JP2003518767A - 電子ビーム放射を利用してスピンオン誘電体被膜を硬化する方法 - Google Patents
電子ビーム放射を利用してスピンオン誘電体被膜を硬化する方法Info
- Publication number
- JP2003518767A JP2003518767A JP2001548425A JP2001548425A JP2003518767A JP 2003518767 A JP2003518767 A JP 2003518767A JP 2001548425 A JP2001548425 A JP 2001548425A JP 2001548425 A JP2001548425 A JP 2001548425A JP 2003518767 A JP2003518767 A JP 2003518767A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- spin
- electron beam
- electron
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02118—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02345—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
- H01L21/02351—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to corpuscular radiation, e.g. exposure to electrons, alpha-particles, protons or ions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31058—After-treatment of organic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76825—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76828—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Formation Of Insulating Films (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/474,399 US6607991B1 (en) | 1995-05-08 | 1999-12-29 | Method for curing spin-on dielectric films utilizing electron beam radiation |
| US09/474,399 | 1999-12-29 | ||
| PCT/US2000/035639 WO2001048805A1 (en) | 1999-12-29 | 2000-12-29 | Method for curing spin-on dielectric films utilizing electron beam radiation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003518767A true JP2003518767A (ja) | 2003-06-10 |
| JP2003518767A5 JP2003518767A5 (enExample) | 2008-02-28 |
Family
ID=23883362
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001548425A Pending JP2003518767A (ja) | 1999-12-29 | 2000-12-29 | 電子ビーム放射を利用してスピンオン誘電体被膜を硬化する方法 |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US6607991B1 (enExample) |
| JP (1) | JP2003518767A (enExample) |
| KR (1) | KR100773305B1 (enExample) |
| WO (1) | WO2001048805A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007510311A (ja) * | 2003-10-30 | 2007-04-19 | アプライド マテリアルズ インコーポレイテッド | 電子ビーム処理装置 |
Families Citing this family (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6582777B1 (en) * | 2000-02-17 | 2003-06-24 | Applied Materials Inc. | Electron beam modification of CVD deposited low dielectric constant materials |
| US7253425B2 (en) * | 2001-06-28 | 2007-08-07 | E-Beam & Light, Inc. | Method and apparatus for forming optical elements by inducing changes in the index of refraction by utilizing electron beam radiation |
| US7372052B2 (en) * | 2001-06-28 | 2008-05-13 | C-Beam & Light, Inc. | Electron beam method and apparatus for reducing or patterning the birefringence of halogenated optical materials |
| US7546016B2 (en) * | 2001-06-28 | 2009-06-09 | E-Beam & Light, Inc. | Optical elements formed by inducing changes in the index of refraction by utilizing electron beam radiation |
| US7026634B2 (en) * | 2001-06-28 | 2006-04-11 | E-Beam & Light, Inc. | Method and apparatus for forming optical materials and devices |
| US20060011863A1 (en) * | 2001-06-28 | 2006-01-19 | E-Beam & Light, Inc. | Electron beam method and apparatus for improved melt point temperatures and optical clarity of halogenated optical materials |
| US6844272B2 (en) * | 2002-03-01 | 2005-01-18 | Euv Limited Liability Corporation | Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers |
| US7060330B2 (en) | 2002-05-08 | 2006-06-13 | Applied Materials, Inc. | Method for forming ultra low k films using electron beam |
| US6936551B2 (en) | 2002-05-08 | 2005-08-30 | Applied Materials Inc. | Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices |
| US6831284B2 (en) * | 2002-11-21 | 2004-12-14 | Applied Materials, Inc. | Large area source for uniform electron beam generation |
| JP4372442B2 (ja) * | 2003-03-28 | 2009-11-25 | 東京エレクトロン株式会社 | 電子ビーム処理方法及び電子ビーム処理装置 |
| US6693050B1 (en) * | 2003-05-06 | 2004-02-17 | Applied Materials Inc. | Gapfill process using a combination of spin-on-glass deposition and chemical vapor deposition techniques |
| US6878644B2 (en) * | 2003-05-06 | 2005-04-12 | Applied Materials, Inc. | Multistep cure technique for spin-on-glass films |
| KR100673884B1 (ko) * | 2003-09-22 | 2007-01-25 | 주식회사 하이닉스반도체 | 습식 세정에 의한 어택을 방지할 수 있는 반도체 장치제조 방법 |
| JP4160489B2 (ja) * | 2003-10-31 | 2008-10-01 | 株式会社東芝 | 半導体装置の製造方法 |
| US7049612B2 (en) * | 2004-03-02 | 2006-05-23 | Applied Materials | Electron beam treatment apparatus |
| US20050224722A1 (en) * | 2004-03-30 | 2005-10-13 | Applied Materials, Inc. | Method and apparatus for reducing charge density on a dielectric coated substrate after exposure to large area electron beam |
| US7611996B2 (en) * | 2004-03-31 | 2009-11-03 | Applied Materials, Inc. | Multi-stage curing of low K nano-porous films |
| US20050227502A1 (en) * | 2004-04-12 | 2005-10-13 | Applied Materials, Inc. | Method for forming an ultra low dielectric film by forming an organosilicon matrix and large porogens as a template for increased porosity |
| US7018941B2 (en) | 2004-04-21 | 2006-03-28 | Applied Materials, Inc. | Post treatment of low k dielectric films |
| US7384693B2 (en) * | 2004-04-28 | 2008-06-10 | Intel Corporation | Diamond-like carbon films with low dielectric constant and high mechanical strength |
| US8901268B2 (en) | 2004-08-03 | 2014-12-02 | Ahila Krishnamoorthy | Compositions, layers and films for optoelectronic devices, methods of production and uses thereof |
| US7422776B2 (en) * | 2004-08-24 | 2008-09-09 | Applied Materials, Inc. | Low temperature process to produce low-K dielectrics with low stress by plasma-enhanced chemical vapor deposition (PECVD) |
| US20070026690A1 (en) * | 2004-11-05 | 2007-02-01 | Yoo Woo S | Selective frequency UV heating of films |
| US20060099827A1 (en) * | 2004-11-05 | 2006-05-11 | Yoo Woo S | Photo-enhanced UV treatment of dielectric films |
| US7588803B2 (en) * | 2005-02-01 | 2009-09-15 | Applied Materials, Inc. | Multi step ebeam process for modifying dielectric materials |
| JP2007019161A (ja) * | 2005-07-06 | 2007-01-25 | Dainippon Screen Mfg Co Ltd | パターン形成方法及び被膜形成装置 |
| US20070059922A1 (en) * | 2005-09-13 | 2007-03-15 | International Business Machines Corporation | Post-etch removal of fluorocarbon-based residues from a hybrid dielectric structure |
| US7678586B2 (en) * | 2005-12-08 | 2010-03-16 | Chartered Semiconductor Manufacturing, Ltd. | Structure and method to prevent charge damage from e-beam curing process |
| US7407736B2 (en) * | 2006-01-31 | 2008-08-05 | International Business Machines Corporation | Methods of improving single layer resist patterning scheme |
| US7730516B2 (en) | 2007-02-27 | 2010-06-01 | Sony Corporation | TV-centric system |
| KR100909757B1 (ko) * | 2007-10-31 | 2009-07-29 | 주식회사 하이닉스반도체 | 반도체 소자의 층간절연막 형성 방법 |
| US8557877B2 (en) | 2009-06-10 | 2013-10-15 | Honeywell International Inc. | Anti-reflective coatings for optically transparent substrates |
| US8795952B2 (en) | 2010-02-21 | 2014-08-05 | Tokyo Electron Limited | Line pattern collapse mitigation through gap-fill material application |
| US8864898B2 (en) | 2011-05-31 | 2014-10-21 | Honeywell International Inc. | Coating formulations for optical elements |
| US9018108B2 (en) | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
| US10544329B2 (en) | 2015-04-13 | 2020-01-28 | Honeywell International Inc. | Polysiloxane formulations and coatings for optoelectronic applications |
| KR102511272B1 (ko) | 2018-02-23 | 2023-03-16 | 삼성전자주식회사 | 노광 장치 및 이를 이용하는 반도체 장치의 제조 방법 |
| TWI894152B (zh) | 2019-07-02 | 2025-08-21 | 美商應用材料股份有限公司 | 形成積體電路結構的方法、整合系統與電腦可讀媒介 |
| WO2021034567A1 (en) | 2019-08-16 | 2021-02-25 | Tokyo Electron Limited | Method and process for stochastic driven defectivity healing |
| CN116656050B (zh) * | 2023-07-18 | 2023-10-20 | 河南华佳新材料技术有限公司 | 一种光伏用聚丙烯金属化膜及其制备方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH10107026A (ja) * | 1996-09-13 | 1998-04-24 | Samsung Electron Co Ltd | Sog層キュアリング方法及びこれを用いた半導体装置の絶縁膜製造方法 |
| WO1998043294A1 (en) * | 1997-03-24 | 1998-10-01 | Alliedsignal Inc. | Integration of low-k polymers into interlevel dielectrics using controlled electron-beam radiation |
| JP2001015500A (ja) * | 1999-07-01 | 2001-01-19 | Jsr Corp | 低密度膜の製造方法、低密度膜、絶縁膜および半導体装置 |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4041190A (en) | 1971-06-29 | 1977-08-09 | Thomson-Csf | Method for producing a silica mask on a semiconductor substrate |
| US4222792A (en) | 1979-09-10 | 1980-09-16 | International Business Machines Corporation | Planar deep oxide isolation process utilizing resin glass and E-beam exposure |
| JPS5760330A (en) | 1980-09-27 | 1982-04-12 | Fujitsu Ltd | Resin composition |
| US4596720A (en) | 1985-10-03 | 1986-06-24 | Dow Corning Corporation | Radiation-curable organopolysiloxane coating composition |
| US5003178A (en) | 1988-11-14 | 1991-03-26 | Electron Vision Corporation | Large-area uniform electron source |
| KR910008980B1 (ko) | 1988-12-20 | 1991-10-26 | 현대전자산업 주식회사 | 자외선을 이용한 s.o.g 박막 경화 방법 |
| US5119164A (en) | 1989-07-25 | 1992-06-02 | Advanced Micro Devices, Inc. | Avoiding spin-on-glass cracking in high aspect ratio cavities |
| US5192715A (en) | 1989-07-25 | 1993-03-09 | Advanced Micro Devices, Inc. | Process for avoiding spin-on-glass cracking in high aspect ratio cavities |
| US5024969A (en) | 1990-02-23 | 1991-06-18 | Reche John J | Hybrid circuit structure fabrication methods using high energy electron beam curing |
| US5192697A (en) | 1992-01-27 | 1993-03-09 | Chartered Semiconductor Manufacturing Pte Ltd. | SOG curing by ion implantation |
| US5468595A (en) | 1993-01-29 | 1995-11-21 | Electron Vision Corporation | Method for three-dimensional control of solubility properties of resist layers |
| US5376586A (en) | 1993-05-19 | 1994-12-27 | Fujitsu Limited | Method of curing thin films of organic dielectric material |
| MY113904A (en) | 1995-05-08 | 2002-06-29 | Electron Vision Corp | Method for curing spin-on-glass film utilizing electron beam radiation |
| US6652922B1 (en) | 1995-06-15 | 2003-11-25 | Alliedsignal Inc. | Electron-beam processed films for microelectronics structures |
| US5609925A (en) * | 1995-12-04 | 1997-03-11 | Dow Corning Corporation | Curing hydrogen silsesquioxane resin with an electron beam |
| US6255232B1 (en) * | 1999-02-11 | 2001-07-03 | Taiwan Semiconductor Manufacturing Company | Method for forming low dielectric constant spin-on-polymer (SOP) dielectric layer |
-
1999
- 1999-12-29 US US09/474,399 patent/US6607991B1/en not_active Expired - Fee Related
-
2000
- 2000-12-29 WO PCT/US2000/035639 patent/WO2001048805A1/en not_active Ceased
- 2000-12-29 KR KR1020027008481A patent/KR100773305B1/ko not_active Expired - Fee Related
- 2000-12-29 JP JP2001548425A patent/JP2003518767A/ja active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH10107026A (ja) * | 1996-09-13 | 1998-04-24 | Samsung Electron Co Ltd | Sog層キュアリング方法及びこれを用いた半導体装置の絶縁膜製造方法 |
| WO1998043294A1 (en) * | 1997-03-24 | 1998-10-01 | Alliedsignal Inc. | Integration of low-k polymers into interlevel dielectrics using controlled electron-beam radiation |
| JP2001015500A (ja) * | 1999-07-01 | 2001-01-19 | Jsr Corp | 低密度膜の製造方法、低密度膜、絶縁膜および半導体装置 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007510311A (ja) * | 2003-10-30 | 2007-04-19 | アプライド マテリアルズ インコーポレイテッド | 電子ビーム処理装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20020063923A (ko) | 2002-08-05 |
| WO2001048805A1 (en) | 2001-07-05 |
| US6607991B1 (en) | 2003-08-19 |
| KR100773305B1 (ko) | 2007-11-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6607991B1 (en) | Method for curing spin-on dielectric films utilizing electron beam radiation | |
| US6132814A (en) | Method for curing spin-on-glass film utilizing electron beam radiation | |
| JP3276963B2 (ja) | 誘電体フィルムを基盤上に形成する方法 | |
| US7309514B2 (en) | Electron beam modification of CVD deposited films, forming low dielectric constant materials | |
| CN100477106C (zh) | 半导体器件制造方法 | |
| US6271146B1 (en) | Electron beam treatment of fluorinated silicate glass | |
| JP5326202B2 (ja) | 半導体装置及びその製造方法 | |
| US20090304951A1 (en) | Ultralow dielectric constant layer with controlled biaxial stress | |
| JP2008544484A (ja) | プリメタルおよび/またはシャロートレンチアイソレーションに用いられるスピン−オン誘電体材料のための紫外線硬化処理方法 | |
| US6998216B2 (en) | Mechanically robust interconnect for low-k dielectric material using post treatment | |
| JPH08236520A (ja) | 半導体装置の絶縁層の形成方法 | |
| JP3530165B2 (ja) | 半導体装置の製造方法 | |
| JPH10209275A (ja) | 半導体装置の製造方法 | |
| TW409283B (en) | Integration of LOW-K polymers into interlevel dielectrics using controlled electron-beam radiation | |
| KR100909757B1 (ko) | 반도체 소자의 층간절연막 형성 방법 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071218 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071218 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100723 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100727 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101220 |