JP3217240B2 - Polylactic acid based molded body - Google Patents

Polylactic acid based molded body

Info

Publication number
JP3217240B2
JP3217240B2 JP17324695A JP17324695A JP3217240B2 JP 3217240 B2 JP3217240 B2 JP 3217240B2 JP 17324695 A JP17324695 A JP 17324695A JP 17324695 A JP17324695 A JP 17324695A JP 3217240 B2 JP3217240 B2 JP 3217240B2
Authority
JP
Japan
Prior art keywords
sheet
polylactic acid
δhm
heat
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17324695A
Other languages
Japanese (ja)
Other versions
JPH0925345A (en
Inventor
潤 高木
滋憲 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP17324695A priority Critical patent/JP3217240B2/en
Publication of JPH0925345A publication Critical patent/JPH0925345A/en
Application granted granted Critical
Publication of JP3217240B2 publication Critical patent/JP3217240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐衝撃性、透明性
および耐湿熱性に優れかつ自然環境下で分解する、ポリ
乳酸からなる成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded article made of polylactic acid which is excellent in impact resistance, transparency and wet heat resistance and decomposes in a natural environment.

【0002】[0002]

【従来の技術】各種商品の展示包装用に用いられている
ブリスター加工品は、樹脂製シートを得た後、当該シー
トを熱成形法である真空成形、圧空成形等により成形し
て作られるのが一般的である。ブリスター加工品は包装
体を通して中の商品を透視できる、透明性に優れている
ものが好まれる。そこで、ブリスター加工品用の素材シ
ートとしてはポリ塩化ビニル系、ポリエチレンテレフタ
レート系、ポリスチレン系などのシートが使用されてい
る。
2. Description of the Related Art Blister-processed products used for display and packaging of various products are obtained by obtaining a resin sheet and forming the sheet by a thermoforming method such as vacuum forming or pressure forming. Is common. As the blister-processed product, a product having excellent transparency that allows the inside product to be seen through the package is preferable. Therefore, polyvinyl chloride, polyethylene terephthalate, and polystyrene sheets are used as material sheets for blister products.

【0003】しかしながら、上述したシートは化学的、
生物的に安定なため自然環境下に放置されてもほとんど
分解されることなく残留、蓄積される。これらは自然環
境中に散乱して動植物の生活環境を汚染するだけでな
く、ゴミとして埋められた場合にもほとんど分解せずに
残り、埋立地の寿命を短くするという問題がある。
[0003] However, the above-mentioned sheet is chemically,
Since it is biologically stable, it remains and accumulates without being substantially decomposed even when left in a natural environment. These are not only scattered in the natural environment and pollute the living environment of animals and plants, but also hardly decompose when buried as garbage, which has a problem of shortening the life of the landfill.

【0004】そこで、これらの問題を生じない分解性重
合体からなる材料が要求されており、多くの研究、開発
が行われている。その一つにポリ乳酸が知られている。
[0004] Therefore, there is a demand for a material made of a degradable polymer which does not cause these problems, and much research and development has been carried out. One of them is known as polylactic acid.

【0005】ポリ乳酸を用いてブリスター加工品を得る
方法としては、特開平6−122148号に、L−乳酸
系ポリマーが75%以上で厚みが0.2〜2mmである
透明なL−乳酸系ポリマーシートから真空吸引、圧空圧
力又は真空圧空によってL−乳酸系ポリマー成形品を得
る方法が示され、得られた成形体の透明性および成形性
が優れていることが開示されている。
[0005] Japanese Patent Application Laid-Open No. 6-122148 discloses a method for obtaining a blister-processed product using polylactic acid, which is disclosed in JP-A-6-122148. A method for obtaining an L-lactic acid-based polymer molded article from a polymer sheet by vacuum suction, air pressure or vacuum air pressure is disclosed, and discloses that the obtained molded article has excellent transparency and moldability.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来知られて
いるポリ乳酸からなる成形体はその強度、耐衝撃性能が
不十分であり、取扱いの際に穴があく等の問題が生じ
る。また、耐湿熱性能が不十分であり、製品の輸送、保
管、使用中に高温高湿環境下にさらされると、成形体が
変形したり、透明な成形体が白色化する、いわゆる、白
化が生じる。
However, the conventionally known molded article made of polylactic acid has insufficient strength and impact resistance, and causes problems such as perforation during handling. In addition, when the product is exposed to a high temperature and high humidity environment during transportation, storage and use of the product due to insufficient moisture and heat resistance, the molded product may be deformed or the transparent molded product may be whitened. Occurs.

【0007】このため、環境問題等から自然環境下で分
解するポリ乳酸からなる成形体の使用が期待されている
ものの、上述した事柄等から、実用化に至っていない。
[0007] For this reason, the use of a molded article made of polylactic acid that decomposes in a natural environment is expected due to environmental problems and the like, but has not been put to practical use due to the above-mentioned matters.

【0008】そこで、本発明の課題は耐衝撃性、耐湿熱
性が優れたポリ乳酸系成形体を提供することにある。
Accordingly, an object of the present invention is to provide a polylactic acid-based molded article having excellent impact resistance and heat and humidity resistance.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、ポリ乳
酸系重合体(ただし、L−乳酸またはD−乳酸のみから
なる重合体は除く)からなり、面配向度ΔPが3.0×
10−3〜30×10−3であり、シートを昇温したと
きの結晶化融解熱量ΔHmと昇温中の結晶化により発生
する結晶化熱量ΔHcとの差(ΔHm−ΔHc)が20
J/g以上かつ{(ΔHm−ΔHc)/ΔHm}が0.
75以上である配向ポリ乳酸系シートを熱成形したこと
を特徴とするポリ乳酸系重合体である。また、本発明の
要旨は、ポリ乳酸系重合体からなり、面配向度ΔPが
3.0×10−3〜30×10−3であり、シートを昇
温したときの結晶化融解熱量ΔHmと昇温中の結晶化に
より発生する結晶化熱量ΔHcとの差(ΔHm−ΔH
c)が20J/g以上かつ{(ΔHm−ΔHc)/ΔH
m}が0.75以上である配向ポリ乳酸系シートを、成
形直前のシート温度が145〜170℃の範囲となるよ
うにして熱成形したことを特徴とするポリ乳酸系成形体
である。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a polylactic acid-based polymer (excluding a polymer consisting of L-lactic acid or D-lactic acid alone) and having a plane orientation degree ΔP of 3.0 ×.
10 −3 to 30 × 10 −3 , and the difference (ΔHm−ΔHc) between the heat of crystallization melting ΔHm when the sheet is heated and the heat of crystallization ΔHc generated by crystallization during the temperature rise is 20.
J / g or more and {(ΔHm−ΔHc) / ΔHm} is not more than 0.1.
A polylactic acid-based polymer obtained by thermoforming an oriented polylactic acid-based sheet of 75 or more. In addition, the gist of the present invention is that it is made of a polylactic acid-based polymer, has a plane orientation degree ΔP of 3.0 × 10 −3 to 30 × 10 −3 , and has a heat of crystallization and melting ΔHm when the sheet is heated. Difference (ΔHm−ΔH) from the amount of heat of crystallization ΔHc generated by crystallization during temperature rise
c) is 20 J / g or more and {(ΔHm−ΔHc) / ΔH
A polylactic acid-based molded article characterized in that an oriented polylactic acid-based sheet having m} of 0.75 or more is thermoformed so that the sheet temperature immediately before molding is in a range of 145 to 170 ° C.

【0010】[0010]

【発明の実施の形態】本発明に用いられるポリ乳酸系重
合体とは、ポリ乳酸または乳酸と他のヒドロキシカルボ
ン酸との共重合体、もしくはこれらの混合物であり、本
発明の効果を阻害しない範囲で他の高分子材料が混入さ
れても構わない。また、成形加工性、シートや成形体の
物性を調整する目的で可塑剤、滑剤、無機フィラー、紫
外線吸収剤などの添加剤、改質剤を添加することも可能
である。
BEST MODE FOR CARRYING OUT THE INVENTION The polylactic acid-based polymer used in the present invention is polylactic acid, a copolymer of lactic acid and another hydroxycarboxylic acid, or a mixture thereof, and does not impair the effects of the present invention. Other polymer materials may be mixed within the range. It is also possible to add additives such as plasticizers, lubricants, inorganic fillers and ultraviolet absorbers, and modifiers for the purpose of adjusting the moldability and the physical properties of the sheet or the molded article.

【0011】乳酸としてはL−乳酸、D−乳酸が挙げら
れ、他のヒドロキシカルボン酸としては、グリコ−ル
酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒ
ドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキ
シカプロン酸などが代表的に挙げられる。
Lactic acid includes L-lactic acid and D-lactic acid, and other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, and 4-hydroxyvaleric acid. Representative examples include valeric acid and 6-hydroxycaproic acid.

【0012】これらの重合法としては、縮合重合法、開
環重合法など公知のいずれの方法を採用することも可能
であり、さらには、分子量増大を目的として少量の鎖延
長剤、例えば、ジイソシアネート化合物、エポキシ化合
物、酸無水物などを使用しても構わない。
As these polymerization methods, any known methods such as condensation polymerization and ring-opening polymerization can be employed. Further, a small amount of a chain extender such as diisocyanate is used for the purpose of increasing the molecular weight. Compounds, epoxy compounds, acid anhydrides and the like may be used.

【0013】ポリ乳酸系重合体の重量平均分子量として
は、50,000から1000,000の範囲が好まし
く、かかる範囲を下まわると実用物性がほとんど発現さ
れず、また熱成形時にシートが強度を保持できないなど
の問題を生じる。また上まわる場合には、溶融粘度が高
くなりすぎ成形加工性に劣る。
The weight average molecular weight of the polylactic acid-based polymer is preferably in the range of 50,000 to 1,000,000, and below this range practical properties are hardly exhibited, and the sheet retains strength during thermoforming. It causes problems such as inability to do so. On the other hand, if it exceeds, the melt viscosity becomes too high, resulting in poor moldability.

【0014】本発明に使用されるポリ乳酸系シートは、
上述した重合体を十分に乾燥して水分を除去した後、押
出法、カレンダー法、プレス法などの一般的な溶融成形
法によりシート状に成形し、次いで、急冷することによ
り得られる。
The polylactic acid-based sheet used in the present invention comprises:
After sufficiently drying the above-mentioned polymer to remove water, the polymer is formed into a sheet by a general melt molding method such as an extrusion method, a calender method, a press method, and the like, and then rapidly cooled.

【0015】実用的には、シート状に溶融押出成形され
た重合体を、回転するキヤステイングドラム(冷却ドラ
ム)に接触させて急冷するのが好ましい。キヤステイン
グドラムの温度は60℃以下が適当であり、これより高
いと重合体がキヤステイングドラムに粘着して引取りが
困難になり、また結晶化が促進されて球晶が発達し透明
性が低下するとともに熱成形加工も困難になる。従っ
て、60℃以下でシートを急冷して、実質上非晶質のシ
ートとするのが好ましい。
Practically, it is preferable that the polymer melt-extruded into a sheet is rapidly cooled by contact with a rotating casting drum (cooling drum). The temperature of the casting drum is suitably 60 ° C or less. If it is higher than this, the polymer sticks to the casting drum and it becomes difficult to take it off. In addition, crystallization is promoted and spherulites develop and transparency increases. As the temperature decreases, thermoforming becomes difficult. Therefore, it is preferable to rapidly cool the sheet at a temperature of 60 ° C. or less to obtain a substantially amorphous sheet.

【0016】本発明では、ポリ乳酸系重合体が本来的に
有する脆性を大幅に改良し、成形品の耐衝撃性を向上さ
せるためには、ポリ乳酸系シートの面配向度△Pを3.
0×10−3〜30×10−3に調整する。
In the present invention, in order to greatly improve the inherent brittleness of the polylactic acid-based polymer and improve the impact resistance of the molded product, the degree of plane orientation ΔP of the polylactic acid-based sheet is set to 3.
It is adjusted to 0 × 10 −3 to 30 × 10 −3 .

【0017】面配向度ΔPは、シートの厚み方向に対す
る面方向の配向度を表わし、通常直交3軸方向の屈折率
を測定し以下の式で算出される。 ΔP={(γ+β)/2}−α (α<β
<γ) ここで、γ、βがシート面に平行な直交2軸の屈折率、
αはシート厚さ方向の屈折率である。
The degree of plane orientation ΔP represents the degree of orientation in the plane direction with respect to the thickness direction of the sheet, and is usually calculated by the following formula by measuring the refractive index in three orthogonal directions. ΔP = {(γ + β) / 2} −α (α <β
<Γ) Here, γ and β are the refractive indices of two orthogonal axes parallel to the sheet surface,
α is the refractive index in the sheet thickness direction.

【0018】面配向度ΔPは結晶化度や結晶配向にも依
存するが、大きくはシート面内の分子配向に依存する。
つまりシート面内、特にシートの流れ方向および/また
はそれと直交する方向の1または2方向に対し、分子配
向を増大させることにより、無配向シートでは1.0×
10−3以下であるΔPを、本発明で規定する3.0×
10−3以上に増大させることができる。
The degree of plane orientation ΔP also depends on the degree of crystallinity and crystal orientation, but largely depends on the molecular orientation in the sheet plane.
In other words, by increasing the molecular orientation in the sheet plane, particularly in one or two directions of the sheet flow direction and / or the direction perpendicular thereto, the non-oriented sheet has a 1.0 ×
ΔP which is 10 −3 or less is defined as 3.0 × defined by the present invention.
It can be increased to 10 −3 or more.

【0019】面配向度ΔPを増大させる方法としては、
既知のあらゆる延伸法に加え、電場や磁場を利用した分
子配向法を採用することもできる。
As a method of increasing the plane orientation degree ΔP,
In addition to any known stretching method, a molecular orientation method using an electric field or a magnetic field can be employed.

【0020】通常はTダイ、Iダイ、丸ダイ等から溶融
押し出しを行ったシート状物または円筒状物を冷却キャ
ストロールや水、圧空等により急冷し非晶質に近い状態
で固化させた後、ロール法、テンター法、チューブラー
法等により一軸または二軸に延伸する方法が、工業的に
望ましく採用される。
Normally, a sheet or cylindrical material melt-extruded from a T die, an I die, a round die or the like is quenched by a cooling cast roll, water, pressurized air or the like and solidified in a state close to amorphous. A method of uniaxially or biaxially stretching by a roll method, a tenter method, a tubular method, or the like is desirably employed industrially.

【0021】未延伸ポリ乳酸系シートの延伸条件として
は、延伸温度50〜100℃、延伸倍率1.5倍〜5
倍、延伸速度100%/分〜10,000%/分が一般
的ではあるが、この適正範囲は重合体の組成や、未延伸
シートの熱履歴によって異なってくるので、面配向度Δ
Pの値を見ながら適宜決められる。
The stretching conditions of the unstretched polylactic acid-based sheet include a stretching temperature of 50 to 100 ° C. and a stretching ratio of 1.5 to 5 times.
In general, the stretching speed is 100% / min to 10,000% / min, but the appropriate range varies depending on the composition of the polymer and the heat history of the unstretched sheet.
It can be determined as appropriate while looking at the value of P.

【0022】面配向度ΔPを3.0×10−3以上とす
ることにより、耐衝撃性が顕著に改良されるとともに、
無配向シートが高温高湿雰囲気下にさらされた時に生じ
る、主に球晶成長に起因する脆化や白化を防止すること
ができる。なお、面配向度ΔPの上限は実際上30×1
−3程度であり、これより面配向度ΔPを高めようと
すると、延伸が不安定ないし不可能になる。例え、延伸
できたとしても、シートの熱成形が困難となる。
By setting the degree of plane orientation ΔP to 3.0 × 10 −3 or more, the impact resistance is remarkably improved, and
It is possible to prevent embrittlement and whitening mainly caused by spherulite growth, which occur when the non-oriented sheet is exposed to a high-temperature and high-humidity atmosphere. The upper limit of the plane orientation degree ΔP is actually 30 × 1
0 is about -3, when you raise from the surface orientation degree ΔP this, it is impossible to there is no instability stretching. Even if it can be stretched, it becomes difficult to thermoform the sheet.

【0023】面配向度ΔPを3.0×10−3〜30×
10−3の範囲にすることより、上述した効果が得られ
るが、その一方、熱寸法安定性が不良となり、変形を起
こしやすい。例えば、夏の暑い時期や、高温高湿の倉
庫、車両、船舶等の中でシートおよび成形体は自然収縮
を起こし、たるみ、波打ち等の変形を生じてしまう。変
形したシートを使用して熱成形を行っても、所望する形
状の成形品が得られない。 従って、常温よりもやや高
い温度すなわち約50℃以上の温度雰囲気下で、ポリ乳
酸系シートが収縮しないこと、すなわち、熱寸法安定性
を有していることが重要である。
The degree of plane orientation ΔP is 3.0 × 10 −3 to 30 ×
By setting the range to 10 -3 , the above-described effects can be obtained, but on the other hand, thermal dimensional stability becomes poor, and deformation tends to occur. For example, in hot summer months or in high-temperature, high-humidity warehouses, vehicles, ships, and the like, sheets and molded articles undergo natural shrinkage, causing deformation such as sagging and waving. Even if thermoforming is performed using the deformed sheet, a molded product having a desired shape cannot be obtained. Therefore, it is important that the polylactic acid-based sheet does not shrink at a temperature slightly higher than room temperature, that is, at a temperature of about 50 ° C. or more, that is, it has thermal dimensional stability.

【0024】このため、面配向度ΔPを3.0×10
−3〜30×10−3のポリ乳酸系シートにおいては、
実用的な熱寸法性を得るために、シートを昇温したとき
の結晶融解熱量ΔHmと昇温中の結晶化により発生する
結晶化熱量ΔHcとの差(ΔHm−ΔHc)を20J/
g以上かつ{(ΔHm−ΔHc)/ΔHm}を0.75
以上に制御することが重要である。
For this reason, the plane orientation degree ΔP is set to 3.0 × 10
-3 to 30 × 10 -3 polylactic acid-based sheet,
In order to obtain practical thermal dimensional properties, the difference (ΔHm−ΔHc) between the heat of crystal fusion ΔHm when the sheet is heated and the heat of crystallization ΔHc generated by crystallization during the temperature rise is 20 J /
g and {(ΔHm−ΔHc) / ΔHm} is 0.75
It is important to control above.

【0025】結晶融解熱量ΔHm、結晶化熱量ΔHc
は、シートサンプルの示差走査熱量測定(DSC)によ
り求められるもので、結晶融解熱量ΔHmは昇温速度1
0℃/分で昇温したときの全結晶を融解させるのに必要
な熱量であって、重合体の結晶融点付近に現れる結晶融
解による吸熱ピークの面積から求められる。また結晶化
熱量ΔHcは、昇温過程で生じる結晶化の際に発生する
発熱ピークの面積から求められる。
Heat of crystal melting ΔHm, heat of crystallization ΔHc
Is obtained by differential scanning calorimetry (DSC) of the sheet sample, and the heat of crystal fusion ΔHm is 1
This is the amount of heat required to melt all crystals when the temperature is raised at 0 ° C./min, and is determined from the area of the endothermic peak due to crystal melting that appears near the crystal melting point of the polymer. Further, the heat of crystallization ΔHc is determined from the area of the exothermic peak generated at the time of crystallization generated in the process of raising the temperature.

【0026】結晶融解熱量ΔHmは、主に重合体そのも
のの結晶性に依存し、結晶性が大きい重合体では大きな
値を取る。ちなみに共重合成分のないL−乳酸またはD
−乳酸の完全ホモポリマーでは、60J/g以上であ
り、これら2種の乳酸の共重合体ではその組成比により
結晶融解熱量ΔHmは変化する。
The heat of crystal fusion ΔHm mainly depends on the crystallinity of the polymer itself, and takes a large value for a polymer having high crystallinity. By the way, L-lactic acid or D without copolymer component
In the case of a complete homopolymer of lactic acid, it is 60 J / g or more, and in a copolymer of these two lactic acids, the heat of crystal fusion ΔHm changes depending on the composition ratio.

【0027】結晶化熱量ΔHcは、重合体の結晶性に対
するその時のシートの結晶化度に関係する指標であり、
結晶化熱量ΔHcが大きいときには、昇温過程でシート
の結晶化が進行する。すなわち重合体が有する結晶性を
基準にシートの結晶化度が相対的に低かったことを表
す。逆に、結晶化熱量ΔHcが小さい時は、重合体が有
する結晶性を基準にシートの結晶化度が相対的に高かっ
たことを表す。
The heat of crystallization ΔHc is an index relating to the crystallinity of the polymer and the crystallinity of the sheet at that time.
When the heat of crystallization ΔHc is large, the crystallization of the sheet proceeds during the heating process. That is, it indicates that the crystallinity of the sheet was relatively low based on the crystallinity of the polymer. Conversely, when the heat of crystallization ΔHc is small, it indicates that the crystallinity of the sheet is relatively high based on the crystallinity of the polymer.

【0028】(ΔHm−ΔHc)を増大させるための1
つの方向は、結晶性が高い重合体を原料に、結晶化度の
比較的高いシートをつくることであり、シートの結晶化
度は、重合体の組成に少なからず依存する。
1 for increasing (ΔHm−ΔHc)
One direction is to make a sheet having a relatively high crystallinity from a polymer having high crystallinity, and the crystallinity of the sheet depends to a large extent on the composition of the polymer.

【0029】重合体そのものの結晶融解熱量ΔHmを2
0J/g以上にするには、L−乳酸とD−乳酸の組成比
が100:0〜94:6の範囲内または0:100〜
6:94の範囲内にするとよい。
The heat of crystal fusion ΔHm of the polymer itself is 2
To achieve 0 J / g or more, the composition ratio of L-lactic acid and D-lactic acid is in the range of 100: 0 to 94: 6 or 0: 100 to
6:94.

【0030】また、結晶化熱量ΔHcを低下させるため
には、すなわちシートの結晶化度を高めるためにはシー
トの成形加工条件を選定する必要がある。成形加工工
程、特にテンター法2軸延伸においてシートの結晶化度
を上げるためには、延伸倍率を上げ配向結晶化を促進す
る、あるいは、延伸後に結晶化温度以上の雰囲気で熱処
理するなどが有用である。なお、面配向度ΔPが大きい
ほど結晶化温度が低下する傾向があるので、本発明の場
合には、熱処理を70℃以上、好ましくは90℃〜17
0℃の範囲で3秒以上行うとよい。熱処理温度が高いほ
ど、また熱処理時間が長いほど熱寸法安定性は向上す
る。
Further, in order to reduce the heat of crystallization ΔHc, that is, to increase the crystallinity of the sheet, it is necessary to select the sheet forming conditions. In order to increase the crystallinity of the sheet in the forming process, particularly in the biaxial stretching by the tenter method, it is useful to increase the stretching ratio to promote oriented crystallization, or to heat-treat after stretching in an atmosphere at a crystallization temperature or higher. is there. In addition, since the crystallization temperature tends to decrease as the degree of plane orientation ΔP increases, in the case of the present invention, the heat treatment is performed at 70 ° C. or more, preferably 90 ° C. to 17 ° C.
It is good to carry out for 3 seconds or more in the range of 0 ° C. The higher the heat treatment temperature and the longer the heat treatment time, the better the thermal dimensional stability.

【0031】本発明においては、以上のようにして作ら
れたポリ乳酸系シートを熱成形して、成形体を得る。熱
成形に適したシートの厚みは、特に限定されるものでは
ないが、用途上からは0.05mm〜2mmが好ましく
使用される。
In the present invention, a molded article is obtained by thermoforming the polylactic acid-based sheet produced as described above. The thickness of the sheet suitable for thermoforming is not particularly limited, but 0.05 mm to 2 mm is preferably used from the application.

【0032】熱成形の方法としては、シートを熱成形す
るあらゆる既知の方法、例えば、真空成形、圧空成形、
真空圧空成形、雄雌型成形、プラグアシスト真空成形、
CD(Cuspation Dilation:先端拡
張)成形等から任意に採用することができる。
The method of thermoforming includes any known method of thermoforming a sheet, for example, vacuum forming, pressure forming,
Vacuum pressure molding, male and female molding, plug assist vacuum molding,
It can be arbitrarily adopted from CD (Cuspation Dilation: tip expansion) molding or the like.

【0033】本発明のシートは成形応力が比較的大きく
なる傾向にあるので、細部やコーナー部が複雑な形状な
成形品を得るには、シートに大きな力をかけることがで
きる圧空成形、真空圧空成形、プラグアシスト真空成形
等が好ましく採用される。
Since the sheet of the present invention tends to have a relatively large forming stress, in order to obtain a molded article having a complicated shape with detailed details and corners, it is possible to apply a large force to the sheet. Molding, plug assist vacuum molding and the like are preferably employed.

【0034】圧空成形する場合の圧力としては、概ね
1.5〜20Kg/cmの範囲が適当である。かかる範囲
を下回る場合には、型の形状にもよるが、細部やコーナ
ー部まで十分成形できないことがあり、逆に上回る場合
には、シートが成形され金型表面に到達する前に、空気
圧によってシートが破断することが多くなる。
A suitable pressure for the pressure forming is generally in the range of 1.5 to 20 kg / cm 2 . If it is below this range, depending on the shape of the mold, depending on the shape of the mold, it may not be possible to mold sufficiently to the details and corners.On the contrary, if it is over, before the sheet is formed and reaches the mold surface, it will be compressed by air pressure. The sheet often breaks.

【0035】予熱温度と時間を調整して、成形直前のシ
ートの温度を60〜175℃、より好ましくは145〜
170℃の温度範囲とする。金型温度はポリ乳酸のガラ
ス転移温度である60℃以下が好ましい。
The temperature of the sheet immediately before molding is adjusted to 60 to 175 ° C., more preferably 145 to 145, by adjusting the preheating temperature and time.
The temperature range is 170 ° C. The mold temperature is preferably 60 ° C. or lower, which is the glass transition temperature of polylactic acid.

【0036】[0036]

【実施例】以下に実施例を示すが、本発明はこれに限定
されるものではない。実施例中に示す測定値は次に示す
ような条件で測定を行い、算出した。
EXAMPLES Examples will be shown below, but the present invention is not limited to these examples. The measurement values shown in the examples were calculated by measuring under the following conditions.

【0037】(1)ΔP アッベ屈折計によって直交3軸方向の屈折率(α,β,
γ)を測定し、次式で算出した。
(1) ΔP The refractive index (α, β,
γ) was measured and calculated by the following equation.

【0038】ΔP={(γ+β)/2}−α
(α<β<γ) γ:フィルム面内の最大屈折率 β:それに直交するフィルム面内方向の屈折率 α:フィルム厚さ方向の屈折率 (2)ΔHm−ΔHcおよび(ΔHm−ΔHc)/ΔH
m パ−キンエルマ−製DSC−7を用い、フィルムサンプ
ル10mgをJIS−K7122に基づいて、昇温速度
10℃/分で昇温したときのサ−モグラムから結晶融解
熱量ΔHmと結晶化熱量ΔHcを求め、算出した。
ΔP = {(γ + β) / 2} −α
(Α <β <γ) γ: Maximum refractive index in the film plane β: Refractive index in the direction perpendicular to the film α: Refractive index in the film thickness direction (2) ΔHm−ΔHc and (ΔHm−ΔHc) / ΔH
m Using DSC-7 manufactured by Perkin-Elmer, the heat of crystal fusion ΔHm and the heat of crystallization ΔHc were determined from a thermogram obtained by heating a 10 mg film sample at a rate of 10 ° C./min according to JIS-K7122. Obtained and calculated.

【0039】(3)耐衝撃性 ハイドロショット高速衝撃試験機HTM−1型((株)
島津製作所製)を用いて耐衝撃性を測定した。100m
m×100mmに切り出したサンプルの中央に錘を落し
て衝撃を与え、試料が破壊する時の破壊エネルギーを読
みとった。測定温度は23℃、落垂の落下速度は3m/
秒である。破断時の最大荷重およびエネルギーが低いほ
ど耐衝撃性に劣り脆い。
(3) Impact resistance Hydroshot high-speed impact tester HTM-1 (trade name)
The impact resistance was measured using Shimadzu Corporation. 100m
A weight was dropped at the center of a sample cut into a size of mx 100 mm to give an impact, and the breaking energy when the sample was broken was read. The measurement temperature was 23 ° C and the falling speed of the drop was 3m /
Seconds. The lower the maximum load and the energy at break, the lower the impact resistance and the more brittle.

【0040】(4)耐湿熱性 50℃、80%R.H.の条件下に24時間、成形体を
恒温恒湿槽に放置した後、成形体の白化と変形の度合い
とを目視で判定した。×は使用に耐えないレベルであ
り、△は×より良いが実用レベルを満たしていない、○
は実用レベル以上である。
(4) Moisture / heat resistance: 50 ° C., 80% R.C. H. After leaving the molded body in a thermo-hygrostat for 24 hours under the conditions of the above, the degree of whitening and deformation of the molded body was visually determined. × is a level that does not withstand use, Δ is better than × but does not meet the practical level, ○
Is above the practical level.

【0041】(実施例1)L−乳酸とD−乳酸との組成
比がおよそ98:2で、ガラス転移点58℃、融点17
5℃、重量平均分子量18万のポリ乳酸を90mmφ単
軸エクストルーダーを用い、200℃で押し出し、幅3
00mm、厚み1.875mmのシートを作製した。
Example 1 The composition ratio of L-lactic acid to D-lactic acid was about 98: 2, the glass transition point was 58 ° C., and the melting point was 17
Extruded polylactic acid having a weight average molecular weight of 180,000 at 5 ° C at 200 ° C using a 90 mmφ single-screw extruder to obtain a width of 3
A sheet having a thickness of 00 mm and a thickness of 1.875 mm was produced.

【0042】上記未延伸シートを流れ方向に70℃で
2.5倍にロール延伸し、次いで、テンター内で幅方向
に70℃で2.5倍に延伸した。引き続きテンター内で
160℃、25秒間熱処理して、厚み300μmのポリ
乳酸系シートを作成した。各製造条件を表1にまとめ
た。
The unstretched sheet was roll-stretched 2.5 times in the flow direction at 70 ° C., and then stretched 2.5 times in the width direction at 70 ° C. in the tenter. Subsequently, heat treatment was performed at 160 ° C. for 25 seconds in a tenter to prepare a polylactic acid-based sheet having a thickness of 300 μm. Table 1 summarizes the manufacturing conditions.

【0043】(実施例2)実施例1と同様な方法で、か
つ、表1に示した条件でポリ乳酸系シートを作成した。
Example 2 A polylactic acid-based sheet was prepared in the same manner as in Example 1 and under the conditions shown in Table 1.

【0044】(比較例1〜5)実施例1と同様な方法
で、かつ、表1に示した条件でポリ乳酸系シートを作成
した。
(Comparative Examples 1 to 5) Polylactic acid-based sheets were prepared in the same manner as in Example 1 and under the conditions shown in Table 1.

【0045】得られたポリ乳酸の延伸シートのΔP、Δ
HmおよびΔHcを上述の方法で測定して、ΔP、(H
m−ΔHc)および{(ΔHm−ΔHc)/ΔHm}を
得た。また、上記ポリ乳酸系シートからアルミニウム製
のカップ状金型を用いて、圧空成形機より、カップ形状
の成形体を製造した。得られた成形体を用いて、耐衝撃
性および耐湿熱性の測定を行った。それらの結果を表1
に示す。尚、耐衝撃性および耐湿熱性の結果を合わせて
総合評価を行った。評価は×は使用に耐えないレベル、
○は実用レベル以上とした。
ΔP, Δ of the obtained stretched polylactic acid sheet
Hm and ΔHc were measured by the method described above, and ΔP, (H
m-ΔHc) and {(ΔHm-ΔHc) / ΔHm}. In addition, a cup-shaped molded body was manufactured from the polylactic acid-based sheet using an aluminum cup-shaped mold using a pressure molding machine. Using the obtained molded body, impact resistance and wet heat resistance were measured. Table 1 shows the results.
Shown in In addition, comprehensive evaluation was performed based on the results of the impact resistance and the wet heat resistance. As for the evaluation, × is a level that can not be used,
は was set to a practical level or higher.

【0046】[0046]

【表1】 表1より明らかなように本発明の条件を満たす、実施例
1,2は耐衝撃性および耐湿熱性に優れている。一方、
比較例1は延伸が不十分であり面配向度ΔPが小さく、
耐衝撃性および耐湿熱性が改良されていない。比較例2
は熱処理を行っていないので結晶化度が不足しており、
耐衝撃性は改良されているがいまだ不十分であり、耐衝
撃性および耐湿熱性が改良されていない。
[Table 1] As is clear from Table 1, Examples 1 and 2, which satisfy the conditions of the present invention, are excellent in impact resistance and wet heat resistance. on the other hand,
In Comparative Example 1, the stretching was insufficient and the degree of plane orientation ΔP was small,
Impact resistance and wet heat resistance are not improved. Comparative Example 2
Has not been heat-treated, so the crystallinity is insufficient.
Although the impact resistance has been improved, it is still insufficient, and the impact resistance and wet heat resistance have not been improved.

【0047】比較例3は過剰な延伸を行っているので、
面配向度ΔPが大きくなり過ぎ、成形が不可能であっ
た。比較例4は面配向度ΔPおよび結晶化度が不足して
おり、耐衝撃性および耐湿熱性が改良されていない。比
較例5はD体の含有量が多いので、結晶性が劣ってお
り、耐湿熱性で成形体が変形を生じてしまった。
In Comparative Example 3, since excessive stretching was performed,
The degree of plane orientation ΔP became too large, and molding was impossible. In Comparative Example 4, the degree of plane orientation ΔP and the degree of crystallinity were insufficient, and the impact resistance and the moist heat resistance were not improved. In Comparative Example 5, since the content of the D-form was large, the crystallinity was poor, and the molded body was deformed due to wet heat resistance.

【0048】[0048]

【発明の効果】以上説明したように本発明のポリ乳酸系
成形体は耐衝撃性、耐湿熱性に優れているので、ポリ乳
酸からなる成形体が広い分野で使用可能となる。
As described above, the polylactic acid-based molded article of the present invention has excellent impact resistance and wet heat resistance, so that a molded article made of polylactic acid can be used in a wide range of fields.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−122148(JP,A) 特開 平6−298236(JP,A) 特開 平6−23836(JP,A) 特開 平8−11206(JP,A) 特開 平8−73628(JP,A) 特開 平7−205278(JP,A) 特開 平7−207041(JP,A) 特開 平7−308961(JP,A) 特開 平8−198955(JP,A) 特開 平8−323946(JP,A) 特開 平9−12748(JP,A) 「第88回プラスチックフィルム研究会 講演集」,高分子学会プラスチックフィ ルム研究会,平成6年,p.7−10 (58)調査した分野(Int.Cl.7,DB名) C08J 5/00 - 5/02 C08J 5/18 C08G 63/00 - 63/91 C08L 67/00 - 67/08 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-122148 (JP, A) JP-A-6-298236 (JP, A) JP-A-6-23836 (JP, A) JP-A-8-208 11206 (JP, A) JP-A-8-73628 (JP, A) JP-A-7-205278 (JP, A) JP-A-7-207041 (JP, A) JP-A-7-308961 (JP, A) JP-A-8-198955 (JP, A) JP-A-8-323946 (JP, A) JP-A-9-12748 (JP, A) “The 88th Annual Meeting of the Plastic Film Research Society”, Plastics Society of Japan LUM Study Group, 1994, p. 7-10 (58) Field surveyed (Int. Cl. 7 , DB name) C08J 5/00-5/02 C08J 5/18 C08G 63/00-63/91 C08L 67/00-67/08 CA (STN ) REGISTRY (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリ乳酸系重合体(ただし、L−乳酸ま
たはD−乳酸のみからなる重合体は除く)からなり、面
配向度ΔPが3.0×10−3〜30×10−3であ
り、シートを昇温したときの結晶化融解熱量ΔHmと昇
温中の結晶化により発生する結晶化熱量ΔHcとの差
(ΔHm−ΔHc)が20J/g以上かつ{(ΔHm−
ΔHc)/ΔHm}が0.75以上である配向ポリ乳酸
系シートを熱成形したことを特徴とするポリ乳酸系成形
体。
1. A polylactic acid-based polymer (provided that L-lactic acid and
Or a polymer consisting solely of D-lactic acid) , the degree of plane orientation ΔP is 3.0 × 10 −3 to 30 × 10 −3 , and the heat of crystallization and melting when the sheet is heated is ΔHm. The difference (ΔHm−ΔHc) from the heat of crystallization ΔHc generated by crystallization during temperature rise is 20 J / g or more and 以上 (ΔHm−
A polylactic acid-based molded article obtained by thermoforming an oriented polylactic acid-based sheet having ΔHc) / ΔHm} of 0.75 or more.
【請求項2】 ポリ乳酸系重合体からなり、面配向度Δ
Pが3.0×10−3〜30×10−3であり、シート
を昇温したときの結晶化融解熱量ΔHmと昇温中の結晶
化により発生する結晶化熱量ΔHcとの差(ΔHm−Δ
Hc)が20J/g以上かつ{(ΔHm−ΔHc)/Δ
Hm}が0.75以上である配向ポリ乳酸系シートを、
成形直前のシート温度が145〜170℃の範囲となる
ようにして熱成形したことを特徴とするポリ乳酸系成形
体。
2. A polylactic acid-based polymer having a degree of plane orientation Δ
P is 3.0 × 10 −3 to 30 × 10 −3 , and the difference (ΔHm−) between the heat of crystallization fusion ΔHm when the sheet is heated and the heat of crystallization ΔHc generated by crystallization during the temperature rise. Δ
Hc) is 20 J / g or more and {(ΔHm−ΔHc) / Δ
An oriented polylactic acid-based sheet having an Hm} of 0.75 or more,
A polylactic acid-based molded article, which is thermoformed so that the sheet temperature immediately before molding is in the range of 145 to 170 ° C.
JP17324695A 1995-07-10 1995-07-10 Polylactic acid based molded body Expired - Lifetime JP3217240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17324695A JP3217240B2 (en) 1995-07-10 1995-07-10 Polylactic acid based molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17324695A JP3217240B2 (en) 1995-07-10 1995-07-10 Polylactic acid based molded body

Publications (2)

Publication Number Publication Date
JPH0925345A JPH0925345A (en) 1997-01-28
JP3217240B2 true JP3217240B2 (en) 2001-10-09

Family

ID=15956879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17324695A Expired - Lifetime JP3217240B2 (en) 1995-07-10 1995-07-10 Polylactic acid based molded body

Country Status (1)

Country Link
JP (1) JP3217240B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3388052B2 (en) * 1995-03-16 2003-03-17 三菱樹脂株式会社 Degradable laminate material
JPH09174674A (en) * 1995-12-26 1997-07-08 Mitsui Toatsu Chem Inc Blister molding method for biaxially oriented lactic acid polymer film
JP2001150531A (en) * 1999-12-01 2001-06-05 Mitsubishi Plastics Ind Ltd Molding of polylactic acid-based polymer and method for molding thereof
JP3866465B2 (en) * 1999-12-08 2007-01-10 三菱樹脂株式会社 Molded product of polylactic acid polymer and molding method thereof
JP3678112B2 (en) * 2000-05-12 2005-08-03 東洋製罐株式会社 Heat resistant container
CA2443161C (en) * 2001-04-30 2011-06-28 Trespaphan Gmbh Process for the production of biodegradable packaging from biaxially stretched films
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
WO2003016015A1 (en) * 2001-08-20 2003-02-27 Cargill Dow Llc Method for producing semicrystalline polylactic acid articles
JP2003253009A (en) * 2002-03-06 2003-09-10 Unitika Ltd Polylactic acid based molded product and production method therefor
JP3860495B2 (en) * 2002-03-22 2006-12-20 吉村化成株式会社 Thermoforming method of polylactic acid based biodegradable resin sheet
JP2003212270A (en) * 2002-10-30 2003-07-30 Mitsubishi Plastics Ind Ltd Container for seeing through contents
JP2004204128A (en) * 2002-12-26 2004-07-22 Mitsubishi Plastics Ind Ltd Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet, and thermoformed product using the sheet
US20080119584A1 (en) * 2004-02-26 2008-05-22 Mitsubishi Plastics, Inc. Biodegradable Wrap Film
JP2005255839A (en) * 2004-03-11 2005-09-22 Daiwa Can Co Ltd Container made of polylactic acid polymer excellent in impact resistance and heat resistance, and method for forming the same
JPWO2005120978A1 (en) 2004-06-10 2008-04-10 ユニチカ株式会社 Biodegradable gas barrier container and manufacturing method thereof
JP2006124662A (en) * 2004-09-29 2006-05-18 Toray Ind Inc Biaxially oriented polylactic acid film, molding composed of the same and substrate
JP4913350B2 (en) * 2005-03-04 2012-04-11 三菱樹脂株式会社 Polylactic acid film prints and labels for simulated cans in vending machines
JP2005330008A (en) * 2005-04-13 2005-12-02 Mitsubishi Plastics Ind Ltd Film case
JP4260794B2 (en) * 2005-11-10 2009-04-30 花王株式会社 Manufacturing method of biodegradable resin molded products
JP5018697B2 (en) * 2008-08-22 2012-09-05 東レ株式会社 Molded body and method for producing the same
JP4727706B2 (en) * 2008-11-06 2011-07-20 花王株式会社 Manufacturing method of biodegradable resin molded products.
JP5517280B2 (en) * 2009-01-06 2014-06-11 株式会社ジェイエスピー Polylactic acid resin foam molding
JP5999686B2 (en) * 2012-04-05 2016-09-28 ロンシール工業株式会社 Heat-resistant polylactic acid-based molded body and method for producing the same
CN105199348B (en) * 2015-10-26 2017-01-18 江南大学 Preparation method for high-strength high-toughness heatproof polylactic-acid-based membrane material
JP6853313B2 (en) * 2019-08-08 2021-03-31 Ckd株式会社 Manufacturing method of blister packaging machine and blister pack

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「第88回プラスチックフィルム研究会講演集」,高分子学会プラスチックフィルム研究会,平成6年,p.7−10

Also Published As

Publication number Publication date
JPH0925345A (en) 1997-01-28

Similar Documents

Publication Publication Date Title
JP3217240B2 (en) Polylactic acid based molded body
EP1449867B1 (en) Window of polylactic acid based resin films
JP3258302B2 (en) Biodegradable biaxially stretched film
JP3330712B2 (en) Method for producing polylactic acid-based film
KR20010099957A (en) Biodegradable bag
JP5517276B2 (en) Polyester film
JP3391593B2 (en) Oriented polylactic acid-based films and sheets and methods for producing them
JP3328418B2 (en) Heat-shrinkable polylactic acid film
JP3388052B2 (en) Degradable laminate material
US20030180561A1 (en) Multi-layered polyester film
JP3866465B2 (en) Molded product of polylactic acid polymer and molding method thereof
JP3182077B2 (en) Biodegradable film
JP3472644B2 (en) L-lactic acid polymer composition, molded product and film
JP3563436B2 (en) Thermoformed product of polylactic acid polymer
JP3670912B2 (en) Polylactic acid-based shrink film or sheet
JP3592799B2 (en)   Method for molding polylactic acid-based polymer, polylactic acid-based molded article, and polylactic acid-based molded article
JP4145193B2 (en) Manufacturing method of heat-set molded product
JP3167595B2 (en) Packaging bag made of polylactic acid polymer
JP3366738B2 (en) Degradability information recording card
JP2001150531A (en) Molding of polylactic acid-based polymer and method for molding thereof
JP3522344B2 (en) Degradable protective film for helmet shields and goggle lenses
JP2004059845A (en) Biodegradable blown film and its manufacturing method
JP3490241B2 (en) Degradable films or sheets, molded articles made of these, and methods for decomposing them
JP3662197B2 (en) Polylactic acid-based thermoformed products
JP4245300B2 (en) Method for producing biodegradable polyester stretch molded article

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term