP2006133288A (ja) 光走査装置および画像形成装置
JP2010217351A (ja) 光走査装置及び画像形成装置
JP2011137997A (ja) 光走査装置及び画像形成装置
JP2012189923A (ja) 光走査装置および光走査装置の制御方法、ならびに、画像形成装置