JP2003275582A - 窒素及びアルゴンを選択的に吸着するための分子篩吸着剤の調製工程 - Google Patents

窒素及びアルゴンを選択的に吸着するための分子篩吸着剤の調製工程

Info

Publication number
JP2003275582A
JP2003275582A JP2002082476A JP2002082476A JP2003275582A JP 2003275582 A JP2003275582 A JP 2003275582A JP 2002082476 A JP2002082476 A JP 2002082476A JP 2002082476 A JP2002082476 A JP 2002082476A JP 2003275582 A JP2003275582 A JP 2003275582A
Authority
JP
Japan
Prior art keywords
degrees celsius
adsorption
molecular sieve
nitrogen
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002082476A
Other languages
English (en)
Other versions
JP3978060B2 (ja
Inventor
Jince Sebastian
セバスチャン ジンス
Raksh Vir Jasra
ヴィア ジャスラ ラケシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Original Assignee
Council of Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council of Scientific and Industrial Research CSIR filed Critical Council of Scientific and Industrial Research CSIR
Priority to US10/105,876 priority Critical patent/US6572838B1/en
Priority to JP2002082476A priority patent/JP3978060B2/ja
Priority to GB0207012A priority patent/GB2386889B/en
Priority to PCT/IB2003/000504 priority patent/WO2003080236A1/en
Publication of JP2003275582A publication Critical patent/JP2003275582A/ja
Application granted granted Critical
Publication of JP3978060B2 publication Critical patent/JP3978060B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/027Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • C01B21/0455Physical processing only by adsorption in solids characterised by the adsorbent
    • C01B21/0466Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • C01B23/0057Physical processing only by adsorption in solids characterised by the adsorbent
    • C01B23/0068Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0029Obtaining noble gases
    • C01B2210/0034Argon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0078Noble gases
    • C01B2210/0082Argon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/24LTA, e.g. A, alpha, ZK-4, ZK-21, ZK-22
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S95/00Gas separation: processes
    • Y10S95/90Solid sorbent
    • Y10S95/902Molecular sieve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

(57)【要約】 (修正有) 【課題】酸素、窒素、アルゴンのガス状混合物を分離す
るための新規分子篩吸着剤の製造方法を提供する。 【解決手段】結晶性分子篩吸着剤の調製のための銀イオ
ン交換による単段工程を提供するためのものであり、以
下の工程よりなる。(a)ゼオライトAを銀塩の水溶液
と混合し;(b)摂氏30〜90度で4〜8時間暗所で
還流させ、残留物を得;(c)残留物をろ過し、残留物
から銀イオンがなくなるまで水洗し、及び;(d)空気
中で摂氏85度未満で乾燥し、続いて減圧下に置き;結
晶性分子篩吸着剤を得る。

Description

【発明の詳細な説明】
【0001】発明の分野 本発明は、酸素とのガス状混合物から窒素及びアルゴン
を選択的に吸着するための分子篩吸着剤の調製工程に関
する。
【0002】背景及び従来技術文献 空気から酸素と窒素を分離するための吸着方法は、過去
30年、より商業目的に用いられるようになってきてい
る。汚水処理、発酵、切断及び溶接、養殖、電気炉、パ
ルプ漂白、ガラス吹き製法、医療目的、及び特に必要と
される酸素純度が90〜95%のときの製鉄業における
酸素需要量は、圧力スイングプロセス又は真空スイング
プロセスに基づいた吸着により広くまかなわれる。現
在、世界の酸素需要の4〜5%が空気の吸着分離によっ
てまかなわれていると概算される。しかしながら、吸着
方法で最大限に到達可能な純度は95%あたりまでで、
空気中に存在する0.934モル・パーセントのアルゴ
ンの分離が100%酸素純度達成への制限因子となって
いる。さらに、空気からの吸着ベースの酸素生産は、一
日100トン超の酸素生産レベルにおいては、空気の極
低温分別と経済的に競争しうるものではない。吸着方法
による酸素生産の総コストのうち、設備の資本コスト及
び電力消費が全体のコストに影響を及ぼす2つの主要な
要素であり、これらのシェアはそれぞれ、50%、40
%である。方法やシステムデザインなどの要素と共に、
吸着剤が吸着による酸素生産のコストを引き下げ可能な
主要要素である。吸着剤の選択度及び容量が、吸着容
器、コンプレッサー又は真空ポンプのサイズを決定する
重要なパラメターである。酸素と比べ窒素に対する選択
度が高いだけでなく高い吸着容量を示す吸着剤が望まれ
ている。吸着剤のこれらの特性の改良は、直接的にシス
テムの吸着剤の在庫の低下につながり、よってエア・コ
ンプレッサー又は真空ポンプのサイズ及び電力消費の低
下につながる。さらに、高い窒素容量及び選択度を有す
る吸着剤は、吸着剤上に吸着された窒素を抜き出すこと
で、酸素と一緒にかなり純粋な窒素の生産にも使用可能
である。さらに、酸素に対し窒素とアルゴン両方に選択
度を有する吸着剤は、空気からの高純度(96%超)の
酸素の生産に使用可能である。
【0003】したがって、分離さるべき特定の成分に対
して吸着剤が良好な吸着容量及び吸着選択度を有するこ
とが強く求められている。
【0004】吸着剤の吸着容量は、吸着剤の単位容積又
は重量における吸着された望ましい成分の容積又は重
量、との単位の量として定義される。望ましい成分に対
する吸着容量が高いほど吸着剤は良好であり、これは、
特定の吸着剤の吸着容量が増加することが、特定濃度の
混合物から特定量の成分を分離するのに必要な吸着剤の
量を減少するのに役立つからである。特定の吸着方法に
おける吸着剤量のこのような減少は、分離工程のコスト
を引き下げる。
【0005】成分の吸着選択度は、吸着分子のサイズ及
び形状における相違などの立体因子から生じるもので、
すなわちガス混合物の成分の吸着等温線がかなり異なる
場合には平衡作用、成分が実質的に異なる吸着速度を有
する場合には運動作用である。
【0006】方法が商業的に経済的であるためには、望
ましい成分に対しての許容可能な最低限の吸着選択度は
約3であり、吸着選択度が2未満であると効率的な吸着
工程を設計するのは困難である。
【0007】従来技術においては酸素及びアルゴンとの
混合物から窒素を選択する吸着剤の報告があり、ここで
は、イオン交換アルカリ及び/又はアルカリ土類金属イ
オンのあとにタイプA、Xのゼオライト及びモルデン沸
石が用いられている。しかしながら、こうした目的の商
業利用されるゼオライトAベースの吸着剤に関して報告
される吸着選択度は3〜5であり、吸着容量は765m
mHg、摂氏30度で12〜15cc/gである。ゼオ
ライトの化学組成を変化させ、ゼオライト構造内で交換
性カチオンの数を増やすことで、吸着容量及び選択度を
高める努力が報告されている。窒素への吸着選択度はま
た、あるゼオライトタイプにおいてリチウム及び/又は
カルシウムのようなカチオンでゼオライトを置き換える
ことでも実質的に高められている。
【0008】特定量のカルシウムを有するゼオライトA
が、選択的に窒素を吸着することにより空気からの酸素
生産に商業利用されてきている。しかしながら、現在使
用される吸着剤には以下の制限がある。 ・商業利用されている他の吸着剤と比べ吸着容量が低い ・吸着選択度が低い ・95%の最高純度でしか酸素を産出できない ・水分に敏感である ・カルシウム塩との多数の交換が必要である ・ヒドロキシル化を防止するため吸着剤の活性化に多大
な注意が必要である
【0009】R.V.Jasraらは、「Separa
tion of gases bypressure
swing adsorption」;Separat
ion Science and Technolog
y,26(7),pp.885−930,1991にお
いて、複数成分のガス混合物を分離する方法としての圧
力スイングプロセスの現状を再考しており、新世代の吸
着剤の応用が詳細に述べられている。「Adsorpt
ion of a Nitrogen−Oxygen
mixture in NaCaA zeolites
by elution Chromatograph
y」,Ind.Eng.Chem.Res.1993,
32,548−552では、N.V.Choudary
らが窒素吸着におけるカルシウム含有物の影響を述べて
おり、様々なNaCaAゼオライトサンプルについて酸
素が研究されている。N.V.Choudaryらは、
「Sorption of nitrogen,oxy
gen and argon in mordenit
e type zeolites」,Indian J
ournal of Chemistry Vol.3
8A January 1999,pp.34−39に
おいて、異なるSi/Al比を有するモルデン沸石タイ
プのゼオライトにおける窒素、酸素及びアルゴンの吸着
及び脱離について述べている。モルデン沸石、NaA及
びNaXにおける窒素とアルゴンの吸着熱が比較され、
格子酸素原子ならびに特別骨格構造ナトリウムイオンと
の吸着物の相互作用を明らかにしている。
【0010】「Air separation by
adsorption」との名称の米国特許第3,97
3,931号(1976)においてJ.J.Colli
nsらを参照してもよく、ここでは、少なくとも2つの
ゼオライト系分子篩床における選択的吸着により空気分
離のための断熱圧力スイングプロセスが行われるもので
あり、空気は華氏90度未満で導入され、吸入端部にお
けるもっとも冷たいガス温度が華氏35度であり、デル
タTが少なくとも華氏15度であり、吸入端部が加熱さ
れて加熱無しよりも暖かい少なくとも華氏25度から華
氏125度未満の最高値にガスを維持している。主な欠
点は、これが空気分離工程において加熱及び温度調節を
必要とすることである。「Polyvalent io
n exchanged adsorbentfor
air separation」との名称の米国特許第
4,481,018号(1984)においてC.G.C
oeらは、空気を酸素と窒素に分離するために、摂氏3
0度で選択度3.4〜6.7の、熱活性化した多価イオ
ン交換フォージャサイト含有組成物を使用することを述
べている。欠点は、ヒドロキシル化を防止し且つ吸着剤
の選択度が摂氏30度で3.4〜6.7だけであるため
に、熱活性工程が非常にゆっくりとした加熱を必要とす
ることである。
【0011】「Binary ion exchang
ed type X zeolite adsorbe
nt」との名称の米国特許第4,557,736号(1
985)においてS.Sircarらは、2元イオン交
換Xタイプゼオライトからなる吸着剤の使用を述べてお
り、ここでは、有効イオン部位の5%〜40%がカルシ
ウムで占められ、有効イオン部位の60%〜95%がス
トロンチウムで占められ、超雰囲気圧において空気流か
らの窒素の吸着に用いられ、酸素に富んだ生成物流を生
じる。主な欠点は、吸着剤の調製に複数のカチオン交換
工程が必要なことである。
【0012】「Preparation of hig
h purity oxygen」との名称の米国特許
第4,756,723号(1988)においてS.Si
rcarは、およそ95%の純酸素を生産するために単
段圧力スイング吸着法の使用を述べている。主な欠点
は、到達可能な酸素純度の最大値が95%に過ぎないこ
とである。
【0013】「Process for separa
ting nitrogen from mixtur
es thereof with less pola
rsubstances」との名称の米国特許第4,8
59,217号(1989)、C.C.Chaoにおい
ては、90%超のリチウムカチオンを含む高リチウム交
換低シリカ形態ゼオライトXが低極性ガスからの窒素の
選択的吸着に用いられる。これらの吸着剤は、4〜12
倍の余分なLiCl3溶液を用いたリチウム交換により
調製される。主な欠点は、吸着剤が非常に水分に敏感
で、リチウム交換が4〜12倍の余分なLiCl3溶液
を必要とすることである。
【0014】「Process for the pu
rification of bulk gases
by using chabazite adsorb
ents」との名称の米国特許第4,943,304号
(1990)、C.G.Coeらは、バルク(bul
k)ガス流からの斜方沸石を用いた一つ又はそれ以上の
微量成分の選択的吸着のための工程を提供している。主
な欠点は、商業上有用な合成斜方沸石調製のための公知
の方法は、低収率であり、生成物純度が低く、結晶化時
間が長いために実用的でなく、非実用的でなかったとし
てもスケールアップが難しいことである。
【0015】「Selective adsorpti
on on magnesiumcontaining
clinoptilites」との名称の米国特許第
4,964,889号(1990)、C.C.Chao
では、窒素以下の分子寸法を有するガスが選択的に吸着
され、窒素よりも大きな分子寸法を有する他のガスから
分離される。主な欠点は、市販のクリノプティロライト
(clinoptilolite)の粒度が様々で、ク
リノプティロライトの粒度がイオン交換反応の速度及び
完全性に影響を及ぼすことである。
【0016】「Process for the ad
sorptive−oxygenenrichment
of air with mixture of c
alcium zeolite A molecula
r sieve by means of vacuu
m swing adsorption」との名称の米
国特許第5,114,440号(1992)、G.Re
issは、CaA分子篩を用いた真空スイング吸着によ
る酸素富化空気のための工程を提供している。この吸着
剤の欠点は、窒素吸着容量が低く、酸素に対する窒素の
選択度が低く、調製に多段のカルシウム交換が必要であ
り、またヒドロキシル化を防止するためにその活性化工
程が非常にゆっくりとした加熱を必要とすることであ
る。
【0017】「Nitrogen adsorptio
n with a Ca and/or Sr exc
hanged lithium X zeolite」
との名称の米国特許第5,152,813号(199
2)、C.G.Coeらは、好ましくはカルシウム及び
/又はストロンチウムが5%〜50%でリチウムが50
%〜95%の比でリチウムとカルシウム及び/又はスト
ロンチウムイオンを有する少なくとも2元交換されたX
ゼオライトを用いた、酸素、水素、アルゴン又はヘリウ
ムを含むガス混合物からの窒素分離のための方法に関す
る。主な欠点は、吸着剤の調製に複段のカチオン交換が
必要であり、ヒドロキシル化を防止するためにその活性
化工程が非常にゆっくりとした加熱を必要とし、また吸
着剤が非常に水分に敏感であることである。
【0018】「Mixed ion exchange
d zeolites and processes
for the use thereof in ga
sseparations」との名称の米国特許第5,
174,979号(1992)、C.C.Chaoらで
は、リチウム:アルカリ土類金属の当量比95:5から
約50:50であるリチウム/アルカリ土類金属Xゼオ
ライト、及びリチウム:アルカリ土類金属の当量比1
0:90から約70:30であるリチウム/アルカリ土
類金属Aゼオライトがガス混合物からの酸素及び窒素の
分離に有用であることが見出される。主な欠点は、吸着
剤の調製に複段のカチオン交換が必要であり、窒素選択
度が2〜7に過ぎず、また吸着剤が非常に水分に敏感で
あることである。
【0019】「Oxygen VSA process
with low oxygencapacity
adsorbents」との名称の米国特許第5,26
6,102号(1993)、T.R.Gafneyらで
は、中程度の窒素容量と高い選択度を有する吸着剤がV
SA工程による分離に用いられる。主な欠点は、到達可
能な酸素純度の最大値が95%に過ぎないこと、窒素容
量の低い吸着剤が分離工程に用いられたことである。
【0020】「Air separation pro
cess」との名称の米国特許第5,454,857号
(1995)、C.C.Chaoでは、シリカ/アルミ
ナ比が2.0〜2.4の範囲の60〜89当量パーセン
トのカルシウム交換形態のゼオライトXが、温度範囲摂
氏50度〜摂氏−20度、圧力範囲0.05〜5気圧で
用いられている。主な欠点は、吸着剤の調製に複段のカ
チオン交換が必要であり、ヒドロキシル化を防止するた
めにその活性化工程が非常にゆっくりとした加熱を必要
とすることである。
【0021】「Adsorptive separat
ion of nitrogenfrom other
gases」との名称の米国特許第5,464,46
7号(995)、F.R.Fitchらでは、その電荷
平衡カチオンがリチウムイオン95〜50%、アルミニ
ウム、セリウム、ランタン、ランサナイド混合物のうち
一つ以上4〜50%、他のイオン0〜15%からなるX
タイプゼオライトが、ガス混合物からの選択的な窒素吸
着に用いられていた。この吸着剤の主な欠点は、水分へ
の高い親和性、及びその調製に塩化リチウム溶液の5〜
10倍の複段のカチオン交換が必要なことである。
【0022】「Nitrogen selective
zeolitic adsorbent for u
se in air separation proc
ess」との名称の米国特許第5,698,013号
(1997)、C.C.Chaoらでは、SiO2/A
23比が2.0〜2.4の範囲の60〜89当量パー
セントのカルシウム交換形態のゼオライトXが、圧力ス
イング吸着による空気分離工程において窒素の選択的吸
着として用いられている。この吸着剤の主な欠点は、水
分への高い親和性、その調製に複段のカルシウム交換が
必要なこと、及びヒドロキシル化を防止するためにその
活性化工程が非常にゆっくりとした加熱を必要とするこ
とである。
【0023】「Use of zeolites an
d alumna in adsorption pr
ocesses」との名称の米国特許第5,779,7
67号(1998)、T.C.Goldenらでは、吸
着による空気浄化のための工程が述べられている。主な
欠点は、この吸着剤がガス混合物からの、二酸化炭素、
水、炭化水素、及び窒素酸化物の吸着にしか使えないと
いうことである。
【0024】「Adsorbents for air
separation, production m
ethod thereof, and air−se
paration method using it」
との名称の米国特許第5,868,818号(199
9)、N.Ogawaらは、圧力スイング吸着による空
気分離に用いられる、少なくとも90%モル・パーセン
トのリチウムカチオンを含有するSiO2/Al23
ル比が3.0以下の結晶ゼオライトXの使用を記載して
いる。この吸着剤の主な欠点は、その調製に複段のカル
シウム交換が必要なこと、及び少量の水分にも非常に敏
感であることである。
【0025】「Oxygen selective s
orbents」との名称の米国特許第5,945,0
79号(1999)、J.T.Mullhauptら
は、高い選択度、ローディング能力、酸素吸収率を有
し、固体状態の遷移金属錯体が広い表面積を有する基板
上に支持された酸素選択吸着剤を用いる空気分離の工程
からなる発明を記載している。この吸着剤の欠点は、
(a)吸着が物理吸着ではなく、よって完全な可逆性で
はない、(b)吸着剤の調製及び取扱いが非常に困難、
(c)この吸着剤の使用は商業的には経済的ではない、
ことである。
【0026】「Process for the pr
eparation of a molecular
sieve adsorbent for selec
tively adsorbing nitrogen
from a gaseous mixture」と
の名称の米国特許第6,030,916号(200
0)、N.V.Choudrayらは、余分な骨格を交
換可能なカチオンとしてイットリウムとアルカリ及び/
又はアルカリ土類金属を含み、空気からの酸素及び/又
は窒素の分離に有用な分子篩吸着剤の調製を記載してい
る。主な欠点は、高い窒素選択度を有する吸着剤を得る
ためにはイットリウム交換工程が何回も行われなくては
ならないことである。
【0027】「Process for the pr
eparation of a molecular
sieve adsorbent for selec
tively adsorbing oxygen f
rom a gas mixture」との名称の米国
特許第6,087,289号(2000)、N.V.C
houdrayらは、ガス混合物からの酸素の選択的吸
着に用いられるセリウムカチオンを含むゼオライト系吸
着剤の調製工程を記載している。この吸着剤の主な欠点
は、その酸素容量の低さ(摂氏30度、1気圧で約3c
c)及び酸素選択度が低圧領域のみにあることである。
【0028】「Adsorbents and ads
orptive separation proces
s」との名称の米国特許第6,143,057号(20
00)、M.Bulowらは、微粒子ゼオライトからな
る吸着性組成物の使用を記載しており、その粒子の少な
くとも90%は約0.6ミクロンよりも大きくはない固
有の粒度を有し、空気からの窒素又は二酸化炭素の分離
に用いられるマクロ細孔不活性バインダーを有する。利
用可能なカチオン部位がカチオンの混合物で占められ
た、Aタイプゼオライト、アルファゼオライト、Xタイ
プゼオライト、そしてYタイプゼオライトの混合物が選
択的吸着のための吸着剤として用いられた。この吸着剤
の主な欠点は、その調製に複数回のカチオン交換工程が
含まれ、また吸着剤が水分に非常に敏感であることであ
る。
【0029】「Air separation usi
ng monolith adsorbent be
d」との名称の米国特許第6,231,644号(20
01)、R.Jainらは、第一のガス状成分と第二の
ガス状成分からなるガス混合物からの第一のガス状成分
分離のためのモノリス床の使用を記載しており、吸着ゾ
ーンへとガス状混合物を通過させる。この吸着剤の主な
欠点は、水分への高い親和性、その調製に複段のイオン
交換工程が必要なことである。
【0030】「A process for the
preparation of amolecular
sieve adsorbent useful i
nthe oxygen enrichment of
air」との名称のインド特許第181823号(1
995)、N.V.Choudaryらは、圧力スイン
グ吸着による85〜95%純度の酸素生成に用いられ
る、クレー・バインダーを含むゼオライトA系吸着剤の
使用を記載している。この吸着剤の主な欠点は、酸素に
対しての低い窒素選択度(摂氏30度、1気圧で3〜
5)、低い窒素容量(摂氏30度、1気圧で約15cc
/g)、水分への高い親和性、その調製に複段のカルシ
ウム交換工程が必要なことである。
【0031】発明の目的 本発明の主な目的は、酸素とのガス状混合物から窒素及
びアルゴンを選択的に吸着するための分子篩吸着剤の調
製工程を提供することであり、ここまでに詳述した欠点
を除去するものである。
【0032】本発明の他の目的は、合成ゼオライトをベ
ースに窒素選択吸着剤を提供することである。
【0033】本発明のさらに他の目的は、合成ゼオライ
トをベースにアルゴン選択吸着剤(酸素と比較して)を
提供することである。
【0034】本発明のさらに他の目的は、水分による吸
着容量及び選択度の減衰がその変色により視認可能な吸
着剤を提供することである。
【0035】本発明のさらなる目的は、酸素及び/又は
アルゴンとの混合物からの高い窒素吸着選択度及び容量
を有する吸着剤を提供することである。
【0036】本発明のさらに他の目的は、酸素よりも窒
素とアルゴンに対して選択的であり、空気分離に商業利
用可能な吸着剤を提供することである。
【0037】本発明のさらに他の目的は、単段のカチオ
ン交換工程で調製可能な吸着剤を提供することである。
【0038】発明の要約 したがって本発明は「酸素とのガス状混合物から窒素及
びアルゴンを選択的に吸着するための分子篩吸着剤の調
製工程」を提供するものであり、これは以下の一般式で
示される分子篩吸着剤からなり、 (Ag2O)x.(M2/nO)y.(Al236.(Si
212.wH2O ここでxの値は4.8〜6.0、yは0.0〜1.2、
wは水のモル数、Mは原子価nを有する任意の金属イオ
ンである。
【0039】発明の詳細な説明 したがって本発明は、酸素を含むガス状混合物から窒素
及びアルゴンを選択的に吸着するために用いられる結晶
性分子篩吸着剤の調整のための銀イオン交換による単段
工程を提供するものであり、前記工程は以下のステップ
からなる: (a)ゼオライトAを銀塩の水溶液と混合し; (b)摂氏30〜90度で4〜8時間暗所で還流させ、
残留物を得; (c)残留物をろ過し、残留物から銀イオンがなくなる
まで水洗し;及び (d)空気中において摂氏85度未満で乾燥し、続いて
減圧下置き、化学組成(Ag2O)x.(M2/nO)y
(Al236.(SiO212.wH2Oの結晶性分子
篩吸着剤を得る。
【0040】本発明の一実施例では、ステップ(b)〜
(d)は随意に以下のステップで行われてもよい: (a)ゼオライトAを等量の銀塩溶液と混合し; (b)不活性雰囲気下において摂氏500〜575度の
範囲の温度で混合物を加熱し; (c)残留物から銀イオンがなくなるまで残留物を水洗
し;及び (d)減圧下、室温において混合物を乾燥し、前記結晶
性分子篩吸着剤を得る。
【0041】本発明のさらに他の実施例では、xの値が
1.2〜6.0モルである。
【0042】本発明のさらに他の実施例では、yの値が
0.0〜4.8モルである。
【0043】本発明のさらに他の実施例では、wが水の
モル数である。
【0044】本発明のさらに他の実施例では、Mがナト
リウム、カルシウム、カリウム、又はリチウムからなる
群から選ばれるカチオンであり、もっとも好ましくはナ
トリウムである。
【0045】本発明のさらに他の実施例では、選ばれた
ゼオライトが顆粒、粉末、及びペレットの形態である。
【0046】本発明のさらに他の実施例では、銀塩溶液
の水溶液が過塩素酸銀(AgClO 4)、酢酸銀、又は
硝酸銀(AgNO3)から選ばれる。
【0047】本発明のさらなる実施例では、銀塩溶液の
濃度が、ゼオライトAの0.25〜15重量/容積%の
範囲である。
【0048】本発明のさらに他の実施例では、銀塩の水
溶液とゼオライトAの比が1:80である。
【0049】本発明のさらに他の実施例では、前記分子
篩が、摂氏30度、765mmHgで22.3cc/g
に至る高い窒素吸着容量を有する。
【0050】本発明のさらなる実施例では、前記分子篩
が、酸素に対する窒素選択度を有し、摂氏30度で5〜
14.6である。
【0051】本発明のさらに他の実施例では、前記分子
篩が、摂氏30度、765mmHgで6.5cc/gに
至るアルゴン吸着容量を有する。
【0052】本発明のさらなる実施例では、前記分子篩
が、摂氏30度で1.2〜2.0の範囲内でアルゴンへ
の選択度を有する。
【0053】本発明のさらに他の実施例では、前記分子
篩のヒドロキシル化が少なく、これによりゆっくりと加
熱を行う必要をなくす。
【0054】本発明のさらなる実施例では、前記分子篩
が、酸素の96%超の高精製能力を有する。
【0055】本発明のさらに他の実施例では、硝酸銀、
過塩素酸銀又は酢酸銀から選ばれる任意の水溶性銀塩を
用い、10〜100当量パーセントの銀イオンが単段で
ゼオライトへと取り込まれる。
【0056】本発明のさらに他の実施例では、ゼオライ
トが、80〜100当量パーセントの銀イオンとイオン
交換され、活性化された分子篩吸着剤が、橙色っぽい赤
色(orange red)/赤レンガ色(brick
red)である。
【0057】本発明のさらに他の実施例では、分子篩吸
着剤が、空気中又は減圧下で摂氏85度未満の温度、好
ましくは摂氏20〜80度の範囲の温度で乾燥されてい
る。
【0058】以下の実施例の形態で本発明をさらに説明
する。微小孔結晶性アルミナ−珪酸塩であるゼオライト
は、緊密に関連した化合物の混合物を分離するための吸
着剤としてますます用途を広げている。ゼオライトは、
頂端酸素原子を分け合うことで互いにリンクされたSi
4とAlO4の四面体からなる基本構造単位の三次元ネ
ットワークを有する。珪素及びアルミニウム原子は四面
体の中央にある。結果として生じる一般に多孔性の高い
アルミノ−珪酸塩構造は、三次元微細孔を有し、そこへ
の進入は分子大の窓を介する。水和形態では、好ましい
ゼオライトは以下の化学式により一般に表される: M2/nO.Al23.xSiO2.wH2O ここでMはカチオンであり、四面体のイオン原子価を平
衡させ、通常は、余分な骨格を交換可能なカチオン(e
xtra framework exchangeab
le cation)と称されるものであり、nはカチ
オンの原子価、xとwはそれぞれSiO2と水のモルを
示す。カチオンは以下に詳述する多数のカチオンのいず
れか一つでよい。
【0059】ゼオライトを分離に魅力あるものとする属
性は、尋常ならざる高さの熱及び熱水平衡、均一な細孔
構造、細孔口径変更の容易さ、及び低い吸着質圧力にお
いても実質的に吸着能力を有することである。さらに、
ゼオライトは比較的穏やかな熱水状況下で合成可能であ
る。
【0060】X線粉末回析データがXRK 900反応
チャンバを備えたPHILIPSX’pert MPD
システムを用いて集められた。このX線回析データを文
献のX線データと比較することで吸着剤粒子の結晶化度
を調査した。「d」値が12.1925、5.489、
4.086、3.2818、2.9773及び2.72
15のX線回析が比較に用いられた。
【0061】ゼオライトNaA粉末[Na12(Al
212.(SiO212.wH2O]が出発原料として用
いられた。X線回析データは、この出発原料が高い結晶
質であることを示した。ゼオライトNaAは特定濃度の
銀塩水溶液に1:80の比で混合され、摂氏30〜90
度で暗所で4〜8時間処理された。残留物がろ過され、
洗浄物から銀イオンがなくなるまで熱した蒸留水で洗浄
され(塩化ナトリウム溶液で検査した)、空気中及び実
施例に特定される減圧状況下で室温から摂氏80度の間
で乾燥された。カチオン交換反応の平衡が生成物の容易
な形成を助けるため、銀交換は単段で完了する。銀交換
の程度は原子吸光分光法で割り出された。
【0062】実施例に記載されるように摂氏350度〜
450度で4時間サンプルを減圧下で活性化させた後、
摂氏15度及び30度における酸素、窒素及びアルゴン
の吸着が静止容積測定システム(Micromerit
ics ASAP 2010)を用いて測定された。吸
着質ガスの添加は、0.5〜850mmHgの範囲の目
標とする圧力群を達成するのに必要な容積で行われた。
この目標圧力の5.0%の相対目標許容範囲(rela
tive target tolerance)及び
5.000mmHgの完全目標許容範囲(absolu
te target tolerance)を有する5
秒の最小平衡許容差(minimum equilib
rium interval)が各測定点での平衡割り
出しに用いられた。吸着と脱離は完全に可逆なものであ
り、したがって吸着されたガスは簡単な脱離により除去
可能である。
【0063】吸着熱は以下の式を用いて計算された。 吸着熱、Δad0=R{[∂lnp]/[∂(1/
T)]}θ ここで、Rは一般ガス定数、θは圧力p温度Tで吸着さ
れたガス量である。1/Tに対するlnpの線図はΔad
0/Rの勾配の直線である。
【0064】2種類のガスA、Bの選択度は以下の式に
より表される。 αA/B=[VA/VBP,T ここで、VA、VBは所定の圧力P及び温度Tで吸着され
たガスA、Bの容積である。
【0065】本発明における重要な進歩性は、得られた
分子篩吸着剤が、(i)室温から摂氏90度の温度範囲
内で任意の銀塩の水溶液を用いて単段のイオン交換工程
によって調製されること、(ii)活性化工程中安定し
ており、ヒドロキシル化のおそれが非常に低く、よって
活性化工程に非常にゆっくりとした加熱が必要とされな
いこと、(iii)活性化後には赤レンガ色/橙色っぽ
い赤色を有し、これは供給ガス混合物における水分の存
在による吸着容量及び選択度の減衰に伴い変化するこ
と、(iv)窒素に対する吸着容量及び選択度を有し、
これはこれまでに報告されたゼオライトAベースの吸着
剤の中で最高であること、(v)酸素に対してアルゴン
に選択度を有し、96%超の純度の酸素生成に有用であ
ること、である。
【0066】以下の実施例は例証のために示されるもの
であり、したがって本発明の範囲を限定するものと解釈
されるべきではない。
【0067】実施例1 ゼオライトNaA粉末[(Na2O)6.(Al
236.(SiO212.wH 2O]が開始材料として
用いられた。既知量のサンプルが減圧下摂氏350度で
活性化され、先に述べたように吸着測定が行われた。窒
素の吸着容量は摂氏30度、765mmHgでわずか
7.5cc/g、酸素に対する窒素の選択度は研究した
圧力範囲内でおよそわずか3であり、数値を表1に示
す。吸着熱量を表2に示し、脱離曲線の形状から吸着が
物理吸着であり完全に可逆であることがわかる。
【0068】実施例2 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gのNaA粉末を1:80の比で0.1M塩化カ
ルシウム溶液に混ぜ、摂氏80度で4時間還流させた。
溶液をデカントし、残留物を新しい塩化カルシウムと混
ぜ、前記工程をさらに4回繰り返してナトリウムイオン
とカルシウムイオンとの交換を完全なものとした。残留
物をろ過し、洗浄物から塩化物がなくなるまで熱した蒸
留水で洗浄し(硝酸銀溶液で検査した)、空気中で室温
(摂氏30度)で乾燥した。吸着剤の化学組成が、(C
aO)5.8.(Na2O)0.2.(Al236.(SiO
212.wH2Oであることを元素分析が示す。X線回析
データは材料が高い結晶質であることを示す。既知量の
サンプルが減圧下、摂氏350度で活性化され、前に述
べたように吸着測定が行われた。窒素の吸着容量は摂氏
30度、765mmHgで15.5cc/g、酸素に対
する窒素の選択度は研究した圧力範囲内で3〜5.5で
あり、数値を表1に示す。吸着熱量を表2に示し、脱離
曲線の形状から吸着が物理吸着であり完全に可逆である
ことがわかる。
【0069】実施例3 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。2
5.0gの分子篩NaA粉末を1:80の比で0.1M
AgNO3溶液に混ぜ、摂氏80度で4時間還流させ
た。残留物をろ過し、洗浄物から銀イオンがなくなるま
で熱した蒸留水で洗浄し(塩化ナトリウム溶液で検査し
た)、空気中で室温(摂氏28度)で乾燥した。吸着剤
の化学組成が、(Ag2O)5.6.(Na2O)0.4.(A
236.(SiO212.wH2Oであることを元素
分析が示す。X線回析データは材料が高い結晶質である
ことを示す。既知量のサンプルが減圧下、摂氏350度
で活性化され、前に述べたように吸着測定が行われた。
摂氏350度での活性化後、サンプルの色は黒っぽい灰
色となった。窒素の吸着容量は摂氏30度、765mm
Hgで21.4cc/g、酸素に対する窒素の選択度は
研究した圧力範囲内で4.9〜10.3であり、数値を
表1に示すが、これは商業利用されているゼオライトA
ベースの吸着剤と比べ非常に高い。吸着熱量を表2に示
し、脱離曲線の形状から吸着が物理吸着であり完全に可
逆であることがわかる。
【0070】実施例4 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。2
5.0gの分子篩NaA粉末を1:80の比で0.1M
AgNO3溶液に混ぜ、摂氏80度で4時間還流させ
た。残留物をろ過し、洗浄物から銀イオンがなくなるま
で熱した蒸留水で洗浄し(塩化ナトリウム溶液で検査し
た)、空気中で室温(摂氏30度)で乾燥する。吸着剤
の化学組成が、(Ag2O)5.8.(Na2O)0.2.(A
236.(SiO212.wH2Oであることを元素
分析が示す。X線回析データは材料が高い結晶質である
ことを示す。既知量のサンプルが減圧下、摂氏380度
で活性化され、前に述べたように吸着測定が行われた。
摂氏380度での活性化後、サンプルの色は赤レンガ色
(brick red)となった。吸着アイソサームを
図1に示す。窒素の吸着容量は摂氏30度、765mm
Hgで22.3cc/g、酸素に対する窒素の選択度は
研究した圧力範囲内で5.2〜14.6であり、数値を
表1に示すが、これは商業利用されているゼオライトA
ベースの吸着剤と比べ非常に高い。吸着熱量を表2に示
し、脱離曲線の形状から吸着が物理吸着であり完全に可
逆であることがわかる。
【0071】実施例5 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。2
5.0gの分子篩NaA粉末を1:80の比で0.1M
AgNO3溶液に混ぜ、摂氏80度で4時間還流させ
た。残留物をろ過し、洗浄物から銀イオンがなくなるま
で熱した蒸留水で洗浄し(塩化ナトリウム溶液で検査し
た)、空気乾燥機中で摂氏60度で乾燥する。吸着剤の
化学組成が、(Ag2O)5.4.(Na2O)0.6.(Al
236.(SiO212.wH2Oであることを元素分
析が示す。X線回析データは材料が高い結晶質であるこ
とを示す。既知量のサンプルが減圧下、摂氏380度で
活性化され、前に述べたように吸着測定が行われた。摂
氏380度での活性化後、サンプルの色は赤レンガ色と
なった。窒素の吸着容量は摂氏30度、765mmHg
で20.7cc/g、酸素に対する窒素の選択度は研究
した圧力範囲内で4.7〜12.0であり、数値を表1
に示すが、これは商業利用されているゼオライトAベー
スの吸着剤と比べ非常に高い。吸着熱量を表2に示し、
脱離曲線の形状から吸着が物理吸着であり完全に可逆で
あることがわかる。
【0072】実施例6 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gの分子篩NaA粉末を1:80の比で12.0
gのAgNO3を含むAgNO3溶液に混ぜ、摂氏80度
で4時間還流させた。残留物をろ過し、洗浄物から銀イ
オンがなくなるまで熱した蒸留水で洗浄し(塩化ナトリ
ウム溶液で検査した)、空気乾燥機中で摂氏40度で乾
燥する。吸着剤の化学組成が、(Ag2O)5.2.(Na
2O)0.8.(Al236.(SiO212.wH2Oで
あることを元素分析が示す。X線回析データは材料が高
い結晶質であることを示す。既知量のサンプルが減圧
下、摂氏400度で活性化され、前に述べたように吸着
測定が行われた。摂氏400度での活性化後、サンプル
の色は橙色っぽい赤色(orange red)となっ
た。窒素の吸着容量は摂氏30度、765mmHgで2
0.1cc/g、酸素に対する窒素の選択度は研究した
圧力範囲内で4.6〜12.7であり、数値を表1に示
すが、これは商業利用されているゼオライトAベースの
吸着剤と比べ非常に高い。吸着熱量を表2に示し、脱離
曲線の形状から吸着が物理吸着であり完全に可逆である
ことがわかる。
【0073】実施例7 ゼオライトNaA顆粒[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gの分子篩NaA顆粒を1:80の比で14.0
gのAgNO3を含むAgNO3溶液に混ぜ、摂氏80度
で4時間還流させた。残留物をろ過し、洗浄物から銀イ
オンがなくなるまで熱した蒸留水で洗浄し(塩化ナトリ
ウム溶液で検査した)、熱空気乾燥機中で摂氏80度で
乾燥する。吸着剤の化学組成が、(Ag2O)5.7.(N
2O)0.3.(Al236.(SiO212.wH2
であることを元素分析が示す。X線回析データは材料が
高い結晶質であることを示す。既知量のサンプルが減圧
下、摂氏350度で活性化され、前に述べたように吸着
測定が行われた。摂氏350度での活性化後、サンプル
の色は赤レンガ色となった。窒素の吸着容量は摂氏30
度、765mmHgで22.1cc/g、酸素に対する
窒素の選択度は研究した圧力範囲内で5.3〜14.4
であり、数値を表1に示すが、これは商業利用されてい
るゼオライトAベースの吸着剤と比べ非常に高い。吸着
熱量を表2に示し、脱離曲線の形状から吸着が物理吸着
であり完全に可逆であることがわかる。
【0074】実施例8 ゼオライトNaA顆粒[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gのゼオライトNaA顆粒を1:80の比で1
8.0gのAgClO4を含むAgClO4溶液に混ぜ、
摂氏80度で4時間還流させた。残留物をろ過し、洗浄
物から銀イオンがなくなるまで熱した蒸留水で洗浄し
(塩化ナトリウム溶液で検査した)、熱空気乾燥機中で
摂氏80度で乾燥する。吸着剤の化学組成が、(Ag2
O)5.6.(Na2O)0.4.(Al23 6.(Si
212.wH2Oであることを元素分析が示す。X線回
析データは材料が高い結晶質であることを示す。既知量
のサンプルが減圧下、摂氏350度で活性化され、前に
述べたように吸着測定が行われた。摂氏350度での活
性化後、サンプルの色は黄色っぽい橙色(yellow
orange)となった。窒素の吸着容量は摂氏30
度、765mmHgで22.3cc/g、酸素に対する
窒素の選択度は研究した圧力範囲内で5.2〜14.2
であり、数値を表1に示すが、これは商業利用されてい
るゼオライトAベースの吸着剤と比べ非常に高い。吸着
熱量を表2に示し、脱離曲線の形状から吸着が物理吸着
であり完全に可逆であることがわかる。
【0075】実施例9 ゼオライトNaA顆粒[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gのゼオライトNaA顆粒を1:80の比で1
3.0gの酢酸銀を含む酢酸銀溶液に混ぜ、摂氏80度
で4時間還流させた。残留物をろ過し、洗浄物から銀イ
オンがなくなるまで熱した蒸留水で洗浄し(塩化ナトリ
ウム溶液で検査した)、熱空気乾燥機中で摂氏80度で
乾燥する。吸着剤の化学組成が、(Ag2O)5.4.(N
2O)0.6.(Al236.(SiO212.wH2
であることを元素分析が示す。X線回析データは材料が
高い結晶質であることを示す。既知量のサンプルが減圧
下、摂氏350度で活性化され、前に述べたように吸着
測定が行われた。摂氏350度での活性化後、サンプル
の色は橙色っぽい赤色となった。窒素の吸着容量は摂氏
30度、765mmHgで21.3cc/g、酸素に対
する窒素の選択度は研究した圧力範囲内で4.9〜1
3.8であり、数値を表1に示すが、これは商業利用さ
れているゼオライトAベースの吸着剤と比べ非常に高
い。吸着熱量を表2に示し、脱離曲線の形状から吸着が
物理吸着であり完全に可逆であることがわかる。
【0076】実施例10 ゼオライトNaA顆粒[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gの分子篩NaA粉末を1:80の比で8.5g
のAgNO3を含むAgNO3溶液に混ぜ、摂氏80度で
4時間還流させた。残留物をろ過し、洗浄物から銀イオ
ンがなくなるまで熱した蒸留水で洗浄し(塩化ナトリウ
ム溶液で検査した)、真空炉中で摂氏80度で乾燥す
る。吸着剤の化学組成が、(Ag2O)4.8.(Na
2O)1.2.(Al236.(SiO212.wH2Oで
あることを元素分析が示す。X線回析データは材料が高
い結晶質であることを示す。既知量のサンプルが減圧
下、摂氏350度で活性化され、前に述べたように吸着
測定が行われた。摂氏350度での活性化後、サンプル
の色は黄色っぽい橙色となった。窒素の吸着容量は摂氏
30度、765mmHgで18.8cc/g、酸素に対
する窒素の選択度は研究した圧力範囲内で4.8〜1
3.4であり、数値を表1に示すが、これは商業利用さ
れているゼオライトAベースの吸着剤と比べ非常に高
い。吸着熱量を表2に示し、脱離曲線の形状から吸着が
物理吸着であり完全に可逆であることがわかる。
【0077】実施例11 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gの分子篩NaA粉末を1:80の比で7.0g
のAgNO3を含むAgNO3溶液に混ぜ、摂氏80度で
4時間還流させた。残留物をろ過し、洗浄物から銀イオ
ンがなくなるまで熱した蒸留水で洗浄し(塩化ナトリウ
ム溶液で検査した)、真空炉中で摂氏80度で乾燥す
る。吸着剤の化学組成が、(Ag2O)4.2.(Na
2O)1.8.(Al236.(SiO212.wH2Oで
あることを元素分析が示す。X線回析データは材料が高
い結晶質であることを示す。既知量のサンプルが減圧
下、摂氏350度で活性化され、前に述べたように吸着
測定が行われた。摂氏350度での活性化後、サンプル
の色は橙色っぽい赤色となった。窒素の吸着容量は摂氏
30度、765mmHgで9.1cc/g、酸素に対す
る窒素の選択度は研究した圧力範囲内でおよそわずか
3.5であり、数値を表1に示す。吸着熱量を表2に示
し、脱離曲線の形状から吸着が物理吸着であり完全に可
逆であることがわかる。
【0078】実施例12 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gの分子篩NaA粉末を1:80の比で6.0g
のAgNO3を含むAgNO3溶液に混ぜ、摂氏80度で
4時間還流させた。残留物をろ過し、洗浄物から銀イオ
ンがなくなるまで熱した蒸留水で洗浄し(塩化ナトリウ
ム溶液で検査した)、真空炉中で摂氏80度で乾燥す
る。吸着剤の化学組成が、(Ag2O)3.6.(Na
2O)2.4.(Al236.(SiO212.wH2Oで
あることを元素分析が示す。X線回析データは材料が高
い結晶質であることを示す。既知量のサンプルが減圧
下、摂氏350度で活性化され、前に述べたように吸着
測定が行われた。摂氏350度での活性化後、サンプル
の色は黄色っぽい橙色となった。窒素の吸着容量は摂氏
30度、765mmHgで8.8cc/g、酸素に対す
る窒素の選択度は研究した圧力範囲内でおよそわずか
3.1であり、数値を表1に示す。吸着熱量を表2に示
し、脱離曲線の形状から吸着が物理吸着であり完全に可
逆であることがわかる。
【0079】実施例13 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gの分子篩NaA粉末を1:80の比で4.0g
のAgNO3を含むAgNO3溶液に混ぜ、摂氏80度で
4時間還流させた。残留物をろ過し、洗浄物から銀イオ
ンがなくなるまで熱した蒸留水で洗浄し(塩化ナトリウ
ム溶液で検査した)、真空炉中で摂氏80度で乾燥す
る。X線回析データは材料が高い結晶質であることを示
す。吸着剤の化学組成が、(Ag2O)2.4.(Na
2O)3.6.(Al236.(SiO212.wH2Oで
あることを元素分析が示す。既知量のサンプルが減圧
下、摂氏350度で活性化され、前に述べたように吸着
測定が行われた。摂氏350度での活性化後、サンプル
の色は橙色っぽい赤色となった。窒素の吸着容量は摂氏
30度、765mmHgで8.7cc/g、酸素に対す
る窒素の選択度は研究した圧力範囲内でおよそわずか
3.7であり、数値を表1に示す。吸着熱量を表2に示
し、脱離曲線の形状から吸着が物理吸着であり完全に可
逆であることがわかる。
【0080】実施例14 ゼオライトNaA粉末[Na12.(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gの分子篩NaA粉末を1:80の比で2.0g
のAgNO3を含むAgNO3溶液に混ぜ、摂氏80度で
4時間還流させた。残留物をろ過し、洗浄物から銀イオ
ンがなくなるまで熱した蒸留水で洗浄し(塩化ナトリウ
ム溶液で検査した)、真空炉中で摂氏80度で乾燥す
る。吸着剤の化学組成が、(Ag2O)1.2.(Na
2O)4.8.(Al236.(SiO212.wH2Oで
あることを元素分析が示す。X線回析データは材料が高
い結晶質であることを示す。既知量のサンプルが減圧
下、摂氏350度で活性化され、前に述べたように吸着
測定が行われた。摂氏350度での活性化後、サンプル
の色は赤レンガ色となった。窒素の吸着容量は摂氏30
度、765mmHgで5.9cc/g、酸素に対する窒
素の選択度は研究した圧力範囲内でおよそわずか3.4
であり、数値を表1に示す。吸着熱量を表2に示し、脱
離曲線の形状から吸着が物理吸着であり完全に可逆であ
ることがわかる。
【0081】実施例15 実施例5記載の方法によって得られた吸着剤を0.1M
AgNO3溶液を用いて1:80の比でさらに処理
し、摂氏80度で4時間還流させた。残留物をろ過し、
洗浄物から銀イオンがなくなるまで熱した蒸留水で洗浄
し(塩化ナトリウム溶液で検査した)、空気中室温(摂
氏28度)で乾燥する。吸着剤の化学組成が、(Ag2
O)5.8.(Na2O)0.2.(Al236.(Si
212.wH2Oであることを元素分析が示す。X線回
析データは材料が高い結晶質であることを示す。既知量
のサンプルが減圧下、摂氏350度で活性化され、前に
述べたように摂氏15度及び摂氏30度で吸着測定が行
われた。摂氏350度での活性化後、サンプルの色は赤
レンガ色となった。窒素の吸着容量は摂氏30度、76
5mmHgで22.1cc/g、酸素に対する窒素の選
択度は研究した圧力範囲内で5.1〜14.2であり、
数値を表1に示すが、これは商業利用されているゼオラ
イトAベースの吸着剤と比べ非常に高い。吸着熱量を表
2に示し、脱離曲線の形状から吸着が物理吸着であり完
全に可逆であることがわかる。
【0082】実施例16 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。1
0.0gの分子篩NaA粉末を1:80の比で12.0
gのAgNO3を含むAgNO3溶液に混ぜ、摂氏80度
で4時間還流させた。残留物をろ過し、洗浄物から銀イ
オンがなくなるまで熱した蒸留水で洗浄し(塩化ナトリ
ウム溶液で検査した)、熱空気乾燥機中で摂氏120度
で乾燥する。吸着剤の化学組成が、(Ag2O)5.7
(Na2O)0.3.(Al236.(SiO212.wH
2Oであることを元素分析が示す。X線回析データは材
料が高い結晶質であることを示す。既知量のサンプルが
減圧下、摂氏350度で活性化され、前に述べたように
吸着測定が行われた。摂氏350度での活性化後、サン
プルの色は緑色っぽい黒色(greenish bla
ck)となった。窒素の吸着容量は摂氏30度、765
mmHgで14.5cc/g、酸素に対する窒素の選択
度は研究した圧力範囲内でおよそわずか4.9であり、
数値を表1に示す。吸着熱量を表2に示し、脱離曲線の
形状から吸着が物理吸着であり完全に可逆であることが
わかる。
【0083】実施例17 ゼオライトNaAペレットが開始材料として用いられ
た。10.0gの分子篩NaAペレットを1:80の比
で12.0gのAgNO3を含むAgNO3溶液に混ぜ、
摂氏80度で4時間還流させた。残留物をろ過し、洗浄
物から銀イオンがなくなるまで熱した蒸留水で洗浄し
(塩化ナトリウム溶液で検査した)、真空炉中で摂氏6
0度で乾燥する。吸着剤の化学組成が、(Ag
2O)5.4.(Na2O)0.6.(Al236.(Si
212.wH2Oであることを元素分析が示す。X線回
析データは材料が高い結晶質であることを示す。既知量
のサンプルが減圧下、摂氏450度で活性化され、前に
述べたように吸着測定が行われた。摂氏450度での活
性化後、サンプルの色は茶色っぽい黒色(browni
sh black)となった。窒素の吸着容量は摂氏3
0度、765mmHgで22.1cc/g、酸素に対す
る窒素の選択度は研究した圧力範囲内で5.1〜14.
2であり、数値を表1に示すが、これは商業利用されて
いるゼオライトAベースの吸着剤と比べ非常に高い。吸
着熱量を表2に示し、脱離曲線の形状から吸着が物理吸
着であり完全に可逆であることがわかる。
【0084】実施例18 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。5.
0gの分子篩NaA粉末を5.0gのAgNO 3と十分
に混ぜ、加熱速度1℃/minでヘリウム下、プログラ
ム制御可能な管状炉内で摂氏575度まで加熱し、摂氏
575度の温度を4時間維持した。この材料を、洗浄物
から銀イオンがなくなるまで熱した蒸留水で洗浄し(塩
化ナトリウム溶液で検査した)、空気中で室温(摂氏2
8度)で乾燥する。吸着剤の化学組成が、(Ag2O)
5.5.(Na2O)0.5.(Al236.(Si
212.wH2Oであることを元素分析が示す。X線回
析データは材料が高い結晶質であることを示す。既知量
のサンプルが減圧下、摂氏350度で活性化され、前に
述べたように吸着測定が行われた。摂氏350度での活
性化後、サンプルの色は赤レンガ色となった。窒素の吸
着容量は摂氏30度、765mmHgで21.3cc/
g、酸素に対する窒素の選択度は研究した圧力範囲内で
5.0〜12.8であり、数値を表1に示すが、これは
商業利用されているゼオライトAベースの吸着剤と比べ
非常に高い。吸着熱量を表2に示し、脱離曲線の形状か
ら吸着が物理吸着であり完全に可逆であることがわか
る。
【0085】実施例19 ゼオライトNaA粉末[Na12(AlO212.(Si
212.wH2O]が開始材料として用いられた。2
5.0gの分子篩NaA粉末を1:80の比で0.05
M AgNO3溶液に混ぜ、摂氏80度で4時間還流さ
せた。デカントし、前記工程をもう一度繰り返してイオ
ン交換を完全なものとした。残留物をろ過し、洗浄物か
ら銀イオンがなくなるまで熱した蒸留水で洗浄し(塩化
ナトリウム溶液で検査した)、空気中室温(摂氏28
度)で乾燥する。吸着剤の化学組成が、(Ag
2O)5.6.(Na2O)0.4.(Al236.(Si
212.wH2Oであることを元素分析が示す。X線回
析データは材料が高い結晶質であることを示す。既知量
のサンプルが減圧下、摂氏350度で活性化され、前に
述べたように吸着測定が行われた。摂氏350度での活
性化後、サンプルの色は赤レンガ色となった。窒素の吸
着容量は摂氏30度、765mmHgで21.9cc/
g、酸素に対する窒素の選択度は研究した圧力範囲内で
5.1〜13.1であり、数値を表1に示すが、これは
商業利用されているゼオライトAベースの吸着剤と比べ
非常に高い。吸着熱量を表2に示し、脱離曲線の形状か
ら吸着が物理吸着であり完全に可逆であることがわか
る。
【0086】全19サンプルの吸着容量及び選択度を表
1に挙げ、活性化後のサンプルの色、及び窒素、酸素、
アルゴンの吸着熱を表2に挙げる。
【0087】本発明の利点 窒素に対する吸着容量が摂氏30度、765mmHgで2
2.3cc/gであることがわかり、これはこれまでに
ゼオライトAベースの吸着剤に関して報告された中で最
大である。
【0088】窒素に対する吸着選択度が摂氏30度、研
究した圧力範囲内で5.3〜14.6であることがわか
り、これはこれまでにゼオライトAベースの吸着剤に関
して報告された中で最大である。
【0089】吸着剤は酸素に対するアルゴン選択度(摂
氏30度でおよそ2)を示し、これは通常ゼオライトベ
ースの吸着剤では観察されず、また96%超の純度の酸
素生成に有用となる。
【0090】酸素に対する窒素ならびにアルゴン選択
度、これは通常、他の商業的分子篩吸着剤では観察され
ない。
【0091】活性化形態の吸着剤の赤レンガ色、これは
水分に敏感であり、吸着剤が活性であるか否かの容易な
判別に役立つ。
【0092】吸着剤の調製は商業利用されている複段の
カチオン交換工程と比べて非常に容易な単段の工程であ
る。
【0093】ヒドロキシル化のおそれが非常に低いた
め、商業利用されているものと比べ吸着剤の活性化工程
に多くの注意を払う必要がない。
【0094】
【表1】
【0095】
【表2】
【図面の簡単な説明】
【図1】実施例4から得られた吸着剤上での摂氏30度
での窒素、アルゴン、酸素の吸着アイソサームを示す、
【図2】摂氏30度でのゼオライトNaA、CaA、及
びAgA上での窒素吸着アイソサームを示す、
【図3】摂氏30度でのゼオライトNaA、CaA、及
びAgA上での酸素吸着アイソサームを示す、
【図4】摂氏30度でのゼオライトNaA、CaA、及
びAgA上でのアルゴン吸着アイソサームを示す。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 39/14 C01B 39/14 (72)発明者 ジンス セバスチャン インド, グジャラート 364 002, ブ ハヴナガー, ギジュブハイ バドヘリア マーグ, セントラル ソルト アンド マリーン ケミカルズ リサーチ イン スティテュート (72)発明者 ラケシュ ヴィア ジャスラ インド, グジャラート 364 002, ブ ハヴナガー, ギジュブハイ バドヘリア マーグ, セントラル ソルト アンド マリーン ケミカルズ リサーチ イン スティテュート Fターム(参考) 4D012 BA02 CA06 CA20 CD07 CE01 CE03 CF10 CG01 4G066 AA32A AA53A AA61B AA62B AB23A BA09 BA31 BA36 BA38 CA21 CA27 DA03 FA11 FA22 FA34 FA37 GA14 4G073 BA03 BA04 BA05 BA11 BA49 BA69 BA81 BB34 BD20 BD21 BD26 CZ02 CZ51 FA30 FB30 FD20 FD23 FD30 GA01 GA19 GA34 UA06

Claims (20)

    【特許請求の範囲】
  1. 【請求項1】 酸素を含むガス状混合物から窒素及びア
    ルゴンを選択的に吸着するために用いられる結晶性分子
    篩吸着剤の調整のための銀イオン交換による単段工程で
    あり、前記工程は以下のステップからなる: (a)ゼオライトAを銀塩の水溶液と混合し; (b)摂氏30〜90度で4〜8時間暗所で還流させ、
    残留物を得; (c)残留物をろ過し、残留物から銀イオンがなくなる
    まで水洗し;及び (d)空気中において摂氏85度未満で乾燥し、続いて
    減圧下置き、化学組成(Ag2O)x.(M2/nO)y
    (Al236.(SiO212.wH2Oの結晶性分子
    篩吸着剤を得る。
  2. 【請求項2】 請求項1記載の工程であり、ステップ
    (b)〜(d)が以下のステップで随意に行われる: (a)ゼオライトAを等量の銀塩溶液と混合し; (b)不活性雰囲気下において摂氏500〜575度の
    範囲の温度で混合物を加熱し; (c)残留物から銀イオンがなくなるまで残留物を水洗
    し;及び (d)減圧下、室温において混合物を乾燥し、前記結晶
    性分子篩吸着剤を得る。
  3. 【請求項3】 xの値が1.2〜6.0モルである請求
    項1記載の工程。
  4. 【請求項4】 yの値が0.0〜4.8モルである請求
    項1記載の工程。
  5. 【請求項5】 wが水のモル数である請求項1記載の工
    程。
  6. 【請求項6】 Mがナトリウム、カルシウム、カリウ
    ム、又はリチウムからなる群から選ばれるカチオンであ
    り、もっとも好ましくはナトリウムである請求項1記載
    の工程。
  7. 【請求項7】 選ばれたゼオライトが顆粒、粉末、及び
    ペレットの形態である請求項1記載の工程。
  8. 【請求項8】 銀塩溶液の水溶液が過塩素酸銀(AgC
    lO4)、酢酸銀、又は硝酸銀(AgNO3)から選ばれ
    る請求項1記載の工程。
  9. 【請求項9】 銀塩溶液の濃度が、ゼオライトAの0.
    25〜15重量/容積%の範囲である請求項1記載の工
    程。
  10. 【請求項10】 銀塩の水溶液とゼオライトAの比が
    1:80である請求項1記載の工程。
  11. 【請求項11】 銀塩の水溶液とゼオライトAの比が
    1:80である請求項1記載の工程。
  12. 【請求項12】 前記分子篩が、摂氏30度、765m
    mHgで22.3cc/gに至る高い窒素吸着容量を有
    する請求項1記載の工程。
  13. 【請求項13】 前記分子篩が、酸素に対する窒素選択
    度を有し、摂氏30度で5〜14.6である請求項1記
    載の工程。
  14. 【請求項14】 前記分子篩が、摂氏30度、765m
    mHgで6.5cc/gに至るアルゴン吸着容量を有す
    る請求項1記載の工程。
  15. 【請求項15】 前記分子篩が、摂氏30度で1.2〜
    2.0の範囲内でアルゴンへの選択度を有する請求項1
    記載の工程。
  16. 【請求項16】 前記分子篩のヒドロキシル化が少な
    く、これによりゆっくりと加熱を行う必要をなくす請求
    項1記載の工程。
  17. 【請求項17】 前記分子篩が、酸素の96%超の高精
    製能力を有する請求項1記載の工程。
  18. 【請求項18】 硝酸銀、過塩素酸銀又は酢酸銀から選
    ばれる任意の水溶性銀塩を用い、10〜100当量パー
    セントの銀イオンが単段でゼオライトへと取り込まれる
    請求項1記載の工程。
  19. 【請求項19】 ゼオライトが、80〜100当量パー
    セントの銀イオンとイオン交換され、活性化された分子
    篩吸着剤が、橙色っぽい赤色(orangered)/
    赤レンガ色(brick red)である請求項1記載
    の工程。
  20. 【請求項20】 分子篩吸着剤が、空気中又は減圧下で
    摂氏85度未満の温度、好ましくは摂氏20〜80度の
    範囲の温度で乾燥されている請求項1記載の工程。
JP2002082476A 2002-03-25 2002-03-25 アルゴンを選択的に吸着するための分子篩吸着剤の調整方法 Expired - Fee Related JP3978060B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/105,876 US6572838B1 (en) 2002-03-25 2002-03-25 Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon
JP2002082476A JP3978060B2 (ja) 2002-03-25 2002-03-25 アルゴンを選択的に吸着するための分子篩吸着剤の調整方法
GB0207012A GB2386889B (en) 2002-03-25 2002-03-25 Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon
PCT/IB2003/000504 WO2003080236A1 (en) 2002-03-25 2003-02-12 Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/105,876 US6572838B1 (en) 2002-03-25 2002-03-25 Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon
JP2002082476A JP3978060B2 (ja) 2002-03-25 2002-03-25 アルゴンを選択的に吸着するための分子篩吸着剤の調整方法
GB0207012A GB2386889B (en) 2002-03-25 2002-03-25 Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon

Publications (2)

Publication Number Publication Date
JP2003275582A true JP2003275582A (ja) 2003-09-30
JP3978060B2 JP3978060B2 (ja) 2007-09-19

Family

ID=29740463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082476A Expired - Fee Related JP3978060B2 (ja) 2002-03-25 2002-03-25 アルゴンを選択的に吸着するための分子篩吸着剤の調整方法

Country Status (4)

Country Link
US (1) US6572838B1 (ja)
JP (1) JP3978060B2 (ja)
GB (1) GB2386889B (ja)
WO (1) WO2003080236A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634535B1 (ko) 2005-01-24 2006-10-13 삼성에스디아이 주식회사 탈황용 제올라이트 흡착제 및 그것의 제조방법
WO2017146137A1 (ja) * 2016-02-26 2017-08-31 東ソー株式会社 銀担持ゼオライト成形体
CN115676786A (zh) * 2022-10-27 2023-02-03 江苏中科敬远节能科技有限公司 常温下基于银分子筛吸附的氦氖分离工艺

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2493605A1 (en) * 2001-07-25 2003-02-06 Richard A. Haase Processes and apparatus for the manufacture of polynuclear aluminum compounds and disinfectants, and polynuclear aluminum compounds and disinfectants from such processes and apparatus
JP2005522629A (ja) 2002-04-11 2005-07-28 エイ. ハーゼ,リチャード 水燃焼技術−水素と酸素を燃焼させる方法、プロセス、システム及び装置
JP3572548B2 (ja) 2002-05-24 2004-10-06 日本酸素株式会社 ガス精製方法及び装置
US7722702B2 (en) * 2005-06-30 2010-05-25 Praxair Technology, Inc. Adsorbent and catalyst mixtures
US7455718B2 (en) * 2005-06-30 2008-11-25 Praxair Technology, Inc. Silver-exchanged zeolites and methods of manufacture therefor
US8268269B2 (en) * 2006-01-24 2012-09-18 Clearvalue Technologies, Inc. Manufacture of water chemistries
US8232221B2 (en) 2006-07-14 2012-07-31 Governors Of The University Of Alberta Zeolite supported metallic nanodots
US20100050868A1 (en) * 2006-12-11 2010-03-04 Governors Of The University Of Alberta Mercury absorption using chabazite supported metallic nanodots
CA2625152A1 (en) 2007-11-15 2009-05-15 The Governors Of The University Of Alberta Zeolite supported metallic nanodots
US9457337B2 (en) * 2013-03-01 2016-10-04 Praxair Technology, Inc. Adsorbent composition for argon purification
US9222727B2 (en) 2013-03-01 2015-12-29 Praxair Technology, Inc. Purification of argon through liquid phase cryogenic adsorption
US9644890B2 (en) 2013-03-01 2017-05-09 Praxair Technology, Inc. Argon production method and apparatus
US9676629B2 (en) 2015-06-09 2017-06-13 Praxair Technology, Inc. Helium enhanced heat transfer in adsorptive liquid or gas phase argon purification processes
US10012437B2 (en) 2015-07-31 2018-07-03 Praxair Technology, Inc. Method and apparatus for argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
US10018413B2 (en) 2015-07-31 2018-07-10 Praxair Technology, Inc. Method and apparatus for increasing argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
US10012438B2 (en) 2015-07-31 2018-07-03 Praxair Technology, Inc. Method and apparatus for argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
US10066871B2 (en) 2015-07-31 2018-09-04 Praxair Technology, Inc. Method and apparatus for argon rejection and recovery
US11262125B2 (en) 2018-01-02 2022-03-01 Praxair Technology, Inc. System and method for flexible recovery of argon from a cryogenic air separation unit
WO2023107912A1 (en) * 2021-12-06 2023-06-15 Susteon Inc. Materials, systems, and processes for production of high purity oxygen

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313091A (en) * 1963-11-04 1967-04-11 Exxon Research Engineering Co Vacuum cycle adsorption
SU516410A1 (ru) * 1973-12-06 1976-06-05 Ленинградский технологический институт холодильной промышленности Способ очистки аргона
US3973931A (en) 1974-10-30 1976-08-10 Union Carbide Corporation Air separation by adsorption
US4481018A (en) 1982-11-15 1984-11-06 Air Products And Chemicals, Inc. Polyvalent ion exchanged adsorbent for air separation
US4557736A (en) 1984-10-29 1985-12-10 Air Products And Chemicals, Inc. Binary ion exchanged type X zeolite adsorbent
JPS61137564A (ja) * 1984-12-11 1986-06-25 カネボウ株式会社 空気を乾燥及び殺菌する方法
US4938958A (en) * 1986-12-05 1990-07-03 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
US4756723A (en) 1987-03-04 1988-07-12 Air Products And Chemicals, Inc. Preparation of high purity oxygen
JPS63265958A (ja) * 1987-04-22 1988-11-02 Shinagawa Nenryo Kk 抗菌性樹脂組成物
JPH0618899B2 (ja) * 1987-06-30 1994-03-16 品川燃料株式会社 抗菌性ゼオライト含有フィルム
US4859217A (en) 1987-06-30 1989-08-22 Uop Process for separating nitrogen from mixtures thereof with less polar substances
US4892567A (en) * 1988-08-15 1990-01-09 Mobil Oil Corporation Simultaneous removal of mercury and water from fluids
DE3842930A1 (de) 1988-12-21 1990-06-28 Bayer Ag Verfahren zur adsorptiven sauerstoffanreicherung von luft mit mischungen aus ca-zeolith a molekularsieben mittels vakuum-swing-adsorption
US4943304A (en) 1989-04-06 1990-07-24 Air Products And Chemicals, Inc. Process for the purification of bulk gases using chabazite adsorbents
US5443812A (en) * 1989-04-24 1995-08-22 Kanebo Ltd. Stabilized synthetic zeolite and a process for the preparation thereof
US5174979A (en) 1989-10-06 1992-12-29 Uop Mixed ion-exchanged zeolites and processes for the use thereof in gas separations
US4964889A (en) 1989-12-04 1990-10-23 Uop Selective adsorption on magnesium-containing clinoptilolites
US5206195A (en) * 1990-05-31 1993-04-27 Kanebo Ltd. Stablized synthetic zeolite and a process for the preparation thereof
US5152813A (en) 1991-12-20 1992-10-06 Air Products And Chemicals, Inc. Nitrogen adsorption with a Ca and/or Sr exchanged lithium X-zeolite
US5226933A (en) * 1992-03-31 1993-07-13 Ohio State University Pressure swing adsorption system to purify oxygen
WO1994006541A1 (en) * 1992-09-22 1994-03-31 Arbor Research Corporation System for separation of oxygen from argon/oxygen mixture
US5266102A (en) 1992-09-23 1993-11-30 Air Products And Chemicals, Inc. O2 VSA process with low O2 capacity adsorbents
US5464467A (en) 1994-02-14 1995-11-07 The Boc Group, Inc. Adsorptive separation of nitrogen from other gases
US5698013A (en) 1994-03-18 1997-12-16 Uop Nitrogen-selective zeolitic adsorbent for use in air separation process
US5454857A (en) 1994-03-18 1995-10-03 Uop Air separation process
MX9504741A (es) 1994-11-14 1997-03-29 Praxair Technology Inc Sorbentes selectivos de oxigeno.
US5868818A (en) 1996-08-08 1999-02-09 Tosoh Corporation Adsorbent for air separation, production method thereof, and air-separation method using it
JPH1095611A (ja) * 1996-09-20 1998-04-14 Nippon Sanso Kk ガス吸着用ゼオライトおよびその製法ならびにこれを用いたガス吸着分離方法
US5779767A (en) 1997-03-07 1998-07-14 Air Products And Chemicals, Inc. Use of zeolites and alumina in adsorption processes
IN186652B (ja) 1997-03-10 2001-10-20 Indian Petrochemicals Corp Ltd
IN186651B (ja) 1997-03-10 2001-10-20 Indian Petrochemicals Corp Ltd
AU2053200A (en) * 1998-12-30 2000-07-24 Regents Of The University Of Michigan, The Lithium-based zeolites containing silver and copper and use thereof for selective adsorption
US6143057A (en) 1999-04-23 2000-11-07 The Boc Group, Inc. Adsorbents and adsorptive separation process
US6231644B1 (en) 1999-07-23 2001-05-15 The Boc Group, Inc. Air separation using monolith adsorbent bed
US6432170B1 (en) * 2001-02-13 2002-08-13 Air Products And Chemicals, Inc. Argon/oxygen selective X-zeolite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634535B1 (ko) 2005-01-24 2006-10-13 삼성에스디아이 주식회사 탈황용 제올라이트 흡착제 및 그것의 제조방법
WO2017146137A1 (ja) * 2016-02-26 2017-08-31 東ソー株式会社 銀担持ゼオライト成形体
JP2017154965A (ja) * 2016-02-26 2017-09-07 東ソー株式会社 銀担持ゼオライト成形体
US10603652B2 (en) 2016-02-26 2020-03-31 Tosoh Corporation Silver-carrying zeolite molded article
CN115676786A (zh) * 2022-10-27 2023-02-03 江苏中科敬远节能科技有限公司 常温下基于银分子筛吸附的氦氖分离工艺
CN115676786B (zh) * 2022-10-27 2024-04-19 江苏中科敬远节能科技有限公司 常温下基于银分子筛吸附的氦氖分离工艺

Also Published As

Publication number Publication date
GB2386889B (en) 2006-01-11
GB2386889A (en) 2003-10-01
GB0207012D0 (en) 2002-05-08
JP3978060B2 (ja) 2007-09-19
US6572838B1 (en) 2003-06-03
WO2003080236A1 (en) 2003-10-02
WO2003080236A8 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP3978060B2 (ja) アルゴンを選択的に吸着するための分子篩吸着剤の調整方法
JP3776813B2 (ja) アルゴン/酸素選択性xゼオライト
EP2233438B1 (en) Aluminum silicate complex, and high-performance adsorbent comprising the same
CA2021175C (en) Chabazite for gas separation
JP3701998B2 (ja) X型ゼオライトおよびこのゼオライトを用いてガス混合物から窒素を吸着により分離する方法
EP0548755A1 (en) Nitrogen adsorption with a Ca and/or Sr exchanged lithium X-zeolite
EP0297542A2 (en) Process for separating nitrogen from mixtures thereof with less polar substances
PL185077B1 (pl) Kompozycja zeolityczna i sposób oddzielania azotu z mieszaniny gazów
JP2000157862A (ja) モレキュラ―シ―ブ物質からなる吸着剤組成物
AU3258399A (en) Decarbonating gas streams using zeolite adsorbents
JPH07194920A (ja) 増進されたガス分離及びそれら用のゼオライト組成物
EP1485200B1 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon
JPH05336B2 (ja)
JP2001226115A (ja) リチウムで交換したゼオライトxと、その製造方法と、空気分離での窒素吸着剤としてのその使用
US6878657B2 (en) Process for the preparation of a molecular sieve adsorbent for the size/shape selective separation of air
KR100803771B1 (ko) 공기로부터 산소의 선택적 흡착을 위한 분자체 흡착제의제조 공정
US6030916A (en) Process for the preparation of a molecular sieve adsorbent for selectively adsorbing nitrogen from a gaseous mixture
US6090738A (en) Process for the preparation of a molecular sieve adsorbent for selectively adsorbing methane from a gaseous mixture
US6087289A (en) Process for the preparation of a molecular sieve adsorbent for selectively adsorbing oxygen from a gaseous mixture
CN1286137A (zh) 从其它气体中优选吸附氮用的新型吸附剂
EP0681867A1 (en) Gas separation with lithium containing ZSM-2 Metallosilicates
JPH1085589A (ja) 空気分離用吸着剤、及びそれを用いた酸素ガス製造方法
KR100827634B1 (ko) 공기의 크기/형태 선택적 분리를 위한 분자 체 흡착제의제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060926

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070427

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees