JP3662197B2 - Polylactic acid-based thermoformed products - Google Patents

Polylactic acid-based thermoformed products Download PDF

Info

Publication number
JP3662197B2
JP3662197B2 JP2001047953A JP2001047953A JP3662197B2 JP 3662197 B2 JP3662197 B2 JP 3662197B2 JP 2001047953 A JP2001047953 A JP 2001047953A JP 2001047953 A JP2001047953 A JP 2001047953A JP 3662197 B2 JP3662197 B2 JP 3662197B2
Authority
JP
Japan
Prior art keywords
molding
sheet
polylactic acid
thermoformed
thermoforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001047953A
Other languages
Japanese (ja)
Other versions
JP2002248677A (en
Inventor
潤 高木
滋憲 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2001047953A priority Critical patent/JP3662197B2/en
Publication of JP2002248677A publication Critical patent/JP2002248677A/en
Application granted granted Critical
Publication of JP3662197B2 publication Critical patent/JP3662197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Description

【0001】
【発明の属する技術分野】
この発明は、ポリ乳酸系重合体からなる分解性を有するブリスター容器やPTP容器等の熱成形加工品に関する。
【0002】
【従来の技術】
各種商品の展示包装用に広く用いられているブリスター容器等の加工品は、樹脂製シートを作っておき、次いでそのシートを真空成形、圧空成形などの熱成形方法で成形して作られるのが一般的である。このブリスター容器等の加工品としては、包装体を通して中の商品を透視できるように、透明なものが好まれる。このような点から、実際に用いられるブリスター容器等の加工品用の素材シートとしては、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリスチレンなどのシートが多用されている。
【0003】
また、医薬品の錠剤やカプセルなどの包装に使用されるPTP(プレススルーパック)包装用の容器も、同様の熱成形方法で成形され、素材シートとしては、透明性、成形性、水蒸気バリア性などの点から、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリプロピレンなどのシートが多用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、これらの材料は化学的、生物的に安定なため自然環境下に放置されてもほとんど分解されることなく残留、蓄積される。これらは自然環境中に散乱して動植物の生活環境を汚染するだけでなく、ゴミとして埋め立てられた場合にもほとんど分解せずに残り、埋め立て地の寿命を短くするという問題がある。
【0005】
そこで、この発明は、廃棄処理や環境汚染の問題がなく、かつ強靭で透明性がよく、さらには耐熱性や経時的な形状安定性に優れた熱成形加工品を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明は、重量平均分子量が100,000以上であり、ガラス転移温度が55〜70℃であるポリ乳酸系重合体からなる非晶質の素材シートを、成形温度95〜140℃の範囲で、真空成形法、プラグアシスト成形法、圧空成形法、雄雌型成形法、又は成形雄型に沿ってシートを変形した後成形雄型を拡張する方法から選ばれる熱成形法で、熱成形加工部分の延伸面積倍率が4〜15倍の範囲となるように成形することにより、成形加工部分の面内配向度ΔPの平均が2×10-3〜30×10-3の範囲内にある加工品を製造することにより上記の課題を解決したのである。
【0007】
上記ポリ乳酸系重合体は、土壌中において自然に加水分解が進行し、土中に原形が残らず、ついで微生物により無害な分解物となる、いわゆる生分解性を有する。また、この加工品の成形加工部分に分子配向を付与するので、得られる熱成形加工品は、十分な強度を有する。
【0008】
【発明の実施の形態】
以下、この発明の実施形態を説明する。
【0009】
この発明は、所定のポリ乳酸系重合体を一定条件下で成形してポリ乳酸系熱成形加工品(以下、「熱成形加工品」と称する。)を得たものである。
【0010】
上記ポリ乳酸系重合体とは、乳酸の単独重合体であるポリ乳酸、乳酸と他のヒドロキシカルボン酸との共重合体、又はこれらの混合物であり、本発明の効果を阻害しない範囲で他の高分子材料が混入されても構わない。また、成形加工性、シートや加工品の物性を調整する目的で、可塑剤、滑剤、無機フィラー、紫外線吸収剤などの添加剤、改質剤を添加することも可能である。
【0011】
乳酸としては、L−乳酸、D−乳酸があげられ、他のヒドロキシカルボン酸としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などが代表的にあげられる。
【0012】
これらの重合法としては、縮合重合法、開環重合法など、公知のいずれの方法を採用することも可能であり、さらには、分子量増大を目的として少量の鎖延長剤、例えば、ジイソシアネート化合物、ジエポキシ化合物、酸無水物などを使用しても構わない。
【0013】
上記ポリ乳酸系重合体の重量平均分子量としては、100,000〜1,000,000の範囲がよく、140,000〜250,000が好ましい。かかる範囲を下回ると実用物性がほとんど発現されず、また熱成形時にシートが強度を保持できないなどの問題を生じる場合がある。また上まわる場合には、溶融粘度が高くなりすぎ成形加工性に劣る場合がある。
【0014】
上記ポリ乳酸系重合体からなるシート(以下、「素材シート」と称する。)は、ポリ乳酸系重合体を十分に乾燥して水分を除去した後、押出法、カレンダー法、プレス法などの一般的な溶融成形法によりシート状に成形し、次いで、急冷することにより得られる。実用的には、シート状に溶融押出成形されたポリ乳酸系重合体を、回転するキャスティングドラム(冷却ドラム)に接触させて急冷するのが好ましい。キャスティングドラムの温度は50℃以下が適当である。これより高いと重合体がキャスティングドラムに粘着して引取りが困難になる場合があり、また結晶化が促進されて球晶が発達し透明性が低下するとともに熱成形加工も困難になる。従って、上記温度範囲でシートを急冷して、実質上非晶質のシートとするのが好ましい。
【0015】
また、得られたシートのガラス転移温度(以下、「Tg」と略する。)は、55〜70℃がよい。Tgが50℃未満であると、熱成形加工品に成形した後、50℃以上の雰囲気での耐熱性が不足したり、室温でも経時的に寸法変化しやすく、好ましくない。また室温に放置中に素材シートや加工品に球晶が成長し、素材シートの成形が困難になったり、加工品の脆化や透明性低下などの問題が生じる場合がある。Tgは、ポリ乳酸系重合体の組成、分子量、含有オリゴマー量、可塑剤などの添加剤の種類と量などに主に依存する。
【0016】
次に、上記素材シートは、赤外線ヒータ、熱板ヒータ、熱風などにより成形温度に予熱することにより熱成形することができる。この熱成形の方法としては、真空成形法、プラグアシスト成形法、圧空成形法、雄雌型成形法、成形雄型に沿ってシートを変形した後成形雄型を拡張する方法などがある。素材シートの厚さは特に限定されず、通常の熱成形技術に使用できる程度の厚さであればよい。具体的にはおよそ30〜1000μmの範囲を包含する。
【0017】
上記の方法で熱成形された熱成形加工品は、熱成形加工を施した凸部、及び素材シートがそのまま残る平面部とからなる。平面部は熱成形時に延伸されないので物性の改良は見られず強度に劣るが、通常、紙等の支持体を貼り合わせるなどして支持される。一方、凸部は熱成形時に延伸されるが、その形態上強度が要求され、脆さを改良する必要がある。この発明においては、上記凸部の分子配向を増大させることにより、強度を向上させ、脆さを改良することができる。この分子配向度をあらわす尺度として面内配向度ΔPがある。
【0018】
面内配向度ΔPは、成形加工部分壁の厚み方向に対する面方向の配向度を表わし、通常直交3軸方向の屈折率を測定し以下の式(1)で算出される。
【0019】
ΔP={(γ+β)/2}−α (1)
(α<β<γ)
ここで、γ、βがシート面(壁面)に平行な直交2軸の屈折率、αはシート厚さ方向の屈折率である。
【0020】
上記ΔPは、結晶化度や結晶配向にも依存するが、大きくは面内の分子配向に依存する。つまり面内に対し分子配向を増大させることにより、無配向シートでは1.0×10-3未満であるΔPを平均で2×10-3以上、好適には3×10-3以上に増大させることができる。ただし、30×10-3を越えるΔPの平均を得ようとすると、安定した成形ができず、シートの破断が多発する場合がある。
【0021】
また、ブリスター加工品などの熱成形加工品はその用途上透明であることが重要であり、熱成形時に白化するのを避けなければならない。透明性はヘーズであらわすことができ、後述する熱成形条件では、20%以下、好適には10%以下のヘーズを有する熱成形加工品を得ることができる。
【0022】
上記範囲のΔPおよびヘーズを有する加工品を得るための熱成形条件としては、成形温度が95〜140℃の範囲内がよく、95〜120℃の範囲内が好ましい。また、熱成形加工部分の延伸面積倍率は、4〜15倍の範囲がよい。熱成形温度(即ち成形時のシート温度)が95℃未満では得られる熱成形加工品の耐熱性が十分に得られず、140℃よりも高いと、素材シートが加熱によりドローダウンして成形が困難になったり、結晶化による白化が生じて透明性を失う場合がある。
【0023】
また、熱成形加工部分の延伸面積倍率が2倍よりも小さいと、ΔPは2×10-3に達せず物性の改良はみられない。一方、20倍を越える延伸面積倍率では熱成形加工品に破断が生じ、安定して熱成形加工品を得ることができない場合がある。
【0024】
この発明にかかる熱成形加工品は、その熱成形加工部分の強度、透明性、水蒸気バリア性などを生かして、ブリスター包装や、PTP容器などの、内容物透視性が必要で使用時に紙などの支持体に当接して使用されるものとして好適である。
【0025】
例えば商品の包装、展示に用いるブリスター包装体の場合、凸状の成形加工部分に商品を収納してその開口部に成形加工部分からその周囲の未加工部にかけて台紙を取り付けるのが通例である。この台紙としては、厚紙のほかに金属箔、各種プラチックシートなどが適用可能であるが、ブリスター加工品を台紙と共に廃棄する場合を想定すると、台紙としては生分解性を有する紙製のものが好適である。
【0026】
上記の台紙は、ブリスター加工品と熱融着したり、接着剤、好適には未加硫天然ゴム系、カゼインなどのタンパク質系、でんぷん、にかわなどの生分解性を有する接着剤により密着接合される。また、未成形部分(いわゆるフランジ)の両側縁を裏面側に180゜折り曲げ、その溝内に別の台紙をスライド可能に取り付けてもよい。
【0027】
またPTP容器は、通常アルミニウム箔の蓋材で密封される。アルミニウムは、環境を汚染せず自然還元性であるため、ポリ乳酸系重合体シートと接着された状態でも廃棄することができる。
【0028】
【実施例】
以下に実施例を示すが、これらにより本発明は何ら制限を受けるものではない。なお、実施例中に示す測定値は次に示すような条件で測定を行い、算出した。
【0029】
(1)ΔPの平均値
成形加工部分の延伸面積倍率に相当する部分、即ち、原シートの厚さを延伸面積倍率で割った値に相当する厚さを有する部分数箇所からシート状の試料を切りだし、アツベ屈折計によって直交3軸方向の屈折率(α,β,γ)を測定し、次式で算出した。
ΔP={(γ+β)/2}−α
(α<β<γ)
γ:試料面内の最大屈折率
β:それに直交する試料面内方向の屈折率
α:試料厚さ方向の屈折率
【0030】
(2)延伸面積倍率
成形後の成形加工部の表面積を、延伸加工を施した原シートの面積で割って、延伸面積倍率とした。
【0031】
(3)ヘーズ
JIS−K7105に基づいて測定した。
【0032】
(4)成形性(ドローダウン性)
熱成形予熱時に、シートがドローダウンして成形が不可のものを×、ドローダウンするが成形ができるものを△、ほとんどドローダウンしないものを○とした。
【0033】
(5)耐熱性
成形品を50℃に温度制御されたオーブン中に、30分静置し、試験前後の容積の体積を水を入れることにより測定した。しかる後に、以下の式にて体積保持率を求め、耐熱性の指標とした。
体積保持率(%)=(試験後の容積)/(試験前の容積)×100
【0034】
(6)脆さ
触感にて判断し、脆さが感じられないものを○、やや脆いものを△、脆いものを×であらわした。
【0035】
(7)総合評価
上記評価項目(4)、(5)、(6)を総合的に判断し、良好なものを○、やや劣るものを△、劣るものを×とした。
【0036】
(8)ガラス転移温度
パーキンエルマー製DSC−7を用い、JIS−K7121に基づいて測定した。
【0037】
(実施例1〜2/比較例1〜4)
Tg55℃、重量平均分子量約200,000のポリL−乳酸(島津製作所社製:ラクティ5000)を180℃でTダイより溶融押出し、50℃に保持したキャスティングドラム上で急冷し、厚さ500μmの未延伸シートを得た。
【0038】
得られたシートを熱成形機(三和興業社製PLAVAC−FE36PH型)にクランプし、赤外線ヒータで表1に記載の成形温度に予熱した後、プラグにより金型内に押し込んで予備成形及び延伸を行ない、次いで金型内を真空にしてカップ状に成形した。なお、延伸は、成形時に同時に行った。
【0039】
成形温度および延伸面積倍率を変化させて表1に示すサンプルを得た。延伸面積倍率は、プラグおよび金型を種々取替えることにより変更した。
【0040】
(比較例5)
ラクチドを6%添加して可塑化した、Tg40℃、重量平均分子量約200,000のポリL−乳酸(島津製作所社製:ラクティ5000)を180℃でTダイより溶融押出し、50℃に保持したキャスティングドラム上で急冷し、厚さ500μmの未延伸シートを得た。得られたシートを実施例1と同様の方法で成形し評価した結果を表1に示す。
【0041】
【表1】

Figure 0003662197
【0042】
【発明の効果】
この発明によると、分解性重合体であるポリ乳酸系重合体から特定の特性の熱成形品を成形することにより、成形加工部分においては脆さが改良されて強度的に優れ、未成形部は支持体に当接させて同じく実用的な強度を示し、全体として流通や保管に耐える強靭な、さらには耐熱性が良好な、熱成形加工品を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoformed product such as a blister container or a PTP container having a decomposability made of a polylactic acid polymer.
[0002]
[Prior art]
Processed products such as blister containers widely used for display packaging of various products are made by making a resin sheet and then molding the sheet by a thermoforming method such as vacuum forming or pressure forming. It is common. As the processed product such as the blister container, a transparent product is preferred so that the product inside can be seen through the package. From such points, sheets of polyvinyl chloride, polyethylene terephthalate, polystyrene, and the like are frequently used as material sheets for processed products such as blister containers that are actually used.
[0003]
In addition, PTP (press-through pack) packaging containers used for packaging pharmaceutical tablets and capsules are also molded by the same thermoforming method, and as a material sheet, transparency, moldability, water vapor barrier properties, etc. In view of the above, sheets such as polyvinyl chloride, polyethylene terephthalate, and polypropylene are often used.
[0004]
[Problems to be solved by the invention]
However, since these materials are chemically and biologically stable, they remain and accumulate with little degradation even if left in a natural environment. These are not only scattered in the natural environment and contaminating the living environment of animals and plants, but also remain in a state where they are hardly decomposed when landfilled as garbage, thereby shortening the life of the landfill.
[0005]
Accordingly, an object of the present invention is to provide a thermoformed product that is free from problems of disposal and environmental pollution, is tough and has good transparency, and has excellent heat resistance and shape stability over time. .
[0006]
[Means for Solving the Problems]
The present invention has a weight average molecular weight of 100,000 or more, the amorphous sheet of material having a glass transition temperature of the polylactic acid polymer is 55 to 70 ° C., in the range of molding temperature ninety-five to one hundred and forty ° C., Thermoforming process part selected from vacuum forming method, plug-assist forming method, pressure forming method, male / female forming method, or method of expanding the forming male mold after deforming the sheet along the forming male mold By processing so that the stretched area magnification is in the range of 4 to 15 times , a processed product in which the average in-plane orientation degree ΔP of the molded portion is in the range of 2 × 10 −3 to 30 × 10 −3. We had to solve the above problems by manufacturing.
[0007]
The polylactic acid-based polymer has so-called biodegradability, in which hydrolysis progresses naturally in the soil, the original form does not remain in the soil, and then becomes a harmless degradation product by microorganisms. Moreover, since molecular orientation is imparted to the molded portion of the processed product, the obtained thermoformed product has sufficient strength.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0009]
In the present invention, a predetermined polylactic acid-based polymer is molded under a certain condition to obtain a polylactic acid-based thermoformed product (hereinafter referred to as “thermoformed product”).
[0010]
The polylactic acid-based polymer is a polylactic acid that is a homopolymer of lactic acid, a copolymer of lactic acid and other hydroxycarboxylic acid, or a mixture thereof, and is within the range that does not impair the effects of the present invention. A polymer material may be mixed. In addition, additives such as plasticizers, lubricants, inorganic fillers, ultraviolet absorbers, and modifiers can be added for the purpose of adjusting the molding processability and the physical properties of the sheet or processed product.
[0011]
Examples of lactic acid include L-lactic acid and D-lactic acid. Examples of other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 6-hydroxyvaleric acid, A typical example is hydroxycaproic acid.
[0012]
As these polymerization methods, any known method such as a condensation polymerization method and a ring-opening polymerization method can be adopted. Furthermore, for the purpose of increasing the molecular weight, a small amount of a chain extender such as a diisocyanate compound, A diepoxy compound, an acid anhydride, or the like may be used.
[0013]
The weight average molecular weight of the polylactic acid polymer is preferably in the range of 100,000 to 1,000,000, and preferably 140,000 to 250,000. Below this range, practical physical properties are hardly expressed, and problems such as the sheet being unable to maintain strength during thermoforming may occur. In the case of exceeding, the melt viscosity becomes too high and the molding processability may be inferior.
[0014]
The sheet made of the above-mentioned polylactic acid polymer (hereinafter referred to as “material sheet”) is a general material such as an extrusion method, a calender method, and a press method after the polylactic acid polymer is sufficiently dried to remove moisture. It is obtained by forming into a sheet by a typical melt molding method and then rapidly cooling. Practically, it is preferable that the polylactic acid polymer melt-extruded into a sheet is brought into contact with a rotating casting drum (cooling drum) and rapidly cooled. The temperature of the casting drum is suitably 50 ° C. or less. If it is higher than this, the polymer may adhere to the casting drum and take-up may be difficult, and crystallization is promoted to develop spherulites, resulting in a decrease in transparency and thermoforming. Therefore, it is preferable to quench the sheet in the above temperature range to obtain a substantially amorphous sheet.
[0015]
The glass transition temperature of the sheet (hereinafter, abbreviated as "Tg".) Is good 5 5 to 70 ° C.. If the Tg is less than 50 ° C., it is not preferable because the heat resistance in an atmosphere of 50 ° C. or higher is insufficient after forming into a thermoformed product, and the size is likely to change over time even at room temperature. In addition, spherulites may grow on the raw material sheet or processed product while being left at room temperature, which may make it difficult to form the raw material sheet, or may cause problems such as embrittlement of the processed product and reduced transparency. The Tg mainly depends on the composition of the polylactic acid polymer, the molecular weight, the amount of oligomers contained, the type and amount of additives such as a plasticizer.
[0016]
Next, the material sheet can be thermoformed by preheating to a forming temperature with an infrared heater, a hot plate heater, hot air or the like. Examples of the thermoforming method include a vacuum forming method, a plug assist forming method, a pressure forming method, a male / female forming method, and a method of expanding a forming male die after deforming a sheet along the forming male die. The thickness of a raw material sheet is not specifically limited, What is necessary is just a thickness of the grade which can be used for a normal thermoforming technique. Specifically, it includes the range of about 30 to 1000 μm.
[0017]
The thermoformed product that has been thermoformed by the above method is composed of a convex portion subjected to the thermoforming process and a flat portion where the material sheet remains as it is. Since the flat portion is not stretched during thermoforming, the physical properties are not improved and the strength is inferior, but is usually supported by bonding a support such as paper. On the other hand, the convex portion is stretched at the time of thermoforming, but its strength is required for its form and it is necessary to improve brittleness. In this invention, the strength can be improved and the brittleness can be improved by increasing the molecular orientation of the convex portion. An in-plane orientation degree ΔP is a scale representing this molecular orientation degree.
[0018]
The in-plane orientation degree ΔP represents the degree of orientation in the plane direction with respect to the thickness direction of the molded part wall, and is usually calculated by the following formula (1) by measuring the refractive index in the three orthogonal directions.
[0019]
ΔP = {(γ + β) / 2} −α (1)
(Α <β <γ)
Here, γ and β are the refractive indexes of two orthogonal axes parallel to the sheet surface (wall surface), and α is the refractive index in the sheet thickness direction.
[0020]
The ΔP depends on crystallinity and crystal orientation, but largely depends on in-plane molecular orientation. That is, by increasing the molecular orientation in the plane, ΔP, which is less than 1.0 × 10 −3 in the non-oriented sheet, can be increased to 2 × 10 −3 or more, preferably 3 × 10 −3 or more on average. it can. However, when trying to obtain an average ΔP exceeding 30 × 10 −3 , stable molding may not be possible, and sheet breakage may occur frequently.
[0021]
In addition, it is important for thermoformed products such as blister processed products to be transparent for use, and it is necessary to avoid whitening during thermoforming. Transparency can be expressed as haze, and a thermoformed product having a haze of 20% or less, preferably 10% or less can be obtained under the thermoforming conditions described below.
[0022]
As thermoforming conditions for obtaining a processed product having ΔP and haze in the above range, the molding temperature is preferably in the range of 95 to 140 ° C, and preferably in the range of 95 to 120 ° C. Further, the stretch area ratio of the thermoformed portion is preferably in the range of 4 to 15 times. If the thermoforming temperature (that is, the sheet temperature at the time of molding) is less than 95 ° C, sufficient heat resistance of the obtained thermoformed product cannot be obtained, and if it is higher than 140 ° C, the material sheet is drawn down by heating and molded. In some cases, it becomes difficult or whitening due to crystallization occurs, resulting in loss of transparency.
[0023]
On the other hand, when the stretched area ratio of the thermoformed portion is less than 2, ΔP does not reach 2 × 10 −3 and no improvement in physical properties is observed. On the other hand, when the stretched area ratio exceeds 20 times, the thermoformed product is broken, and the thermoformed product may not be stably obtained.
[0024]
The thermoformed product according to the present invention makes use of the strength, transparency, water vapor barrier property, etc. of the thermoformed part, and the contents must be transparent, such as blister packaging and PTP containers. It is suitable for use in contact with the support.
[0025]
For example, in the case of a blister package used for packaging and display of merchandise, it is usual to store the merchandise in a convex molding portion and attach a mount to the opening from the molding portion to the surrounding unprocessed portion. As this mount, in addition to cardboard, metal foil, various plastic sheets, etc. can be applied. However, assuming that the blister processed product is discarded together with the mount, the mount is preferably made of paper having biodegradability. It is.
[0026]
The above mount is heat-sealed with a blister processed product, or is tightly bonded with an adhesive, preferably an unvulcanized natural rubber, protein such as casein, starch, glue or other biodegradable adhesive. The Further, both side edges of the unmolded portion (so-called flange) may be bent 180 ° toward the back surface, and another mount may be slidably attached in the groove.
[0027]
The PTP container is usually sealed with an aluminum foil lid. Since aluminum does not pollute the environment and is naturally reducing, it can be discarded even when it is adhered to the polylactic acid polymer sheet.
[0028]
【Example】
Examples are shown below, but the present invention is not limited by these. The measured values shown in the examples were calculated by measuring under the following conditions.
[0029]
(1) Average value of ΔP A sheet-like sample is taken from a portion corresponding to the stretched area magnification of the molded portion, that is, a portion corresponding to a value corresponding to a value obtained by dividing the thickness of the original sheet by the stretched area magnification. The refractive index (α, β, γ) in the three orthogonal directions was measured with an Atsube refractometer and calculated by the following equation.
ΔP = {(γ + β) / 2} −α
(Α <β <γ)
γ: Maximum refractive index in the sample plane β: Refractive index in the sample plane direction orthogonal thereto α: Refractive index in the sample thickness direction
(2) Stretched area magnification The surface area of the molded part after molding was divided by the area of the stretched original sheet to obtain a stretched area magnification.
[0031]
(3) Measured based on haze JIS-K7105.
[0032]
(4) Formability (drawdown property)
At the time of thermoforming preheating, “x” indicates that the sheet is drawn down and cannot be molded, “Δ” indicates that the sheet is drawn down but can be molded, and “o” indicates that the sheet is hardly drawn down.
[0033]
(5) The heat-resistant molded product was allowed to stand in an oven controlled at 50 ° C. for 30 minutes, and the volume before and after the test was measured by adding water. After that, the volume retention rate was obtained by the following formula and used as an index of heat resistance.
Volume retention (%) = (Volume after test) / (Volume before test) × 100
[0034]
(6) Judgment was made based on the feeling of brittleness. A case where the brittleness was not felt was indicated by ◯, a case where it was slightly brittle, and a case where brittleness was indicated by ×.
[0035]
(7) Comprehensive evaluation The above evaluation items (4), (5), and (6) were comprehensively judged.
[0036]
(8) Glass transition temperature It measured based on JIS-K7121 using DSC-7 made by PerkinElmer.
[0037]
(Examples 1-2 / Comparative Examples 1-4)
Poly L-lactic acid (Shimadzu Corporation: Lacty 5000) with a Tg of 55 ° C and a weight average molecular weight of about 200,000 is melt-extruded from a T-die at 180 ° C, rapidly cooled on a casting drum held at 50 ° C, and unstretched with a thickness of 500 µm A sheet was obtained.
[0038]
The obtained sheet is clamped to a thermoforming machine (PLAVAC-FE36PH type manufactured by Sanwa Kogyo Co., Ltd.), preheated to the molding temperature shown in Table 1 with an infrared heater, and then pushed into a mold by a plug to perform pre-molding and stretching Then, the mold was evacuated and molded into a cup shape. The stretching was performed at the same time as molding.
[0039]
Samples shown in Table 1 were obtained by changing the molding temperature and the stretched area ratio. The stretched area ratio was changed by variously replacing the plug and the mold.
[0040]
(Comparative Example 5)
Casting drum plasticized by adding 6% lactide, poly L-lactic acid with a Tg of 40 ° C. and a weight average molecular weight of about 200,000 (manufactured by Shimadzu Corporation: Lacty 5000), melt-extruded from a T-die at 180 ° C. and kept at 50 ° C. Upon rapid cooling, an unstretched sheet having a thickness of 500 μm was obtained. Table 1 shows the results of molding and evaluating the obtained sheet in the same manner as in Example 1.
[0041]
[Table 1]
Figure 0003662197
[0042]
【The invention's effect】
According to this invention, by molding a thermoformed product having specific characteristics from a polylactic acid polymer which is a degradable polymer, the molded portion is improved in brittleness and excellent in strength. It is possible to obtain a thermoformed product that exhibits a practical strength when brought into contact with the support and is strong as a whole and can withstand distribution and storage, and also has good heat resistance.

Claims (1)

重量平均分子量が100,000以上であり、ガラス転移温度が55〜70℃であるポリ乳酸系重合体からなる非晶質の素材シートを、成形温度95〜140℃の範囲で、真空成形法、プラグアシスト成形法、圧空成形法、雄雌型成形法、又は成形雄型に沿ってシートを変形した後成形雄型を拡張する方法から選ばれる熱成形法で、熱成形加工部分の延伸面積倍率が4〜15倍の範囲となるように成形することにより、成形加工部分の面内配向度ΔPの平均が2×10-3〜30×10-3の範囲内にある加工品を製造する、ポリ乳酸系熱成形加工品の製造方法。An amorphous material sheet made of a polylactic acid polymer having a weight average molecular weight of 100,000 or more and a glass transition temperature of 55 to 70 ° C., in a molding temperature range of 95 to 140 ° C., a vacuum forming method, Stretch area ratio of thermoformed part selected from plug-assist molding method, compressed air molding method, male-female molding method, or thermoforming method selected from the method of extending the molding male mold after deforming the sheet along the molding male mold Is manufactured so that the average in-plane orientation degree ΔP of the processed portion is in the range of 2 × 10 −3 to 30 × 10 −3 . A method for producing a polylactic acid-based thermoformed product.
JP2001047953A 2001-02-23 2001-02-23 Polylactic acid-based thermoformed products Expired - Fee Related JP3662197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001047953A JP3662197B2 (en) 2001-02-23 2001-02-23 Polylactic acid-based thermoformed products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001047953A JP3662197B2 (en) 2001-02-23 2001-02-23 Polylactic acid-based thermoformed products

Publications (2)

Publication Number Publication Date
JP2002248677A JP2002248677A (en) 2002-09-03
JP3662197B2 true JP3662197B2 (en) 2005-06-22

Family

ID=18909290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001047953A Expired - Fee Related JP3662197B2 (en) 2001-02-23 2001-02-23 Polylactic acid-based thermoformed products

Country Status (1)

Country Link
JP (1) JP3662197B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390543B2 (en) 2001-07-19 2008-06-24 Toyo Seikan Kaisha Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
JPWO2004007197A1 (en) * 2002-07-11 2005-11-10 三菱樹脂株式会社 Biodegradable laminated sheet and molded body using this biodegradable laminated sheet
JP2004299711A (en) * 2003-03-31 2004-10-28 Kanebo Ltd Hinged molding and container made of the same
CN113573869A (en) 2019-03-22 2021-10-29 株式会社钟化 Poly (3-hydroxybutyrate) -based resin sheet for thermoforming, molded article thereof, and method for producing same

Also Published As

Publication number Publication date
JP2002248677A (en) 2002-09-03

Similar Documents

Publication Publication Date Title
JP3258302B2 (en) Biodegradable biaxially stretched film
KR100981484B1 (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet for thermoforming, and thermoformed object obtained therefrom
JP4804179B2 (en) Polylactic acid composition and molded product comprising the composition
WO2006095923A1 (en) Polylactic acid composition and moldings thereof
WO2007139236A1 (en) Moldings of polylactic acid compositions
JPH0925345A (en) Polylactic acid molding
JP5517276B2 (en) Polyester film
JP3563436B2 (en) Thermoformed product of polylactic acid polymer
JP3866465B2 (en) Molded product of polylactic acid polymer and molding method thereof
JP3662197B2 (en) Polylactic acid-based thermoformed products
JP3889376B2 (en) Battery package and manufacturing method thereof
JP3592799B2 (en)   Method for molding polylactic acid-based polymer, polylactic acid-based molded article, and polylactic acid-based molded article
JP2006001574A (en) Battery package and its manufacturing method
JP3902371B2 (en) Biodegradable laminated sheet
JP3984492B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
JP4288268B2 (en) Biodegradable laminated sheet
JPH09174674A (en) Blister molding method for biaxially oriented lactic acid polymer film
JPH0931216A (en) Poly(lactic acid) sheet
JP4452293B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
JP2004348977A (en) Package for battery
JP4080953B2 (en) Polylactic acid-based heat-folded molded body and method for producing the same
JP3490241B2 (en) Degradable films or sheets, molded articles made of these, and methods for decomposing them
JP2005255839A (en) Container made of polylactic acid polymer excellent in impact resistance and heat resistance, and method for forming the same
JP2001150531A (en) Molding of polylactic acid-based polymer and method for molding thereof
JP4206302B2 (en) Polylactic acid-based laminated sheet for heat bending molding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees