JP2004015008A - 縦型有機トランジスタ及びその製造方法 - Google Patents

縦型有機トランジスタ及びその製造方法 Download PDF

Info

Publication number
JP2004015008A
JP2004015008A JP2002170236A JP2002170236A JP2004015008A JP 2004015008 A JP2004015008 A JP 2004015008A JP 2002170236 A JP2002170236 A JP 2002170236A JP 2002170236 A JP2002170236 A JP 2002170236A JP 2004015008 A JP2004015008 A JP 2004015008A
Authority
JP
Japan
Prior art keywords
electrode
organic
organic semiconductor
semiconductor layer
alignment film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002170236A
Other languages
English (en)
Other versions
JP4256633B2 (ja
Inventor
Yoshiki Iino
飯野 芳己
Yoshihide Fujisaki
藤崎 好英
Hiroshi Kikuchi
菊池 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2002170236A priority Critical patent/JP4256633B2/ja
Publication of JP2004015008A publication Critical patent/JP2004015008A/ja
Application granted granted Critical
Publication of JP4256633B2 publication Critical patent/JP4256633B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

【課題】キャリア移動度が十分高い縦型有機トランジスタ及び該縦型有機トランジスタの製造方法を提供する。
【解決手段】基板1上にゲート電極2、ゲート絶縁膜5、ソース電極3、ドレイン電極4、並びにソース電極3及びドレイン電極4の間に配置された有機半導体層を有し、ソース電極3、有機半導体層、及びドレイン電極4は、基板1と垂直方向に積層され、ゲート電極2は、ゲート絶縁膜5を介して、ソース電極3、ドレイン電極4、及び有機半導体層に隣接して配置された縦型有機トランジスタにおいて、ソース電極3、ドレイン電極4、及びゲート絶縁膜5の有機半導体層に面する表面の少なくとも一部分に、有機半導体層の分子6”の配向を制御する配向膜7を有する。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、縦型有機トランジスタ及び該縦型有機トランジスタの製造方法に関する。
【0002】
【従来の技術】
有機薄膜トランジスタ(有機TFT)を用いたアクティブマトリックス・ディスプレイは、プラスチック基板上に作製できるため、高画質、軽量、及び省スペースといった点で、最近、大きな注日を集めている。
【0003】
有機TFTは、一般に、基板、ゲー卜電極、ソース電極、ドレイン電極、ゲート電極とソース電極/ドレイン電極とを絶縁するゲート絶縁膜、ソース電極とドレイン電極に挟まれた有機半導体層などで構成される。
【0004】
従来の有機TFTは、図3に示すように、基板1上にゲート電極2を設け、その上にゲート絶縁膜5を形成し、その上にソース電極3とドレイン電極4を互いに離して設け、さらに、ソース電極3、ドレイン電極4、ゲート絶縁膜5上に有機半導体層6を積層して、構成され、ソース電極3とドレイン電極4との間の横方向にチャネルが形成される。
【0005】
有機TFTのソース電極とドレイン電極との間に電圧(ソース−ドレイン間電圧)を印加すると共に、ゲート電極に印加する電圧(ゲート電圧:V)を変化させると、ゲート電圧に依存して有機半導体層とゲート絶縁膜との界面における電荷量が変化し、ソース電極とドレイン電極との間における有機半導体層の部分(チャネル)を流れる電流(ソース−ドレイン電流)を変化させることができる。このようにして、有機TFTでは、ゲート電圧を制御することにより、ドレイン電極から得られるドレイン電流Iを制御することができる。
【0006】
ここで、有機TFTのゲインg、即ち、ゲート電圧の変化に対するドレイン電流の変化(dI/dV)は、ソース−ドレイン電流が流れるチャネルが長方形であるとすると、次式
=W/L・εε/d・μ・(V−V) ・・・(1)
のように表される。ただし、Wは、チャネル幅であり、Lは、チャネル長であり、εは、真空誘電率であり、εは、絶縁膜の比誘電率であり、dは、ゲート絶縁膜の厚さであり、μは、キャリア移動度であり、Vは、閾値電圧である。式(1)によれば、チャネル幅Wとチャネル長Lの比W/Lが大きいほど、有機TFTのゲインは大きくなり、また、このトランジスタは高速になる。また、有機半導体のキャリア移動度が大きいほど、有機TFTのゲインも大きくなるため、キャリア移動度の大きい有機半導体層を形成することが望ましい。
【0007】
しかしながら、W/L比に関しては、従来の横型有機TFTにおいては、有機TFTを、ガラスやプラスチックの基板を使用して製造する場合、微細化の精度のために、図3に示すようなチャネル長Lを短くすることが困難である。特に、基板にプラスチックを用いた場合は、有機TFTの製造中に発生する熱により基板が膨張するため、ソース電極とドレイン電極との間の位置関係を制御することは、さらに困難である。加えて、横型有機TFTをディスプレイの駆動素子として用いる場合、画素の大きさに対する駆動用トランジスタの面積の割合が決まっているため、W/Lの値が制限され、容易に大きくすることはできない。
【0008】
上述した横型有機TFTにおける問題を解決する手段として、有機TFTのチャネルを、基板と平行な方向、即ち横方向に設けるのではなく、基板と垂直な方向、即ち縦方向に設けることが有望である。このようなチャネルを縦方向に設けた有機TFTは、縦型有機TFTと呼ばれる。縦型有機TFTでは、堆積する膜の厚さが時間に比例するため、縦方向の膜の厚さを、精度良く、数ナノ・メートルの単位で制御することができる。このようにして、膜の厚さの制御が容易である縦方向にチャネルを形成することで、チャネル長Lを短くすることができる。また、縦型有機TFTでは、膜の厚さの制御が容易であるので、ゲート電極とソース電極又はドレイン電極の重なりを小さくすることが可能である。
【0009】
また、キャリア移動度に関しては、有機半導体層に、π共役系を有する平面型の有機分子を使用する。π共役系を有する平面型の有機分子からなる有機半導体層は、一般にキャリア移動度に関する異方性を有する。π共役系を有する平面型の有機分子が、それらの分子のπ電子軌道が重なり合うように、即ち分子平面が互いに平行であるように、積層するとき、有機半導体層は、それらの分子平面に垂直な方向で高いキャリア移動度を示すことが知られている。従って、横型有機TFTの半導体層では、π共役系を有する平面型の有機分子を、分子平面が基板に対して垂直になるように、即ち複数の分子が横方向に配向するように、積層することが好ましい。逆に、縦型有機TFTの半導体層では、π共役系を有する平面型の有機分子を、分子平面が基板に対して平行になるように、即ち複数の分子が縦方向に配向するように、積層することが望ましい。
【0010】
以上の議論により、ゲインの大きな有機TFTを得るためには、共役系を有する平面型の有機分子を、分子平面が基板に対して平行になるように積層した有機半導体層を有する縦型有機TFTが望ましい。
【0011】
ここで有機TFTの具体例として、工藤一浩、飯塚正明、国吉繁一、田中国昭:信学技報OME98−50(1998−07)は、Static Induction Transistor(SIT)を開示する。このSITは、縦型有機TFTであるが、有機半導体として銅フタロシアニン(CuPc)を使用している。このSITのキャリア移動度は10−3cm/Vs程度であり、また、大きな漏れ電流がある、及び電流−電圧特性における飽和特性を示さない等の問題がある。
【0012】
また、H.Klauk,D.J.Gundlach,T.N.Jackson:IEEE Electron Dvice Lett.Vol.20 No.6 pp289−291(1999)においては、チャネルが基板と平行な方向に形成される横型トランジスタであるが、ペンタセンからなる有機半導体を使用することによって、0.5cm/Vs程度の高いキャリア移動度を得ている。
【0013】
一方、市村国宏:応用物理 第62巻 第10号(1993)は、液晶層を挟み込む二つの基板の表面にアゾベンゼンなどの二色性感光基を有する配向膜を塗布した液晶を開示する。この配向膜に紫外線又は可視光を照射することで、液晶層における液晶分子の配向を光制御すること(液晶のスイッチング)が可能である。
【0014】
【発明が解決しようとする課題】
上述したように、ゲインの大きな有機TFTを得るためには、共役系を有する平面型の有機分子を、分子平面が基板に対して平行になるように積層した有機半導体層を有する縦型有機TFTとすればよい。
【0015】
共役系を有する平面型の有機分子として、図4(a)に示す銅フタロシアニン(CuPc)のような円盤形状の分子6’を使用した場合には、銅フタロシアニンは、その分子平面が基板3に対して平行になるように、縦方向に積層する。しかしながら、銅フタロシアニンのキャリア移動度は、小さく10−3cm/Vs程度である。即ち、銅フタロシアニンのような円盤形状の分子6’は、図4(a)の矢印に示すように縦方向にキャリアを移動させやすいが、ペンタセンと比較して2桁以上小さい移動度しか得られない。
【0016】
また、共役系を有する平面型の有機分子として、図4(b)に示すように、ペンタセンのような細長い楕円形状の半導体分子6”からなる有機半導体を蒸著した場合には、その分子平面(の長軸)が基板3に対して垂直になるように、配向する傾向がある。つまり、ペンタセンのような細長い楕円形状の分子6”を通常の方法で蒸着させるだけでは、複数の分子6”が基板3に対して横方向に配向して並んでしまい、縦方向には、配向しにくい。従って、ペンタセンのような細長い楕円形状の分子は、横型有機TFTにおいては高いキャリア移動度を示す(ペンタセン:10−1cm/Vs程度)が、このような細長い楕円形状の分子を有機半導体に用いた縦型有機TFTにおいては、横方向の導電性は高いかもしれないが、チャネルが形成される縦方向の電導性は低下してしまう。即ち、このような細長い楕円形状の分子6”からなる半導体層は、図4の矢印で示す基板3と水平な方向には、高いキャリア移動度を持つが、基板3と垂直な方向のキャリア移動度は小さい。
【0017】
本発明は、上記問題に鑑みなされたものであり、キャリア移動度が十分高い縦型有機トランジスタ及び該縦型有機トランジスタの製造方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
請求項1記載の発明は、縦型有機トランジスタにおいて、基板上にゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、及び有機半導体層を有し、前記ソース電極、前記有機半導体層、及び前記ドレイン電極は、前記基板と垂直方向に積層され、前記有機半導体は、前記ソース電極及び前記ドレイン電極の間に配置され、前記ゲート電極は、前記ゲート絶縁膜を介して、前記ソース電極、前記ドレイン電極、及び前記有機半導体層に隣接して配置された縦型有機トランジスタにおいて、前記ソース電極、前記ドレイン電極、及び前記ゲート絶縁膜の前記有機半導体層に面する表面の少なくとも一部分に、前記有機半導体層の分子の配向を制御する配向膜を有することを特徴とする。
【0019】
請求項1記載の発明によれば、前記ソース電極、前記ドレイン電極、及び前記ゲート絶縁膜の前記有機半導体層に面する表面の少なくとも一部分に、前記有機半導体層の分子の配向を制御する配向膜を有するので、キャリア移動度が十分高い縦型有機トランジスタを提供することができる。
【0020】
請求項2記載の発明は、請求項1記載の縦型有機トランジスタにおいて、前記配向膜は、高分子鎖を含むことを特徴とする。
【0021】
請求項2記載の発明によれば、前記配向膜は、高分子鎖を含むので、配向膜を容易に塗布することができる。
【0022】
請求項3記載の発明は、縦型有機トランジスタ製造方法において、基板上にゲート電極を形成するステップと、前記ゲート電極の表面を酸化してゲート絶縁膜を形成するステップと、前記基板上に第一の電極を形成するステップと、前記ゲート絶縁膜及び前記第一の電極の表面に、有機分子を配向させる配向部並びに前記配向部に結合し特定波長及び特定偏光方向の光を照射することによって化学構造が変化する感光部を有する配向膜を塗布するステップと、前記配向膜の少なくとも一部分に、前記特定波長及び特定偏光方向の光を照射して、少なくとも一部分の前記感光部の前記化学構造を変化させるステップと、前記有機分子を含む有機半導体層を、前記配向膜に接触させて積層するステップと、前記有機半導体層上に第二の電極を形成するステップと、を含むことを特徴とする。
【0023】
請求項3記載の発明によれば、前記ゲート絶縁膜及び前記第一の電極の表面に、有機分子を配向させる配向部並びに前記配向部に結合し特定波長及び特定偏光方向の光を照射することによって化学構造が変化する感光部を有する配向膜を塗布するステップと、前記配向膜の少なくとも一部分に、前記特定波長及び特定偏光方向の光を照射して、少なくとも一部分の前記感光部の前記化学構造を変化させるステップと、を含むので、キャリア移動度が十分高い縦型有機トランジスタの製造方法を提供することができる。
【0024】
請求項4記載の発明は、請求項3記載の縦型有機トランジスタ製造方法において、前記配向膜は、前記感光部が高分子鎖に結合した膜であることを特徴とする。
【0025】
請求項4記載の発明によれば、前記配向膜は、前記感光部が高分子鎖に結合した膜であるので、配向膜を容易に塗布することができる。
【0026】
【発明の実施の形態】
次に、本発明の実施の形態について図面と共に説明する。
【0027】
まず、本発明における縦型有機トランジスタの構成及び製造方法の概略を図1と共に説明する。図1(a)は、本発明の縦型有機トランジスタの断面図であり、(b)は、基板と反対側からみた平面図である。本発明の縦型有機トランジスタは、基板1、ゲート電極2、ソース電極3、ドレイン電極4、ゲート絶縁膜5、有機半導体層(有機半導体の分子6”)、及び配向膜7を構成要素として含む。
【0028】
本発明の縦型有機トランジスタの概略製造方法は、まず、ガラス又はプラスチックなどの基板1上に、タンタル(Ta)などの層をスパッタリング法などで堆積させることにより、ゲート電極2を形成する。次に、ゲート電極2の表面を陽極酸化法により酸化して、五酸化タンタルの薄層であるゲート絶縁膜5を形成する。続いて、基板1上のゲート電極及びゲート絶縁膜の形成されていない部分に、金(Au)などの薄膜を蒸著することによってソース電極3を形成する。次に、ソース電極3及びゲート絶縁膜の表面における有機半導体を堆積させる部分に、後述するような感光基と配向基とを有する(高)分子化合物をデイップ法で塗布することによって、配向膜7を形成する。後述するように配向膜7に光を照射して感光基の化学構造を変化させた後、ペンタセンのような細長い楕円形状の半導体分子6”からなる有機半導体層を真空蒸着法によって堆積させる。最後に、有機半導体層4上に金(Au)などの薄膜を蒸著することによってドレイン電極4を形成する。このようにして形成した配向膜7を用いた本発明の縦型有機トランジスタにおいて、例えば、ソース電極3にアース電位、ドレイン電極4に−5[V]を印加し、ゲート電極2にマイナス電圧を印加すると、ソース−ドレイン間電流が、図1(a)の矢印の方向に流れる。
【0029】
本発明では、基板1上に形成されたソース電極3の表面及びゲート絶縁膜の表面における有機半導体層を堆積する部分に配向膜7を塗布し、光照射することによって配向膜7の化学構造変化を引き起こし、結果として有機半導体分子の配向を制御する。
【0030】
そこで次に、配向膜7の化学構造について詳細に説明する。配向膜7の(高)分子は、塗布される表面に結合する表面結合部分と、特定の光を吸収することによって化学構造を変化させる感光基と、有機半導体分子をある特定の方向に配向させる配向基が、順次結合した化学構造を有する。
【0031】
配向膜7の(高)分子は、特定の光を吸収して分子構造が変化する感光基を有し、感光基に有機半導体分子をある特定の方向に配向さ配向基が結合した(高)分子であれば何でもよい。
【0032】
しかしながら、配向膜7の(高)分子は、感光基が二重結合とπ共役系を含み、感光基を挟んで配向基と表面結合部分が結合しているようなものが挙げられる。感光基が、二重結合を含むと共に、配向基と表面結合部分とは互いに異なる化学構造を有しているため、配向膜7の(高)分子には、シス−トランス異性体が存在する。また、感光基がπ共役系を有するために、配向膜の(高)分子は、特定波長のモル吸光係数が大きく、光吸収の効率が高い。また、感光基は、特定の光を吸収することによって、シス型とトランス型との間で化学構造変化を引き起こす。即ち、感光基は、シス型とトランス型との間での化学構造変化によって、配向基の方向を120°変化させることができる。また、二重結合を有する感光基は、配向膜の(高)分子に分子構造を変化させる光を照射しない状態で、トランス型であり、分子構造を変化させる光を照射したときにシス型となることが望ましい。このような感光基を有する配向膜の(高)分子は、分子構造を変化させる光を照射しない状態で、配向基への結合と表面結合部分への結合とが平行な方向にあり、分子構造を変化させる光を照射したとき、配向基への結合と表面結合部分への結合とが120°の角度をなすことになる。二重結合を有し、光照射によりシス−トランス異性体の化学構造変化を起す感光基は、例えば、アゾベンゼン構造、スチルベン構造、スピロピラン構造などがある。
【0033】
配向基は、有機半導体の分子と弱い結合を形成して有機半導体の分子を特定方向へ配向させるため、有機半導体の分子と親和性の高い基であり、一般的には疎水性の基である。従って、配向基は、アルキル基が一般的であるが、フッ素で置換されたアルキル基などでもよい。配向基のアルキル鎖は、直鎖でも枝分かれしていてもよく、また配向基は、長いアルキル鎖を有することが望ましい。
【0034】
表面結合部分は、配向膜7が塗布される表面に結合する部分であり、配向膜が塗布される表面が、無機層の表面である場合には、カルボキシル基など親水性の基であることが好ましい。この場合には、感光基、配向基、表面結合部分を有する分子であり、分子が無機層の表面と弱い結合を形成して、配向膜が表面に塗布される。また、配向膜の塗布される表面に、配向膜の分子を塗布するのではなく、感光基、配向基、表面結合部分を有する分子を、表面結合部分をポリビニルアルコールなどの高分子鎖と結合させた高分子の配向膜を使用してもよい。この場合には、表面結合部分と高分子鎖とが強い共有結合を形成しているため、この高分子を表面に塗布することができれば、配向膜を容易に表面に形成することができる。即ち、配向膜の分子が付着しにくい表面でも、高分子を塗布することで、配向膜を表面に形成することができる。ここで、高分子鎖の分子量は、10乃至10の範囲にあるとする。
【0035】
上記のような二重結合を有する感光基を含む配向膜7の分子は、例えば、
【0036】
【化1】
Figure 2004015008
のようなアゾベンゼン構造を有する分子がある。また、二重結合を有する感光基を含む配向膜7の高分子は、例えば、
【0037】
【化2】
Figure 2004015008
のようなポリビニルアルコールに感光基と配向基を結合させた高分子がある。これらの分子及び高分子においては、アゾベンゼン構造の部分が感光基であり、−N=N−の部分が、特定の光を吸収することによりシス型又はトランス型の間で化学構造変化を起こす。また、この分子の長いアルコキシ基(例えばn=15)が、ペンタセンを配向させる配向基である。分子のカルボキシル基は、配向膜が塗布される表面と弱い結合を形成する表面結合部分である。また、ポリビニルアルコールの高分子鎖における二つのヒドロキシル基が、配向膜の表面結合部分と強く結合している。
【0038】
配向膜に照射する光は、配向膜の(高)分子が吸収して形状を変化させることができるような方向に偏光方向を有する直線偏光を使用する。上述したアゾベンゼン構造などを有する感光基は、二色性を示し、照射する直線偏光の偏光方向と感光基のその偏光を吸収する軸とが一致している場合に、感光基が直線偏光を吸収し、トランス型とシス型との間で分子構造の変化が起こる。照射する直線偏光の偏光方向と感光基のその偏光を吸収する軸とが異なる場合には、分子構造の変化は起こらない。
【0039】
次に、本発明の縦型有機トランジスタの製造方法における配向膜の作用を図2と共に説明する。図2(a)は、配向膜が吸収して化学構造変化を起こす光を照射しないときの縦型有機トランジスタの断面図であり、(b)は、配向膜が吸収して化学構造変化を起こす光を照射したときの縦型有機トランジスタの断面図である。
【0040】
まず、基板1上にゲート電極2を堆積させた後、ゲート電極2の表面を酸化してゲート絶縁膜5を形成し、さらにソース電極3を積層させる。次に配向膜7をソース電極3及びゲート絶縁膜5上にディップ法によって塗布する。基板1、ゲート酸化膜5で覆われたゲート電極2、ソース電極3の全体を、配向膜7の液体に浸漬するので、ソース電極3とゲート酸化膜5の表面全体に配向膜7が塗布される。なお、配向膜7をソース電極3側のみに塗布することは困難であり、波移行膜7は、ソース電極3とゲート酸化膜5の両方に塗布する。また、配向膜の(高)分子は、光を照射しない状態でトランス型7’であり、配向基が表面に対して垂直方向に存在するとする。また、配向が表面に対して垂直方向に存在するときには、ペンタセンのような細長い楕円形状の有機半導体分子6”は、その分子平面が表面に対して垂直に配向するとする。
【0041】
ここで、配向膜に光を照射しないで、ペンタセンのような細長い楕円形状の有機半導体分子6”を積層させたとき、有機半導体分子6”の配向の様子を図2(a)に示す。この場合には、ソース電極3及びゲート絶縁膜5の両方の表面に配向膜が塗布されており、それぞれの面に対して配向膜の配向基が垂直に存在する。よって、ペンタセンのような細長い楕円形状の有機半導体分子6”は、分子平面の長軸の方向がソース電極3の表面に対して垂直になるように配向しようとすると同時に、有機半導体分子6”は、分子平面の長軸の方向がゲート絶縁膜5の表面に対して垂直になる傾向でしようとする。従って、ソース電極3の表面における有機半導体分子6”及びゲート絶縁膜5の表面における有機半導体分子6”のうち一方の分子平面が、塗布された表面に対して垂直になるが、どちらの有機半導体分子6”が塗布された表面に対して垂直になるかわからない。
【0042】
図2(a)に示すように、有機半導体分子6”が、その分子平面の長軸がソース電極3の表面に対して垂直になるように配向して、その分子平面の長軸がゲート絶縁膜5の表面で平行になるように配向すると、ゲート絶縁膜5の側面に沿った方向には、半導体分子のπ電子の重なりがほとんど生じないため、キャリア移動度は小さくなる。この有機半導体層のゲート絶縁膜5の側面は、縦型トランジスタのチャネルに相当する部分であり、キャリア移動度が小さいと、この有機トランジスタのゲインは小さくなる。
【0043】
次に、配向膜に光を照射して、ペンタセンのような細長い楕円形状の有機半導体分子6”を積層させる場合における有機半導体分子6”の配向を図2(b)と共に説明する。感光基が吸収すると共にその化学構造変化を引き起こす直線偏光を配向膜7に照射しながら、又は照射した後に、有機半導体分子6”を堆積させる。この際に、直線偏光を、その偏光方向をソース電極3に塗布された配向膜の(高)分子の光吸収が大きい方向に合わせて、照射する。これにより、直線偏光が照射された、ソース電極3に塗布された配向膜の感光基のみが、選択的にトランス型7’からシス型7”へ化学構造変化を起こし、配向基がソース電極3の表面に対して垂直な方向から120°傾いた方向に向く。このとき、ゲート絶縁膜5の表面に塗布された配向膜の感光基は、照射された直線偏光の偏光方向が感光基の光吸収が起こる方向と一致しないため、化学構造変化を起こさない。よって、ソース電極3の表面における配向膜7の有機半導体分子6”を表面に対して垂直に配向させる傾向が、ゲート絶縁膜5の表面における配向膜7の有機半導体分子6”を表面に対して垂直に配向させる傾向よりも小さくなる。結果として、細長い楕円形状の半導体分子6”は、ソース電極3の表面に塗布された配向膜7上で90度配向の向きを変え、半導体分子6”の分子平面を、基板に対して平行な方向に配向させることができる。
【0044】
図2(b)に示すように、有機半導体分子6”が、その分子平面の長軸がソース電極3の表面に対して平行になるように配向して、その分子平面の長軸がゲート絶縁膜5の表面で垂直になるように配向すると、ゲート絶縁膜5の側面に沿った方向には、半導体分子のπ電子の重なりが生じるように半導体分子が積層するため、キャリア移動度は大きくなる。この有機半導体層のゲート絶縁膜5の側面は、縦型トランジスタのチャネルに相当する部分であるので、キャリア移動度が大きければ、この有機トランジスタのゲインは大きくなる。
【0045】
このようにして配向膜の感光基の化学構造に対する制御を行うことで、ペンタセンに代表される高い移動度を示す有機半導体分子をその分子平面が基板に対して水平になるように配向させて、縦方向にキャリア移動度の大きい縦型有機トランジスタを製造することができる。また、縦型有機トランジスタでは、チャネル長を決定する有機半導体層の厚さを、精度良く数ナノ・メートルの単位で制御できる。よって、容易に1μm以下の短いチャネル長Lを有するチャネルを縦方向に形成することができると共に、チャネルに沿った縦方向にキャリア移動度μが大きくなるように上述の半導体分子の配向を制御することで、(1)式で与えられる有機トランジスタのゲインを大きくすることができる。なお、ゲインを求める(1)式において、LとWは、図1(a)及び(b)に示すLとWの長さに相当する。
【0046】
以上、本発明の縦型有機トランジスタ及びその製造方法を、実施形態を用いて説明してきたが、本発明はこれらの実施形態に限定されるものではなく、本発明の主旨及び範囲を逸脱しない範囲で種々の変形や応用ができることは言うまでもない。例えば、本実施形態では、基板上にソース電極を形成するとしたが、基板上にドレイン電極を形成し、有機半導体を挟んで対向する電極をソース電極としてもよい。即ち、図1(a)に示す矢印と逆方向にソース−ドレイン電流を流してもよい。また、ゲート電極及びゲート絶縁膜を、縦型有機TFTの断面の片側にのみ形成した図面を用いて説明してきたが、断面の両側にゲート電極及びゲート絶縁膜を形成してチャネルを両側に形成してもよい。さらに、ゲート電極及びゲート絶縁膜を、すなわちチャネルを、有機半導体を取り囲むように形成してもよい。また、ゲート電極及びゲート絶縁膜は、基板に対して垂直な壁面をもたなくてもよく、基板に対して斜面となっていてもよい。加えて、本実施形態では、感光基が吸収して化学構造を変化させる直線偏光は、効率良く、有機半導体層を積層する前に照射したが、このような直線偏光が配向膜まで透過すれば、有機半導体層を積層した後に直線偏光を照射してもよい。
【0047】
【発明の効果】
本発明によれば、キャリア移動度が十分高い縦型有機トランジスタ及び該縦型有機トランジスタの製造方法を提供することができる。
【0048】
【図面の簡単な説明】
【図1】本発明の縦型有機トランジスタの図であり、(a)は、断面図、(b)は、基板と反対側からみた平面図である。
【図2】配向膜を使用した縦型有機トランジスタの断面図であり、(a)は、感光基が吸収して化学構造変化を起こす光を照射しない場合の図であり、(b)は、感光基が吸収して化学構造変化を起こす光を照射した場合の図である。
【図3】従来の横型有機トランジスタの概略図である。
【図4】有機半導体の分子の形態と配向方向を説明する図であり、(a)は、銅フタロシアニンのような円盤形状の分子、(b)は、ペンタセンのような細長い楕円形状の分子の図である。
【符号の説明】
1  基板
2  ゲート電極(Ta)
3  ソース電極(Au)
4  ドレイン電極
5  ゲート絶縁膜
6  有機半導体層
6’,6”  有機半導体分子
7  配向膜
7’,7”  配向膜の(高)分子の化学構造

Claims (4)

  1. 基板上にゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、及び有機半導体層を有し、
    前記ソース電極、前記有機半導体層、及び前記ドレイン電極は、前記基板と垂直方向に積層され、
    前記有機半導体は、前記ソース電極及び前記ドレイン電極の間に配置され、
    前記ゲート電極は、前記ゲート絶縁膜を介して、前記ソース電極、前記ドレイン電極、及び前記有機半導体層に隣接して配置された縦型有機トランジスタにおいて、
    前記ソース電極、前記ドレイン電極、及び前記ゲート絶縁膜の前記有機半導体層に面する表面の少なくとも一部分に、前記有機半導体層の分子の配向を制御する配向膜を有することを特徴とする縦型有機トランジスタ。
  2. 前記配向膜は、高分子鎖を含むことを特徴とする請求項1記載の縦型有機トランジスタ。
  3. 基板上にゲート電極を形成するステップと、
    前記ゲート電極の表面を酸化してゲート絶縁膜を形成するステップと、
    前記基板上に第一の電極を形成するステップと、
    前記ゲート絶縁膜及び前記第一の電極の表面に、有機分子を配向させる配向部並びに前記配向部に結合し特定波長及び特定偏光方向の光を照射することによって化学構造が変化する感光部を有する配向膜を塗布するステップと、
    前記配向膜の少なくとも一部分に、前記特定波長及び特定偏光方向の光を照射して、少なくとも一部分の前記感光部の前記化学構造を変化させるステップと、前記有機分子を含む有機半導体層を、前記配向膜に接触させて積層するステップと、
    前記有機半導体層上に第二の電極を形成するステップと、を含むことを特徴とする縦型有機トランジスタ製造方法。
  4. 前記配向膜は、前記感光部が高分子鎖に結合した膜であることを特徴とする請求項3記載の縦型有機トランジスタ製造方法。
JP2002170236A 2002-06-11 2002-06-11 縦型有機トランジスタ及びその製造方法 Expired - Fee Related JP4256633B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170236A JP4256633B2 (ja) 2002-06-11 2002-06-11 縦型有機トランジスタ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170236A JP4256633B2 (ja) 2002-06-11 2002-06-11 縦型有機トランジスタ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2004015008A true JP2004015008A (ja) 2004-01-15
JP4256633B2 JP4256633B2 (ja) 2009-04-22

Family

ID=30436565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170236A Expired - Fee Related JP4256633B2 (ja) 2002-06-11 2002-06-11 縦型有機トランジスタ及びその製造方法

Country Status (1)

Country Link
JP (1) JP4256633B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273938A (ja) * 2005-09-06 2007-10-18 Canon Inc 半導体素子の製造方法
JPWO2006046521A1 (ja) * 2004-10-25 2008-05-22 松下電器産業株式会社 電子デバイスおよびその製造方法、ならびにそれを用いた電子機器
WO2012067182A1 (ja) * 2010-11-19 2012-05-24 シャープ株式会社 有機半導体装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006046521A1 (ja) * 2004-10-25 2008-05-22 松下電器産業株式会社 電子デバイスおよびその製造方法、ならびにそれを用いた電子機器
JP5197960B2 (ja) * 2004-10-25 2013-05-15 パナソニック株式会社 電子デバイスおよびその製造方法、ならびにそれを用いた電子機器
JP2007273938A (ja) * 2005-09-06 2007-10-18 Canon Inc 半導体素子の製造方法
WO2012067182A1 (ja) * 2010-11-19 2012-05-24 シャープ株式会社 有機半導体装置
US20130234128A1 (en) * 2010-11-19 2013-09-12 Shigeru Aomori Organic semiconductor device

Also Published As

Publication number Publication date
JP4256633B2 (ja) 2009-04-22

Similar Documents

Publication Publication Date Title
TWI447980B (zh) A transistor, an organic semiconductor element, and the like
US7605396B2 (en) Field effect type organic transistor and process for production t hereof
US7138682B2 (en) Organic thin-film transistor and method of manufacturing the same
US7579223B2 (en) Semiconductor apparatus and process for fabricating the same
US8106389B2 (en) Thin film transistor with semiconductor precursor and liquid crystal display having the same
JP2005317923A (ja) 有機アクセプタ膜を備えた有機薄膜トランジスタ
TWI416633B (zh) A transistor and a method for manufacturing the same, and a semiconductor device having the same
JP2013062307A (ja) 薄膜トランジスタおよび電子機器
JP2005228968A (ja) 電界効果型トランジスタ、これを用いた画像表示装置及び半導体装置
JP4433746B2 (ja) 有機電界効果トランジスタ及びその製造方法
JP5380831B2 (ja) 有機トランジスタ及びその製造方法
Chen et al. Facile peeling method as a post-remedy strategy for producing an ultrasmooth self-assembled monolayer for high-performance organic transistors
JP4256633B2 (ja) 縦型有機トランジスタ及びその製造方法
JP6191235B2 (ja) 有機トランジスタ及びその製造方法
JP5419063B2 (ja) 半導体素子
JP2019153653A (ja) 有機半導体装置
JP4217086B2 (ja) 有機アクティブ素子およびその製造方法、表示デバイス
JP2004063975A (ja) 電界効果トランジスタ
JP2007180131A (ja) 有機fetおよびその製造方法
JP5305461B2 (ja) 薄膜積層体及びそれを用いた有機トランジスタ
JP5025948B2 (ja) 有機電界効果トランジスタ及び半導体装置
JP2012169419A (ja) 有機薄膜トランジスタ
JP5884306B2 (ja) 薄膜トランジスタおよびその製造方法、ならびに電子機器
JP2010262007A (ja) 表示装置および表示装置の製造方法
JP2004015007A (ja) 有機トランジスタ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees