JP2004039474A - 固体高分子型燃料電池およびその膜・電極接合体の製造方法 - Google Patents

固体高分子型燃料電池およびその膜・電極接合体の製造方法 Download PDF

Info

Publication number
JP2004039474A
JP2004039474A JP2002195921A JP2002195921A JP2004039474A JP 2004039474 A JP2004039474 A JP 2004039474A JP 2002195921 A JP2002195921 A JP 2002195921A JP 2002195921 A JP2002195921 A JP 2002195921A JP 2004039474 A JP2004039474 A JP 2004039474A
Authority
JP
Japan
Prior art keywords
catalyst
polymer electrolyte
cathode
anode
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002195921A
Other languages
English (en)
Other versions
JP3970704B2 (ja
Inventor
Osamu Hiroi
廣井 治
Hisatoshi Fukumoto
福本 久敏
Yasuhiro Yoshida
吉田 育弘
Tetsuyuki Kurata
藏田 哲之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002195921A priority Critical patent/JP3970704B2/ja
Publication of JP2004039474A publication Critical patent/JP2004039474A/ja
Application granted granted Critical
Publication of JP3970704B2 publication Critical patent/JP3970704B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】この発明は、金型によるホットプレスの圧力分布により、触媒非形成領域を触媒層内に精度よく形成して、水の拡散性を向上できるとともに、異なる組成の触媒層を混在させることができる膜・電極接合体の製造方法およびそれを用いた固体高分子型燃料電池を得る。
【解決手段】第1および第2転写フィルム20、21をアノード触媒ペースト15およびカソード触媒ペースト16を固体高分子電解質膜2側に向けて該固体高分子電解質膜2を挟持するように重ね合わせて積層体25を形成する。そして、平坦な触媒ペースト転写部および該触媒ペースト転写部に対して所定深さを有する触媒ペースト非転写部が形成されたホットプレス面30aを有する上金型30を用いて積層体25をホットプレスする。
【選択図】    図4

