JP2001114352A - Film case - Google Patents

Film case

Info

Publication number
JP2001114352A
JP2001114352A JP28753699A JP28753699A JP2001114352A JP 2001114352 A JP2001114352 A JP 2001114352A JP 28753699 A JP28753699 A JP 28753699A JP 28753699 A JP28753699 A JP 28753699A JP 2001114352 A JP2001114352 A JP 2001114352A
Authority
JP
Japan
Prior art keywords
film
δhm
δhc
heat
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28753699A
Other languages
Japanese (ja)
Inventor
Norio Yoshiga
法夫 吉賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP28753699A priority Critical patent/JP2001114352A/en
Publication of JP2001114352A publication Critical patent/JP2001114352A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Package Specialized In Special Use (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film case usable in a microwave oven and processable into a compost. SOLUTION: A film case is composed of a polylactic acid polymer of the surface orientation degree ΔP of 3.0×10-3-30×10-3 and the difference (ΔHm-ΔHc) between the crystal melting calorie ΔHm when the temperature of a film is raised and the crystallization calorie ΔHc generated by the crystallization during the temperature rise is 20 J/g or more and the (ΔHm-ΔHc)/ΔHml is 0.7 or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、電子レンジでの使
用が可能でかつコンポスト化処理可能なフィルムケース
に関する。
The present invention relates to a film case which can be used in a microwave oven and which can be composted.

【従来の技術】従来、コンビニエンスストアやスーパー
マーケットなどで販売されている弁当の中におかず類を
盛りつけるため、ケースとしてアルミホイルケースが使
われていた。またその後コンビニエンスストア等の発達
により、その場で電子レンジにて弁当を温めることが頻
繁に行われるようになり、金属製のアルミホイルケース
は使用されなくなった。また、当該ケース一時的に紙製
のカップに取って代わった時期もあったが、紙製のもの
も耐水性の関係から、水分を多く含んだおかず類は盛り
つけられないという欠点があり、耐水性に優れたポリプ
ロピレン製、ポリエチレンテレフレート製といったプラ
スチックフィルムが開発されてきた。しかしながら、上
述したケースを作製するシートは化学的、生物的に安定
なため自然環境下に放置されてもほとんど分解されるこ
となく残留、蓄積されてしまい、これらは自然環境中に
散乱して動植物の生活環境を汚染するだけでなく、ゴミ
として埋められた場合にもほとんど分解せずに残り、埋
立地の寿命を短くするという問題を有していた。また、
コンビニエンスストアでは、売れ残った弁当を各店舗に
ていわゆるコンポスト化処理するシステムが確立される
ようになってきたが、ポリプレピレン製、ポリエチレン
テレフレート製のものは、コンポスト化処理が出来なか
った。そこで、弁当用の各種包材もコンポスト化処理可
能な材質のものが要求されており、多くの研究・開発が
行われている。その一つにポリ乳酸が知られている。ポ
リ乳酸は土壌中において自然に加水分解が進行し、土中
に原形が残らず、次いで微生物により無害な分解物にな
ることが知られている。
2. Description of the Related Art Conventionally, an aluminum foil case has been used as a case for serving side dishes in a lunch box sold at a convenience store or a supermarket. After that, with the development of convenience stores and the like, it became frequent to heat lunches in microwave ovens on the spot, and metal aluminum foil cases were no longer used. In some cases, paper cups were temporarily replaced with paper cups.However, paper-made dishes also had the drawback that, because of their water resistance, side dishes containing a large amount of water could not be served. Plastic films made of polypropylene and polyethylene terephthalate having excellent properties have been developed. However, the sheets used to make the above-mentioned cases are chemically and biologically stable, so they remain and accumulate without being substantially decomposed even when left in a natural environment. Not only pollutes the living environment of the landfill but also remains almost undecomposed when buried as garbage, shortening the life of the landfill. Also,
In convenience stores, a system for composting unsold lunches has been established at each store, but composting cannot be performed for those made of polypropylene or polyethylene terephthalate. Therefore, various packaging materials for lunches are also required to be made of a material that can be composted, and much research and development has been conducted. One of them is known as polylactic acid. It is known that polylactic acid naturally undergoes hydrolysis in soil, does not remain in its original form in soil, and then becomes a harmless degradation product by microorganisms.

【発明が解決しようとする課題】しかしながらポリ乳酸
は素材が本来有する脆性のためこれをシート状やフィル
ム状にしても十分な強度が得られず、特に耐熱性につい
ては実用には供しがたいものであった。そこで、本発明
は、十分な耐熱性・耐水性を有し電子レンジ対応でコン
ポスト化処理可能な生分解性フイルムケースを提供す
る。
However, due to the inherent brittleness of polylactic acid, sufficient strength cannot be obtained even if it is made into a sheet or film. Particularly, heat resistance is not practical. Met. Therefore, the present invention provides a biodegradable film case which has sufficient heat resistance and water resistance, is compatible with a microwave oven, and is capable of being composted.

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、本発明を完成するに至
った。すなわち、本発明の要旨は、面配向度ΔPが3.
0×10−3〜30×10−3であり、フィルムを昇温
したときの結晶融解熱量ΔHmと昇温中の結晶化により
発生する結晶化熱量ΔHcとの差(ΔHm−ΔHc)が
20J/g以上かつ{(ΔHm−ΔHc)/ΔHm}が
0.7以上であるポリ乳酸系重合体からなることを特徴
とするフィルムケースにある。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, completed the present invention. That is, the gist of the present invention is that the plane orientation degree ΔP is 3.
0 × 10 −3 to 30 × 10 −3 , and the difference (ΔHm−ΔHc) between the heat of crystal fusion ΔHm when the film is heated and the heat of crystallization ΔHc generated by crystallization during the temperature rise is 20 J /. g (g) and {([Delta] Hm- [Delta] Hc) / [Delta] Hm} are 0.7 or more.

【発明の実施の形態】以下本発明について詳細に説明す
る。 本発明に用いられるポリ乳酸系重合体とは、ポリ
乳酸または乳酸と他のヒドロキシカルボン酸との共重合
体、もしくはこれらの混合物であり、本発明の効果を阻
害しない範囲で他の高分子材料が混入されても構わな
い。また、成形加工性、シートや成形体の物性を調整す
る目的で可塑剤、滑剤、無機フィラー、紫外線吸収剤な
どの添加剤、改質剤を添加することも可能である。乳酸
としてはL−乳酸、D−乳酸が挙げられ、他のヒドロキ
シカルボン酸としては、グリコ−ル酸、3−ヒドロキシ
酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、4
−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などが
代表的に挙げられる。これらの重合法としては、縮合重
合法、開環重合法など公知のいずれの方法を採用するこ
とも可能であり、さらには、分子量増大を目的として少
量の鎖延長剤、例えば、ジイソシアネート化合物、エポ
キシ化合物、酸無水物などを使用しても構わない。ポリ
乳酸系重合体の重量平均分子量としては、50,000
から1000,000の範囲が好ましく、かかる範囲を
下まわると実用物性がほとんど発現されず、またプラカ
ップ成形時にフィルムが強度を保持できないなどの問題
を生じる。また上まわる場合には、溶融粘度が高くなり
すぎ成形加工性に劣る。本発明に使用されるポリ乳酸系
フィルムは、上述した重合体を十分に乾燥して水分を除
去した後、押出法、カレンダー法、プレス法などの一般
的な溶融成形法によりシート状に成形し、次いで、急冷
することにより得られる。実用的には、シート状に溶融
押出成形された重合体を、回転するキヤステイングドラ
ム(冷却ドラム)に接触させて急冷するのが好ましい。
キヤステイングドラムの温度は60℃以下が適当であ
り、これより高いと重合体がキヤステイングドラムに粘
着して引取りが困難になり、また結晶化が促進されて球
晶が発達し透明性が低下するとともに熱成形加工も困難
になる。従って、60℃以下でシートを急冷して、実質
上非晶質のシートとするのが好ましい。加えて本発明で
は、ポリ乳酸系重合体が本来的に有する脆性を大幅に改
良し、プラカップ成形時の割れを防止するためには、ポ
リ乳酸系フィルムの面配向度△Pを3.0×10−3
30×10−3に調整する。ここで面配向度ΔPは、フ
ィルムの厚み方向に対する面方向の配向度を表わし、通
常直交3軸方向の屈折率を測定し以下の1式で算出され
る。 ΔP={(γ+β)/2}−α・・・1 (ただし、α<β<γとする。ここで、γ、βがフィル
ム面に平行な直交2軸の屈折率、αはフィルム厚さ方向
の屈折率である。) 面配向度ΔPは結晶化度や結晶配向にも依存するが、大
きくはフィルム面内の分子配向に依存する。つまりフィ
ルム面内、特にフィルムの流れ方向および/またはそれ
と直交する方向の1または2方向に対し、分子配向を増
大させることにより、無配向フィルムでは1.0×10
−3以下であるΔPを、本発明で規定する3.0×10
−3以上に増大させることができる。面配向度ΔPを増
大させる方法としては、既知のあらゆる延伸法に加え、
電場や磁場を利用した分子配向法を採用することもでき
る。通常は上述したようなTダイ、Iダイ、丸ダイ等か
ら溶融押し出しを行ったシート状物または円筒状物を冷
却キャストロールや水、圧空等により急冷し非晶質に近
い状態で固化させた後、ロール法、テンター法、チュー
ブラー法等により一軸または二軸に延伸する方法が、工
業的に望ましく採用される。未延伸ポリ乳酸系シートの
延伸条件としては、延伸温度50〜100℃、延伸倍率
1.5倍〜5倍、延伸速度100%/分〜10,000
%/分が一般的ではあるが、この適正範囲は重合体の組
成や、未延伸シートの熱履歴によって異なってくるの
で、面配向度ΔPの値を見ながら適宜決められる。面配
向度ΔPを3.0×10−3以上とすることにより、ケ
ース成形時の割れを防止することが出来る。上限は実際
上30×10−3程度であり、これより面配向度ΔPを
高めようとすると、延伸が不安定ないし不可能になり、
またたとえ延伸できたとしても、フィルムケースの成形
が困難となる。面配向度ΔPが、を3.0×10−3
30×10−3のポリ乳酸系フィルムにおいては、電子
レンジでの実用的な熱寸法性を得るために、フイルムを
昇温したときの結晶融解熱量ΔHmと昇温中の結晶化に
より発生する結晶化熱量ΔHcとの差(ΔHm−ΔH
c)を20J/g以上かつ{(ΔHm−ΔHc)/ΔH
m}を0.7以上に制御することが重要である。結晶融
解熱量ΔHm、結晶化熱量ΔHcは、フィルムサンプル
の示差走査熱量測定(DSC)により求められるもの
で、結晶融解熱量ΔHmは昇温速度10℃/分で昇温し
たときの全結晶を融解させるのに必要な熱量であって、
重合体の結晶融点付近に現れる結晶融解による吸熱ピー
クの面積から求められる。また結晶化熱量ΔHcは、昇
温過程で生じる結晶化の際に発生する発熱ピークの面積
から求められれ、またフイルムの(ΔHm−ΔHc)を
20J/g以上に制御することが重要である。すなわ
ち、(ΔHm−ΔHc)が20J/gを下まわる場合
は、フイルムケースの熱寸法安定性が不良であり、電子
レンジ使用時に変形を生じる。その一方、20 J/g
以上であれば、熱寸法安定性が良好となる。結晶融解熱
量ΔHmは、主に重合体そのものの結晶性に依存し、結
晶性が大きい重合体では大きな値を取る。ちなみに共重
合成分のないL−乳酸またはD−乳酸の完全ホモポリマ
ーでは、60J/g以上であり、これら2種の乳酸の共
重合体ではその組成比により結晶融解熱量ΔHmは変化
する。結晶化熱量ΔHcは、重合体の結晶性に対するそ
の時のフィルムの結晶化度に関係する指標であり、結晶
化熱量ΔHcが大きいときには、昇温過程でフィルムの
結晶化が進行する。すなわち重合体が有する結晶性を基
準にフィルムの結晶化度が相対的に低かったことを表す
ことになり、逆に結晶化熱量ΔHcが小さい時は、重合
体が有する結晶性を基準にフィルムの結晶化度が相対的
に高かったことを表すことになる。ここで(ΔHm−Δ
Hc)を増大させるための1つの方向は、結晶性が高い
重合体を原料に、結晶化度の比較的高いフィルムをつく
ることであり、フィルムの結晶化度は、重合体の組成に
少なからず依存する。重合体そのものの結晶融解熱量Δ
Hmを20J/g以上にするには、L−乳酸とD−乳酸
の組成比が100:0〜94:6の範囲内または0:1
00〜6:94の範囲内にするとよい。また、結晶化熱
量ΔHcを低下させるため、すなわちフィルムの結晶化
度を高めるためにはフィルムの成形加工条件を選定する
必要がある。成形加工工程、特にテンター法2軸延伸に
おいてシートの結晶化度を上げるためには、延伸倍率を
上げ配向結晶化を促進する、あるいは、延伸後に結晶化
温度以上の雰囲気で熱処理するなどが有用である。な
お、面配向度ΔPが大きいほど結晶化温度が低下する傾
向があるので、本発明の場合には、熱処理を70℃以
上、好ましくは90℃〜170℃の範囲で3秒以上行う
とよい。熱処理温度が高いほど、また熱処理時間が長い
ほど熱寸法安定性は向上する。(ΔHm−ΔHc)/Δ
Hmはシートの結晶化度を示す指標であり、前記値が
0.7より小さいと、電子レンジ使用時に変形を生じる
ので、好ましくない。本発明においては、以上のように
して作られたポリ乳酸系フィルムをケース成形して、フ
ィルムケースを得る。フィルムケースに適したフィルム
の厚みは、特に限定されるものではないが、用途上から
は0.01mm〜0.10mmが好ましく使用される。
特に好ましくは、0.02mm〜0.05mmの範囲で
ある。また、ケース成形は、通常の油圧プレスまたは機
械式プレスを用いて、プレス加工を行えばよい。また成
形時には、成形性を向上させるために、概ポリ乳酸重合
体のガラス転移点Tg(℃)〜融点Tm(℃)の間に予
備加熱した後成形を行ってもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The polylactic acid-based polymer used in the present invention is polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid, or a mixture thereof, and other polymer materials as long as the effects of the present invention are not impaired. May be mixed. It is also possible to add additives such as plasticizers, lubricants, inorganic fillers and ultraviolet absorbers, and modifiers for the purpose of adjusting the moldability and the physical properties of the sheet or the molded article. Lactic acid includes L-lactic acid and D-lactic acid, and other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid,
Representative examples include -hydroxyvaleric acid and 6-hydroxycaproic acid. As these polymerization methods, any known methods such as condensation polymerization method and ring-opening polymerization method can be adopted, and further, a small amount of a chain extender for the purpose of increasing the molecular weight, for example, a diisocyanate compound, epoxy Compounds, acid anhydrides and the like may be used. The weight average molecular weight of the polylactic acid-based polymer is 50,000
From 1,000,000 to 1,000,000, practical properties are hardly exhibited when the ratio is less than the above range, and a problem such that the strength of the film cannot be maintained at the time of plastic cup molding occurs. On the other hand, if it exceeds, the melt viscosity becomes too high, resulting in poor moldability. The polylactic acid-based film used in the present invention, after sufficiently drying the above-mentioned polymer to remove moisture, formed into a sheet by a general melt molding method such as an extrusion method, a calendar method, and a press method. , Followed by rapid cooling. Practically, it is preferable that the polymer melt-extruded into a sheet is rapidly cooled by contact with a rotating casting drum (cooling drum).
The temperature of the casting drum is suitably 60 ° C or less. If it is higher than this, the polymer sticks to the casting drum and it becomes difficult to take it off. In addition, crystallization is promoted and spherulites develop and transparency increases. As the temperature decreases, thermoforming becomes difficult. Therefore, it is preferable to rapidly cool the sheet at a temperature of 60 ° C. or less to obtain a substantially amorphous sheet. In addition, in the present invention, in order to greatly improve the inherent brittleness of the polylactic acid-based polymer and prevent cracking during plastic cup molding, the plane orientation degree ΔP of the polylactic acid-based film is set to 3.0 × 10 -3 ~
Adjust to 30 × 10 −3 . Here, the degree of plane orientation ΔP represents the degree of orientation in the plane direction with respect to the thickness direction of the film, and is usually calculated by the following formula by measuring the refractive index in three orthogonal directions. ΔP = {(γ + β) / 2} −α (1 where α <β <γ. Here, γ and β are the refractive indices of two orthogonal axes parallel to the film surface, and α is the film thickness The degree of plane orientation ΔP depends on the degree of crystallinity and crystal orientation, but largely depends on the molecular orientation in the film plane. That is, by increasing the molecular orientation in the film plane, particularly in one or two directions, ie, the direction of flow of the film and / or the direction perpendicular thereto, 1.0 × 10
ΔP of −3 or less is defined as 3.0 × 10 3 defined in the present invention.
−3 or more. As a method of increasing the plane orientation degree ΔP, in addition to all known stretching methods,
A molecular orientation method using an electric field or a magnetic field can also be employed. Usually, a sheet-like material or a cylindrical material that has been melt-extruded from a T-die, an I-die, a round die, or the like as described above is rapidly cooled by a cooling cast roll, water, pressurized air, or the like, and solidified in a state close to amorphous. Thereafter, a method of uniaxially or biaxially stretching by a roll method, a tenter method, a tubular method, or the like is desirably employed industrially. The stretching conditions of the unstretched polylactic acid-based sheet include a stretching temperature of 50 to 100 ° C., a stretching ratio of 1.5 to 5 times, and a stretching speed of 100% / min to 10,000.
% / Min is generally used, but the appropriate range varies depending on the composition of the polymer and the heat history of the unstretched sheet, and thus can be appropriately determined by checking the value of the plane orientation degree ΔP. By setting the degree of plane orientation ΔP to 3.0 × 10 −3 or more, cracks during case molding can be prevented. The upper limit is practically about 30 × 10 −3 , and if an attempt is made to increase the degree of plane orientation ΔP, stretching becomes unstable or impossible, and
Even if the film can be stretched, it is difficult to form a film case. The degree of plane orientation ΔP is 3.0 × 10 −3 to
In a polylactic acid-based film of 30 × 10 −3 , in order to obtain a practical thermal dimensional property in a microwave oven, a heat of crystal fusion ΔHm when the film is heated and a crystal generated by crystallization during the temperature rise. Difference from the heat of formation ΔHc (ΔHm−ΔH
c) is not less than 20 J / g and {(ΔHm−ΔHc) / ΔH
It is important to control m} to 0.7 or more. The heat of crystal fusion ΔHm and the heat of crystallization ΔHc are determined by differential scanning calorimetry (DSC) of the film sample, and the heat of crystal fusion ΔHm melts all crystals when the temperature is increased at a rate of 10 ° C./min. The amount of heat needed to
It is determined from the area of the endothermic peak due to crystal melting that appears near the crystal melting point of the polymer. The heat of crystallization ΔHc is determined from the area of the heat generation peak generated during crystallization generated in the process of raising the temperature, and it is important to control (ΔHm−ΔHc) of the film to 20 J / g or more. That is, when (ΔHm−ΔHc) is less than 20 J / g, the thermal dimensional stability of the film case is poor, and the film case is deformed when used. On the other hand, 20 J / g
If it is above, the thermal dimensional stability will be good. The heat of crystal fusion ΔHm mainly depends on the crystallinity of the polymer itself, and takes a large value for a polymer having high crystallinity. Incidentally, in the case of a complete homopolymer of L-lactic acid or D-lactic acid having no copolymerization component, it is 60 J / g or more, and in a copolymer of these two types of lactic acid, the heat of crystal fusion ΔHm changes depending on the composition ratio. The heat of crystallization ΔHc is an index relating to the crystallinity of the film with respect to the crystallinity of the polymer. When the heat of crystallization ΔHc is large, the crystallization of the film proceeds in the process of raising the temperature. In other words, this indicates that the crystallinity of the film was relatively low based on the crystallinity of the polymer. Conversely, when the heat of crystallization ΔHc was small, the film had a low crystallinity based on the crystallinity of the polymer. This indicates that the crystallinity was relatively high. Here (ΔHm−Δ
One direction for increasing Hc) is to produce a film having a relatively high degree of crystallinity from a polymer having high crystallinity, and the degree of crystallinity of the film depends on the composition of the polymer. Dependent. Heat of crystal fusion Δ of the polymer itself
In order to make Hm 20 J / g or more, the composition ratio of L-lactic acid and D-lactic acid is in the range of 100: 0 to 94: 6 or 0: 1.
It is good to be in the range of 00-6: 94. Further, in order to reduce the heat of crystallization ΔHc, that is, to increase the degree of crystallinity of the film, it is necessary to select film forming conditions. In order to increase the crystallinity of the sheet in the forming process, particularly in the biaxial stretching by the tenter method, it is useful to increase the stretching ratio to promote oriented crystallization, or to heat-treat after stretching in an atmosphere at a crystallization temperature or higher. is there. In addition, since the crystallization temperature tends to decrease as the degree of plane orientation ΔP increases, in the case of the present invention, the heat treatment is preferably performed at 70 ° C. or more, preferably 90 ° C. to 170 ° C. for 3 seconds or more. The higher the heat treatment temperature and the longer the heat treatment time, the better the thermal dimensional stability. (ΔHm−ΔHc) / Δ
Hm is an index indicating the degree of crystallinity of the sheet. If the value is smaller than 0.7, deformation occurs when using a microwave oven, which is not preferable. In the present invention, the polylactic acid-based film produced as described above is molded into a case to obtain a film case. Although the thickness of the film suitable for the film case is not particularly limited, 0.01 mm to 0.10 mm is preferably used from the application.
Particularly preferably, it is in the range of 0.02 mm to 0.05 mm. The case may be formed by pressing using a normal hydraulic press or a mechanical press. In addition, at the time of molding, in order to improve the moldability, molding may be performed after preheating between the glass transition point Tg (° C.) and the melting point Tm (° C.) of the polylactic acid polymer.

【実施例】以下に実施例を示すが、本発明はこれに限定
されるものではない。実施例中に示す測定値は次に示す
ような条件で測定を行い、算出した。 ・面配向度ΔP アッベ屈折計によって直交3軸方向の屈折率(α,β,
γ)を測定し、以下1式で算出した。 ΔP={(γ+β)/2}−α ・・・1 (ただしα<β<γとする。ここで、γ、βがフィルム
面に平行な直交2軸の屈折率、αはフィルム厚さ方向の
屈折率である。) ・(ΔHm−ΔHc)/ΔHm 示差走査熱量計DSC−7(パ−キンエルマ−社製)を
用い、フィルムサンプル10mgをJIS−K7122
に基づいて、昇温速度10℃/分で昇温したときのサ−
モグラムから、結晶融解熱量ΔHmと結晶化熱量ΔHc
を求めて、(ΔHm−ΔHc)/ΔHmを算出した。 ・電子レンジ適性 フィルムケースの半分程度の水を入れて、定格高周波出
力500Wの電子レンジにて、5分間加熱した。加熱後
の変形状態を上部開口部の径の寸法変化から求めた。寸
法変化率は以下2式で表される。 寸法変化率(%)={(B−A)/A}×100・・・2 (ここで、試験前の径:A(mm) 試験後の径:B
(mm)とする。) また評価は、◎:0〜10%=実用上全く問題なし、
○:11〜20%= 実用上問題なし、△:21〜30
%=条件によっては使用可、×:31%以上、とし△以
上を合格とした。 (実施例1〜4)表1に示すようなL−乳酸とD−乳酸と
の組成比で、重量平均分子量が約20万のポリ乳酸を9
0mmφ単軸エクストルーダーを用い、200℃で押し
出し、幅300mm、延伸後の厚みが0.04mmと成
るように厚みを設定して、シートを作製した。上記未延
伸シートを表1の条件で、逐次二軸延伸機で延伸し、所
望の延伸フィルムを得 た。得られたポリ乳酸の延伸フ
ィルムのΔPを上述の方法で測定して、ΔPを得た。ま
た、上述の方法で測定して、ΔHmとΔHcを得た。上
記ポリ乳酸系フィルムから、底部の径が45mm,上部
開口部の径が70mm、高さが30mmもフイルムケー
スを成形した。 (比較例)実施例と同じく、表1に示すL−乳酸とD−
乳酸との組成比で、重量平均分子量が約20万のポリ乳
酸を90mmφ単軸エクストルーダーを用い、200℃
で押し出し、幅300mm、延伸後の厚みが0.04m
mとなるように厚みを設定して、シートを作製した。得
られたポリ乳酸の延伸フィルムのΔPを上述の方法で測
定して、ΔPを得た。また、上述の方法で測定して、Δ
HmとΔHcを得た。上記ポリ乳酸系フィルムから、底
径が45mm、高さが30mmのフイルムケースを成形
した。表1より明らかなように本発明の条件を満たす実
施例1,2,3は成形性および電子レンジ適性に優れて
いる。また、実施例4では、(△Hm−△Hc)が小さい
ので電子レンジ適性では、劣るが使用出来ないレベルで
はなかった。一方、比較例1は、(△Hm−△Hc)/△
Hmが、小さいため電子レンジ適性が悪く、使用に耐え
るものではなかった。比較例3は、(△Hm−△Hc)お
よび(△Hm−△Hc)/△Hmは、満足するが、△Pが
小さいため、ケース成形時に割れを生じ成形できなかっ
た。 (実施例5)実施例1で作成したフィルムケースを試料
として、家庭用コンポスターに、水、腐葉土、栄養分を
入れて60℃で放置したところ、2週間後から速やかな
分解が始まり、4週間後には重量保持率は10%以下で
あった。 (比較例4)比較例として、OPP製のフィルムケース
にて実施例5と同一条件で、コンポスト処理したが、4
週間後でも物性保持率は、100%で、全く分解しなか
った。
EXAMPLES Examples will be shown below, but the present invention is not limited to these examples. The measurement values shown in the examples were calculated by measuring under the following conditions.・ Degree of plane orientation ΔP The refractive index (α, β,
γ) was measured and calculated by the following equation (1). ΔP = {(γ + β) / 2} −α 1 (where α <β <γ. Here, γ and β are biaxial refractive indices parallel to the film surface, and α is a film thickness direction. (ΔHm−ΔHc) / ΔHm Using a differential scanning calorimeter DSC-7 (manufactured by PerkinElmer), 10 mg of a film sample was subjected to JIS-K7122.
When the temperature is raised at a rate of 10 ° C./min.
From the gram, the heat of crystal fusion ΔHm and the heat of crystallization ΔHc
Was calculated, and (ΔHm−ΔHc) / ΔHm was calculated. -Suitability for microwave oven About half of the water in the film case was put, and heated in a microwave oven with a rated high-frequency output of 500 W for 5 minutes. The deformation state after heating was determined from the dimensional change in the diameter of the upper opening. The dimensional change rate is expressed by the following two equations. Dimensional change rate (%) = {(BA) / A} × 100 (2, where diameter before test: A (mm) diameter after test: B
(Mm). ) In addition, evaluation: :: 0 to 10% = no problem at all in practical use,
: 1: 11 to 20% = no problem in practical use, Δ: 21 to 30
% = Can be used depending on the conditions; X: 31% or more; (Examples 1 to 4) In a composition ratio of L-lactic acid and D-lactic acid as shown in Table 1, polylactic acid having a weight average molecular weight of about 200,000
Using a 0 mmφ uniaxial extruder, the sheet was extruded at 200 ° C., and the thickness was set so that the width after stretching was 300 mm and the thickness after stretching was 0.04 mm, thereby producing a sheet. The unstretched sheet was sequentially stretched by a biaxial stretching machine under the conditions shown in Table 1 to obtain a desired stretched film. ΔP of the obtained stretched film of polylactic acid was measured by the above-mentioned method to obtain ΔP. Further, ΔHm and ΔHc were obtained by the measurement according to the method described above. A film case having a bottom diameter of 45 mm, an upper opening diameter of 70 mm, and a height of 30 mm was formed from the polylactic acid-based film. (Comparative Example) As in the example, L-lactic acid and D-
A polylactic acid having a weight-average molecular weight of about 200,000 in a composition ratio with lactic acid was heated to 200 ° C. using a 90 mmφ uniaxial extruder.
Extruded with a width of 300mm and a thickness of 0.04m after stretching
The sheet was prepared by setting the thickness so as to be m. ΔP of the obtained stretched film of polylactic acid was measured by the above-mentioned method to obtain ΔP. Also, when measured by the above-described method, Δ
Hm and ΔHc were obtained. From the polylactic acid-based film, a film case having a bottom diameter of 45 mm and a height of 30 mm was formed. As is clear from Table 1, Examples 1, 2, and 3 satisfying the conditions of the present invention are excellent in moldability and microwave oven suitability. Also, in Example 4, (△ Hm- △ Hc) was small, so that it was inferior to microwave oven suitability but not at a level where it could not be used. On the other hand, in Comparative Example 1, (△ Hm- △ Hc) / △
Since Hm was small, the suitability for a microwave oven was poor, and it was not usable. Comparative Example 3 satisfies (ΔHm−ΔHc) and (ΔHm−ΔHc) / ΔHm, but could not be formed due to cracking at the time of case molding because ΔP was small. (Example 5) Using the film case prepared in Example 1 as a sample, water, humus, and nutrients were put in a household poster at 60 ° C, and two weeks later, rapid decomposition began, and four weeks later Later, the weight retention was less than 10%. (Comparative Example 4) As a comparative example, a compost treatment was performed under the same conditions as in Example 5 using a film case made of OPP.
Even after a week, the physical property retention was 100%, and there was no decomposition at all.

【発明の効果】以上説明したように本発明のポリ乳酸系
プラカップは電子レンジでの加熱が可能でコンポスト処
理可能である。
As described above, the polylactic acid-based plastic cup of the present invention can be heated in a microwave oven and can be composted.

【表1】 [Table 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 面配向度ΔPが3.0×10−3〜30
×10−3であり、フィルムを昇温したときの結晶融解
熱量ΔHmと昇温中の結晶化により発生する結晶化熱量
ΔHcとの差(ΔHm−ΔHc)が20J/g以上かつ
{(ΔHm−ΔHc)/ΔHm}が0.7以上であるポ
リ乳酸系重合体からなることを特徴とするフィルムケー
ス。
1. The degree of plane orientation ΔP is 3.0 × 10 −3 to 30.
× 10 −3 , and the difference (ΔHm−ΔHc) between the heat of crystal fusion ΔHm when the film is heated and the heat of crystallization ΔHc generated by crystallization during the temperature rise is 20 J / g or more and {(ΔHm− A film case comprising a polylactic acid-based polymer having ΔHc) / ΔHm} of 0.7 or more.
JP28753699A 1999-10-08 1999-10-08 Film case Pending JP2001114352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28753699A JP2001114352A (en) 1999-10-08 1999-10-08 Film case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28753699A JP2001114352A (en) 1999-10-08 1999-10-08 Film case

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005115354A Division JP2005330008A (en) 2005-04-13 2005-04-13 Film case

Publications (1)

Publication Number Publication Date
JP2001114352A true JP2001114352A (en) 2001-04-24

Family

ID=17718621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28753699A Pending JP2001114352A (en) 1999-10-08 1999-10-08 Film case

Country Status (1)

Country Link
JP (1) JP2001114352A (en)

Similar Documents

Publication Publication Date Title
EP0544701B1 (en) Polyhydroxy acid films
EP1484356B1 (en) Polylactic acid molding and process for producing the same
JP3217240B2 (en) Polylactic acid based molded body
US8362157B2 (en) Polylactic acid composition and molding comprising the composition
JP4804179B2 (en) Polylactic acid composition and molded product comprising the composition
KR20010099957A (en) Biodegradable bag
JPH06500818A (en) Films containing polyhydroxy acids
JP3330712B2 (en) Method for producing polylactic acid-based film
JPH09157408A (en) Stretched polylactic acid film or sheet
JP3391593B2 (en) Oriented polylactic acid-based films and sheets and methods for producing them
JPH07205278A (en) Production of stretched film of polylactic acid polymer
JP3328418B2 (en) Heat-shrinkable polylactic acid film
JPH08252895A (en) Decomposable laminated material
JPH1024518A (en) Polylactic biodegradable gas barrier film
JP3866465B2 (en) Molded product of polylactic acid polymer and molding method thereof
JP3563436B2 (en) Thermoformed product of polylactic acid polymer
JP3592799B2 (en)   Method for molding polylactic acid-based polymer, polylactic acid-based molded article, and polylactic acid-based molded article
JP3670912B2 (en) Polylactic acid-based shrink film or sheet
JP2001114352A (en) Film case
JP3662197B2 (en) Polylactic acid-based thermoformed products
JP3167595B2 (en) Packaging bag made of polylactic acid polymer
JPH0931216A (en) Poly(lactic acid) sheet
JP4543743B2 (en) Biaxially stretched polylactic acid film and container for molding
JP4245300B2 (en) Method for producing biodegradable polyester stretch molded article
JP2005330008A (en) Film case

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415