JP2003212270A - Container for seeing through contents - Google Patents

Container for seeing through contents

Info

Publication number
JP2003212270A
JP2003212270A JP2002316595A JP2002316595A JP2003212270A JP 2003212270 A JP2003212270 A JP 2003212270A JP 2002316595 A JP2002316595 A JP 2002316595A JP 2002316595 A JP2002316595 A JP 2002316595A JP 2003212270 A JP2003212270 A JP 2003212270A
Authority
JP
Japan
Prior art keywords
film
polylactic acid
δhm
δhc
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002316595A
Other languages
Japanese (ja)
Inventor
Shigenori Terada
滋憲 寺田
Jun Takagi
潤 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Mitsubishi Plastics Inc
Original Assignee
Shimadzu Corp
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Mitsubishi Plastics Inc filed Critical Shimadzu Corp
Priority to JP2002316595A priority Critical patent/JP2003212270A/en
Publication of JP2003212270A publication Critical patent/JP2003212270A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

<P>PROBLEM TO BE SOLVED: To provide a container for seeing through the contents which is made of a polylactic acid polymer film, a paper, and a laminated material decomposing substantially in the natural environment, and of which the alignment polylactic acid film constituting a contents transparency-giving part does not lose its transparency even if it is exposed to a high temperature atmosphere in a film sticking process, so that it is possible to visibly and clearly confirm the contents. <P>SOLUTION: The alignment polylactic acid film has a surface orientation ratio ΔP of 3.0×10-<SP>-3</SP>or more. Also, according to the above film, the difference (ΔHm-ΔHc) between a crystal melting heat ΔHm generated upon increasing the temperature of the film and the heat of crystallization ΔHc generated due to crystallization during the temperature increase is 20 J/g or more, and the calculation of ä(ΔHm-ΔHc)/ΔHm} is 0.75 or more. The paper has a window formed by punching through part of it. Thus, the alignment polylactic acid film and the paper is laminated to form the container for seeing through the contents. Particularly, the alignment polylactic acid film is made as a copolymer, of which the ratio between L-lactic acid and D-lactic acid is within a range of 100:0 to 94:6, or 0:100 to 6:94. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリ乳酸系重合体
フィルムと紙とからなり自然環境中で分解するラミネー
ト材料を使用して製造された内容物透視用の容器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container for seeing through contents, which is manufactured by using a laminate material composed of a polylactic acid type polymer film and paper and decomposing in a natural environment.

【0002】[0002]

【従来の技術】紙は包装資材などとして広く用いられて
いる。紙は使用後は焼却が容易でまた自然環境中に放置
されても分解できるため、環境保護の観点から優れた材
料といえる。しかし、紙は耐水性、耐油脂性、引き裂き
強度などが低く、またガス遮断性、防湿性が十分でない
ため、用途に応じて塗工紙が用いられている。さらに性
能向上を図るため、ポリエチレン、ポリプロピレン、ポ
リ塩化ビニルなどのプラスチック材料と複合化して使用
されることもある。
2. Description of the Related Art Paper is widely used as a packaging material. Paper is an excellent material from the viewpoint of environmental protection because it can be easily incinerated after use and decomposes even if it is left in a natural environment. However, since paper has low water resistance, oil and fat resistance, tear strength, etc., and also has insufficient gas barrier properties and moisture resistance, coated paper is used depending on the application. In order to further improve the performance, it may be used in combination with a plastic material such as polyethylene, polypropylene or polyvinyl chloride.

【0003】ところが、一般的にプラスチック材料は自
然環境中で分解せずに残存するので、前記複合化された
材料は自然崩壊性を有していないことが多い。また、紙
とプラスチック材料を分離して処理することも難しい。
However, since the plastic material generally remains without being decomposed in the natural environment, the composite material often does not have a natural disintegrating property. It is also difficult to separate the paper and plastic materials for processing.

【0004】一方、プラスチック材料として自然環境中
に放置されても分解できるいわゆる生分解性プラスチッ
クが近年注目を浴びている。生分解性プラスチックの中
でも薄膜化したフィルムを製造でき、特に、上述した紙
の欠点を補うことができるポリ乳酸系フィルムの実用化
が望まれている。
On the other hand, a so-called biodegradable plastic, which can be decomposed even when left in a natural environment, has been attracting attention in recent years as a plastic material. Among biodegradable plastics, it has been desired to put into practical use a polylactic acid-based film capable of producing a thin film, and particularly capable of compensating for the above-mentioned drawbacks of paper.

【0005】そこで、特開平4−334448号には植
物性繊維を含有する基材の表面にポリ乳酸またはその誘
導体を被覆した生分解性複合材料が、また、特開平4−
336246号にはポリ乳酸または乳酸とオキシカルボ
ン酸のコポリマーを主成分とする熱可塑性分解性ポリマ
ーと、紙からなる分解性ラミネート紙が、さらに、特開
平5−38784号にはポリ乳酸または乳酸とオキシカ
ルボン酸のコポリマーを主成分とする熱可塑性分解性ポ
リマーと、再生セルロースフィルムからなる分解性ラミ
ネート組成物が開示されている。
Therefore, JP-A-4-334448 discloses a biodegradable composite material in which the surface of a substrate containing vegetable fibers is coated with polylactic acid or a derivative thereof, and JP-A-4-33448.
No. 336246 discloses a thermoplastic decomposable polymer containing polylactic acid or a copolymer of lactic acid and oxycarboxylic acid as main components, and degradable laminated paper made of paper, and further discloses in JP-A-5-38784, polylactic acid or lactic acid. A degradable laminate composition comprising a thermoplastic degradable polymer containing a copolymer of oxycarboxylic acid as a main component and a regenerated cellulose film is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記生分解性
複合材料、分解性ラミネート紙および分解性ラミネート
組成物では、植物性繊維を含有する基材あるいは紙とポ
リ乳酸フィルムとを貼り合わせる際に、ポリ乳酸フィル
ムが自らの脆性のために破断することがあり、貼り合わ
せた後に高温で放置すると、ポリ乳酸フィルムが失透す
るなどの外観の変化を生じやすい。また、得られるラミ
ネート材料を折り曲げると、折り目に白化・亀裂が生じ
やすい。さらに、艶だしを行なっても、十分な艶を得る
ことができない。
However, in the above-mentioned biodegradable composite material, degradable laminated paper and degradable laminated composition, when a substrate or paper containing vegetable fiber is laminated with a polylactic acid film. In some cases, the polylactic acid film may be broken due to its brittleness, and if the polylactic acid film is left at a high temperature after being bonded, the polylactic acid film is liable to change in appearance such as devitrification. Moreover, when the obtained laminate material is bent, whitening and cracks are likely to occur at the folds. Furthermore, even if it polishes, sufficient gloss cannot be obtained.

【0007】すなわち、上記各公報で開示されている技
術は、紙の欠点を補ったものの、複合材料として新たな
課題を生じていた。
That is, although the techniques disclosed in the above-mentioned respective publications compensate for the defects of paper, they pose a new problem as a composite material.

【0008】本発明は上記問題点を解決し、使用・棄却
後、土壌中または水中において自然に加水分解が進行し
土中に原形が残らず無害な分解物となるような、紙とポ
リ乳酸系重合体フィルムとから構成される分解性ラミネ
ート材料を使用し、当該材料の紙を部分的に打ち抜いて
窓を設け、この材料を貼り合わせた内容物透視用の窓付
き分解性ラミネート容器包装体を提供するものである。
The present invention solves the above-mentioned problems, and after use / disposal, paper and polylactic acid are used so that hydrolysis proceeds naturally in the soil or water to leave the original shape in the soil to be a harmless decomposed product. A degradable laminated container package with a window for seeing through the contents using a degradable laminated material composed of a polymer film and partially punching out a paper of the material to provide a window. Is provided.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、面配向
度ΔPが3.0×10-3以上であり、かつ、フィルムを
昇温したときの結晶融解熱量ΔHmと昇温中の結晶化に
より発生する結晶化熱量ΔHcとの差(ΔHm−ΔH
c)が20J/g以上かつ{(ΔHm−ΔHc)/ΔH
m}が0.75以上である配向ポリ乳酸系フィルムと、
部分的に打ち抜いて窓を形成した紙とをラミネートした
内容物透視用の容器である。前記配向ポリ乳酸系フィル
ムはL−乳酸とD−乳酸との割合が100:0〜94:
6の範囲内または0:100〜6:94の範囲の共重合
体であることが好ましい。
SUMMARY OF THE INVENTION The gist of the present invention is that the degree of plane orientation ΔP is 3.0 × 10 −3 or more, and the heat of crystal fusion ΔHm when the film is heated and the crystal during heating. Difference (ΔHm-ΔH) from the heat of crystallization ΔHc generated by crystallization
c) is 20 J / g or more and {(ΔHm-ΔHc) / ΔH
an oriented polylactic acid-based film having m} of 0.75 or more,
It is a container for seeing through contents, which is obtained by laminating a piece of paper having a window partially formed by punching. In the oriented polylactic acid-based film, the ratio of L-lactic acid and D-lactic acid is 100: 0 to 94 :.
It is preferably a copolymer within the range of 6 or within the range of 0: 100 to 6:94.

【0010】以下、本発明を詳しく説明する。本発明の
分解性ラミネート材料に用いられる配向ポリ乳酸系フィ
ルムは、ポリ乳酸または乳酸と他のヒドロキシカルボン
酸との共重合体を主成分とし、本発明の効果を阻害しな
い範囲で他の高分子材料を混入してもよい。また、成形
加工性、フィルム物性を調整する目的で可塑剤、滑剤、
無機フィラー、紫外線吸収剤などの添加剤、改質剤を添
加することも可能である。
The present invention will be described in detail below. The oriented polylactic acid-based film used in the degradable laminate material of the present invention contains polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid as a main component, and other polymers within a range that does not impair the effects of the present invention. Materials may be mixed. Further, for the purpose of adjusting the molding processability and film physical properties, a plasticizer, a lubricant,
It is also possible to add additives such as inorganic fillers and ultraviolet absorbers, and modifiers.

【0011】乳酸としてはL−乳酸、D−乳酸が挙げら
れ、ヒドロキシカルボン酸としてはグリコール酸、3−
ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ
吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロ
ン酸等が挙げられる。
Examples of lactic acid include L-lactic acid and D-lactic acid, and examples of hydroxycarboxylic acid include glycolic acid and 3-
Examples thereof include hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid and 6-hydroxycaproic acid.

【0012】重合法としては縮合重合法、開環重合法な
ど公知のいずれの方法を採用することも可能であり、さ
らには、分子量増大を目的として少量の鎖延長剤、例え
ば、ジイソシアネート化合物、エポキシ化合物、酸無水
物などを使用しても構わない。重合体の重量平均分子量
としては、5万から100万が好ましく、かかる範囲を
下まわると実用物性がほとんど発現されず、上まわる場
合には、溶融粘度が高くなりすぎ成形加工性に劣る。
As the polymerization method, any known method such as a condensation polymerization method and a ring-opening polymerization method can be adopted, and a small amount of a chain extender such as a diisocyanate compound or an epoxy resin is used for the purpose of increasing the molecular weight. A compound, an acid anhydride, etc. may be used. The weight average molecular weight of the polymer is preferably from 50,000 to 1,000,000. When the weight average molecular weight is below this range, practical physical properties are hardly exhibited, and when it is above this range, the melt viscosity becomes too high and the moldability becomes poor.

【0013】未延伸シートの製膜条件について説明す
る。ポリ乳酸系重合体を十分に乾燥し、水分を除去した
のち押出機で溶融する。溶融温度は組成によって変化す
るので、それに対応して適宜選択することが好ましい。
実際には140℃から250℃の温度範囲が通常選ばれ
る。
Film forming conditions for an unstretched sheet will be described. The polylactic acid polymer is sufficiently dried to remove water, and then melted by an extruder. Since the melting temperature changes depending on the composition, it is preferable to appropriately select the melting temperature.
In practice, a temperature range of 140 ° C to 250 ° C is usually chosen.

【0014】シート状に溶融成形された重合体は、回転
するキャスティングドラム(冷却ドラム)に接触させて
急冷するのが好ましい。キャスティングドラムの温度は
50℃以下が適当である。これより高いとポリマーがキ
ャスティングドラムに粘着し、引き取れない。また、結
晶化が促進されて、球晶が発達し延伸できなくなるた
め、ガラス転移点以下に設定して急冷し実質上非晶性に
することが好ましい。
The polymer melt-formed into a sheet is preferably brought into contact with a rotating casting drum (cooling drum) to be rapidly cooled. The temperature of the casting drum is preferably 50 ° C. or lower. If it is higher than this, the polymer sticks to the casting drum and cannot be removed. Further, since crystallization is promoted and spherulites develop and it becomes impossible to stretch, it is preferable to set the temperature below the glass transition point and quench the material to make it substantially amorphous.

【0015】延伸方法は1軸延伸もしくは逐次2軸延伸
または同時2軸延伸のいずれでもかまわないが、使用目
的上、縦・横両方向の物性の改良が必要なので、2軸延
伸することが望ましい。本発明では、未延伸シートの延
伸倍率は縦(長手)方向、横(幅)方向それぞれ1.5
〜5倍の範囲で、延伸温度は50℃〜90℃の範囲で適
宜選択することにより、無配向シートあるいはフィルム
では1.0×10-3以下である面配向度△Pを、本発明
で規定する3.0×10-3以上に増大させて、薄肉でも
強靱な配向フィルムを得ることができる。
The stretching method may be either uniaxial stretching, sequential biaxial stretching or simultaneous biaxial stretching, but biaxial stretching is desirable because it is necessary to improve physical properties in both longitudinal and transverse directions for the purpose of use. In the present invention, the stretching ratio of the unstretched sheet is 1.5 in each of the longitudinal (longitudinal) direction and the lateral (width) direction.
In the present invention, the degree of plane orientation ΔP, which is 1.0 × 10 −3 or less in a non-oriented sheet or film, can be obtained by appropriately selecting the stretching temperature in the range of 5 to 5 times and the stretching temperature in the range of 50 ° C. to 90 ° C. By increasing the amount to 3.0 × 10 −3 or more, which is specified, a tough oriented film can be obtained even if it is thin.

【0016】△Pは、フィルムの厚み方向に対する面方
向の配向度を表し、通常直交3軸方向の屈折率を測定し
以下の式で算出される。
ΔP represents the degree of orientation in the plane direction with respect to the thickness direction of the film, and is usually calculated by the following formula by measuring the refractive index in the directions of three orthogonal axes.

【0017】 △P={(γ+β)/2}−α (α<β<γ) ここで、γ、βがフィルム面に平行な直交2軸の屈折
率、αはフィルム厚さ方向の屈折率である。
ΔP = {(γ + β) / 2} -α (α <β <γ) where γ and β are biaxial refractive indices orthogonal to the film surface, and α is a refractive index in the film thickness direction. Is.

【0018】△Pは結晶化度や結晶配向にも依存する
が、大きくはフィルム面内の分子配向に依存する。つま
り△Pの増大はフィルム面内、特にフィルムの流れ方向
および/またはそれと直交する方向に対し、分子配向を
増大させ、フィルムの強度を高め、もろさを改良するこ
とにつながる。
ΔP depends on the crystallinity and the crystal orientation, but largely depends on the molecular orientation in the film plane. That is, an increase in ΔP leads to an increase in the molecular orientation in the plane of the film, particularly in the flow direction of the film and / or a direction orthogonal thereto, thereby increasing the strength of the film and improving the brittleness.

【0019】△Pを増大させる方法としては、既知のあ
らゆるフィルム延伸法に加え電場や磁場を利用した分子
配向法を採用することもできる。
As a method for increasing ΔP, a molecular orientation method utilizing an electric field or a magnetic field can be adopted in addition to any known film stretching method.

【0020】なお△Pの上限は実際上30×10-3程度
であり、これよりも△Pを高めようとすると、延伸が不
安定ないし不可能になるという不利が生じる。
The upper limit of ΔP is practically about 30 × 10 -3 , and if ΔP is made higher than this, there is a disadvantage that stretching becomes unstable or impossible.

【0021】このように△Pを3.0×10-3以上とす
ることにより強度面で顕著に改良されるとともに、無配
向シートの場合に見られる主に球晶成長に起因する脆化
や白化を防止することができる。
By setting ΔP to be 3.0 × 10 −3 or more as described above, the strength is remarkably improved, and the embrittlement caused mainly by spherulite growth, which is observed in the case of the non-oriented sheet, is reduced. Whitening can be prevented.

【0022】しかし反面、フィルムの熱寸法安定性が不
良となる。具体的には、夏の暑い時期にはフィルムが収
縮する。あるいは、フィルムをロール状態で保存中に自
然収縮しフィルムにたるみや波打ちを生じることもあ
る。このため、紙とのラミネートが灘しい。また、ラミ
ネート時に加わる熱によりフィルムが収縮してしまい、
カールを生じるという問題がある。
On the other hand, however, the thermal dimensional stability of the film becomes poor. Specifically, the film shrinks during the hot summer months. Alternatively, when the film is stored in a roll state, the film may be naturally contracted to cause slack or waviness in the film. Therefore, it is not suitable to be laminated with paper. Also, the film shrinks due to the heat applied during lamination,
There is a problem of curling.

【0023】従って、常温よりもやや高い温度すなわち
約50℃以上の温度雰囲気下で、ポリ乳酸系フィルムが
収縮しないこと、すなわち、熱寸法安定性を有している
ことが重要である。
Therefore, it is important that the polylactic acid-based film does not shrink, that is, it has thermal dimensional stability, in an atmosphere slightly higher than room temperature, that is, at a temperature of about 50 ° C. or higher.

【0024】このため、△Pが3.0×10-3以上のポ
リ乳酸系フィルムにおいては、実用的な熱寸法安定性を
得るために、フィルムの(△Hm一△Hc)を20J/
g以上、かつ{(△Hm一△Hc)/△Hm}を0.7
5以上に制御することが重要である。
Therefore, in a polylactic acid type film having a ΔP of 3.0 × 10 −3 or more, the (ΔHm-ΔHc) of the film is 20 J / in order to obtain practical thermal dimensional stability.
g or more and {(ΔHm-ΔHc) / ΔHm} is 0.7
It is important to control to 5 or more.

【0025】すなわち、これらの条件を下回る場合は、
フィルムの熱寸法安定性が不良であり、貼り合わせや乾
燥、エージング等で加わる温度で収縮する等の問題が生
じやすく、実用性に供しない。条件を上回れば、熱寸法
安定性が良好となり、実用上支障がない。
That is, if these conditions are not satisfied,
The thermal dimensional stability of the film is poor, and problems such as shrinkage at a temperature applied by bonding, drying, aging, etc. are likely to occur, which is not practical. If the condition is exceeded, the thermal dimensional stability will be good, and there will be no practical problems.

【0026】△Hm、△Hcは、フィルムサンプルの示
差走査熱量測定(DSC)により求められるもので、△
Hmは昇温速度10℃/分で昇温したときの全結晶を融
解させるのに必要な熱量であって、重合体の結晶融点付
近に現れる結晶融解による吸熱ピークの面積から求めら
れる。また△Hcは、昇温過程で生じる結晶化の際に発
生する発熱ピークの面積から求められる。
ΔHm and ΔHc are obtained by differential scanning calorimetry (DSC) of a film sample, and
Hm is the amount of heat required to melt all the crystals when the temperature is raised at a heating rate of 10 ° C./minute, and is calculated from the area of the endothermic peak due to crystal melting that appears near the crystal melting point of the polymer. Further, ΔHc is obtained from the area of the exothermic peak generated during crystallization that occurs during the temperature rising process.

【0027】△Hmは、主に重合体そのものの結晶性に
依存し、結晶性が大きい重合体では大きな値を取る。ち
なみに共重合体のないL−乳酸またはD−乳酸の完全ホ
モポリマーでは、60J/g以上であり、これら2種の
乳酸の共重合体ではその組成比により△Hmは変化す
る。△Hcは、重合体の結晶性に対するその時のフィル
ムの結晶化度に関係する指標であり、△Hcが大きいと
きには、昇温過程でフィルムの結晶化が進行する。すな
わち重合体が有する結晶性を基準にフィルムの結晶化度
が相対的に低かったことを表す。逆に、△Hcが小さい
時は、重合体が有する結晶性を基準にフィルムの結晶化
度が相対的に高かったことを表す。
ΔHm mainly depends on the crystallinity of the polymer itself, and takes a large value for a polymer having high crystallinity. Incidentally, the complete homopolymer of L-lactic acid or D-lactic acid without a copolymer has a content of 60 J / g or more, and in the copolymer of these two kinds of lactic acid, ΔHm changes depending on the composition ratio. ΔHc is an index relating to the crystallinity of the film at that time with respect to the crystallinity of the polymer, and when ΔHc is large, the crystallization of the film proceeds in the temperature rising process. That is, it means that the crystallinity of the film was relatively low based on the crystallinity of the polymer. On the contrary, when ΔHc is small, it means that the crystallinity of the film was relatively high based on the crystallinity of the polymer.

【0028】(△Hm−△Hc)を増大させるための1
つの方向は、結晶性が高い重合体を原料に、結晶化度の
比較的高いフィルムをつくることである。フィルムの結
晶化度は、重合体の組成に少なからず依存し、重合体そ
のものの△Hmを20J/g以上にするにはL−乳酸と
D−乳酸の組成比が100:0〜94:6の範囲内また
は0:100〜6:94の範囲内にするのが重要であ
る。また、△Hcを低下させるためには、すなわちフィ
ルムの結晶化度を高めるためにはフィルムの成形加工条
件を選定する必要がある。
1 for increasing (ΔHm-ΔHc)
One direction is to make a film with a relatively high degree of crystallinity from a polymer with a high crystallinity. The crystallinity of the film depends to a large extent on the composition of the polymer, and in order to make the ΔHm of the polymer itself to be 20 J / g or more, the composition ratio of L-lactic acid and D-lactic acid is 100: 0 to 94: 6. It is important to be within the range of 0 or within the range of 0: 100 to 6:94. Further, in order to reduce ΔHc, that is, in order to increase the crystallinity of the film, it is necessary to select the film processing conditions.

【0029】成形加工工程、特にテンター法2軸延伸に
おいてフィルムの結晶化度を上げるためには、延伸倍率
を上げ配向結晶化を促進する、延伸後に結晶化温度以上
の雰囲気で熱処理するなどが有用である。なお、△Pが
大きいほど結晶化温度が低下する傾向があり、本発明の
場合には鋭意検討した結果少なくとも70℃以上で、好
適には90℃〜170℃の範囲で3秒以上熱処理するこ
とで熱寸法安定生が付与できる。この範囲内で熱処理温
度が高いほど、また熱処理時間が長いほど熱寸法安定性
は向上する。
In order to increase the crystallinity of the film in the molding process step, especially in the biaxial stretching by the tenter method, it is useful to increase the stretching ratio to promote oriented crystallization, and to heat the film after stretching in an atmosphere having a crystallization temperature or higher. Is. It should be noted that the larger the ΔP, the lower the crystallization temperature tends to be, and in the case of the present invention, as a result of intensive studies, heat treatment is performed at least at 70 ° C. or higher, preferably 90 ° C. to 170 ° C. for 3 seconds or more. Can provide thermal dimensional stability. Within this range, the higher the heat treatment temperature and the longer the heat treatment time, the better the thermal dimensional stability.

【0030】この様にして得られたフィルムは、ドライ
ラミネート、ウエットラミネート、ホットメルトラミネ
ートなどの貼り合わせ工程で加わる張力と熱によっても
破断や歪みを生じることがなく、極めて安定したラミネ
ート製造を行うことができる。また、フィルムは、分子
配向し結晶化されているので、経時後も球晶が成長する
ことなく、従って球晶に起因する白化失透や脆化がな
く、外観上また機械的特性や保護特性上優れた性能を維
持する。
The film thus obtained does not break or distort due to the tension and heat applied in the laminating process such as dry laminating, wet laminating, hot melt laminating, etc., and is extremely stable in laminate production. be able to. In addition, since the film is molecularly oriented and crystallized, spherulites do not grow even after a lapse of time, and therefore there is no whitening devitrification or embrittlement due to spherulites, and the appearance and mechanical properties and protective properties Maintains superior performance.

【0031】また、ポリ乳酸系重合体フィルムに上記規
定範囲の特性が付与されるような延伸を行うことによ
り、フィルムの厚さの均−性が高まり、透明性、光沢な
ども併せて向上する。さらに耐衝撃性も向上し、紙単体
あるいは未延伸フィルムを貼り合わした場合と比較して
薄いフィルムでも同等以上の効果を得ることができる。
配向ポリ乳酸系フィルムに貼り合わせる紙には特に制限
はなく、例えば印刷用紙、クラフト紙、模造紙、板紙な
どを用い得る。またアート紙、コート紙などの塗工紙に
さらにポリ乳酸系重合体フィルムを貼り合わせてもよ
い。
By stretching the polylactic acid-based polymer film so as to impart the characteristics within the above-specified range, the uniformity of the film thickness is enhanced, and the transparency and gloss are also improved. . Further, the impact resistance is also improved, and the same or higher effect can be obtained even with a thin film as compared with the case where a single piece of paper or an unstretched film is laminated.
The paper bonded to the oriented polylactic acid-based film is not particularly limited, and for example, printing paper, kraft paper, imitation paper, paperboard, etc. can be used. Further, a polylactic acid-based polymer film may be further attached to coated paper such as art paper and coated paper.

【0032】上記配向ポリ乳酸系フィルムは、接着剤な
いし粘着剤により紙と貼り合わせる。既存の合成接着剤
および粘着剤としては、ビニル系、アクリル系、ポリア
ミド系、ポリエステル系、ゴム系、ウレタン系などがあ
り、ごく薄く、少量塗布して貼り合わせることもでき
る。ラミネート材料からすれば、接着剤ないし粘着剤は
少量であるが、これらも生分解性とするのが本来は好ま
しく、例えば、デンプンなどの炭水化物類、膠、ゼラチ
ン、カゼインなどのたんぱく質類、未加硫天然ゴムなど
の天然材料などがある。
The above oriented polylactic acid-based film is attached to paper with an adhesive or a pressure-sensitive adhesive. As existing synthetic adhesives and adhesives, there are vinyl-based, acrylic-based, polyamide-based, polyester-based, rubber-based, urethane-based, etc., which are extremely thin and can be applied in small amounts and bonded together. Although the amount of the adhesive or the pressure-sensitive adhesive is small in the case of the laminate material, it is originally preferable that they are also biodegradable.For example, carbohydrates such as starch, proteins such as glue, gelatin, and casein, and unadded There are natural materials such as vulcanized natural rubber.

【0033】本発明の分解性ラミネート材料の構成は、
例えば配向ポリ乳酸系重合体フィルム/紙の2層構成、
配向ポリ乳酸系重合体フィルム/紙/配向ポリ乳酸系重
合体フィルムの3層構成等があるが、特に限定されるも
のではない。
The constitution of the degradable laminate material of the present invention is as follows:
For example, a two-layer structure of oriented polylactic acid polymer film / paper,
There is a three-layered structure of oriented polylactic acid polymer film / paper / oriented polylactic acid polymer film, etc., but it is not particularly limited.

【0034】本発明の分解性ラミネート材料は、袋、
箱、トレー、コップ、蓋材などの包装資材分野に好適に
用いることができる。紙を部分的に打ち抜いて「窓」を
形成し、それに配向ポリ乳酸系重合体フィルムを貼り合
わせて内容物透視の容器とすることができる。この内容
物透視の容器は、窓付き封書体或いは収納物品が外部よ
り容易に確認できる容器体として好適である。さらに
は、カレンダ、ポスタ、本の表紙などの美麗な外観を必
要とする用途;ラベル、ステッカなどの表示材料;梱包
・包装用テープ;各種製品の製造に使用される工程紙な
どにも好適である。
The degradable laminate material of the present invention is a bag,
It can be suitably used in the field of packaging materials such as boxes, trays, cups and lids. The paper can be partially punched out to form a “window”, and an oriented polylactic acid polymer film can be attached thereto to form a container for seeing through the contents. This transparent container for contents is suitable as a container with a window or a container in which the stored article can be easily confirmed from the outside. Furthermore, it is suitable for applications that require a beautiful appearance such as calendars, posters, book covers, etc .; display materials such as labels and stickers; packaging / packaging tapes; process paper used in the manufacture of various products. is there.

【0035】[0035]

【実施例】以下に分解性ラミネート材料の実施例を示す
が、本発明はこれに限定されるものではない。なお、実
施例中に示す測定値は次に示すような条件で測定を行
い、算出した。
EXAMPLES Examples of degradable laminate materials are shown below, but the present invention is not limited thereto. The measured values shown in the examples were measured and calculated under the following conditions.

【0036】(1)△P アッベ屈折計によって直交3軸方向の屈折率(α,β,
γ)を測定し、次式で算出した。
(1) ΔP The refractive index (α, β,
γ) was measured and calculated by the following formula.

【0037】 △P={(γ+β)/2}−α (α<β<γ) γ:フィルム面内の最大屈折率 β:それに直交するフィルム面内方向の屈折率 α:フィルム厚さ方向の屈折率 (2)△Hm−△Hcおよび(△Hm−△Hc)/△H
m パーキンエルマー製DSC−7を用い、フィルムサンプ
ル10mgをJIS−K7122に基づいて、昇温速度
10℃/分で昇温したときのサーモグラムから結晶融解
熱量△Hmと結晶化熱量△Hcを求め、算出した。
ΔP = {(γ + β) / 2} −α (α <β <γ) γ: maximum refractive index β in the film plane: refractive index in the in-plane direction orthogonal to the film α: in the film thickness direction Refractive index (2) ΔHm-ΔHc and (ΔHm-ΔHc) / ΔH
m Using DSC-7 manufactured by Perkin Elmer, based on JIS-K7122, the heat of crystal fusion ΔHm and the heat of crystallization ΔHc were obtained from the thermogram when the temperature was raised at a temperature increase rate of 10 ° C./min. , Calculated.

【0038】(3)ラミネート適性 100mm×l00mmに切り出したポリ乳酸フィルム
に、接着剤を均一に塗布した後、60℃のオーブン中で
3分間乾燥してポリ乳酸フィルムの形状変化を観察し
た。寸法変化の大きな場合、紙との貼り合わせには不適
となる。
(3) Lamination Suitability An adhesive was evenly applied to a polylactic acid film cut into 100 mm × 100 mm and dried in an oven at 60 ° C. for 3 minutes to observe the shape change of the polylactic acid film. When the dimensional change is large, it is not suitable for pasting with paper.

【0039】(4)耐熱性 100mm×l00mmのラミネート体サンプルを、8
0℃の恒温槽中に3時間放置しておいた後の変化を調べ
た。
(4) Heat resistance 100 mm × 100 mm laminate sample
The change after being left for 3 hours in a constant temperature bath at 0 ° C. was examined.

【0040】(5)耐衝撃性 ハイドロショット高速衝撃試験機HTM−1型((株)
島津製作所製)を用いて耐衝撃性を測定した。100m
m×l00mmに切り出した紙、フィルムおよぴこれら
のラミネート体サンプルを、クランプで固定し、フィル
ム中央に錘を落して衝撃を与え、試料が破壊する時の破
壊エネルギーを読みとった。測定温度は23℃、落垂の
落下速度は3m/秒である。フィルム破断時の最大荷重
およびエネルギーが低いほど耐衝撃性に劣り脆い。
(5) Impact resistance Hydroshot high-speed impact tester HTM-1 type (Co., Ltd.)
The impact resistance was measured using Shimadzu Corporation). 100m
Paper, a film, and a laminate sample of these cut out to m × 100 mm were fixed with a clamp, a weight was dropped in the center of the film to give an impact, and the breaking energy when the sample was broken was read. The measurement temperature is 23 ° C., and the dropping speed is 3 m / sec. The lower the maximum load and energy when the film breaks, the poorer the impact resistance and the more brittle.

【0041】(実施例1)L−乳酸からなる構造単位と
D−乳酸からなる構造単位の割合がおよそ98:2でガ
ラス転移点58℃、融点175℃、重量平均分子量18
万のポリ乳酸を30mmφ単軸エクストルーダーにて、
200℃でTダイより押出し、膜厚150μmの未延伸
シートを作成した。
Example 1 The ratio of the structural unit composed of L-lactic acid to the structural unit composed of D-lactic acid was about 98: 2, the glass transition point was 58 ° C., the melting point was 175 ° C., and the weight average molecular weight was 18.
Thousands of polylactic acid in a 30mmφ single-screw extruder
It was extruded from a T die at 200 ° C. to prepare an unstretched sheet having a film thickness of 150 μm.

【0042】上記未延伸シートを長手方向に2倍にロー
ル延伸、次いで、幅方向にテンターで3倍に延伸、引き
続きテンター内で100℃、約30秒間熱処理して、配
向ポリ乳酸系フィルムを作成した。
The above unstretched sheet is roll-stretched twice in the longitudinal direction, then stretched three-fold in the width direction with a tenter, and then heat-treated in the tenter at 100 ° C. for about 30 seconds to prepare an oriented polylactic acid-based film. did.

【0043】上記配向ポリ乳酸系フィルムを100mm
×100mmに切り出し、ポリウレタン系溶剤型接着剤
(タケラックA−970/タケネートA−19=15/
1、武田薬品工業社製)を1μmとなるよう均一に塗布
し、60℃オーブン中で3分間乾燥した。この時フィル
ムの外観、寸法に変化はなかった。
100 mm of the above oriented polylactic acid type film
Cut out to 100 mm, and use a polyurethane solvent adhesive (Takelac A-970 / Takenate A-19 = 15 /
1, manufactured by Takeda Pharmaceutical Co., Ltd.) was evenly applied to a thickness of 1 μm and dried in an oven at 60 ° C. for 3 minutes. At this time, there was no change in the appearance and dimensions of the film.

【0044】次いで、同サイズに切り出した上質紙と、
上記配向ポリ乳酸系フィルムとをローラーで圧着しなが
ら貼り合わせ、40℃で24時間エージングして分解ラ
ミネート材料を得た。使用された上質紙(厚み60μ
m、面積1m2当たりの質量51g)の耐衝撃性をハイ
ドショットで調べたところ、最大荷重2kgf、破壊エ
ネルギーは4kgf・mmであった。
Next, a high-quality paper cut into the same size,
The oriented polylactic acid-based film was bonded with a roller under pressure, and aged at 40 ° C. for 24 hours to obtain a decomposed laminated material. Used fine paper (thickness 60μ
When the impact resistance of m and a mass of 51 g per 1 m 2 of area) was examined by hydrate shot, the maximum load was 2 kgf and the breaking energy was 4 kgf · mm.

【0045】得られた配向ポリ乳酸系フィルムの△P,
(△Hm−△Hc),{(△Hm−△Hc)/△H
m}、および、分解ラミネート材料のラミネート適性,
耐熱性,耐衝撃性を表1に示した。△P,(△Hm−△
Hc),{(△Hm−△Hc)/△Hm}は本発明の範
囲である。
ΔP of the obtained oriented polylactic acid-based film,
(ΔHm-ΔHc), {(ΔHm-ΔHc) / ΔH
m}, and the suitability for laminating disassembled laminating materials,
The heat resistance and impact resistance are shown in Table 1. △ P, (△ Hm- △
Hc) and {(ΔHm-ΔHc) / ΔHm} are within the scope of the present invention.

【0046】(実施例2)未延伸シートから配向ポリ乳
酸系フィルムを作成する条件を以下の様にした以外は、
実施例1と同様にして分解ラミネート材料を得た。長手
方向に2.5倍にロール延仲、次いで、幅方向にテンタ
ーで2.5倍に延伸、引き続きテンター内で100℃、
約25秒間熱処理して、配向ポリ乳酸系フィルムを作成
した。
(Example 2) Except that the conditions for producing an oriented polylactic acid based film from an unstretched sheet were as follows:
A decomposed laminated material was obtained in the same manner as in Example 1. Roll stretched 2.5 times in the longitudinal direction, then stretched 2.5 times in the width direction with a tenter, and subsequently 100 ° C in the tenter.
Heat treatment was performed for about 25 seconds to prepare an oriented polylactic acid-based film.

【0047】得られた配向ポリ乳酸系フィルム、およ
び、分解ラミネート材料の各特性を表lに示した。△
P,(△Hm−△Hc),{(△Hm−△Hc)/△H
m}は本発明の範囲である。
The properties of the obtained oriented polylactic acid-based film and the decomposed laminate material are shown in Table 1. △
P, (ΔHm-ΔHc), {(ΔHm-ΔHc) / ΔH
m} is the scope of the present invention.

【0048】(実施例3)L−乳酸からなる構造単位と
D−乳酸からなる構造単位の割合がほぼ96:4、ガラ
ス転移点57℃、融点152℃、重量平均分子量14万
のポリ乳酸を用い、実施例1と同様の装置を使用して、
190℃で押出し、膜厚220μmの未延伸シートを作
成した。
Example 3 A polylactic acid having a structural unit consisting of L-lactic acid and a structural unit consisting of D-lactic acid in a ratio of about 96: 4, a glass transition point of 57 ° C., a melting point of 152 ° C. and a weight average molecular weight of 140,000 was used. Using the same apparatus as in Example 1,
It was extruded at 190 ° C. to prepare an unstretched sheet having a film thickness of 220 μm.

【0049】上記未延伸シートを長手方向に2.5倍に
ロール延伸、次いで、幅方向にテン夕一で3倍に延伸、
引き続きテンター内で120℃、約25秒間熱処理し
て、配向ポリ乳酸系フィルムを作成した。
The unstretched sheet was roll-stretched 2.5 times in the longitudinal direction, and then stretched 3 times in the width direction with a temperature balance.
Subsequently, the product was heat-treated in a tenter at 120 ° C. for about 25 seconds to prepare an oriented polylactic acid-based film.

【0050】上記配向ポリ乳酸系フィルムを用いて、実
施例1と同様に、分解ラミネート材料を作成した。得ら
れた配向ポリ乳酸系フィルム、および、分解ラミネート
材料の各特性を表1に示した。△P,(△Hm−△H
c),{(△Hm−△Hc)/△Hm}は本発明の範囲
である。
Using the above oriented polylactic acid-based film, a decomposition laminated material was prepared in the same manner as in Example 1. Table 1 shows the respective properties of the obtained oriented polylactic acid-based film and the decomposed laminate material. △ P, (△ Hm- △ H
c) and {(ΔHm-ΔHc) / ΔHm} are within the scope of the present invention.

【0051】(実施例4)L−乳酸からなる構造単位と
D−乳酸からなる構造単位の割合がほぼ95:5、ガラ
ス転移点57℃、融点147℃、重量平均分子量11万
のポリ乳酸を用い、実施例1と同様の装置を使用して、
190℃で押出し、膜厚約250μmの未延伸シートを
作成した。
Example 4 Polylactic acid having a ratio of structural units of L-lactic acid and structural units of D-lactic acid of about 95: 5, a glass transition point of 57 ° C., a melting point of 147 ° C. and a weight average molecular weight of 110,000 was used. Using the same apparatus as in Example 1,
It was extruded at 190 ° C. to prepare an unstretched sheet having a film thickness of about 250 μm.

【0052】上記未延仲シートを長手方向に1.5倍に
ロール延伸、次いで、幅方向にテンターで1.5倍に延
伸、引き続きテンター内で120℃、約40秒間熱処理
して、配向ポリ乳酸系フィルムを作成した。
The unstretched sheet was roll-stretched 1.5 times in the longitudinal direction, then stretched 1.5-fold in the width direction with a tenter, and then heat-treated in the tenter at 120 ° C. for about 40 seconds to obtain an oriented poly-sheet. A lactic acid-based film was created.

【0053】上記配向ポリ乳酸系フィルムを用いて、実
施例1と同様に、分解ラミネート材料を作成した。得ら
れた配向ポリ乳酸系フィルム、および、分解ラミネート
材料の各特性を表1に示した。△P,(△Hm−△H
c),{(△Hm−△Hc)/△Hm}は本発明の範囲
である。
Using the above oriented polylactic acid-based film, a decomposition laminated material was prepared in the same manner as in Example 1. Table 1 shows the respective properties of the obtained oriented polylactic acid-based film and the decomposed laminate material. △ P, (△ Hm- △ H
c) and {(ΔHm-ΔHc) / ΔHm} are within the scope of the present invention.

【0054】(比較例1)実施例1で使用したポリL−
乳酸を30mmφ単軸エクストルーダーにて、200℃
でTダイより押出し、キャスティングロールで急冷しな
がら、紙にニップロールで圧着した。得られたラミネー
ト体のポリ乳酸シートの厚みは100μmであった。得
られた配向ポリ乳酸系フィルム、および、分解ラミネー
ト材料の各特性を表1に示した。
(Comparative Example 1) Poly L-used in Example 1
Lactic acid in a 30 mmφ single-screw extruder at 200 ° C
It was extruded from a T-die by means of, and rapidly cooled with a casting roll, and pressed against paper with a nip roll. The thickness of the obtained polylactic acid sheet of the laminate was 100 μm. Table 1 shows the respective properties of the obtained oriented polylactic acid-based film and the decomposed laminate material.

【0055】(比較例2)実施例1で使用した未延伸シ
ートを長手方向に1.2倍にロール延伸、次いで、幅方
向にテンターで1.5倍に延伸、引き続きテンター内で
100℃、約30秒間熱処理して、配向ポリ乳酸系フィ
ルムを作成した。
(Comparative Example 2) The unstretched sheet used in Example 1 was roll-stretched by 1.2 times in the longitudinal direction, then stretched by 1.5 times in the width direction with a tenter, and subsequently 100 ° C in the tenter. Heat treatment was performed for about 30 seconds to prepare an oriented polylactic acid-based film.

【0056】上記配向ポリ乳酸系フィルムを用いて、実
施例1と同様に、分解ラミネート材料を作成した。得ら
れた配向ポリ乳酸系フィルム、および、分解ラミネート
材料の各特性を表1に示した。(△Hm−△Hc)およ
び{(△Hm−△Hc)/△Hm}は本発明の範囲内に
あるが、フィルムの面配向度△Pが3.0×10-3を下
回っており本発明の範囲外である。
Using the above oriented polylactic acid-based film, a decomposition laminated material was prepared in the same manner as in Example 1. Table 1 shows the respective properties of the obtained oriented polylactic acid-based film and the decomposed laminate material. Although (ΔHm-ΔHc) and {(ΔHm-ΔHc) / ΔHm} are within the range of the present invention, the plane orientation degree ΔP of the film is less than 3.0 × 10 −3 , and It is outside the scope of the invention.

【0057】(比較例3)実施例1と同様の方法で膜厚
310μmの末延伸シートを作成した。前記未延伸シー
トを長手方向に2倍にロール延伸、次いで、幅方向にテ
ンターで3倍に延伸して配向ポリ乳酸系フィルムを作成
した。
Comparative Example 3 An unstretched sheet having a film thickness of 310 μm was prepared in the same manner as in Example 1. The unstretched sheet was roll stretched twice in the longitudinal direction and then stretched three times in the width direction with a tenter to prepare an oriented polylactic acid-based film.

【0058】上記配向ポリ乳酸系フィルムを用いて、実
施例1と同様に、分解ラミネート材料を作成した。得ら
れた配向ポリ乳酸系フィルム、および、分解ラミネート
材料の各特性を表1に示した。△Pおよび(△Hm−△
Hc)は本請求項の範囲内にあるが、{(△Hm−△H
c)/△Hm}が0.75を下回っており本発明の範囲
外である。
Using the above oriented polylactic acid-based film, a decomposition laminated material was prepared in the same manner as in Example 1. Table 1 shows the respective properties of the obtained oriented polylactic acid-based film and the decomposed laminate material. △ P and (△ Hm- △
Hc) is within the scope of this claim, but {(ΔHm-ΔH
c) / ΔHm} is less than 0.75, which is outside the scope of the present invention.

【0059】(比較例4)L−乳酸からなる構造単位と
D−乳酸からなる構造単位の割合がほぼ93:7、ガラ
ス転移点57℃、融点125℃、重量平均分子量11万
のポリ乳酸を用い、実施例1と同様の装置を使用して、
180℃で押出し、膜厚170μmの未延伸シートを作
成した。未延伸シートを長手方向に1.5倍にロール延
伸、次いで、幅方向にテンターで2倍に延伸、引き続き
テンター内で80℃、約40秒間熱処理して、配向ポリ
乳酸系フィルムを作成した。
Comparative Example 4 Polylactic acid having a ratio of structural units of L-lactic acid and structural units of D-lactic acid of about 93: 7, a glass transition point of 57 ° C., a melting point of 125 ° C. and a weight average molecular weight of 110,000 was used. Using the same apparatus as in Example 1,
It was extruded at 180 ° C. to prepare an unstretched sheet having a film thickness of 170 μm. The unstretched sheet was roll-stretched 1.5 times in the longitudinal direction, then stretched 2 times in the width direction with a tenter, and subsequently heat-treated in the tenter at 80 ° C. for about 40 seconds to prepare an oriented polylactic acid-based film.

【0060】上記配向ポリ乳酸系フィルムを用いて、実
施例1と同様に、分解ラミネート材料を作成した。得ら
れた配向ポリ乳酸系フィルム、および、分解ラミネート
材料の各特性を表1に示した。△Pおよび{(△Hm−
△Hc)/△Hm}は本請求項の範囲内にあるが、(△
Hm−△Hc)が20J/gを下回っており本発明の範
囲外である。
Using the above oriented polylactic acid type film, a decomposition laminated material was prepared in the same manner as in Example 1. Table 1 shows the respective properties of the obtained oriented polylactic acid-based film and the decomposed laminate material. ΔP and {(ΔHm-
ΔHc) / ΔHm} is within the scope of this claim, but
Hm-ΔHc) is less than 20 J / g, which is outside the scope of the present invention.

【0061】[0061]

【表1】 尚、表1に最下段にラミネート材料としての特性の総合
評価を示している。評価は以下の通りである。
[Table 1] Table 1 shows the comprehensive evaluation of the properties of the laminate material at the bottom. The evaluation is as follows.

【0062】 ◎:特に優れた特性を有するラミネート材料 ○:優れた特性を有するラミネート材料 △:実用的レベルの特性を有するラミネート材料 ×:実用的レベル以下の特性を有するラミネート材料 表1に示したように、△P,(△Hm−△Hc),
{(△Hm−△Hc)/△Hm}が本発明の範囲である
実施例1〜4はラミネート特性、耐熱性、耐衝撃性とも
に、ラミネート材料として必要とされる範囲にあり、総
合評価が◎〜△である。ラミネートを行うことにより、
耐衝撃性が使用した上質紙の最大荷重2kgf、破壊エ
ネルギー4kgf・mmより大きくなっている。
⊚: Laminate material having particularly excellent properties ○: Laminate material having excellent properties Δ: Laminate material having practical level properties ×: Laminate material having practical level or lower properties Table 1 , ΔP, (ΔHm-ΔHc),
In Examples 1 to 4 in which {(ΔHm-ΔHc) / ΔHm} is within the range of the present invention, the laminate properties, heat resistance, and impact resistance are all within the range required as a laminate material, and the overall evaluation is ◎ to △. By laminating,
The impact resistance is larger than the maximum load of 2 kgf and the breaking energy of 4 kgf · mm of the used fine paper.

【0063】しかし、比較例1〜4は各種特性がラミネ
ート材料として必要とされる範囲を欠いていり、総合評
価が×である。すなわち、本発明の範囲にある延伸され
た配向ポリ乳酸系フィルムを使用すると、優れた分解性
ラミネート材料を得ることができる。
However, in Comparative Examples 1 to 4, various characteristics lack the range required for the laminate material, and the overall evaluation is x. That is, when a stretched oriented polylactic acid-based film within the scope of the present invention is used, an excellent degradable laminate material can be obtained.

【0064】[0064]

【発明の効果】以上説明したように本発明は紙の欠点を
補ない、かつ、複合材料として優れた特性を有する分解
性ラミネート材料を使用した内容物透視用の容器であ
り、当該容器の内容物透視部を構成する配向ポリ乳酸系
フィルムが貼り合わせ工程中の高温度に曝されても、フ
ィルムが失透することがなく内容物を鮮明に視認できる
容器を提供することができる。
INDUSTRIAL APPLICABILITY As described above, the present invention is a container for see-through of contents, which uses a decomposable laminate material which does not make up for the defects of paper and has excellent properties as a composite material. It is possible to provide a container in which the contents are clearly visible without devitrification of the film even when the oriented polylactic acid-based film forming the object see-through part is exposed to high temperature during the laminating step.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B32B 27/36 B32B 27/36 C08G 63/06 ZBP C08G 63/06 ZBP // C08L 101/16 C08L 101/16 (72)発明者 高木 潤 滋賀県長浜市三ツ矢町5番8号 三菱樹脂 株式会社長浜工場内 Fターム(参考) 3E086 AC25 AD01 AD02 AD05 AD06 AD24 AD30 BA04 BA14 BA15 BB68 BB90 4F100 AK41A BA02 BA07 DC11B DG10B EJ37A GB16 JC00 YY00A 4J029 AA02 AB07 AC01 AC02 AD10 AE01 EA02 EA03 EA05 KB02 4J200 AA06 BA03 BA05 BA14 CA04 DA03 EA04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B32B 27/36 B32B 27/36 C08G 63/06 ZBP C08G 63/06 ZBP // C08L 101/16 C08L 101 / 16 (72) Inventor Jun Takagi 5-8 Mitsuya-cho, Nagahama-shi, Shiga Mitsubishi Plastics Co., Ltd. Nagahama factory F-term (reference) 3E086 AC25 AD01 AD02 AD05 AD06 AD24 AD30 BA04 BA14 BA15 BB68 BB90 4F100 AK41A BA02 BA07 DC11B DG10B EJ37A GB16 JC00 YY00A 4J029 AA02 AB07 AC01 AC02 AD10 AE01 EA02 EA03 EA05 KB02 4J200 AA06 BA03 BA05 BA14 CA04 DA03 EA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 面配向度ΔPが3.0×10-3以上であ
り、かつ、フィルムを昇温したときの結晶融解熱量ΔH
mと昇温中の結晶化により発生する結晶化熱量ΔHcと
の差(ΔHm−ΔHc)が20J/g以上かつ{(ΔHm
−ΔHc)/ΔHm}が0.75以上である配向ポリ乳
酸系フィルムと、部分的に打ち抜いて窓を形成した紙と
をラミネートした内容物透視用の容器。
1. A degree of plane orientation ΔP of 3.0 × 10 −3 or more, and a heat of crystal fusion ΔH when the film is heated.
The difference (ΔHm-ΔHc) between m and the heat of crystallization ΔHc generated by crystallization during heating is 20 J / g or more and {(ΔHm
A container for seeing through contents, which is obtained by laminating an oriented polylactic acid-based film having a −ΔHc) / ΔHm} of 0.75 or more and a paper sheet partially punched to form a window.
【請求項2】 配向ポリ乳酸系フィルムはL−乳酸とD
−乳酸との割合が100:0〜94:6の範囲内または
0:100〜6:94の範囲の共重合体である請求項1
記載の内容物透視用の容器。
2. An oriented polylactic acid-based film comprises L-lactic acid and D.
A copolymer having a ratio with lactic acid within the range of 100: 0 to 94: 6 or within the range of 0: 100 to 6:94.
A container for seeing through the described contents.
JP2002316595A 2002-10-30 2002-10-30 Container for seeing through contents Pending JP2003212270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316595A JP2003212270A (en) 2002-10-30 2002-10-30 Container for seeing through contents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316595A JP2003212270A (en) 2002-10-30 2002-10-30 Container for seeing through contents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5735295A Division JP3388052B2 (en) 1995-03-16 1995-03-16 Degradable laminate material

Publications (1)

Publication Number Publication Date
JP2003212270A true JP2003212270A (en) 2003-07-30

Family

ID=27655777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316595A Pending JP2003212270A (en) 2002-10-30 2002-10-30 Container for seeing through contents

Country Status (1)

Country Link
JP (1) JP2003212270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190015799A (en) * 2017-08-07 2019-02-15 주식회사 씨앤알얼트너티브 Palm leaf container and method for producing the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334448A (en) * 1991-05-10 1992-11-20 Shimadzu Corp Biodegradable composite material and manufacture thereof
JPH04336246A (en) * 1991-05-13 1992-11-24 Mitsui Toatsu Chem Inc Decomposable laminated paper
JPH05305963A (en) * 1991-12-13 1993-11-19 Ems Inventa Ag Transparent part and packaging material with it
JPH0623836A (en) * 1992-07-09 1994-02-01 Shimadzu Corp Production of stretched film of polylactic acid
JPH06256480A (en) * 1993-03-04 1994-09-13 Toyobo Co Ltd Biodegradable packaging film
JPH07207041A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Polylactic acid film
JPH07205278A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Production of stretched film of polylactic acid polymer
JPH07256753A (en) * 1994-03-28 1995-10-09 Mitsubishi Plastics Ind Ltd Heat-shrinkable polylactic film
JPH07308961A (en) * 1994-05-16 1995-11-28 Mitsubishi Plastics Ind Ltd Thermally molded processed product of polylactic acid polymer
JPH0822618A (en) * 1994-07-04 1996-01-23 Mitsubishi Plastics Ind Ltd Degradable information recording card
JPH0852171A (en) * 1994-08-11 1996-02-27 Mitsubishi Plastics Ind Ltd Decomposable protection film for helmet shield and goggle lens
JPH08198955A (en) * 1995-01-20 1996-08-06 Mitsubishi Plastics Ind Ltd Oriented polylactic acid film and sheet and their production
JPH0925345A (en) * 1995-07-10 1997-01-28 Mitsubishi Plastics Ind Ltd Polylactic acid molding

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334448A (en) * 1991-05-10 1992-11-20 Shimadzu Corp Biodegradable composite material and manufacture thereof
JPH04336246A (en) * 1991-05-13 1992-11-24 Mitsui Toatsu Chem Inc Decomposable laminated paper
JPH05305963A (en) * 1991-12-13 1993-11-19 Ems Inventa Ag Transparent part and packaging material with it
JPH0623836A (en) * 1992-07-09 1994-02-01 Shimadzu Corp Production of stretched film of polylactic acid
JPH06256480A (en) * 1993-03-04 1994-09-13 Toyobo Co Ltd Biodegradable packaging film
JPH07207041A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Polylactic acid film
JPH07205278A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Production of stretched film of polylactic acid polymer
JPH07256753A (en) * 1994-03-28 1995-10-09 Mitsubishi Plastics Ind Ltd Heat-shrinkable polylactic film
JPH07308961A (en) * 1994-05-16 1995-11-28 Mitsubishi Plastics Ind Ltd Thermally molded processed product of polylactic acid polymer
JPH0822618A (en) * 1994-07-04 1996-01-23 Mitsubishi Plastics Ind Ltd Degradable information recording card
JPH0852171A (en) * 1994-08-11 1996-02-27 Mitsubishi Plastics Ind Ltd Decomposable protection film for helmet shield and goggle lens
JPH08198955A (en) * 1995-01-20 1996-08-06 Mitsubishi Plastics Ind Ltd Oriented polylactic acid film and sheet and their production
JPH0925345A (en) * 1995-07-10 1997-01-28 Mitsubishi Plastics Ind Ltd Polylactic acid molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190015799A (en) * 2017-08-07 2019-02-15 주식회사 씨앤알얼트너티브 Palm leaf container and method for producing the same
KR101950492B1 (en) 2017-08-07 2019-02-20 주식회사 씨앤알얼트너티브 Palm leaf container and method for producing the same

Similar Documents

Publication Publication Date Title
JP3258302B2 (en) Biodegradable biaxially stretched film
US7175917B2 (en) Biaxially oriented polylactic acid-based resin films
WO1999062710A1 (en) Biodegradable card
JP3217240B2 (en) Polylactic acid based molded body
JP3388052B2 (en) Degradable laminate material
JPH08323946A (en) Multi-layer biodegradable plastic film
EP1598399B1 (en) Aliphatic polyester composition films and multilayer films produced therefrom
JP4210492B2 (en) Biodegradable film and biodegradable bag comprising the film
JP3328418B2 (en) Heat-shrinkable polylactic acid film
JP4602742B2 (en) Polylactic acid composition and polylactic acid film
JP2001219522A (en) Polylactic acid laminated biaxially stretched film
JP3718636B2 (en) Heat-shrinkable film
JP2003212270A (en) Container for seeing through contents
JP3563436B2 (en) Thermoformed product of polylactic acid polymer
JP3280927B2 (en) Degradable recording sheet and recording card
JP2004217289A (en) Biodegradable blister pack
JP3902371B2 (en) Biodegradable laminated sheet
JP4329411B2 (en) Stretched polylactic acid film and bag for packaging
JP5325845B2 (en) Polylactic acid composition and polylactic acid film
JP4288268B2 (en) Biodegradable laminated sheet
JP3703795B2 (en) Polylactic acid-based biaxially stretched film with excellent fusing and sealing properties
JP2005112999A (en) Biodegradable aromatic polyester composition, film and laminated film composed thereof
JP2005248407A (en) Biodegradable flat yarn, fabric-like article, and sheet
JP2005125803A (en) Multilayer biodegradable plastic film
JP4623265B2 (en) Biaxially stretched polyester film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111