Description

【0001】
【発明の属する技術分野】
この発明は、電気化学的な反応を利用して発電する固体高分子型燃料電池およびそれに適用される膜・電極接合体の製造方法に関するものである。
【0002】
【従来の技術】
燃料電池は、一対の電極が電解質を介して対向して配置されてなる単セルを備え、燃料が一方の電極に供給され、酸化剤が他方の電極に供給されて、燃料の酸化を電池セル内で電気化学的に反応させることにより化学エネルギーを直接電気エネルギーに変換する装置である。燃料電池には、電解質の種類により種々の型に分類されるが、近年高出力が得られる燃料電池として、固体高分子電解質膜を電解質に用いた固体高分子型燃料電池が注目されている。
【0003】
図13は従来の固体高分子型燃料電池の構造を説明する断面図である。
図13において、膜・電極接合体1は、アノード触媒層3およびカソード触媒層4が固体高分子電解質膜2を挟んで配置され、アノード側ガス拡散層5およびカソード側ガス拡散層6が固体高分子電解質膜2を挟んでアノード触媒層3およびカソード触媒層4上に配置され、互いに密接するように接合一体化されて構成されている。そして、ガス流路7a、8aを有する一対のセパレータ板7、8がガス流路7a、8aをそれぞれアノード側ガス拡散層5およびカソード側ガス拡散層6に面するように膜・電極接合体1を挟んで配設されている。なお、アノード側ガス拡散層5は燃料ガスをアノード触媒層3に均一に供給するとともに集電する機能を有し、アノード触媒層3とともにアノード電極を構成し、カソード側ガス拡散層6は酸化剤ガスをカソード触媒層4に均一に供給するとともに集電する機能を有し、カソード触媒層4とともにカソード電極を構成している。
ここでは、説明の便宜上、固体高分子型燃料電池は、膜・電極接合体1をセパレータ板7、8で挟んで構成された単セルとして示されているが、一般的には、膜・電極接合体1とセパレータ板7、8とを交互に複数積層して構成される。
【0004】
このように構成された従来の固体高分子型燃料電池においては、水素ガス(燃料)がアノード側ガス拡散層5を介してアノード触媒層3に供給され、酸素ガス(酸化剤)がカソード側ガス拡散層6を介してカソード触媒層4に供給される。なお、一般に、酸素ガスは空気として供給される。そして、アノード触媒層3において、水素が下記のアノード反応により酸化され、プロトン(水素イオン)と電子が生成される。また、カソード触媒層4において、アノード側から固体高分子電解質膜2中を移動してカソード触媒層4に到達したプロトンと、カソード側ガス拡散層6を介してカソード触媒層4に供給された酸素ガスと、外部回路を介してカソード触媒層4に供給された電子とが下記のカソード反応により反応し、水が生成される。そして、この化学反応で生成された電子を外部回路により電流として取り出すことになる。
【0005】
アノード反応:H→2H+2e
カソード反応:2H+2e+(1/2)O→H
【0006】
このように構成された従来の膜・電極接合体1の製造方法は次の2つの方法に大別される。
第1の製造方法は、アノードおよびカソード触媒ペーストを各転写用フィルム上にそれぞれ所定面積に均一に塗布し、該触媒ペーストを乾燥して転写用フィルム上に転写用触媒層を形成した後、転写用触媒層を高分子電解質膜2に面するように転写用フィルムを固体高分子電解質膜2を挟むように配置し、ホットプレスで転写用触媒層を固体高分子電解質膜2に転写するものである。
第2の製造方法は、アノードおよびカソード触媒ペーストをアノード側ガス拡散層5およびカソード側ガス拡散層6上にそれぞれ所定面積に均一に塗布し、該触媒ペーストを乾燥してアノード側ガス拡散層5およびカソード側ガス拡散層6上にアノード触媒層3およびカソード触媒層4を形成した後、固体高分子電解質膜2を挟むようにアノード側ガス拡散層5およびカソード側ガス拡散層6を配置し、ホットプレスでそれらを接合一体化するものである。
【0007】
ここで、固体高分子電解質膜2のプロトン伝導抵抗が小さい程、電池性能が向上する。そして、固体高分子電解質膜2のプロトン伝導抵抗は、固体高分子電解質膜2が水分を多く含んでいる程小さくなるので、固体高分子電解質膜2をより湿潤な状態に保つ必要がある。
一方、カソード触媒層4は、カソード反応により水が生成され、かつ、水がプロトンに同伴してアノード側から運ばれてくるので、局所的な水過剰の状態になりやすい。また、水過剰の状態を避けるために、供給ガスの湿度を下げると、固体高分子電解質膜2のプロトン伝導抵抗が上昇し、電池性能が低下する。
【0008】
また、酸素ガスの加湿状態、セルの温度等の燃料電池の運転条件が変化すると、電極内の水の分布や固体高分子電解質膜2のプロトン伝導抵抗が変化することから、アノードおよびカソード触媒層3、4をそれぞれの運転条件に適した構成にすることが望ましい。つまり、異なる運転条件に適した複数の触媒層をアノードおよびカソード触媒層3、4内に作り込むことができれば、幅広い運転条件で高い電池性能を示す燃料電池を実現できることになる。
【0009】
【発明が解決しようとする課題】
従来の固体高分子型燃料電池は、以上述べたように、アノード触媒層3およびカソード触媒層4がそれぞれ連続する単一の触媒層に構成されている。そこで、水がプロトンの移動にともなってカソード側に移動するので、水のアノード側への拡散が起こりにくくなる。また、カソード触媒層4内での水の移動も起こりにくくなる。その結果、局所的な水過剰状態がカソード触媒層4内に発生して、固体高分子電解質膜2内の湿潤状態が不均一となり、電池特性を低下させてしまうという問題があった。
この問題を解決するために、アノード触媒層3およびカソード触媒層4に微細な溝を設け、水の拡散の効率を上げることも考えられるが、従来の製造方法では、微細な溝を有する触媒層を形成できなかった。
また、アノード触媒層3およびカソード触媒層4がそれぞれ連続する単一の触媒層に構成されているので、燃料電池の運転条件が変化すると、十分な電池特性が得られなくなるという問題があった。
そこで、幅広い運転条件で高い電池性能を実現するために、異なる運転条件に適した複数の触媒層をアノード触媒層3およびカソード触媒層4内に作り込むことが有効と考えられるが、従来の製造方法では、複数の異なる組成の触媒層を同一平面上に精度よく作り込むことはできなかった。
【0010】
この発明は、上記の課題を解消するためになされたもので、金型によるホットプレスの圧力分布を形成して、触媒層を所望のパターンに転写できるようにし、触媒非形成領域を触媒層内に精度よく形成して、水の拡散性を向上できるとともに、異なる組成の触媒層を混在させることができる膜・電極接合体の製造方法を得ることを目的とする。
また、触媒非形成領域を膜・電極接合体のアノード触媒層およびカソード触媒層内に固体高分子電解質膜を挟んで相対するように形成して、局所的に滞留する過剰水を効率的に拡散させて固体高分子電解質膜の均一な湿潤状態を実現し、性能向上を図ることができる固体高分子型燃料電池を得ることを目的とする。
【0011】
【課題を解決するための手段】
この発明による膜・電極接合体の製造方法は、アノード触媒ペーストを第1転写フィルム上に塗布形成する工程と、カソード触媒ペーストを第2転写フィルム上に塗布形成する工程と、上記第1および第2転写フィルムを上記アノード触媒ペーストおよび上記カソード触媒ペーストを固体高分子電解質膜側に向けて該固体高分子電解質膜を挟持するように重ね合わせて積層体を形成する工程と、平坦な触媒ペースト転写部および該触媒ペースト転写部に対して所定深さを有する触媒ペースト非転写部が形成されたホットプレス面を有する金型を用いて上記積層体をホットプレスし、上記アノード触媒ペーストおよび上記カソード触媒ペーストを該触媒ペースト転写部と略同一形状に上記固体高分子電解質膜に転写するホットプレス工程とを有するものである。
【0012】
また、上記第1および第2転写フィルムが10μm以上、50μm以下の厚みに形成されているものである。
【0013】
また、上記ホットプレス工程において、上記触媒ペースト転写部が互いに重ならないように形成された複数の金型を1つづつ用いてホットプレスして、上記アノード触媒ペーストおよび上記カソード触媒ペーストを該複数の金型の個数回に分けて上記固体高分子電解質膜に転写するようにしたものである。
【0014】
この発明による固体高分子型燃料電池は、アノード触媒層およびカソード触媒層が固体高分子電解質膜を挟持するように配設され、アノード側ガス拡散層およびカソード側ガス拡散層が上記アノード触媒層および上記カソード触媒層上にそれぞれ配設されて構成された膜・電極接合体が、ガス流路が形成されたセパレータを介して複数積層されてなる固体高分子型燃料電池において、上記膜・電極接合体は、触媒非形成領域が上記固体高分子電解質膜を挟んで相対するように上記アノード触媒層および上記カソード触媒層内に形成されているものである。
【0015】
また、上記アノード触媒層および上記カソード触媒層が、上記触媒非形成領域により分離された複数の触媒形成領域から構成されているものである。
【0016】
また、上記アノード触媒層および上記カソード触媒層の少なくとも一方の触媒層は、それぞれ異なる組成の触媒ペーストで形成された少なくとも2種類の上記触媒形成領域が混在して構成されているものである。
【0017】
【発明の実施の形態】
以下、この発明の実施の形態を図について説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る固体高分子型燃料電池の構造を説明する断面図、図2はこの発明の実施の形態1に係る固体高分子型燃料電池におけるアノード触媒層の形成状態を説明する要部平面部、図3はこの実施の形態1に係る固体高分子型燃料電池の膜・電極接合体の製造方法に適用される金型のホットプレス面を示す平面図、図4はこの実施の形態1に係る固体高分子型燃料電池の膜・電極接合体の製造方法を説明する側面図である。なお、図3では、説明の便宜上、凹溝を黒塗りで表している。
【0018】
図1において、アノード触媒層11およびカソード触媒層12が固体高分子電解質膜2を挟んで配置され、接合一体化されて発電要素体を構成している。そして、アノード触媒層11は、図2に示されるように、触媒形成領域11aが触媒非形成領域11bにより分離されてマトリックス状に配列されて固体高分子電解質膜2の一面上に形成されている。同様に、カソード触媒層12は、触媒形成領域12aが触媒非形成領域12bにより分離されてマトリックス状に配列されて固体高分子電解質膜12の他面上に形成されている。さらに、アノード側ガス拡散層5およびカソード側ガス拡散層6が固体高分子電解質膜2を挟んでアノード触媒層11およびカソード触媒層12上に密着して配置され、膜・電極接合体10を構成している。
そして、ガス流路7a、8aを有する一対のセパレータ板7、8がガス流路7a、8aをそれぞれアノード側ガス拡散層5およびカソード側ガス拡散層6に面するように膜・電極接合体10を挟んで配設されている。
【0019】
なお、アノード側ガス拡散層5は燃料ガスをアノード触媒層11に均一に供給するとともに集電する機能を有し、アノード触媒層11とともにアノード電極を構成し、カソード側ガス拡散層6は酸化剤ガスをカソード触媒層12に均一に供給するとともに集電する機能を有し、カソード触媒層12とともにカソード電極を構成している。また、説明の便宜上、固体高分子型燃料電池は、膜・電極接合体10をセパレータ板7、8で挟んで構成された単セルとして示されているが、一般的には、膜・電極接合体10とセパレータ板7、8とを交互に複数積層して構成される。
【0020】
ここで、固体高分子電解質膜2には、燃料電池内の環境において安定で、プロトン伝導性とガスバリヤ性が高く、電子導電性のないものが用いられ、一般には、パーフルオロ系主鎖にスルホン酸基がついたものを用いることができる。
アノードおよびカソード触媒層11、12は、主に、触媒粒子と、触媒とイオンのやりとりをする高分子電解質とから構成される。さらに、触媒層の親水性や撥水性を制御したり、空孔率を向上させる目的で、無機質粒子、ポリマー粒子、カーボン粒子などの添加物を混入することもある。そして、一般的に、カーボンブラック粒子表面に白金などの触媒活性を持つ金属微粒子を担持させたものが、触媒粒子として用いられる。
アノード側およびカソード側ガス拡散層5、6は、燃料電池内の環境においても安定な導電性多孔体であればよく、一般的には、カーボンペーパ、カーボンクロスなどのカーボン繊維で形成された多孔体が用いられる。
セパレータ板7、8は、燃料電池内の環境においても安定な導電性板であればよく、一般的には、カーボン板にガス流路溝を形成したものが用いられる。
【0021】
このように構成された固体高分子型燃料電池においては、アノード触媒層11は、図2に示されるように、触媒形成領域11aが触媒非形成領域11bにより分離されてマトリックス状に配列されて固体高分子電解質膜2の一面上に形成されてアノード触媒層11を構成し、触媒形成領域12aが触媒非形成領域12bにより分離されてマトリックス状に配列されて固体高分子電解質膜2の他面上に形成されてカソード触媒層12を構成している。また、触媒形成領域11aと触媒形成領域12aとは、固体高分子電解質膜2を挟んで同形状、かつ、同位置に形成されている。
【0022】
そこで、触媒非形成領域12bはプロトンに同伴する水の移動がないので、カソード側からアノード側に水が移動するパスとなる。そして、カソード触媒層12がカソード反応による生成水とプロトンに同伴してアノード側から運ばれてくる水とによって局所的な水過剰の状態になると、過剰な水は触媒非形成領域12bを通ってアノード側に返水され、局所的な水過剰の状態が解消される。また、水過剰な触媒形成領域12a内の水は、触媒非形成領域12bを通って隣接する触媒形成領域12aに移動し、局所的な水過剰の状態が解消される。その結果、カソード触媒層12の湿潤状態が均一となり、固体高分子電解質膜2の湿潤状態が均一となる。
これにより、供給ガスの湿度を下げても、固体高分子電解質2の水の枯渇が防止され、電池性能の低下が抑えられる。
【0023】
ついで、膜・電極接合体10の製造方法について、図3および図4を参照しつつ説明する。
まず、アノード触媒ペースト15を第1転写フィルム20上に所定厚みに塗布した後、乾燥する。同様に、カソード触媒ペースト16を第2転写フィルム21上に所定厚みに塗布した後、乾燥する。
ついで、乾燥されたアノード触媒ペースト15およびカソード触媒ペースト16を固体高分子電解質膜2に面するようにして、第1および第2転写フィルム20、21を固体高分子電解質膜2を挟持するように重ね合わせ、積層体25を作製する。
そして、図4に示されるように、所定温度に加熱された上下金型30、31間に積層体25を配置し、上金型30を下金型31に対して押圧する。ここで、下金型31は全面平坦なホットプレス面31aに形成されている。一方、上金型30は、図3に示されるように、触媒ペースト非転写部としての凹溝30cが所定ピッチに縦横に形成されて、平坦な触媒ペースト転写部30bがマトリックス状に配列されているホットプレス面31aに形成されている。
これにより、触媒ペースト転写部30bで押圧されたアノード触媒ベースト15およびカソード触媒ペースト16の領域が固体高分子電解質膜2に食い込む。そして、上金型30を取り去り、第1および第2転写フィルム20、21を剥離して、触媒ペースト転写部30bで押圧されたアノード触媒ベースト15およびカソード触媒ペースト16の領域が固体高分子電解質膜2に転写される。そこで、触媒形成領域11a、12aが固体高分子電解質膜2の両面にそれぞれマトリックス状に配列された発電要素体を得る。さらに、アノード側ガス拡散層5およびカソード側ガス拡散層6を発電要素体の両側に配設して、膜・電極接合体10が得られる。
【0024】
この膜・電極接合体10の製造方法によれば、上金型30のホットプレス面30aが凹溝30cにより分離されてマトリックス状に配列された平坦な触媒ペースト転写部30bに形成されているので、ホットプレスの際に、上金型30により圧力分布が形成され、アノード触媒ベースト15およびカソード触媒ペースト16が固体高分子電解質膜2に所望のパターンに転写される。つまり、アノード触媒ベースト15およびカソード触媒ペースト16は、触媒ペースト転写部30bで押圧された領域が第1および第2転写フィルム20、21から固体高分子電解質膜2に転写され、凹溝30cに対応する領域は押圧されず、固体高分子電解質2に転写されない。その結果、アノード触媒層11およびカソード触媒層12は、触媒形成領域11a、12aが分離されてマトリクス状に構成され、水の拡散の効率が高められた膜・電極接合体10を簡易に作製できる。また、触媒形成領域11aと触媒形成領域12aとが固体高分子電解質膜2を挟んで同形状、かつ、同位置に精度よく形成されるので、触媒層の機能しない部分が生じない。
【0025】
また、アノード触媒層11およびカソード触媒層12の転写面積は上金型30のホットプレス面30aにより規定されるので、アノード触媒ペースト15およびカソード触媒ペースト16を第1および第2転写フィルム20、21に塗布する領域はホットプレス面30aより大きくすることができる。従って、第1および第2転写フィルム20、21上のアノード触媒ペースト15およびカソード触媒ペースト16の塗布面積を精度よく管理する必要はなく、アノード触媒ペースト15およびカソード触媒ペースト16の塗布工程が簡略化され、生産性が向上する。
また、アノード触媒ペースト15およびカソード触媒ペースト16は位置および形状が一致して固体高分子電解質2上に転写されるので、煩雑な位置あわせ工程が不要となり、生産性が向上する。
【0026】
ここで、第1および第2転写フィルム20、21は、ホットプレス時の温度に耐え、触媒ペーストの溶剤に侵されず、かつ、製造操作に耐える強度を有しているものであればよく、例えばPET(ポリエチレンテレフタレート)フィルムが用いられる。そして、第1および第2フィルム20、21は、厚くなると微細パターンが形成しにくくなり、薄くなると強度が低下して取り扱い性が悪化することから、50μm以下、10μm以上とすることが望ましい。
また、ホットプレス温度が低すぎると、アノードおよびカソード触媒ペースト15、16と固体高分子電解質膜2とが一体化しにくくなり、高すぎると、固体高分子電解質膜2の熱劣化をもたらすことになる。そこで、固体高分子電解質膜2としてナフィオン(デュポンの登録商標)、フレミオン(旭硝子の登録商標)、アシプレックス(旭化成の登録商標)などの代表的なパーフルオロ系膜を用いる場合には、ホットプレス温度は120℃以上180℃未満に設定すればよく、より望ましくは140℃以上170℃未満に設定すればよい。
【0027】
また、第1および第2転写フィルム20、21の厚さが厚い場合には、凹溝30cの溝幅が細すぎると、ホットプレス時の圧力の分散により触媒ペーストの正確な転写ができなくなることから、凹溝30cの溝幅は転写フィルムの厚さに応じて適宜設定する必要がある。
また、触媒ペースト非転写部(凹溝30c)の面積割合を大きく設計すると、触媒形成領域11a、12aの面積が減少し、発電要素体の面積当たりの性能が悪化する。そこで、発電要素体の面積当たりの性能を確保するためには、ホットプレス面30aの面積に対する触媒ペースト非転写部の面積の割合を30%未満、好ましくは20%未満にする必要がある。
【0028】
なお、上記実施の形態1では、触媒非形成領域11b、12bがアノード触媒層11およびカソード触媒層12をマトリックス状に分割するように形成されているものとしているが、触媒非形成領域はこの形状に限定されるものではなく、例えばドット状に形成されていてもよい。この場合、上金型のホットプレス面にドット状の凹部を分散形成すればよい。
【0029】
実施の形態2.
図5はこの発明の実施の形態2に係る固体高分子型燃料電池におけるカソード触媒層の形成状態を説明する要部平面部、図6はこの実施の形態2に係る固体高分子型燃料電池の膜・電極接合体の製造方法に適用される第1金型のホットプレス面を示す平面図、図7はこの実施の形態2に係る固体高分子型燃料電池の膜・電極接合体の製造方法に適用される第2金型のホットプレス面を示す平面図、図8はこの実施の形態2に係る固体高分子型燃料電池の膜・電極接合体の製造方法における第1ホットプレス工程を説明する側面図、図9はこの実施の形態2に係る固体高分子型燃料電池の膜・電極接合体の製造方法における第1ホットプレス工程によるカソード触媒層の形成状態を説明する要部平面部、図10はこの実施の形態2に係る固体高分子型燃料電池の膜・電極接合体の製造方法における第2ホットプレス工程を説明する側面図である。なお、説明の便宜上、図5では、触媒形成領域にハッチングを施し、図6および図7では、凹部を黒塗りで表している。
【0030】
図5において、カソード触媒層13は、低加湿条件下で良好な性能を示す第1触媒形成領域13aと高加湿条件下で良好な性能を示す第2触媒形成領域13bとが、触媒非形成領域13cにより分離されてマトリックス状に配列されて固体高分子電解質膜2の他面上に形成されている。そして、第1および第2触媒形成領域13a、13bは、固体高分子電解質膜2を挟んで触媒形成領域11aと相対して同形状に形成されている。
なお、他の構成は上記実施の形態1と同様に構成されている。
【0031】
このように構成された膜・電極接合体を用いた固体高分子型燃料電池においても、アノード触媒層11およびカソード触媒層13が触媒非形成領域11b、13cにより分離されてマトリックス状に配列された触媒形成領域11a、13a、13bにより構成されているので、触媒非形成領域11b、13cが水の移動のパスとなり、上記実施の形態1と同様の効果が得られる。
また、カソード触媒層13が低加湿条件下で良好な性能を示す第1触媒形成領域13aと高加湿条件下で良好な性能を示す第2触媒形成領域13bとを混在させて構成されているので、幅広い加湿条件に対応できる固体高分子型燃料電池が実現できる。
【0032】
つぎに、電極・膜接合体の製造方法について図6乃至図10を参照しつつ説明する。
まず、アノード触媒ペースト15を第1転写フィルム20上に所定厚みに塗布した後、乾燥する。また、低加湿条件下で良好な性能を示す第1カソード触媒ペースト17を第2転写フィルム21上に所定厚みに塗布した後、乾燥する。さらに、高加湿条件下で良好な性能を示す第2カソード触媒ペースト18を第3転写フィルム22上に所定厚みに塗布した後、乾燥する。
ついで、アノード触媒ペースト15および第1カソード触媒ペースト17を固体高分子電解質膜12に面するようにして、第1および第2転写フィルム20、21を固体高分子電解質膜2を挟持するように重ね合わせ、積層体26を作製する。
【0033】
そして、図8に示されるように、所定温度に加熱された上下金型32、31間に積層体26を配置し、上金型32を下金型31に対して押圧する。ここで、上金型32は、図6に示されるように、平坦な第1触媒ペースト転写部32bが、触媒ペースト非転写部としての凹部32cにより分離されて、図5における第1触媒形成領域13aの配列パターンに配列されているホットプレス面32aに形成されている。これにより、触媒ペースト転写部32bで押圧されたアノード触媒ベースト15および第1カソード触媒ペースト17の領域が固体高分子電解質膜2に食い込む。そして、上金型32を取り去り、第1および第2転写フィルム20、21を剥離して、触媒ペースト転写部32bで押圧されたアノード触媒ベースト15および第1カソード触媒ペースト17の領域が固体高分子電解質膜2に転写される。この時、固体高分子電解質膜2の他面上には、図9に示されるように、第1触媒形成領域13aが1つ置きに配列されて形成されている。なお、図示していないが、固体高分子電解質膜2の一面上には、触媒形成領域11aが、第1触媒形成領域13aと同じパターンに配列されて形成されている。
【0034】
ついで、第3転写フィルム22を固体高分子電解質膜2の他面側に重ね合わせ、積層体27を作製する。
そして、図10に示されるように、所定温度に加熱された上下金型33、31間に積層体27を配置し、上金型33を下金型31に対して押圧する。ここで、上金型33は、図7に示されるように、平坦な第2触媒ペースト転写部33bが、触媒ペースト非転写部としての凹部33cにより分離されて、図5における第2触媒形成領域13bの配列パターンに配列されているホットプレス面33aに形成されている。これにより、触媒ペースト転写部33bで押圧されたアノード触媒ベースト15および第2カソード触媒ペースト18の領域が固体高分子電解質膜2に食い込む。そして、上金型33を取り去り、第1および第3転写フィルム20、22を剥離して、触媒ペースト転写部33bで押圧されたアノード触媒ベースト15および第2カソード触媒ペースト18の領域が固体高分子電解質膜2に転写される。これにより、触媒形成領域11aが固体高分子電解質膜2の一面上にマトリックス状に配列され、かつ、第1および第2触媒形成領域13a、13bが固体高分子電解質膜2の他面上にマトリックス状に配列された発電要素体が得られる。さらに、アノード側ガス拡散層5およびカソード側ガス拡散層6を発電要素体の両側に配設して、膜・電極接合体が得られる。
【0035】
この膜・電極接合体の製造方法によれば、第1および第2触媒ペースト転写部32b、33bが互いに重ならないように形成されたホットプレス面32a、33aを有する上金型32、33をそれぞれ用いてホットプレスを2回するようにしているので、アノード触媒層11は、触媒形成領域11aが分離されてマトリクス状に配列されて構成され、カソード触媒層13は、第1および第2触媒形成領域13a、13bが分離されてマトリックス状に配列されて構成される。そこで、上記実施の形態1と同様に、水の拡散の効率が高められた膜・電極接合体を簡易に作製できる。また、組成の異なる触媒層が混在するカソード触媒層13を有する膜・電極接合体を簡易に作製できる。
【0036】
また、アノード触媒層11およびカソード触媒層13の転写面積は上金型32、33のホットプレス面32a、33aにより規定されるので、アノード触媒ペースト15、第1カソード触媒ペースト17および第2カソード触媒ペースト18を第1、第2および第3転写フィルム20、21、22に塗布する領域はホットプレス面32a、33aより大きくすることができる。従って、第1、第2および第3転写フィルム20、21、22上のアノード触媒ペースト15、第1カソード触媒ペースト17および第2カソード触媒ペースト18の塗布面積を精度よく管理する必要はなく、触媒ペースト15、17、18の塗布工程が簡略化され、生産性が向上する。
また、アノード触媒ペースト15と第1および第2カソード触媒ペースト17、18とは位置および形状を一致して固体高分子電解質2上に転写されるので、煩雑な位置あわせ工程が不要となり、生産性が向上するとともに、触媒層の機能しない部分が生じない。
【0037】
なお、上記実施の形態2では、カソード触媒層13が組成の異なる2種類の触媒層で構成されるものとしているが、カソード触媒層を組成の異なる3種類以上の触媒層で構成するようにしてもよい。この場合、触媒ペースト転写部(触媒形成領域)が互いに重ならないように形成された上金型および転写フィルムを組成の異なる触媒層の数分用意し、転写フィルムを固体高分子電解質膜2に重ねて上金型によりホットプレスする工程を触媒層の数分繰り返して行うことになる。
また、上記実施の形態2では、カソード触媒層13が組成の異なる2種類の触媒層で構成されているものとしているが、アノード触媒層を組成の異なる複数の触媒層で構成してもよく、あるいはアノードおよびカソード触媒層の両方を組成の異なる複数の触媒層で構成してもよい。
【0038】
また、上記実施の形態2において、積層体26を上金型32でホットプレスした後、第2転写フィルム21を剥離することなく上金型33でホットプレスすれば、それぞれアノード触媒ペースト15および第1カソード触媒ペースト17で構成されたアノード触媒層およびカソード触媒層が2回のホットプレス工程で形成されることになる。つまり、触媒ペースト転写部が互いに重ならないように形成された上金型を複数用意すれば、アノード触媒層およびカソード触媒層を上金型の個数分のホットプレス工程に分けて転写形成することができる。
【0039】
ここで、本発明の効果を説明するために、膜・電極接合体を作製し、セパレータ板7、8とともに電池治具に組み込み、燃料ガスとして水素を、酸化剤ガスとして空気を供給して発電を行った結果について下記に示す。なお、各ガスは温水中のバブラを用いた外部加湿器で加湿してアノード電極およびカソード電極に供給した。
【0040】
実施例1.
カソード触媒Aには、白金をカーボンブラック上に50wt%担持したものを用い、アノード触媒には、白金−ルテニウム系金属をカーボンブラック上に50wt%担持したものを用いた。
上金型30には、50mm×50mmの正方形面に凹溝30cを等間隔に縦横14本づつ形成してなるホットプレス面30aを有するものを用いた。各凹溝30cは溝幅0.377mm、溝深さ0.2mmとした。なお、50mm×50mmの正方形面に対する凹溝30cの面積の割合は20%である。即ち、触媒ペースト転写部30bの面積がホットプレス面30aの80%である。
第1および第2転写フィルム20、21には、厚み25μmのPETフィルムを用いた。固体高分子電解質膜2には、厚み50μmのアシプレックス膜を用いた。アノード側およびカソード側ガス拡散層5、6には、カーボンペーパ(TGP−H−120:東レ(株)製)を用いた。
【0041】
まず、カソード触媒粒子1重量部に、水1重量部およびパーフルオロ系高分子電解質溶液であるフレミオン9%溶液3重量部を添加し、撹拌混合して均一な状態のカソード触媒ペーストAを得た。また、アノード触媒粒子1重量部に、水1重量部およびフレミオン9%溶液6重量部を添加し、撹拌混合して均一な状態のアノード触媒ペーストを得た。
そして、アノード触媒ペーストおよびカソード触媒ペーストAをそれぞれ第1および第2転写フィルム20、21上にスクリーン印刷した後、減圧乾燥してアノード触媒層転写フィルムおよびカソード触媒層転写フィルムAを得た。
ついで、アノード触媒ペーストおよびカソード触媒ペーストAを固体高分子電解質膜に面するようにして、アノード触媒層転写フィルムおよびカソード触媒層転写フィルムAで固体高分子電解質膜を挟持し、全面平坦面のホットプレス面31aを有する下金型31上に載置した。そして、上金型30を用い、上方から面圧20kg/cmで2分間ホットプレスした。この時、上金型30および下金型31は150℃の温度に管理した。
ついで、室温まで冷却した後、第1および第2転写フィルム20、21を剥離し、発電要素体を得た。
【0042】
このように作製された発電要素体を観察したところ、凹溝30cの格子パターンが正確に転写されていた。即ち、アノード触媒ペーストおよびカソード触媒ペーストAの約0.3mmの凹溝30cに対応する部分が転写されず、固体高分子電解質膜2が露出していた。(以下、この部分を未転写部と称する。)このことから、約0.3mmの微細な未転写部のパターンを正確に形成できることが確認できた。また、アノード触媒ペーストおよびカソード触媒ペーストAの転写部である触媒形成領域11a、12aが固体高分子電解質膜2を挟んで相対して同形状に転写できることが確認できた。
【0043】
そして、この発電要素体をアノード側およびカソード側ガス拡散層5、6で挟み込み、さらにPTFE(ポリ四フッ化エチレン)製のガスシールをアノードおよびカソード触媒層11、12の外周部に貼り付けて、膜・電極接合体を得た。ついで、一対のセパレータ板7、8で膜・電極接合体を挟み込み、性能評価用単セルとした。
【0044】
この単セルを外部負荷に接続し、アノード側に水素ガスを供給し、かつ、カソード側に常圧の空気を供給して発電を行った。水素ガスの利用率が70%に、空気側は酸素利用率が40%になるように各流量を設定した。また、単セルの温度は80℃となるように温度調節した。供給ガスの湿度については、アノード側は露点70℃に、カソード側は所定の露点になるように外部加湿器を調節した。
この単セルを電流密度300mA/cmで運転し、始動から24時間経過時点での電流密度0.5A/cmにおける出力電圧を測定し、その結果を図11に示す。
この実施例1による膜・電極接合体を用いた単セルでは、60℃の加湿温度で0.52Vの出力電圧が得られ、80℃の加湿温度で0.64Vの出力電圧が得られた。
【0045】
比較例1.
この比較例1では、上金型30に代えて50mm×50mmの全面平坦面のホットプレス面を有する上金型を用い、上記実施例1と同様にして発電要素体を作製した。そして、この発電要素体を用いて、上記実施例1と同様にして、単セルを作製した。
そして、上記実施例1と同様の運転条件で運転し、出力電圧を測定して、その結果を図11に示す。
この比較例1による膜・電極接合体を用いた単セルでは、60℃の加湿温度で0.50Vの出力電圧が得られ、80℃の加湿温度で0.63Vの出力電圧が得られた。
【0046】
ここで、実施例1と比較例1との出力電圧を比較すると、実施例1は比較例1に対し特に低加湿状態の運転条件で高い出力電圧が得られることがわかる。
特に、低加湿状態の運転条件では、カソード触媒層に局所的な水過剰の状態が生じると、カソード触媒層の他の部分に水枯渇部分が形成されてしまう。そして、このカソード触媒層の水の均一な分布は、固体高分子電解質膜2の湿潤状態を不均一なものとする。
この比較例1では、アノードおよびカソード触媒層が単一の触媒層で構成されていることから、水がカソード側からアノード側に移動しにくく、かつ、カソード触媒層内を移動しにくいので、低加湿状態の運転条件において形成されたカソード触媒層の水枯渇部分が解消されない。その結果、固体高分子電解質膜2の均一な湿潤状態が得られず、出力電圧の低下をもたらしたものと推考される。
一方、実施例1では、触媒非形成領域11a、12aが固体高分子電解質膜2を挟んで相対してアノードおよびカソード触媒層11、12内に形成されているので、触媒非形成領域12bが水の移動のパスとなる。そこで、低加湿状態の運転条件で、カソード触媒層12に局所的な水過剰の状態が生じても、水過剰の状態の触媒形成領域12aから触媒非形成領域12bを介してカソード側からアノード側に水が移動し、また水過剰の状態の触媒形成領域12aから触媒非形成領域12bを介して隣接する水枯渇の状態の触媒形成領域12aに水が移動する。その結果、カソード触媒層12の水枯渇部分が解消され、カソード触媒層12の湿潤状態が均一となり、固体高分子電解質膜2の湿潤状態が均一となり、電池性能の低下が抑えられたものと推考される。
【0047】
比較例2.
図12は比較例2の膜・電極接合体の製造方法に適用されるスクリーン印刷版を示す平面図である。なお、図12中、黒塗り部はペースト不透過部を示している。
このスクリーン印刷版40は、50mm×50mmの外径寸法の正方形領域を、直線状のペースト不透過部40bにより15×15のマトリックス状に配列されたペースト透過部40aに画成している。そして、ペースト透過部40aの全面積は50mm×50mmの外径寸法の正方形の面積に対して80%となっている。
【0048】
この比較例2では、このスクリーン印刷版40を用い、上記実施例1で用いたアノード触媒ペーストおよびカソード触媒ペーストAをそれぞれ第1および第2転写フィルム20、21にマトリックス状にスクリーン印刷した後、減圧乾燥してカソードおよびアノード触媒層転写フィルムを得た。
そして、アノード触媒ペーストおよびカソード触媒ペーストAを固体高分子電解質膜2に面するようにして、カソードおよびアノード触媒層転写フィルムで固体高分子電解質膜を挟持し、全面平坦面のホットプレス面31aを有する下金型31上に載置した。そして、全面平坦面のホットプレス面を有する上金型を用い、上方から面圧20kg/cmで2分間ホットプレスした。この時、上金型および下金型は150℃の温度に管理した。
ついで、室温まで冷却した後、第1および第2転写フィルム20、21を剥離し、発電要素体を得た。そして、この発電要素体を用いて、上記実施例1と同様にして、単セルを作製した。
そして、上記実施例1と同様の運転条件で運転し、出力電圧を測定し、その結果を図11に示す。
この比較例2による膜・電極接合体を用いた単セルでは、60℃の加湿温度で0.50Vの出力電圧が得られ、80℃の加湿温度で0.63Vの出力電圧が得られた。
【0049】
ここで、比較例2による発電要素体を観察すると、スクリーン印刷時のペーストのにじみにより、未転写部の幅は0.1mm前後でバラツキがあり、未転写部が部分的に形成されていない部位があった。また、カソードおよびアノード触媒層転写フィルムを慎重に位置合わせして固体高分子電解質膜2に重ね合わせたが、カソードおよびアノード触媒層の触媒形成領域は約0.2mmずれていた。
そして、この比較例2は、アノードおよびカソード触媒層を単一の触媒層で構成した比較例1と同等の出力電圧しか得られなかった。
このことから、触媒ペーストを第1および第2転写フィルムにマトリックス状にスクリーン印刷したものを、全面平坦面のホットプレス面を有する上金型を用いて固体高分子電解質膜2にホットプレスして転写する方法では、水の移動のパスを構成する微細な触媒非形成領域(未転写部)を転写できないことがわかる。
【0050】
実施例2.
この実施例2では、50mm×50mmの正方形面に凹溝30cを等間隔に縦横19本づつ形成してなるホットプレス面30aを有する上金型30を用い、上記実施例1と同様にして単セルを作製した。なお、各凹溝30cは溝幅0.278mm、溝深さ0.2mmとした。また、50mm×50mmの正方形面に対する凹溝30cの面積の割合は20%である。
そして、上記実施例1と同様の運転条件で運転し、出力電圧を測定して、その結果を図11に示す。
【0051】
この実施例2による膜・電極接合体を用いた単セルでは、60℃の加湿温度で0.52Vの出力電圧が得られ、80℃の加湿温度で0.64Vの出力電圧が得られた。
このように、実施例2は、上記実施例1と同等の性能が得られることから、触媒ペースト転写部30bが凹溝30cにより分離されてマトリックス状の配列されたホットプレス面30aを有する上金型30を用いて、触媒ペースト転写部30bと凹溝30cとにより圧力分布を形成して触媒ペーストを転写する方法は、溝幅0.278mmの凹溝が縦横19本づつ形成されているような微細パターンの転写にも適応できることがわかる。
【0052】
実施例3.
この実施例3では、厚み:50μmのPETフィルムを第1および第2転写フィルムとして用い、上記実施例1と同様に単セルを作製した。
そして、上記実施例1と同様の運転条件で運転し、出力電圧を測定して、その結果を図11に示す。
【0053】
この実施例3による膜・電極接合体を用いた単セルでは、60℃の加湿温度で0.52Vの出力電圧が得られ、80℃の加湿温度で0.64Vの出力電圧が得られた。
このように、実施例3は、上記実施例1と同等の性能が得られることから、転写フィルムの厚みを50μmとしても、触媒ペースト転写部30bが凹溝30cにより分離されてマトリックス状の配列されたホットプレス面30aを有する上金型30を用いて、触媒ペースト転写部30bと凹溝30cとにより圧力分布を形成して触媒ペーストを転写する方法で、水の移動のパスとなる未転写部を確保して触媒形成領域を転写できることがわかる。
【0054】
実施例4.
この実施例4では、厚み:80μmのPETフィルムを第1および第2転写フィルムとして用い、上記実施例1と同様に単セルを作製した。
そして、上記実施例1と同様の運転条件で運転し、出力電圧を測定して、その結果を図11に示す。
この実施例4による膜・電極接合体を用いた単セルでは、60℃の加湿温度で0.50Vの出力電圧が得られ、80℃の加湿温度で0.63Vの出力電圧が得られた。
【0055】
このように、実施例4では、上記比較例1と同等の性能が得られた。
この発電要素体を観察したところ、未転写部が部分的に形成されていなかったり、形成されていても未転写部の幅が金型設計値より小さくなっており、金型設計値通りには正確に転写されていなかった。これは、転写フィルムの厚みが厚くなりすぎ、金型の触媒ペースト部による圧力が転写フィルムの面内で分散され、所望の圧力分布が得られなかったためと推考される。
そこで、所望の圧力分布が得られるためには、転写フィルムの厚みは50μm以下とすることが望ましい。また、転写フィルムの厚みが薄すぎると、強度が低くなり取り扱い性の悪化をもたらすことから、転写フィルムの厚さは10μm以上とすることが望ましい。
【0056】
実施例5.
この実施例5では、上記実施例1で用いたカソード触媒粒子5重量部に、水6重量部、平均粒径0.5μmのアルミナ微粒子1重量部およびパーフルオロ系高分子電解質溶液であるFSS−1溶液(旭硝子の登録商標)15重量部を添加し、撹拌混合して均一な状態のカソード触媒ペーストBを得た。そして、カソード触媒ペーストBを第1転写フィルム上にスクリーン印刷した後、減圧乾燥してカソード触媒層転写フィルムBを得た。
このカソード触媒層転写フィルムBと上記実施例1で用いたアノード触媒層転写フィルムとを用い、上記実施例1と同様に発電要素体を作製し、上記実施例1と同様に単セルした。
そして、上記実施例1と同様の運転条件で運転し、出力電圧を測定して、その結果を図11に示す。
この実施例5による膜・電極接合体を用いた単セルでは、60℃の加湿温度で0.55Vの出力電圧が得られ、80℃の加湿温度で0.59Vの出力電圧が得られた。
【0057】
ここで、実施例5と実施例1との出力電圧を比較すると、実施例5は実施例1に対し低加湿状態の運転条件で高い出力電圧が得られることがわかる。これは、カソード触媒層を構成するカソード触媒ペーストBが親水性の高いアルミナ微粒子を混入されているので、カソード触媒層の保水力が実施例1に比べて高くなり、低加湿ガスの供給時の性能が高められたものと推考される。
また、実施例5は実施例1に対し高加湿状態の運転条件で低い出力電圧が得られることがわかる。これは、カソード触媒層の保水力が高すぎるため、高加湿ガスの供給の際に、カソード触媒層に水が滞留し、ガスの反応部への供給を妨げてしまったためと推考される。
このように、運転条件に適するように触媒層の組成を設計することが可能であり、燃料電池が特定の運転条件で運転される場合には有効である。
【0058】
実施例6.
この実施例6では、上記実施例1で用いたアノード触媒層転写フィルムおよびカソード触媒層転写フィルムAと、上記実施例5で用いたカソード触媒層転写フィルムBとを用いた。
【0059】
そして、アノード触媒ペーストおよびカソード触媒ペーストAを固体高分子電解質膜2に面するようにして、アノード触媒層転写フィルムおよびカソード触媒層転写フィルムAで固体高分子電解質膜2を挟持し、全面平坦面のホットプレス面31aを有する下金型31上に載置した。そして、図6に示される上金型32を用い、上方から面圧20kg/cmで2分間ホットプレスした。この時、上金型32および下金型31は150℃の温度に管理した。
ついで、室温まで冷却した後、第2転写フィルム21を剥離し、カソード触媒ペーストBを固体高分子電解質膜2に面するようにして、カソード触媒層転写フィルムBを固体高分子電解質膜2に重ね合わせ、全面平坦面のホットプレス面31aを有する下金型31上に載置した。そして、図7に示される上金型33を用い、上方から面圧20kg/cmで2分間ホットプレスした。この時、上金型33および下金型31は150℃の温度に管理した。また、上金型33は、1回目のホットプレス工程における上金型32の位置に一致するように位置合わせした。
【0060】
ついで、室温まで冷却した後、第1および第3転写フィルム20、22を剥離し、発電要素体を得た。この発電要素体におけるカソード触媒層は、カソード触媒ペーストAによる触媒形成領域と、カソード触媒ペーストBによる触媒形成領域とが隣り合うように配列されて構成されている。また、この発電要素体のアノードおよびカソード触媒層の触媒形成領域は、上記実施例1と同等の配列パターンに形成されている。そして、この発電要素体を用いて、上記実施例1と同様にして、単セルを作製した。
そして、上記実施例1と同様の運転条件で運転し、出力電圧を測定し、その結果を図11に示す。
この実施例6による膜・電極接合体を用いた単セルでは、60℃の加湿温度で0.54Vの出力電圧が得られ、80℃の加湿温度で0.62Vの出力電圧が得られた。
【0061】
ここで、実施例6は、低加湿状態の運転条件では上記実施例1より高い出力電圧が得られ、高加湿状態の運転条件では上記実施例5より高い出力電圧が得られることがわかる。即ち、実施例6は、幅広い加湿条件に対応できる性能を持つことが言える。これは、カソード触媒層が保水力の異なる2種類の触媒層を同一面に近接して配列して構成されているため、幅広い加湿条件に対応できたものと推考される。
このように、複数の性質をもつ触媒形成領域が同一面内に混在する複雑な触媒層を容易に実現できる。
【0062】
【発明の効果】
この発明は、以上のように構成されているので、以下に記載されているような効果を奏する。
【0063】
この発明によれば、アノード触媒ペーストを第1転写フィルム上に塗布形成する工程と、カソード触媒ペーストを第2転写フィルム上に塗布形成する工程と、上記第1および第2転写フィルムを上記アノード触媒ペーストおよび上記カソード触媒ペーストを固体高分子電解質膜側に向けて該固体高分子電解質膜を挟持するように重ね合わせて積層体を形成する工程と、平坦な触媒ペースト転写部および該触媒ペースト転写部に対して所定深さを有する触媒ペースト非転写部が形成されたホットプレス面を有する金型を用いて上記積層体をホットプレスし、上記アノード触媒ペーストおよび上記カソード触媒ペーストを該触媒ペースト転写部と略同一形状に上記固体高分子電解質膜に転写するホットプレス工程とを有するので、触媒非形成領域を触媒層内に精度よく、かつ、簡易に形成でき、水の拡散性を向上できる膜・電極接合体の製造方法を得ることができる。
【0064】
また、上記第1および第2転写フィルムが10μm以上、50μm以下の厚みに形成されているので、微細な触媒非形成領域のパターンを精度よく転写することができる。
【0065】
また、上記ホットプレス工程において、上記触媒ペースト転写部が互いに重ならないように形成された複数の金型を1つづつ用いてホットプレスして、上記アノード触媒ペーストおよび上記カソード触媒ペーストを該複数の金型の個数回に分けて上記固体高分子電解質膜に転写するようにしたので、異なる組成の触媒層を混在させることができる。
【0066】
この発明による固体高分子型燃料電池は、アノード触媒層およびカソード触媒層が固体高分子電解質膜を挟持するように配設され、アノード側ガス拡散層およびカソード側ガス拡散層が上記アノード触媒層および上記カソード触媒層上にそれぞれ配設されて構成された膜・電極接合体が、ガス流路が形成されたセパレータを介して複数積層されてなる固体高分子型燃料電池において、上記膜・電極接合体は、触媒非形成領域が上記固体高分子電解質膜を挟んで相対するように上記アノード触媒層および上記カソード触媒層内に形成されているので、局所的に滞留する過剰水を効率的に拡散させて固体高分子電解質膜の均一な湿潤状態を実現し、性能向上を図ることができる固体高分子型燃料電池を得ることができる。
【0067】
また、上記アノード触媒層および上記カソード触媒層が、上記触媒非形成領域により分離された複数の触媒形成領域から構成されているので、水の拡散性が向上される。
【0068】
また、上記アノード触媒層および上記カソード触媒層の少なくとも一方の触媒層は、それぞれ異なる組成の触媒ペーストで形成された少なくとも2種類の上記触媒形成領域が混在して構成されているので、幅広い運転条件に適合できる。
【図面の簡単な説明】
【図1】この発明の実施の形態1に係る固体高分子型燃料電池の構造を説明する断面図である。
【図2】この発明の実施の形態1に係る固体高分子型燃料電池におけるアノード触媒層の形成状態を説明する要部平面部である。
【図3】この発明の実施の形態1に係る固体高分子型燃料電池の膜・電極接合体の製造方法に適用される金型のホットプレス面を示す平面図である。
【図4】この発明の実施の形態1に係る固体高分子型燃料電池の膜・電極接合体の製造方法を説明する側面図である。
【図5】この発明の実施の形態2に係る固体高分子型燃料電池におけるカソード触媒層の形成状態を説明する要部平面部である。
【図6】この発明の実施の形態2に係る固体高分子型燃料電池の膜・電極接合体の製造方法に適用される第1金型のホットプレス面を示す平面図である。
【図7】この発明の実施の形態2に係る固体高分子型燃料電池の膜・電極接合体の製造方法に適用される第2金型のホットプレス面を示す平面図である。
【図8】この発明の実施の形態2に係る固体高分子型燃料電池の膜・電極接合体の製造方法における第1ホットプレス工程を説明する側面図である。
【図9】この発明の実施の形態2に係る固体高分子型燃料電池の膜・電極接合体の製造方法における第1ホットプレス工程によるカソード触媒層の形成状態を説明する要部平面部である。
【図10】この発明の実施の形態2に係る固体高分子型燃料電池の膜・電極接合体の製造方法における第2ホットプレス工程を説明する側面図である。
【図11】この発明に係る固体高分子型燃料電池の各実施例の出力電圧測定結果を示す図である。
【図12】比較例2による固体高分子型燃料電池の膜・電極接合体の製造方法に適用されるスクリーン印刷版を説明する平面図である。
【図13】従来の固体高分子型燃料電池の構造を説明する断面図である。
【符号の説明】
2 固体高分子電解質膜、5 アノード側ガス拡散層、6 カソード側ガス拡散層、7、8 セパレータ板、7a、8a ガス流路、10 膜・電極接合体、11 アノード触媒層、11a 触媒形成領域、11b 触媒非形成領域、12カソード触媒層、12a 触媒形成領域、12b 触媒非形成領域、13 カソード触媒層、13a 第1触媒形成領域、13b 第2触媒形成領域、13c触媒非形成領域、15 アノード触媒ペースト、16 カソード触媒ペースト、20 第1転写フィルム、21 第2転写フィルム、22 第3転写フィルム、25、26、27 積層体、30 上金型、30a ホットプレス面、30b触媒ペースト転写部、30c 凹溝(触媒ペースト非転写部)、32 上金型、32a ホットプレス面、32b 触媒ペースト転写部、32c 凹部(触媒ペースト非転写部)、33 上金型、33a ホットプレス面、33b 触媒ペースト転写部、33c 凹部(触媒ペースト非転写部)。

Claims (6)

  1. アノード触媒ペーストを第1転写フィルム上に塗布形成する工程と、
    カソード触媒ペーストを第2転写フィルム上に塗布形成する工程と、
    上記第1および第2転写フィルムを上記アノード触媒ペーストおよび上記カソード触媒ペーストを固体高分子電解質膜側に向けて該固体高分子電解質膜を挟持するように重ね合わせて積層体を形成する工程と、
    平坦な触媒ペースト転写部および該触媒ペースト転写部に対して所定深さを有する触媒ペースト非転写部が形成されたホットプレス面を有する金型を用いて上記積層体をホットプレスし、上記アノード触媒ペーストおよび上記カソード触媒ペーストを該触媒ペースト転写部と略同一形状に上記固体高分子電解質膜に転写するホットプレス工程と
    を有することを特徴とする膜・電極接合体の製造方法。
  2. 上記第1および第2転写フィルムが10μm以上、50μm以下の厚みに形成されていることを特徴とする請求項1記載の膜・電極接合体の製造方法。
  3. 上記ホットプレス工程において、上記触媒ペースト転写部が互いに重ならないように形成された複数の金型を1つづつ用いてホットプレスして、上記アノード触媒ペーストおよび上記カソード触媒ペーストを該複数の金型の個数回に分けて上記固体高分子電解質膜に転写するようにしたことを特徴とする請求項1記載の膜・電極接合体の製造方法。
  4. アノード触媒層およびカソード触媒層が固体高分子電解質膜を挟持するように配設され、アノード側ガス拡散層およびカソード側ガス拡散層が上記アノード触媒層および上記カソード触媒層上にそれぞれ配設されて構成された膜・電極接合体が、ガス流路が形成されたセパレータを介して複数積層されてなる固体高分子型燃料電池において、
    上記膜・電極接合体は、触媒非形成領域が上記固体高分子電解質膜を挟んで相対するように上記アノード触媒層および上記カソード触媒層内に形成されていることを特徴とする固体高分子型燃料電池。
  5. 上記アノード触媒層および上記カソード触媒層が、上記触媒非形成領域により分離された複数の触媒形成領域から構成されていることを特徴とする請求項4記載の固体高分子型燃料電池。
  6. 上記アノード触媒層および上記カソード触媒層の少なくとも一方の触媒層は、それぞれ異なる組成の触媒ペーストで形成された少なくとも2種類の上記触媒形成領域が混在して構成されていることを特徴とする請求項5記載の固体高分子型燃料電池。
JP2002195921A 2002-07-04 2002-07-04 膜・電極接合体の製造方法 Expired - Fee Related JP3970704B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195921A JP3970704B2 (ja) 2002-07-04 2002-07-04 膜・電極接合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195921A JP3970704B2 (ja) 2002-07-04 2002-07-04 膜・電極接合体の製造方法

Publications (2)

Publication Number Publication Date
JP2004039474A true JP2004039474A (ja) 2004-02-05
JP3970704B2 JP3970704B2 (ja) 2007-09-05

Family

ID=31704165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195921A Expired - Fee Related JP3970704B2 (ja) 2002-07-04 2002-07-04 膜・電極接合体の製造方法

Country Status (1)

Country Link
JP (1) JP3970704B2 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012523A (ja) * 2004-06-24 2006-01-12 Dainippon Printing Co Ltd 電極−電解質膜接合体製造用転写シート及びその製造方法
JP2006040677A (ja) * 2004-07-26 2006-02-09 Daihatsu Motor Co Ltd 膜電極接合体および燃料電池
JP2006139922A (ja) * 2004-11-10 2006-06-01 Hideichiro Hirai 発電ユニット、及び固体高分子形燃料電池
WO2007064044A1 (ja) * 2005-12-02 2007-06-07 Nagasaki Institute Of Applied Science 燃料電池用触媒
JP2008277278A (ja) * 2007-03-30 2008-11-13 Dainippon Printing Co Ltd 触媒層転写フィルム
JP2009533797A (ja) * 2005-04-14 2009-09-17 ベーアーエスエフ フューエル セル ゲゼルシャフト ミット ベシュレンクテル ハフトング ガス拡散電極、膜−電極アセンブリ、および、その製造方法
JP2009245796A (ja) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd 燃料電池用膜・電極接合体およびその製造方法
US20100221636A1 (en) * 2007-03-23 2010-09-02 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Fuel cell and method for production thereof
JP2012023044A (ja) * 2011-08-26 2012-02-02 Dainippon Printing Co Ltd 触媒層−電解質膜積層体の製造方法
US8546043B2 (en) 2007-04-23 2013-10-01 Toyota Jidosha Kabushiki Kaisha Method for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
US8765323B2 (en) 2007-06-12 2014-07-01 Canon Kabushiki Kaisha Membrane electrode assembly and fuel cell with dendritic shape catalyst layer
JP2019179625A (ja) * 2018-03-30 2019-10-17 本田技研工業株式会社 膜電極接合体の製造方法及び製造装置
JP2020534645A (ja) * 2018-01-19 2020-11-26 エルジー・ケム・リミテッド 膜電極接合体の製造方法および積層体
JP2021026992A (ja) * 2019-08-08 2021-02-22 日本碍子株式会社 燃料電池用接合体、及び燃料電池
JP2021082571A (ja) * 2019-11-21 2021-05-27 コリア インスティテュート オブ エナジー リサーチKorea Institute Of Energy Research 膜/電極接合体の製造方法、膜/電極接合体及び燃料電池

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538686B2 (ja) * 2004-06-24 2010-09-08 大日本印刷株式会社 電極−電解質膜接合体製造用転写シート及びその製造方法
JP2006012523A (ja) * 2004-06-24 2006-01-12 Dainippon Printing Co Ltd 電極−電解質膜接合体製造用転写シート及びその製造方法
JP2006040677A (ja) * 2004-07-26 2006-02-09 Daihatsu Motor Co Ltd 膜電極接合体および燃料電池
JP2006139922A (ja) * 2004-11-10 2006-06-01 Hideichiro Hirai 発電ユニット、及び固体高分子形燃料電池
JP2009533797A (ja) * 2005-04-14 2009-09-17 ベーアーエスエフ フューエル セル ゲゼルシャフト ミット ベシュレンクテル ハフトング ガス拡散電極、膜−電極アセンブリ、および、その製造方法
WO2007064044A1 (ja) * 2005-12-02 2007-06-07 Nagasaki Institute Of Applied Science 燃料電池用触媒
JP2007157671A (ja) * 2005-12-02 2007-06-21 Nagasaki Institute Of Applied Science 燃料電池用触媒担持方法および燃料電池
US20100221636A1 (en) * 2007-03-23 2010-09-02 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Fuel cell and method for production thereof
JP2008277278A (ja) * 2007-03-30 2008-11-13 Dainippon Printing Co Ltd 触媒層転写フィルム
US8546043B2 (en) 2007-04-23 2013-10-01 Toyota Jidosha Kabushiki Kaisha Method for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
US8765323B2 (en) 2007-06-12 2014-07-01 Canon Kabushiki Kaisha Membrane electrode assembly and fuel cell with dendritic shape catalyst layer
JP2009245796A (ja) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd 燃料電池用膜・電極接合体およびその製造方法
JP2012023044A (ja) * 2011-08-26 2012-02-02 Dainippon Printing Co Ltd 触媒層−電解質膜積層体の製造方法
JP2020534645A (ja) * 2018-01-19 2020-11-26 エルジー・ケム・リミテッド 膜電極接合体の製造方法および積層体
US11302946B2 (en) 2018-01-19 2022-04-12 Lg Chem, Ltd. Manufacturing method for membrane electrode assembly, and stacked body
JP7069505B2 (ja) 2018-01-19 2022-05-18 エルジー・ケム・リミテッド 膜電極接合体の製造方法および積層体
JP2019179625A (ja) * 2018-03-30 2019-10-17 本田技研工業株式会社 膜電極接合体の製造方法及び製造装置
JP7020980B2 (ja) 2018-03-30 2022-02-16 本田技研工業株式会社 膜電極接合体の製造方法及び製造装置
JP2021026992A (ja) * 2019-08-08 2021-02-22 日本碍子株式会社 燃料電池用接合体、及び燃料電池
JP2021082571A (ja) * 2019-11-21 2021-05-27 コリア インスティテュート オブ エナジー リサーチKorea Institute Of Energy Research 膜/電極接合体の製造方法、膜/電極接合体及び燃料電池
JP7062024B2 (ja) 2019-11-21 2022-05-02 コリア インスティテュート オブ エナジー リサーチ 膜/電極接合体の製造方法、膜/電極接合体及び燃料電池

Also Published As

Publication number Publication date
JP3970704B2 (ja) 2007-09-05

Similar Documents

Publication Publication Date Title
US7396610B2 (en) Substrate
CA2430681C (en) Process for the manufacture of membrane-electrode-assemblies using catalyst-coated membranes
US20050142397A1 (en) Membrane electrode assembly and fuel cell
JP3970704B2 (ja) 膜・電極接合体の製造方法
KR100532897B1 (ko) 연료 전지용 전극 및 연료 전지
JP2002025560A (ja) 燃料電池
US20190280307A1 (en) Composite electrode layer for polymer electrolyte fuel cell
KR20110043908A (ko) 고분자 전해질 연료전지용 막전극접합체 제조 방법
JP2004192950A (ja) 固体高分子型燃料電池及びその製造方法
JP3459615B2 (ja) 燃料電池用電極及び燃料電池
JP2004288388A (ja) 燃料電池用電極およびその製造方法および燃料電池
KR101312971B1 (ko) 불소계 이오노모를 이용하여 표면 개질한 탄화수소계 고분자 전해질 분리막, 막 전극 접합체 및 연료전지
JP4163029B2 (ja) 固体高分子型燃料電池の膜電極接合体の製造方法
JP2012190720A (ja) 固体高分子形燃料電池における膜電極接合体とその製造方法
JP4180556B2 (ja) 固体高分子型燃料電池
US11973230B2 (en) Electrode for membrane-electrode assembly and method of manufacturing same
JP2002343377A (ja) 燃料電池用電解質膜−電極接合体およびその製造方法
JPH05190184A (ja) 電極−電解質接合体、その製造方法、およびそれを用いた燃料電池
JP2006134640A (ja) 固体高分子型燃料電池及びその製造方法
KR101909709B1 (ko) 내구성이 향상된 연료전지용 막-전극 접합체, 그 제조 방법 및 상기 막-전극 접합체를 포함하는 연료전지
JP2001126737A (ja) 燃料電池用電極、その製造方法並びに燃料電池
JP3619826B2 (ja) 燃料電池用電極及び燃料電池
JP6356436B2 (ja) 電解質膜・電極構造体
JP2004071324A (ja) 高分子電解質型燃料電池およびその製造方法
JP2011181374A (ja) 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees