JP2005330008A - Film case - Google Patents

Film case Download PDF

Info

Publication number
JP2005330008A
JP2005330008A JP2005115354A JP2005115354A JP2005330008A JP 2005330008 A JP2005330008 A JP 2005330008A JP 2005115354 A JP2005115354 A JP 2005115354A JP 2005115354 A JP2005115354 A JP 2005115354A JP 2005330008 A JP2005330008 A JP 2005330008A
Authority
JP
Japan
Prior art keywords
film
δhm
δhc
polylactic acid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005115354A
Other languages
Japanese (ja)
Inventor
Norio Yoshiga
法夫 吉賀
Yuichi Kimura
裕一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIMURA ARUMIHAKU KK
Mitsubishi Plastics Inc
Original Assignee
KIMURA ARUMIHAKU KK
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIMURA ARUMIHAKU KK, Mitsubishi Plastics Inc filed Critical KIMURA ARUMIHAKU KK
Priority to JP2005115354A priority Critical patent/JP2005330008A/en
Publication of JP2005330008A publication Critical patent/JP2005330008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Package Specialized In Special Use (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)
  • Cookers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film case that can be used in a microwave oven and can be composted. <P>SOLUTION: The microwave-proof film case is formed, for example, by pressing a film of polylactic acid copolymer in which plane orientation ΔP is 3.0×10<SP>-3</SP>to 30×10<SP>-3</SP>, a difference (ΔHm-ΔHc) between a crystal fusion heat ΔHm when the temperature of the film is increased and a crystallization heat ΔHc generated by crystallization during the increase of the temperature is not less than 20 J/g, and ä(ΔHm-ΔHc)/ΔHm} is not less than 0.7. As for the microwave-proofness of the film case, tested by filling the film case with water to its half capacity and then heating the case for five minutes in a microwave oven with a rated high frequency output 500 W, the rate of a size change is 20% or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子レンジでの使用が可能でかつコンポスト化処理可能なフィルムケースに関する。   The present invention relates to a film case that can be used in a microwave oven and can be composted.

従来、コンビニエンスストアやスーパーマーケットなどで販売されている弁当の中におかず類を盛りつけるため、ケースとしてアルミホイルケースが使われていた。またその後コンビニエンスストア等の発達により、その場で電子レンジにて弁当を温めることが頻繁に行われるようになり、金属製のアルミホイルケースは使用されなくなった。
当該ケースは一時的に紙製のカップに取って代わった時期もあったが、紙製のものも耐水性の関係から、水分を多く含んだおかず類は盛りつけられないという欠点があり、耐水性に優れたポリプロピレン製、ポリエチレンテレフレート製といったプラスチックフィルムが開発されてきた。
Conventionally, an aluminum foil case has been used as a case to serve side dishes in lunch boxes sold at convenience stores and supermarkets. Since then, with the development of convenience stores, etc., it has become frequent to warm lunches in the microwave on the spot, and metal aluminum foil cases are no longer used.
Although the case was temporarily replaced by a paper cup, the paper case also has the disadvantage that side dishes containing a lot of water cannot be served due to its water resistance. Excellent plastic films such as polypropylene and polyethylene terephthalate have been developed.

しかしながら、上述したケースを作製するシートは化学的、生物的に安定なため自然環境下に放置されてもほとんど分解されることなく残留、蓄積されてしまい、これらは自然環境中に散乱して動植物の生活環境を汚染するだけでなく、ゴミとして埋められた場合にもほとんど分解せずに残り、埋立地の寿命を短くするという問題を有していた。
また、コンビニエンスストアでは、売れ残った弁当を各店舗にていわゆるコンポスト化処理するシステムが確立されるようになってきたが、ポリプレピレン製、ポリエチレンテレフレート製のものは、コンポスト化処理が出来なかった。
However, since the sheet for producing the case described above is chemically and biologically stable, it remains and accumulates almost without being decomposed even if left in the natural environment. In addition to polluting the living environment, there is a problem that when it is buried as garbage, it remains almost undecomposed and shortens the life of the landfill.
In convenience stores, a system for so-called composting of unsold lunches has been established at each store, but those made of polypropylene and polyethylene terephthalate cannot be composted.

そこで、弁当用の各種包材もコンポスト化処理可能な材質のものが要求され、多くの研究・開発が行われている。その一つにポリ乳酸が知られている。ポリ乳酸は土壌中において自然に加水分解が進行し、土中に原形が残らず、次いで微生物により無害な分解物になることが知られている。   Therefore, various packaging materials for lunch boxes are required to be made of materials that can be composted, and many researches and developments have been conducted. One of them is polylactic acid. It is known that polylactic acid is naturally hydrolyzed in the soil, the original form does not remain in the soil, and then becomes a harmless degradation product by microorganisms.

ポリ乳酸は素材が本来有する脆性のためこれをシート状やフィルム状にしても十分な強度が得られず、特に耐熱性については実用には供しがたいものであった。
そこで、本発明は、十分な耐熱性・耐水性を有し電子レンジ対応でコンポスト化処理可能な生分解性フイルムケースを提供する。
Since polylactic acid is inherently brittle, even if it is made into a sheet or film, sufficient strength cannot be obtained, and in particular, heat resistance is difficult to put into practical use.
Therefore, the present invention provides a biodegradable film case that has sufficient heat resistance and water resistance and can be composted with a microwave oven.

本発明者らは、上記課題を解決すべく鋭意検討した結果、本発明を完成するに至った。すなわち、本発明の要旨は、面配向度ΔPが3.0×10-3〜30×10-3であり、フィルムを昇温したときの結晶融解熱量ΔHmと昇温中の結晶化により発生する結晶化熱量ΔHcとの差(ΔHm−ΔHc)が20J/g以上であり、かつ{(ΔHm−ΔHc)/ΔHm}が0.7以上であるポリ乳酸系重合体からなるフィルムケースであって、フィルムケース内に水を半分入れて、定格高周波出力500Wの電子レンジにて5分間加熱した際に下記式で求められる寸法変化率が20%以下である電子レンジ適性を備えたフィルムケースにある。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the gist of the present invention is that the degree of plane orientation ΔP is 3.0 × 10 −3 to 30 × 10 −3 , and is generated by the amount of crystal melting heat ΔHm when the film is heated and crystallization during the temperature increase. A film case made of a polylactic acid polymer having a difference from the crystallization heat amount ΔHc (ΔHm−ΔHc) of 20 J / g or more and {(ΔHm−ΔHc) / ΔHm} of 0.7 or more, When the film case is filled with half of the water and heated in a microwave oven with a rated high-frequency output of 500 W for 5 minutes, the dimensional change rate obtained by the following formula is 20% or less.

寸法変化率(%)={(B−A)/A}×100
A:加熱前のフィルムケースの上部開口部の径(mm)
B:加熱後のフィルムケースの上部開口部の径(mm)
Dimensional change rate (%) = {(B−A) / A} × 100
A: Diameter of the upper opening of the film case before heating (mm)
B: Diameter of the upper opening of the film case after heating (mm)

以上説明したように本発明のポリ乳酸系プラカップは電子レンジでの加熱が可能でコンポスト処理可能である。   As described above, the polylactic acid plastic cup of the present invention can be heated in a microwave oven and composted.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下本発明について詳細に説明する。   The present invention will be described in detail below.

本発明に用いられるポリ乳酸系重合体とは、ポリ乳酸または乳酸と他のヒドロキシカルボン酸との共重合体、もしくはこれらの混合物であり、本発明の効果を阻害しない範囲で他の高分子材料が混入されても構わない。
また、成形加工性、シートや成形体の物性を調整する目的で可塑剤、滑剤、無機フィラー、紫外線吸収剤などの添加剤、改質剤を添加することも可能である。
The polylactic acid-based polymer used in the present invention is polylactic acid, a copolymer of lactic acid and other hydroxycarboxylic acid, or a mixture thereof, and other polymer materials as long as the effects of the present invention are not impaired. May be mixed.
In addition, additives such as plasticizers, lubricants, inorganic fillers, ultraviolet absorbers, and modifiers may be added for the purpose of adjusting the molding processability and physical properties of the sheet or molded body.

乳酸としては、L−乳酸、D−乳酸が挙げられ、他のヒドロキシカルボン酸としては、グリコ−ル酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などが代表的に挙げられる。   Examples of lactic acid include L-lactic acid and D-lactic acid, and other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, A typical example is 6-hydroxycaproic acid.

これらの重合法としては、縮合重合法、開環重合法など公知のいずれの方法を採用することも可能であり、さらには、分子量増大を目的として少量の鎖延長剤、例えば、ジイソシアネート化合物、エポキシ化合物、酸無水物などを使用しても構わない。   As these polymerization methods, any known method such as a condensation polymerization method or a ring-opening polymerization method can be adopted. Furthermore, for the purpose of increasing the molecular weight, a small amount of chain extender, for example, a diisocyanate compound, an epoxy is used. A compound, an acid anhydride, or the like may be used.

ポリ乳酸系重合体の重量平均分子量としては、50,000から1000,000の範囲が好ましく、かかる範囲を下まわると実用物性がほとんど発現されず、またプラカップ成形時にフィルムが強度を保持できないなどの問題を生じる。また上まわる場合には、溶融粘度が高くなりすぎ成形加工性に劣る。   The weight average molecular weight of the polylactic acid-based polymer is preferably in the range of 50,000 to 1,000,000. Below this range, practical properties are hardly expressed, and the film cannot maintain strength during plastic cup molding. Cause problems. In the case of exceeding, the melt viscosity becomes too high and the molding processability is poor.

本発明に使用されるポリ乳酸系フィルムは、上述した重合体を十分に乾燥して水分を除去した後、押出法、カレンダー法、プレス法などの一般的な溶融成形法によりシート状に成形し、次いで、急冷することにより得られる。
実用的には、シート状に溶融押出成形された重合体を、回転するキヤステイングドラム(冷却ドラム)に接触させて急冷するのが好ましい。キヤステイングドラムの温度は60℃以下が適当であり、これより高いと重合体がキヤステイングドラムに粘着して引取りが困難になり、また結晶化が促進されて球晶が発達し透明性が低下するとともに熱成形加工も困難になる。従って、60℃以下でシートを急冷して、実質上非晶質のシートとするのが好ましい。
The polylactic acid-based film used in the present invention is formed into a sheet by a general melt-molding method such as an extrusion method, a calendar method, or a press method after sufficiently drying the above-described polymer to remove moisture. Then, it is obtained by quenching.
Practically, it is preferable that the polymer melt-extruded into a sheet is brought into contact with a rotating casting drum (cooling drum) and rapidly cooled. The temperature of the casting drum is suitably 60 ° C. or lower. If the temperature is higher than this, the polymer will stick to the casting drum and it will be difficult to take off, and crystallization will be promoted to develop spherulites and transparency. In addition to the decrease, thermoforming becomes difficult. Therefore, it is preferable to quench the sheet at 60 ° C. or lower to obtain a substantially amorphous sheet.

加えて本発明では、ポリ乳酸系重合体が本来的に有する脆性を大幅に改良し、プラカップ成形時の割れを防止するためには、ポリ乳酸系フィルムの面配向度△Pを3.0×10-3〜30×10-3に調整する。
ここで面配向度ΔPは、フィルムの厚み方向に対する面方向の配向度を表わし、通常直交3軸方向の屈折率を測定し以下の(1)式で算出される。
In addition, in the present invention, in order to significantly improve the inherent brittleness of the polylactic acid polymer and prevent cracking during plastic cup molding, the plane orientation degree ΔP of the polylactic acid film is set to 3.0 ×. Adjust to 10 −3 to 30 × 10 −3 .
Here, the degree of plane orientation ΔP represents the degree of orientation in the plane direction with respect to the thickness direction of the film, and is usually calculated by the following formula (1) by measuring the refractive index in the orthogonal three-axis direction.

ΔP={(γ+β)/2}−α・・・(1)
(ただし、α<β<γとする。ここで、γ、βがフィルム面に平行な直交2軸の屈折率、αはフィルム厚さ方向の屈折率である。)
ΔP = {(γ + β) / 2} −α (1)
(However, α <β <γ, where γ and β are the biaxial refractive indexes parallel to the film surface, and α is the refractive index in the film thickness direction.)

面配向度ΔPは、結晶化度や結晶配向にも依存するが、大きくはフィルム面内の分子配向に依存する。つまりフィルム面内、特にフィルムの流れ方向および/またはそれと直交する方向の1または2方向に対し、分子配向を増大させることにより、無配向フィルムでは1.0×10-3以下であるΔPを、本発明で規定する3.0×10-3以上に増大させることができる。 The plane orientation degree ΔP depends on the crystallinity and the crystal orientation, but largely depends on the molecular orientation in the film plane. In other words, by increasing the molecular orientation in the film plane, particularly in one or two directions of the film flow direction and / or the direction orthogonal thereto, ΔP which is 1.0 × 10 −3 or less in the non-oriented film, It can be increased to 3.0 × 10 −3 or more as defined in the present invention.

面配向度ΔPを増大させる方法としては、既知のあらゆる延伸法に加え、電場や磁場を利用した分子配向法を採用することもできる。通常は上述したようなTダイ、Iダイ、丸ダイ等から溶融押し出しを行ったシート状物または円筒状物を冷却キャストロールや水、圧空等により急冷し非晶質に近い状態で固化させた後、ロール法、テンター法、チューブラー法等により一軸または二軸に延伸する方法が、工業的に望ましく採用される。   As a method of increasing the degree of plane orientation ΔP, in addition to all known stretching methods, a molecular orientation method using an electric field or a magnetic field can be employed. Usually, the sheet or cylindrical material melt-extruded from the above-described T die, I die, round die or the like is rapidly cooled by a cooling cast roll, water, compressed air, etc., and solidified in a state close to amorphous. Thereafter, a method of stretching uniaxially or biaxially by a roll method, a tenter method, a tubular method or the like is desirably employed industrially.

未延伸ポリ乳酸系シートの延伸条件としては、延伸温度50〜100℃、延伸倍率1.5倍〜5倍、延伸速度100%/分〜10,000%/分が一般的ではあるが、この適正範囲は重合体の組成や、未延伸シートの熱履歴によって異なってくるので、面配向度ΔPの値を見ながら適宜決められる。
面配向度ΔPを3.0×10-3以上とすることにより、ケース成形時の割れを防止することが出来る。上限は実際上30×10-3程度であり、これより面配向度ΔPを高めようとすると、延伸が不安定ないし不可能になり、たとえ延伸できたとしても、フィルムケースの成形が困難となる。
面配向度ΔPが、3.0×10-3〜30×10-3のポリ乳酸系フィルムにおいては、電子レンジでの実用的な熱寸法性を得るために、フイルムを昇温したときの結晶融解熱量ΔHmと昇温中の結晶化により発生する結晶化熱量ΔHcとの差(ΔHm−ΔHc)を20J/g以上かつ{(ΔHm−ΔHc)/ΔHm}を0.7以上に制御することが重要である。
As stretching conditions for an unstretched polylactic acid-based sheet, a stretching temperature of 50 to 100 ° C., a stretching ratio of 1.5 to 5 times, and a stretching speed of 100% / min to 10,000% / min are common. The appropriate range varies depending on the composition of the polymer and the thermal history of the unstretched sheet, and can be appropriately determined while looking at the value of the plane orientation degree ΔP.
By setting the degree of plane orientation ΔP to 3.0 × 10 −3 or more, it is possible to prevent cracks during case molding. The upper limit is practically about 30 × 10 −3 , and if it is attempted to increase the degree of plane orientation ΔP from this, stretching becomes unstable or impossible, and even if it can be stretched, it becomes difficult to form a film case. .
In a polylactic acid film having a plane orientation degree ΔP of 3.0 × 10 −3 to 30 × 10 −3 , the crystal when the film is heated in order to obtain practical thermal dimensionality in a microwave oven. It is possible to control the difference (ΔHm−ΔHc) between the heat of fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature elevation to 20 J / g or more and {(ΔHm−ΔHc) / ΔHm} to 0.7 or more. is important.

結晶融解熱量ΔHm、結晶化熱量ΔHcは、フィルムサンプルの示差走査熱量測定(DSC)により求められるもので、結晶融解熱量ΔHmは昇温速度10℃/分で昇温したときの全結晶を融解させるのに必要な熱量であって、重合体の結晶融点付近に現れる結晶融解による吸熱ピークの面積から求められる。
また結晶化熱量ΔHcは、昇温過程で生じる結晶化の際に発生する発熱ピークの面積から求められ、フイルムの(ΔHm−ΔHc)を20J/g以上に制御することが重要である。すなわち、(ΔHm−ΔHc)が20J/gを下まわる場合は、フイルムケースの熱寸法安定性が不良であり、電子レンジ使用時に変形を生じる。その一方、20 J/g以上であれば、熱寸法安定性が良好となる。
The amount of heat of crystal fusion ΔHm and the amount of heat of crystallization ΔHc are determined by differential scanning calorimetry (DSC) of the film sample. The amount of heat of crystal fusion ΔHm melts all crystals when the temperature is raised at a rate of temperature increase of 10 ° C./min. This is the amount of heat necessary for the heat treatment, and is obtained from the area of the endothermic peak due to crystal melting that appears in the vicinity of the crystal melting point of the polymer.
The amount of heat of crystallization ΔHc is determined from the area of the exothermic peak generated during crystallization that occurs during the temperature rising process, and it is important to control the (ΔHm−ΔHc) of the film to 20 J / g or more. That is, when (ΔHm−ΔHc) is less than 20 J / g, the thermal dimensional stability of the film case is poor and deformation occurs when the microwave oven is used. On the other hand, if it is 20 J / g or more, the thermal dimensional stability will be good.

結晶融解熱量ΔHmは、主に重合体そのものの結晶性に依存し、結晶性が大きい重合体では大きな値を取る。ちなみに共重合成分のないL−乳酸またはD−乳酸の完全ホモポリマーでは、60J/g以上であり、これら2種の乳酸の共重合体ではその組成比により結晶融解熱量ΔHmは変化する。   The amount of heat of crystal fusion ΔHm mainly depends on the crystallinity of the polymer itself, and takes a large value for a polymer with high crystallinity. Incidentally, the complete homopolymer of L-lactic acid or D-lactic acid having no copolymer component is 60 J / g or more, and in the copolymer of these two kinds of lactic acid, the heat of crystal fusion ΔHm varies depending on the composition ratio.

結晶化熱量ΔHcは、重合体の結晶性に対するその時のフィルムの結晶化度に関係する指標であり、結晶化熱量ΔHcが大きいときには、昇温過程でフィルムの結晶化が進行する。すなわち重合体が有する結晶性を基準にフィルムの結晶化度が相対的に低かったことを表すことになり、逆に結晶化熱量ΔHcが小さい時は、重合体が有する結晶性を基準にフィルムの結晶化度が相対的に高かったことを表すことになる。   The crystallization heat amount ΔHc is an index related to the crystallinity of the film at that time with respect to the crystallinity of the polymer. When the crystallization heat amount ΔHc is large, the crystallization of the film proceeds in the temperature rising process. In other words, the crystallinity of the film was relatively low based on the crystallinity of the polymer. Conversely, when the amount of heat of crystallization ΔHc is small, the crystallinity of the polymer is used as the standard. This means that the degree of crystallinity is relatively high.

ここで(ΔHm−ΔHc)を増大させるための1つの方向は、結晶性が高い重合体を原料に、結晶化度の比較的高いフィルムをつくることであり、フィルムの結晶化度は、重合体の組成に少なからず依存する。   Here, one direction for increasing (ΔHm−ΔHc) is to form a film having a relatively high degree of crystallinity from a polymer having high crystallinity as a raw material. Depends on the composition.

重合体そのものの結晶融解熱量ΔHmを20J/g以上にするには、L−乳酸とD−乳酸の組成比が100:0〜94:6の範囲内または0:100〜6:94の範囲内にするとよい。
また、結晶化熱量ΔHcを低下させるため、すなわちフィルムの結晶化度を高めるためにはフィルムの成形加工条件を選定する必要がある。成形加工工程、特にテンター法2軸延伸においてシートの結晶化度を上げるためには、延伸倍率を上げ配向結晶化を促進する、あるいは、延伸後に結晶化温度以上の雰囲気で熱処理するなどが有用である。
In order to increase the heat of crystal melting ΔHm of the polymer itself to 20 J / g or more, the composition ratio of L-lactic acid and D-lactic acid is in the range of 100: 0 to 94: 6 or in the range of 0: 100 to 6:94. It is good to.
In order to reduce the amount of heat of crystallization ΔHc, that is, to increase the degree of crystallinity of the film, it is necessary to select film forming conditions. In order to increase the crystallinity of the sheet in the forming process, particularly the tenter method biaxial stretching, it is useful to increase the stretching ratio and promote orientation crystallization, or to heat-treat in an atmosphere above the crystallization temperature after stretching. is there.

なお、面配向度ΔPが大きいほど結晶化温度が低下する傾向があるので、本発明の場合には、熱処理を70℃以上、好ましくは90℃〜170℃の範囲で3秒以上行うとよい。熱処理温度が高いほど、また熱処理時間が長いほど熱寸法安定性は向上する。(ΔHm−ΔHc)/ΔHmはシートの結晶化度を示す指標であり、前記値が0.7より小さいと、電子レンジ使用時に変形を生じるので、好ましくない。   In addition, since the crystallization temperature tends to decrease as the degree of plane orientation ΔP increases, in the present invention, the heat treatment is performed at 70 ° C. or higher, preferably 90 ° C. to 170 ° C. for 3 seconds or longer. The higher the heat treatment temperature and the longer the heat treatment time, the better the thermal dimensional stability. (ΔHm−ΔHc) / ΔHm is an index indicating the degree of crystallinity of the sheet. If the value is smaller than 0.7, deformation occurs when the microwave oven is used, which is not preferable.

本発明においては、以上のようにして作られたポリ乳酸系フィルムをケース成形して、フィルムケースを得る。
フィルムケースに適したフィルムの厚みは、特に限定されるものではないが、用途上からは0.01mm〜0.10mmが好ましく使用される。特に好ましくは、0.02mm〜0.05mmの範囲である。
In the present invention, the polylactic acid film produced as described above is case-molded to obtain a film case.
Although the thickness of the film suitable for the film case is not particularly limited, 0.01 mm to 0.10 mm is preferably used from the viewpoint of use. Especially preferably, it is the range of 0.02 mm-0.05 mm.

また、ケース成形は、通常の油圧プレスまたは機械式プレスを用いて、プレス加工を行えばよい。また成形時には、成形性を向上させるために、ポリ乳酸重合体のガラス転移点Tg(℃)〜融点Tm(℃)の間に予備加熱した後成形を行ってもよい。   The case may be formed by pressing using a normal hydraulic press or mechanical press. Moreover, at the time of shaping | molding, in order to improve a moldability, you may shape | mold after preheating between the glass transition point Tg (degreeC)-melting | fusing point Tm (degreeC) of a polylactic acid polymer.

以下に実施例を示すが、本発明はこれに限定されるものではない。実施例中に示す測定値は次に示すような条件で測定を行い、算出した。   Examples are shown below, but the present invention is not limited thereto. The measured values shown in the examples were measured and calculated under the following conditions.

・面配向度ΔP
アッベ屈折計によって直交3軸方向の屈折率(α,β,γ)を測定し、以下(1)式で算出した。
-Degree of plane orientation ΔP
The refractive indexes (α, β, γ) in the three orthogonal directions were measured with an Abbe refractometer, and calculated by the following equation (1).

ΔP={(γ+β)/2}−α ・・・(1)
(ただしα<β<γとする。ここで、γ、βがフィルム面に平行な直交2軸の屈折率、αはフィルム厚さ方向の屈折率である。)
ΔP = {(γ + β) / 2} −α (1)
(However, α <β <γ, where γ and β are the refractive indexes of two orthogonal axes parallel to the film surface, and α is the refractive index in the film thickness direction.)

・(ΔHm−ΔHc)/ΔHm
示差走査熱量計DSC−7(パ−キンエルマ−社製)を用い、フィルムサンプル10mgをJIS−K7122に基づいて、昇温速度10℃/分で昇温したときのサ−モグラムから、結晶融解熱量ΔHmと結晶化熱量ΔHcを求めて、(ΔHm−ΔHc)/ΔHmを算出した。
・ (ΔHm−ΔHc) / ΔHm
From a thermogram when a differential scanning calorimeter DSC-7 (manufactured by Perkin Elmer) was used to heat 10 mg of a film sample at a heating rate of 10 ° C./min based on JIS-K7122, ΔHm and crystallization heat amount ΔHc were obtained, and (ΔHm−ΔHc) / ΔHm was calculated.

・電子レンジ適性
フィルムケースの半分程度の水を入れて、定格高周波出力500Wの電子レンジにて、5分間加熱した。加熱後の変形状態を上部開口部の径の寸法変化から求めた。寸法変化率は以下(2)式で表される。
-Suitability for microwave oven About half of the water in the film case was put and heated in a microwave oven with a rated high-frequency output of 500 W for 5 minutes. The deformation state after heating was determined from the dimensional change of the diameter of the upper opening. The dimensional change rate is expressed by the following equation (2).

寸法変化率(%)={(B−A)/A}×100・・・(2)
(ここで、試験前の径:A(mm) 試験後の径:B(mm)とする。)
Dimensional change rate (%) = {(BA) / A} × 100 (2)
(Here, diameter before test: A (mm) Diameter after test: B (mm))

また評価は、
◎:0〜10%=実用上全く問題なし、
○:11〜20%= 実用上問題なし、
△:21〜30%=条件によっては使用可、
×:31%以上、
とし、△以上を合格とした。
The evaluation is
A: 0 to 10% = no problem in practical use
○: 11-20% = no problem in practical use
Δ: 21-30% = can be used depending on conditions
X: 31% or more
And Δ or more was regarded as acceptable.

(実施例1〜4)
表1に示すようなL−乳酸とD−乳酸との組成比で、重量平均分子量が約20万のポリ乳酸を90mmφ単軸エクストルーダーを用い、200℃で押し出し、幅300mm、延伸後の厚みが0.04mmと成るように厚みを設定して、シートを作製した。
上記未延伸シートを表1の条件で、逐次二軸延伸機で延伸し、所望の延伸フィルムを得た。
(Examples 1-4)
Polylactic acid having a composition ratio of L-lactic acid and D-lactic acid as shown in Table 1 and having a weight average molecular weight of about 200,000 was extruded at 200 ° C. using a 90 mmφ uniaxial extruder, width 300 mm, and thickness after stretching. Was set to have a thickness of 0.04 mm to produce a sheet.
The unstretched sheet was sequentially stretched by a biaxial stretching machine under the conditions shown in Table 1 to obtain a desired stretched film.

得られたポリ乳酸の延伸フィルムのΔPを上述の方法で測定して、ΔPを得た。また、上述の方法で測定して、ΔHmとΔHcを得た。上記ポリ乳酸系フィルムから、底部の径が45mm,上部開口部の径が70mm、高さが30mmもフイルムケースを成形した。   ΔP of the obtained stretched polylactic acid film was measured by the method described above to obtain ΔP. Moreover, (DELTA) Hm and (DELTA) Hc were obtained by measuring with the above-mentioned method. A film case having a bottom diameter of 45 mm, a top opening diameter of 70 mm, and a height of 30 mm was formed from the polylactic acid film.

(比較例1〜3)
実施例と同じく、表1に示すL−乳酸とD−乳酸との組成比で、重量平均分子量が約20万のポリ乳酸を90mmφ単軸エクストルーダーを用い、200℃で押し出し、幅300mm、延伸後の厚みが0.04mmとなるように厚みを設定して、シートを作製した。
(Comparative Examples 1-3)
As in the examples, polylactic acid having a weight-average molecular weight of about 200,000 was extruded at 200 ° C. at a composition ratio of L-lactic acid and D-lactic acid shown in Table 1 at 200 ° C., width 300 mm, stretched The thickness was set so that the subsequent thickness was 0.04 mm, and a sheet was produced.

得られたポリ乳酸の延伸フィルムのΔPを上述の方法で測定して、ΔPを得た。また、上述の方法で測定して、ΔHmとΔHcを得た。上記ポリ乳酸系フィルムから、底径が45mm、高さが30mmのフイルムケースを成形した。   ΔP of the obtained stretched polylactic acid film was measured by the method described above to obtain ΔP. Moreover, (DELTA) Hm and (DELTA) Hc were obtained by measuring with the above-mentioned method. A film case having a bottom diameter of 45 mm and a height of 30 mm was formed from the polylactic acid film.

Figure 2005330008
Figure 2005330008

表1より明らかなように本発明の条件を満たす実施例1,2,3は成形性および電子レンジ適性に優れている。
また、実施例4では、(△Hm−△Hc)が小さいので電子レンジ適性では、劣るが使用出来ないレベルではなかった。
一方、比較例1は、(△Hm−△Hc)/△Hmが小さいため電子レンジ適性が悪く、使用に耐えるものではなかった。
比較例3は、(△Hm−△Hc)および(△Hm−△Hc)/△Hmは満足するが、△Pが小さいためケース成形時に割れを生じ成形できなかった。
As is apparent from Table 1, Examples 1, 2, and 3 satisfying the conditions of the present invention are excellent in moldability and suitability for microwave ovens.
In Example 4, since (ΔHm−ΔHc) was small, the suitability for the microwave oven was inferior, but not at a level where it could not be used.
On the other hand, in Comparative Example 1, (ΔHm−ΔHc) / ΔHm was small, so the suitability for the microwave oven was poor, and it was not resistant to use.
In Comparative Example 3, (ΔHm−ΔHc) and (ΔHm−ΔHc) / ΔHm were satisfied, but since ΔP was small, cracking occurred at the time of case molding, and molding could not be performed.

(実施例5)
実施例1で作成したフィルムケースを試料として、家庭用コンポスターに、水、腐葉土、栄養分を入れて60℃で放置したところ、2週間後から速やかな分解が始まり、4週間後には重量保持率は10%以下であった。
(Example 5)
Using the film case prepared in Example 1 as a sample, water, humus, and nutrients were placed in a household conposter and allowed to stand at 60 ° C., whereupon rapid degradation started after 2 weeks and weight retention after 4 weeks. Was 10% or less.

(比較例4)
比較例として、OPP製のフィルムケースにて実施例5と同一条件でコンポスト処理したが、4週間後でも物性保持率は100%で全く分解しなかった。
(Comparative Example 4)
As a comparative example, a film case made of OPP was composted under the same conditions as in Example 5. However, even after 4 weeks, the physical property retention was 100% and was not decomposed at all.

Claims (6)

面配向度ΔPが3.0×10-3〜30×10-3であり、フィルムを昇温したときの結晶融解熱量ΔHmと昇温中の結晶化により発生する結晶化熱量ΔHcとの差(ΔHm−ΔHc)が20J/g以上であり、かつ{(ΔHm−ΔHc)/ΔHm}が0.7以上であるポリ乳酸系重合体からなるフィルムケースであって、
フィルムケース内に水を半分入れて、定格高周波出力500Wの電子レンジにて5分間加熱した際に下記式で求められる寸法変化率が20%以下である電子レンジ適性を備えたフィルムケース。
寸法変化率(%)={(B−A)/A}×100
A:加熱前のフィルムケースの上部開口部の径(mm)
B:加熱後のフィルムケースの上部開口部の径(mm)
The degree of plane orientation ΔP is 3.0 × 10 −3 to 30 × 10 −3 , and the difference between the amount of heat of crystal melting ΔHm when the film is heated and the amount of heat of crystallization ΔHc generated by crystallization during the temperature increase ( ΔHm−ΔHc) is 20 J / g or more and {(ΔHm−ΔHc) / ΔHm} is a film case made of a polylactic acid polymer having 0.7 or more,
A film case having suitability for a microwave oven, in which half the water is placed in the film case and heated for 5 minutes in a microwave oven with a rated high-frequency output of 500 W, the dimensional change rate obtained by the following formula is 20% or less.
Dimensional change rate (%) = {(B−A) / A} × 100
A: Diameter of the upper opening of the film case before heating (mm)
B: Diameter of the upper opening of the film case after heating (mm)
面配向度ΔPが3.0×10-3〜30×10-3であり、フィルムを昇温したときの結晶融解熱量ΔHmと昇温中の結晶化により発生する結晶化熱量ΔHcとの差(ΔHm−ΔHc)が20J/g以上であり、かつ{(ΔHm−ΔHc)/ΔHm}が0.7以上であるポリ乳酸のフィルムからなることを特徴とする請求項1記載のフィルムケース。 The degree of plane orientation ΔP is 3.0 × 10 −3 to 30 × 10 −3 , and the difference between the amount of heat of crystal melting ΔHm when the film is heated and the amount of heat of crystallization ΔHc generated by crystallization during the temperature increase ( 2. The film case according to claim 1, comprising a polylactic acid film having [Delta] Hm- [Delta] Hc) of 20 J / g or more and {([Delta] Hm- [Delta] Hc) / [Delta] Hm} of 0.7 or more. L−乳酸とD−乳酸との組成比が100:0〜94:6又は0:100〜6:94からなるポリ乳酸であり、ポリ乳酸自体の結晶融解熱量ΔHmが20J/g以上であるポリ乳酸のフィルムからなることを特徴とする請求項2記載のフィルムケース。   A polylactic acid in which the composition ratio of L-lactic acid to D-lactic acid is 100: 0 to 94: 6 or 0: 100 to 6:94, and the polylactic acid itself has a crystal melting heat ΔHm of 20 J / g or more. 3. The film case according to claim 2, comprising a lactic acid film. 上記のポリ乳酸からなる厚み0.01mm〜0.10mmのポリ乳酸系フィルムをプレス加工してなる請求項1乃至3のいずれかに記載のフィルムケース。   The film case according to any one of claims 1 to 3, wherein the polylactic acid film having a thickness of 0.01 mm to 0.10 mm made of the polylactic acid is pressed. L−乳酸とD−乳酸とを組成比99.5:0.5〜94.9:5.1の割合で含有してなるポリ乳酸からフィルムを成形し、二軸延伸後100〜140℃で熱処理して得られるポリ乳酸系フィルムを、プレス加工してなることを特徴とする請求項1乃至4のいずれかに記載のフィルムケース。   A film is formed from polylactic acid containing L-lactic acid and D-lactic acid in a composition ratio of 99.5: 0.5 to 94.9: 5.1, and after biaxial stretching at 100 to 140 ° C. The film case according to any one of claims 1 to 4, wherein the polylactic acid film obtained by heat treatment is pressed. ポリ乳酸系フィルムの面配向度ΔPが11.5×10-3〜12.4×10-3であり、結晶化熱量ΔHcとの差(ΔHm−ΔHc)が28〜44J/gであり、かつ{(ΔHm−ΔHc)/ΔHm}が0.84〜0.97であることを特徴とする請求項1乃至5のいずれかに記載のフィルムケース。


The plane orientation degree ΔP of the polylactic acid film is 11.5 × 10 −3 to 12.4 × 10 −3 , the difference from the crystallization heat amount ΔHc (ΔHm−ΔHc) is 28 to 44 J / g, and The film case according to claim 1, wherein {(ΔHm−ΔHc) / ΔHm} is 0.84 to 0.97.


JP2005115354A 2005-04-13 2005-04-13 Film case Pending JP2005330008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115354A JP2005330008A (en) 2005-04-13 2005-04-13 Film case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115354A JP2005330008A (en) 2005-04-13 2005-04-13 Film case

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28753699A Division JP2001114352A (en) 1999-10-08 1999-10-08 Film case

Publications (1)

Publication Number Publication Date
JP2005330008A true JP2005330008A (en) 2005-12-02

Family

ID=35484934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115354A Pending JP2005330008A (en) 2005-04-13 2005-04-13 Film case

Country Status (1)

Country Link
JP (1) JP2005330008A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193165A (en) * 1993-12-24 1996-07-30 Mitsui Toatsu Chem Inc Heat-resistant lactic acid polymer molding
JPH08323946A (en) * 1995-06-05 1996-12-10 Mitsubishi Plastics Ind Ltd Multi-layer biodegradable plastic film
JPH0912748A (en) * 1995-07-04 1997-01-14 Mitsubishi Plastics Ind Ltd Molding of polylactic acid polymer and polyactic acid molded product
JPH0925345A (en) * 1995-07-10 1997-01-28 Mitsubishi Plastics Ind Ltd Polylactic acid molding
JPH1024518A (en) * 1996-07-10 1998-01-27 Mitsubishi Plastics Ind Ltd Polylactic biodegradable gas barrier film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193165A (en) * 1993-12-24 1996-07-30 Mitsui Toatsu Chem Inc Heat-resistant lactic acid polymer molding
JPH08323946A (en) * 1995-06-05 1996-12-10 Mitsubishi Plastics Ind Ltd Multi-layer biodegradable plastic film
JPH0912748A (en) * 1995-07-04 1997-01-14 Mitsubishi Plastics Ind Ltd Molding of polylactic acid polymer and polyactic acid molded product
JPH0925345A (en) * 1995-07-10 1997-01-28 Mitsubishi Plastics Ind Ltd Polylactic acid molding
JPH1024518A (en) * 1996-07-10 1998-01-27 Mitsubishi Plastics Ind Ltd Polylactic biodegradable gas barrier film

Similar Documents

Publication Publication Date Title
EP1484356B1 (en) Polylactic acid molding and process for producing the same
JP3217240B2 (en) Polylactic acid based molded body
JP4804179B2 (en) Polylactic acid composition and molded product comprising the composition
JPH05508819A (en) polyhydroxy acid film
KR20100016042A (en) Polymer, and film or sheet comprising the same
KR20090023336A (en) Polylactic acid heat-resistant sheet
JPH0873628A (en) Heat-resistant sheet comprising lactic acid polymer and method for producing molder product
JP3391593B2 (en) Oriented polylactic acid-based films and sheets and methods for producing them
JPH07205278A (en) Production of stretched film of polylactic acid polymer
JP3328418B2 (en) Heat-shrinkable polylactic acid film
JP3866465B2 (en) Molded product of polylactic acid polymer and molding method thereof
JP4808367B2 (en) Method for producing polylactic acid-based molded body
JPH08252895A (en) Decomposable laminated material
JP3592799B2 (en)   Method for molding polylactic acid-based polymer, polylactic acid-based molded article, and polylactic acid-based molded article
JP3563436B2 (en) Thermoformed product of polylactic acid polymer
JP2005330008A (en) Film case
JPS621909B2 (en)
JP3662197B2 (en) Polylactic acid-based thermoformed products
JPH0931216A (en) Poly(lactic acid) sheet
JP3167595B2 (en) Packaging bag made of polylactic acid polymer
JP2006045365A (en) Film composed of poly(3-hydroxy butylate-co-3-hydroxy hexanoate)
JPH11209595A (en) Method of shape-memorizing biodegradable shape-memory polymer molding product and its shape restoration
JP2001114352A (en) Film case
JP2001150531A (en) Molding of polylactic acid-based polymer and method for molding thereof
JP4543743B2 (en) Biaxially stretched polylactic acid film and container for molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118