JP3330712B2 - Method for producing polylactic acid-based film - Google Patents

Method for producing polylactic acid-based film

Info

Publication number
JP3330712B2
JP3330712B2 JP137594A JP137594A JP3330712B2 JP 3330712 B2 JP3330712 B2 JP 3330712B2 JP 137594 A JP137594 A JP 137594A JP 137594 A JP137594 A JP 137594A JP 3330712 B2 JP3330712 B2 JP 3330712B2
Authority
JP
Japan
Prior art keywords
film
polylactic acid
acid
stretching
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP137594A
Other languages
Japanese (ja)
Other versions
JPH07207041A (en
Inventor
潤 高木
滋憲 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Mitsubishi Plastics Inc
Original Assignee
Shimadzu Corp
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11499747&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3330712(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shimadzu Corp, Mitsubishi Plastics Inc filed Critical Shimadzu Corp
Priority to JP137594A priority Critical patent/JP3330712B2/en
Publication of JPH07207041A publication Critical patent/JPH07207041A/en
Application granted granted Critical
Publication of JP3330712B2 publication Critical patent/JP3330712B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリ乳酸系重合体
からなるフィルムの製造方法に関するものである。
The present invention relates to a method for producing a film made of a polylactic acid-based polymer.

【0002】[0002]

【従来の技術】現在、透明性が良く、強度、熱寸法安定
性に優れたフイルムとしては、例えばポリエチレンテレ
フタレート延伸フイルムをはじめとして、多くの高分子
材料フイルムが知られており産業界で広く利用され、消
費されている。しかしながら、これらのフイルムは自然
環境下に棄却されると、その安定性のため分解すること
なく残留し、景観を損ない、魚、野鳥などの生活環境を
汚染するなどの問題を引き起こしている。
2. Description of the Related Art At present, as a film excellent in transparency, strength, and thermal dimensional stability, many polymer material films including a polyethylene terephthalate stretched film are known and widely used in industry. Is being consumed. However, when these films are rejected in the natural environment, they remain without being decomposed due to their stability, causing problems such as spoiling the landscape and polluting the living environment of fish and birds.

【0003】そこで、これらの問題を生じない分解性重
合体からなる材料が要求されており、実際多くの研究、
開発が行なわれている。その一例として、ポリ乳酸があ
る。ポリ乳酸は、土壌中において自然に加水分解が進行
し、土中に原形が残らず、ついで微生物により無害な分
解物となることが知られている。
[0003] Therefore, there is a demand for a material made of a degradable polymer which does not cause these problems.
Development is taking place. One example is polylactic acid. It is known that polylactic acid naturally undergoes hydrolysis in soil, does not remain in its original form in soil, and then becomes a harmless degradation product by microorganisms.

【0004】しかし、ポリ乳酸のフィルムについては、
これまでほとんど知られておらず、特に工業的に有用な
強度、熱寸法安定性ともに優れたフィルム及びその製造
方法はいまだ知られていなかった。
However, regarding the polylactic acid film,
A film which has been hardly known until now, and which is particularly industrially useful and has excellent strength and thermal dimensional stability, and its production
The method was not yet known.

【0005】[0005]

【本発明が解決しようとする課題】本発明は、実用的な
強度と熱寸法安定性を有するポリ乳酸系フィルムの製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is directed to the production of a polylactic acid-based film having practical strength and thermal dimensional stability.
The aim is to provide a method .

【0006】[0006]

【課題を解決するための手段】本発明はL−乳酸が97
重量%以上であるポリ乳酸、L−乳酸が97重量%以上
であるポリ乳酸と他のヒドロキシカルボン酸との共重合
体、もしくはこれらの混合物からなり、可塑剤及び相溶
性の改質剤を含まないポリ乳酸系重合体を溶融押出後に
圧延することなく急冷して得られた未延伸シートを50
〜100℃の温度範囲で長手方向にロール延伸し、次い
で幅方向にテンターで延伸し、さらに熱処理することに
より、面配向度△Pが3.0×10-3以上、フィルムを
昇温したときの結晶融解熱量△Hmと昇温中の結晶化に
より発生する結晶化熱量△Hcとの差(△Hm−△H
c)が20J/g以上であるポリ乳酸系フィルムを製造
する方法である。
According to the present invention, L-lactic acid has a content of 97%.
Polylactic acid and L-lactic acid are 97% by weight or more
Of poly (lactic acid), which is a carboxylic acid, with other hydroxycarboxylic acids
Or a mixture of these, with plasticizer and
After melt-extrusion of polylactic acid-based polymer containing no water-soluble modifier
50% of unstretched sheet obtained by quenching without rolling
Roll stretching in the longitudinal direction at a temperature range of ~ 100 ° C,
To stretch in the width direction with a tenter and heat-treat it further
Thus , the degree of plane orientation ΔP is 3.0 × 10 −3 or more, and the difference between the heat of crystal fusion ΔHm when the film is heated and the heat of crystallization ΔHc generated by crystallization during the temperature rise (ΔHm − △ H
Production of polylactic acid-based film having c) of 20 J / g or more
How to

【0007】以下、本発明を詳しく説明する。本発明に
用いられるポリ乳酸系重合体とは、L−乳酸が97重量
%以上であるポリ乳酸、L−乳酸が97重量%以上であ
るポリ乳酸と他のヒドロキシカルボン酸との共重合体、
もしくはこれらの混合物からなり、可塑剤及び相溶性の
改質剤を含まないポリ乳酸系重合体である。また成形加
工性、フィルム物性を調整する目的で、滑剤、無機フィ
ラー、紫外線吸収剤などの添加剤を添加することも可能
である。
Hereinafter, the present invention will be described in detail. The polylactic acid-based polymer used in the present invention is as follows: L-lactic acid is 97% by weight
% Or more of polylactic acid and L-lactic acid is 97% by weight or more.
Copolymers of polylactic acid and other hydroxycarboxylic acids,
Or consist of a mixture of these, plasticizer and compatible
It is a polylactic acid-based polymer containing no modifier. Further, additives such as a lubricant, an inorganic filler, and an ultraviolet absorber can be added for the purpose of adjusting the moldability and the film properties.

【0008】乳酸としては、L−乳酸、D−乳酸が挙げ
られ、他のヒドロキシカルボン酸としては、グリコール
酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒ
ドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキ
シカプロン酸などが代表的に挙げられる。
Lactic acid includes L-lactic acid and D-lactic acid, and other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, and 4-hydroxyvaleric acid. And 6-hydroxycaproic acid.

【0009】これらの重合法としては、縮合重合法、開
環重合法など、公知のいずれの方法を採用することも可
能であり、さらには、分子量増大を目的として少量の鎖
延長剤、例えば、ジイソシアネート化合物、ジエポキシ
化合物、酸無水物などを使用しても構わない。重合体の
重量平均分子量としては、1万から100万が好まし
く、かかる範囲を下まわると実用物性がほとんど発現さ
れず、上まわる場合には、溶融粘度が高くなりすぎ成形
加工性に劣る。
As these polymerization methods, any of known methods such as condensation polymerization method and ring-opening polymerization method can be adopted. Further, a small amount of a chain extender such as A diisocyanate compound, a diepoxy compound, an acid anhydride and the like may be used. The weight-average molecular weight of the polymer is preferably 10,000 to 1,000,000. If the weight-average molecular weight is below the range, practical physical properties are hardly exhibited. If the weight-average molecular weight exceeds the range, the melt viscosity becomes too high and molding processability is poor.

【0010】本発明におけるポリ乳酸系フィルムの製造
方法は、これらの重合体を溶融押出後に圧延することな
く急冷し、しかるのちに得られ未延伸シートを長手方向
にロール延伸し、次いで幅方向にテンターで延伸し、さ
らに熱処理することにより、面配向度△Pが3.0×1
-3 以上、フィルムを昇温したときの結晶融解熱量△H
mと昇温中の結晶化により発生する結晶化熱量△Hcと
の差(△Hm−△Hc)が20J/g以上であるポリ乳
酸系フィルムを製造する方法である。
[0010] Production of the polylactic acid-based film of the present invention
The method does not require rolling these polymers after melt extrusion.
Rapidly cool, and then obtain the unstretched sheet in the longitudinal direction.
And then stretched in the width direction with a tenter.
Heat treatment, the degree of plane orientation ΔP is 3.0 × 1
0 -3 or more, heat of crystal fusion when film is heated ΔH
m and the heat of crystallization △ Hc generated by crystallization during heating.
Having a difference (ΔHm−ΔHc) of 20 J / g or more
This is a method for producing an acid-based film.

【0011】本発明においては、重合体の組成と成形加
工条件との兼ねあいにより、フイルムの面配向度ΔP
と、フイルムの結晶融解熱量と結晶化熱量との差(ΔH
−ΔH)とを、一定の値以上にすることが最も重要
である。すなわち、ポリ乳酸系フイルムにおいては、素
材が本来有しているところの脆性をΔPを増大させるこ
とにより改良し、ΔPの上昇に伴い低下する熱寸法安定
性を(ΔH−ΔH)を増大させることにより改良で
きるのである。
In the present invention, the degree of plane orientation ΔP of the film is determined by the balance between the composition of the polymer and the molding conditions.
And the difference between the heat of crystal fusion and the heat of crystallization of the film (ΔH
It is most important that m− ΔH c ) be equal to or more than a certain value. That is, in the polylactic acid-based film, the brittleness inherent in the material is improved by increasing ΔP, and the thermal dimensional stability, which decreases with an increase in ΔP, is increased by (ΔH m −ΔH c ). By doing so, it can be improved.

【0012】ΔPは、フイルムの厚み方向に対する面方
向の配向度を表わし、通常直交3軸方向の屈折率を測定
し以下の式で算出される。 ΔP={(γ+β)/2} − α (α<β<γ) ここで、γ、βがフイルム面に平行な直交2軸の屈折
率、αはフイルム厚さ方向の屈折率である。
ΔP represents the degree of orientation in the plane direction with respect to the thickness direction of the film, and is usually calculated by the following formula by measuring the refractive index in the direction of three orthogonal axes. .DELTA.P = {(. Gamma. +. Beta.) / 2}-. Alpha. (.Alpha. <. Beta. <. Gamma.) Where .gamma. And .beta. Are the refractive indices of two orthogonal axes parallel to the film surface, and .alpha. Is the refractive index in the film thickness direction.

【0013】ΔPは結晶化度や結晶配向にも依存する
が、大きくはフイルム面内の分子配向に依存する。つま
りフイルム面内、特にフイルムの流れ方向および/また
はそれと直交する方向の1または2方向に対し、分子配
向を増大させることにより、無配向シート・フイルムで
は1.0×10-3以下であるΔPを本発明で規定する
3.0×10-3以上に増大させることができる。ΔPを
増大させる方法としては、既知のあらゆるフイルム延伸
法に加え、電場や磁場を利用した分子配向法を採用する
こともできる。
ΔP also depends on the degree of crystallinity and crystal orientation, but largely depends on the molecular orientation in the film plane. In other words, by increasing the molecular orientation in the film plane, especially in one or two directions perpendicular to the film flow direction and / or the direction perpendicular to the film direction, ΔP which is 1.0 × 10 −3 or less for the non-oriented sheet film is obtained. Can be increased to 3.0 × 10 −3 or more defined in the present invention. As a method for increasing ΔP, a molecular orientation method using an electric field or a magnetic field can be adopted in addition to any known film stretching method.

【0014】テンター法による2軸延伸を採用する場合
の延伸条件としては、延伸温度50〜100℃、延伸倍
率1.5倍〜5倍、延伸速度100%/分〜10000
%/分が一般的ではあるが、この適正範囲は重合体の組
成や、未延伸シートの熱履歴によって異なってくるの
で、ΔPの値を見ながら適宜決められる。チユーブラ延
伸法など他の延伸法を採用する場合も同様である。ΔP
が3.0×10-3を下まわる場合には、ポリ乳酸系フイ
ルムは強度に乏しく脆いため実用に供し難いが、3.0
×10-3以上とすることで強度・脆さが改善され実用上
問題がなくなる。
When biaxial stretching by the tenter method is employed, the stretching conditions include a stretching temperature of 50 to 100 ° C., a stretching ratio of 1.5 to 5 times, and a stretching speed of 100% / min to 10,000.
% / Min is generally used, but the appropriate range varies depending on the composition of the polymer and the heat history of the unstretched sheet, and thus is appropriately determined while checking the value of ΔP. The same applies to the case where another stretching method such as a chubra stretching method is employed. ΔP
Is less than 3.0 × 10 −3 , the polylactic acid-based film has poor strength and is brittle, so that it is difficult to practically use the film.
By setting it to 10 3 or more, strength and brittleness are improved and practical problems are eliminated.

【0015】しかし、ΔPが3.0×10-3以上となる
と、フイルムの熱寸法安定性が不良となり、フイルムと
しての実用特性が大きく損われる。熱寸法安定性とは、
フイルムを常温よりやや高い温度の雰囲気にさらした時
に、フイルムが収縮せず元の寸法のままいられるかどう
かの指標であり、フイルムの使用される多くの用途にお
いては、通常熱寸法安定性が高いものが求められる。
However, when ΔP is 3.0 × 10 −3 or more, the thermal dimensional stability of the film becomes poor, and the practical characteristics of the film are greatly impaired. What is thermal dimensional stability?
It is an indicator of whether the film can remain in its original dimensions without shrinking when the film is exposed to an atmosphere at a temperature slightly higher than room temperature.In many applications where the film is used, the thermal dimensional stability is usually High things are required.

【0016】ΔPが3.0×10-3以上のポリ乳酸系フ
イルムにおいては、実用的な熱寸法安定性を得るため
に、フイルムの(ΔH−ΔH)を20J/g以上に
制御することが重要である。すなわち、(ΔH−ΔH
)が20J/gを下まわる場合は、フイルムの熱寸法
安定性が不良であり、多くの用途で実用に供せず、20
J/g以上であれば、熱寸法安定性が良好となる。
In the case of a polylactic acid film having a ΔP of 3.0 × 10 −3 or more, (ΔH m −ΔH c ) of the film is controlled to 20 J / g or more in order to obtain practical thermal dimensional stability. This is very important. That is, (ΔH m −ΔH
When c ) is less than 20 J / g, the thermal dimensional stability of the film is poor, and the film is not practically used in many applications.
If it is at least J / g, the thermal dimensional stability will be good.

【0017】ΔH、ΔHは、フイルムサンプルの示
差走査熱量測定(DSC)により求められるもので、Δ
は昇温速度10℃/分でフイルムを昇温したときの
全結晶を融解させるのに必要な熱量であって、重合体の
結晶融点付近に現れる結晶融解による吸熱ピークの面積
から求められる。またΔHは、昇温過程で生じる結晶
化の際に発生する発熱ピークの面積から求められる。
ΔH m and ΔH c are obtained by differential scanning calorimetry (DSC) of a film sample.
Hm is the amount of heat required to melt all the crystals when the film is heated at a heating rate of 10 ° C./min, and is determined from the area of the endothermic peak due to crystal melting which appears near the crystal melting point of the polymer. . Further, ΔH c is determined from the area of an exothermic peak generated during crystallization that occurs during the temperature raising process.

【0018】ΔHは、主に重合体そのものの結晶性に
依存し、結晶性が大きい重合体では大きな値をとる。ち
なみに共重合のないホモのL−乳酸重合体では、約50
J/gとなる。またΔHは、重合体の結晶性に対する
その時のフイルムの結晶化度に関係する指標であり、Δ
が大きい時は、昇温過程でフイルムの結晶化が進行
する、すなわち重合体が有する結晶性を基準にフイルム
の結晶化度が相対的に低かったことを表わす。逆に、Δ
が小さい時は、重合体が有する結晶性を基準にフイ
ルムの結晶化度が相対的に高かったことを表わす。
ΔH m mainly depends on the crystallinity of the polymer itself, and takes a large value in a polymer having high crystallinity. Incidentally, in the case of a homo-L-lactic acid polymer without copolymerization, about 50
J / g. ΔH c is an index related to the crystallinity of the film at that time with respect to the crystallinity of the polymer.
When Hc is large, it indicates that the crystallization of the film progresses during the heating process, that is, the crystallinity of the film is relatively low based on the crystallinity of the polymer. Conversely, Δ
When Hc is small, it indicates that the crystallinity of the film was relatively high based on the crystallinity of the polymer.

【0019】すなわち、(ΔH−ΔH)を増大させ
るための1つの方向は、結晶性が高い重合体を原料に、
結晶化度の比較的高いフイルムをつくることである。フ
イルムの結晶化度は、重合体の組成に少なからず依存す
るが、フイルムの成形加工条件によっても、大きく影響
される。
That is, one direction for increasing (ΔH m −ΔH c ) is to use a polymer having high crystallinity as a raw material.
The purpose is to produce a film having a relatively high crystallinity. The degree of crystallinity of a film depends to a large extent on the composition of the polymer, but is also greatly affected by the film processing conditions.

【0020】成形加工工程、特にテンター法2軸延伸に
おいてフイルムの結晶化度を上げるためには、延伸倍率
を上げ配向結晶化を促進する、延伸後結晶化温度以上の
雰囲気で熱処理を行うなどの方法が有効である。
In order to increase the crystallinity of the film in the forming process, particularly in the biaxial stretching by the tenter method, the stretching ratio is increased to promote the orientational crystallization, and after the stretching, heat treatment is performed in an atmosphere at a temperature higher than the crystallization temperature. The method is effective.

【0021】以下に実施例を示すが、これらにより本発
明は何ら制限を受けるものではない。 なお、実施例中
に示す測定値は次に示すような条件で測定を行い、算出
した。(1)ΔP アツベ屈折計によって直交3軸方向の屈折率(α,β,
γ)を測定し、次式で算出した。
Examples are shown below, but the present invention is not limited by these. The measured values shown in the examples were calculated by measuring under the following conditions. (1) ΔP The refractive index (α, β,
γ) was measured and calculated by the following equation.

【0022】 ΔP={(γ+β)/2} − α (α<β<γ) γ:フイルム面内の最大屈折率 β:それに直交するフイルム面内方向の屈折率 α:フイルム厚さ方向の屈折率ΔP = {(γ + β) / 2} −α (α <β <γ) γ: Maximum refractive index in the film plane β: Refractive index in the direction perpendicular to the film α: Refraction in the thickness direction of the film rate

【0023】(2)ΔH−ΔH パーキンエルマー製DSC−7を用い、フイルムサンプ
ル10mgをJIS−K7122に基づいて、昇温速度
10℃/分で昇温したときのサーモグラムから結晶融解
熱量ΔHと結晶化熱量ΔHを求め、算出した。
(2) ΔH m −ΔH c Using a DSC-7 manufactured by PerkinElmer, a 10 mg film sample was heated at a rate of 10 ° C./min based on JIS-K7122 to obtain a heat of crystal fusion from a thermogram. seeking [Delta] H m and heat of crystallization [Delta] H c, it was calculated.

【0024】(3)引張り強度と脆さ 引張り強度は東洋精機テンシロンII型機を用い、JIS
−K7127に基づいて測定した。また、脆さは触感に
て判断した。MDはフィルムの流れ方向、TDはフィル
ムの流れに対し直交する方向を示す。 (4)熱寸法安定性 フィルムサンプルを100mm×100mmに切り出
し、80℃の温水バスに10秒浸潰した後、その寸法
(Lmm)を測り、元の寸法100mmに対する熱収縮
分の割合(熱収縮率)=(100−L)/100%を算
出し、その値を(MD収縮率×TD収縮率)で表記し
た。
(3) Tensile strength and brittleness The tensile strength was measured using a Toyo Seiki Tensilon II type machine according to JIS.
-Measured based on K7127. In addition, the brittleness was judged by a tactile sensation. MD indicates the direction of film flow, and TD indicates the direction perpendicular to the film flow. (4) Thermal dimensional stability A film sample was cut out to 100 mm x 100 mm, immersed in a hot water bath at 80 ° C for 10 seconds, and then sized.
(Lmm) was measured, and the ratio of heat shrinkage to the original dimension of 100 mm ( heat shrinkage) = (100−L) / 100% was calculated, and the value was expressed as ( MD shrinkage × TD shrinkage ).

【0025】[0025]

【実施例】【Example】

(実施例1〜2)重量平均分子量10万のポリL−乳酸
を30mmφ単軸エクストルダーにて、Tダイより押出
し、キヤステイングロールにて急冷し、厚み200μm
の未延伸シートを得た。続いて長手方向にロール延伸、
次いで、幅方向にテンターで延伸し、引き続きテンター
内で熱処理した。延伸条件およびそれに続く熱処理条件
を種々変化させ、表1に示すフイルムサンプルを得た。
フイルムの流れ速度は3m/分、延伸・熱処理各ゾーン
の通過時間はそれぞれ20秒である。
(Examples 1 and 2) Poly L-lactic acid having a weight-average molecular weight of 100,000 was extruded from a T-die with a 30 mmφ single-screw extruder, quenched with a casting roll, and was 200 μm thick.
Was obtained. Subsequently, roll stretching in the longitudinal direction,
Next, the film was stretched in the width direction with a tenter, and subsequently heat-treated in the tenter. The film samples shown in Table 1 were obtained by variously changing the stretching conditions and the subsequent heat treatment conditions.
The flow speed of the film is 3 m / min, and the passage time in each of the stretching and heat treatment zones is 20 seconds.

【0026】[0026]

【表1】 [Table 1]

【0027】表1の結果から、ΔPおよび(ΔH−Δ
)が本発明の範囲内にあるフイルムは、脆さがなく
強度的に優れ、また熱寸法安定性も良好なことが分か
る。
From the results in Table 1, ΔP and (ΔH m −Δ
It can be seen that a film having H c ) within the range of the present invention has no brittleness, is excellent in strength, and has good thermal dimensional stability.

【0028】(実施例3)L−乳酸97重量%とグリコ
ール酸3重量%からなる分子量20万の共重合体を用
い、延伸・熱処理条件を変えるのみで実施例1と同様の
方法によりポリ乳酸系フイルムを得た結果を表2に示
す。
Example 3 A copolymer of 97% by weight of L-lactic acid and 3% by weight of glycolic acid having a molecular weight of 200,000 was used, and polylactic acid was obtained in the same manner as in Example 1 except that the stretching and heat treatment conditions were changed. Table 2 shows the results of obtaining the base film.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】本発明の方法を実施すれば、分解性重合
体であるポリ乳酸系重合体から、強度、熱寸法安定性に
優れたポリ乳酸系フィルムを得ることができる。
According to the method of the present invention , a polylactic acid-based film having excellent strength and thermal dimensional stability can be obtained from a polylactic acid-based polymer which is a degradable polymer.

フロントページの続き (56)参考文献 特開 昭63−241024(JP,A) 特開 昭61−36321(JP,A) 特開 昭59−215319(JP,A) 特開 平7−205278(JP,A) 特開 平7−177826(JP,A) 特開 平7−165896(JP,A) 特開 平7−118513(JP,A) 特開 平7−76628(JP,A) 特開 平6−330001(JP,A) 特開 平6−256481(JP,A) 特開 平6−256480(JP,A) 特開 平6−240037(JP,A) 特開 平6−191550(JP,A) 特開 平6−171664(JP,A) 特開 平6−166763(JP,A) 特開 平6−142182(JP,A) 特開 平6−122148(JP,A) 特開 平6−90628(JP,A) 特開 平6−32365(JP,A) 特開 平6−23836(JP,A) 特開 平5−247245(JP,A) 特開 平5−212790(JP,A) 特開 平5−152638(JP,A) 特開 平5−39381(JP,A) 特開 平5−38784(JP,A) 特開 平4−335060(JP,A) 特開 平4−283227(JP,A) 特開 平2−153921(JP,A) 特開 平1−198553(JP,A) 特開 平1−108226(JP,A) 特表 平9−501456(JP,A) 特表 平8−501584(JP,A) 特表 平7−504227(JP,A) 特表 平5−508819(JP,A) 特表 平4−504731(JP,A) 米国特許5076983(US,A) 米国特許4057537(US,A) 国際公開92/4413(WO,A1) 国際公開92/4412(WO,A1) 国際公開92/4410(WO,A1) 松本喜代一 他,ポリ乳酸フィルムの 延伸に伴う構造と物性の変化,材料 (J.Soc.Mat.Sci.Jap an),日本,1994年12月,Vol. 43,No.495,,pp.1520−1524 (58)調査した分野(Int.Cl.7,DB名) B29C 55/00 - 55/30 C08J 5/18 C08G 63/00 - 63/91 C08L 1/00 - 101/16 CA(STN) REGISTRY(STN) WPI/L(QUESTEL) 特許ファイル(PATOLIS)Continuation of the front page (56) References JP-A-63-241024 (JP, A) JP-A-61-36321 (JP, A) JP-A-59-215319 (JP, A) JP-A-7-205278 (JP) JP-A-7-177826 (JP, A) JP-A-7-165896 (JP, A) JP-A-7-118513 (JP, A) JP-A-7-76628 (JP, A) 6-330001 (JP, A) JP-A-6-256481 (JP, A) JP-A-6-256480 (JP, A) JP-A-6-240037 (JP, A) JP-A-6-191550 (JP, A A) JP-A-6-171664 (JP, A) JP-A-6-166763 (JP, A) JP-A-6-142182 (JP, A) JP-A-6-122148 (JP, A) JP-A-6 JP-A-90628 (JP, A) JP-A-6-32365 (JP, A) JP-A-6-23836 (JP, A) JP-A-5-247245 (JP, A) JP-A-5-212790 (JP, A) JP-A-5-152638 (JP, A) JP-A-5-39381 (JP, A) JP-A-5-38784 (JP JP-A-4-335060 (JP, A) JP-A-4-283227 (JP, A) JP-A-2-153921 (JP, A) JP-A-1-198553 (JP, A) JP Hei 1-108226 (JP, A) Special table Hei 9-501456 (JP, A) Special table Hei 8-501584 (JP, A) Special table Hei 7-504227 (JP, A) Special table Hei 5-508819 (JP, A) U.S. Pat. No. 5,076,983 (US, A) U.S. Pat. No. 4,057,537 (US, A) WO92 / 4413 (WO, A1) WO92 / 4412 (WO, A1) International Publication No. 92/4410 (WO, A1) Kiyoichi Matsumoto et al., Changes in structure and physical properties of polylactic acid film with stretching, Materials (J. Soc. Mat. Sci. Japan), Japan, December 1994, Vol. 43, No. 495, p. 1520-1524 (58) Field surveyed (Int.Cl. 7 , DB name) B29C 55/00-55/30 C08J 5/18 C08G 63/00-63/91 C08L 1/00-101/16 CA (STN ) REGISTRY (STN) WPI / L (QUESTEL) Patent file (PATOLIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 L−乳酸が97重量%以上であるポリ乳
酸、L−乳酸が97重量%以上であるポリ乳酸と他のヒ
ドロキシカルボン酸との共重合体、もしくはこれらの混
合物からなり、可塑剤及び相溶性の改質剤を含まないポ
リ乳酸系重合体を溶融押出後に圧延することなく急冷し
て得られた未延伸シートを50〜100℃の温度範囲で
長手方向にロール延伸し、次いで幅方向にテンターで延
伸し、さらに熱処理することにより、面配向度△Pが
3.0×10-3以上、フィルムを昇温したときの結晶融
解熱量△Hmと昇温中の結晶化により発生する結晶化熱
量△Hcとの差(△Hm−△Hc)が20J/g以上で
あるポリ乳酸系フィルムを製造する方法。
1. A polymilk having an L-lactic acid content of 97% by weight or more.
Polylactic acid containing 97% by weight or more of acid and L-lactic acid
Copolymer with droxycarboxylic acid or a mixture of these
Compound containing no plasticizer and no compatible modifier.
Rapid quenching of lactic acid-based polymer without rolling after melt extrusion
The unstretched sheet obtained in a temperature range of 50 to 100 ° C.
Roll stretching in the longitudinal direction, and then stretching with a tenter in the width direction
By stretching and further heat-treating, the degree of plane orientation {P is 3.0 × 10 −3 or more, the heat of crystal fusion when the film is heated {Hm and the heat of crystallization generated by crystallization during the temperature rise} A method for producing a polylactic acid-based film having a difference from Hc (ΔHm−ΔHc) of 20 J / g or more .
JP137594A 1994-01-11 1994-01-11 Method for producing polylactic acid-based film Ceased JP3330712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP137594A JP3330712B2 (en) 1994-01-11 1994-01-11 Method for producing polylactic acid-based film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP137594A JP3330712B2 (en) 1994-01-11 1994-01-11 Method for producing polylactic acid-based film

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002174903A Division JP2003002984A (en) 2002-06-14 2002-06-14 Polylactic acid film
JP2002174582A Division JP2002371144A (en) 2002-06-14 2002-06-14 Polylactide film

Publications (2)

Publication Number Publication Date
JPH07207041A JPH07207041A (en) 1995-08-08
JP3330712B2 true JP3330712B2 (en) 2002-09-30

Family

ID=11499747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP137594A Ceased JP3330712B2 (en) 1994-01-11 1994-01-11 Method for producing polylactic acid-based film

Country Status (1)

Country Link
JP (1) JP3330712B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916631B2 (en) 2010-01-08 2014-12-23 Nitto Denko Corporation Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof
US10138336B2 (en) 2010-01-28 2018-11-27 Nitto Denko Corporation Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof
US10253145B2 (en) 2008-10-02 2019-04-09 Nitto Denko Corporation Method for producing a polylactic acid-based film or sheet

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328418B2 (en) * 1994-03-28 2002-09-24 三菱樹脂株式会社 Heat-shrinkable polylactic acid film
JP3391593B2 (en) * 1995-01-20 2003-03-31 三菱樹脂株式会社 Oriented polylactic acid-based films and sheets and methods for producing them
JP3388052B2 (en) * 1995-03-16 2003-03-17 三菱樹脂株式会社 Degradable laminate material
JP3330273B2 (en) * 1996-01-11 2002-09-30 三菱樹脂株式会社 Heat-shrinkable polylactic acid-based film and method for producing the same
EP0971345B1 (en) * 1996-12-19 2006-05-03 Matsushita Electric Industrial Co., Ltd. Optical disk and method for recording onto an optical disk
JP2000141955A (en) * 1998-06-03 2000-05-23 Mitsubishi Plastics Ind Ltd Biodegradable card
EP0974615B1 (en) 1998-07-22 2010-07-21 Toyo Boseki Kabushiki Kaisha Aliphatic polyester film and gas barrier film
EP1038906B1 (en) 1999-03-26 2004-01-21 Toyo Boseki Kabushiki Kaisha Polylactic acid film
EP1422044B1 (en) 2001-07-19 2010-10-13 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
WO2003070450A1 (en) * 2002-02-21 2003-08-28 Riken High-strength film of polyhydroxyalkanoic acid and process for producing the same
TW200404859A (en) 2002-09-06 2004-04-01 Mitsubishi Plastics Inc Flame-retardant resin composition and flame-retardant injection molding
JP2003212270A (en) * 2002-10-30 2003-07-30 Mitsubishi Plastics Ind Ltd Container for seeing through contents
JP5105692B2 (en) * 2003-07-17 2012-12-26 東レ株式会社 Polylactic acid-based stretched film
CN101180362B (en) * 2005-03-10 2011-11-02 东赛璐株式会社 Polylactic acid composition and molded product composed of the composition
JP2006299270A (en) * 2006-05-01 2006-11-02 Mitsubishi Plastics Ind Ltd Polylactic acid based shrink sheet-like article and packaging material or shrink label material using the same
EP2042554A1 (en) 2006-06-01 2009-04-01 Tohcello Co., Ltd. Moldings of polylactic acid compositions
JP4934235B2 (en) 2010-08-25 2012-05-16 三井化学株式会社 Polymer piezoelectric material and manufacturing method thereof
JP2011042802A (en) * 2010-10-25 2011-03-03 Toray Ind Inc Polylactic acid stretched film
JP6206701B2 (en) * 2013-03-28 2017-10-04 Dic株式会社 Styrene stretched sheet and molded product thereof

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057537A (en) * 1975-01-28 1977-11-08 Gulf Oil Corporation Copolymers of L-(-)-lactide and epsilon caprolactone
JPH0610254B2 (en) * 1983-05-24 1994-02-09 三井石油化学工業株式会社 Method for producing co-condensed polyester stretched product
JPS6136321A (en) * 1984-07-27 1986-02-21 Daicel Chem Ind Ltd Novel polymer and its resin composition
US4719246A (en) * 1986-12-22 1988-01-12 E. I. Du Pont De Nemours And Company Polylactide compositions
JPH082955B2 (en) * 1987-10-20 1996-01-17 三井東圧化学株式会社 Block copolymer and method for producing the same
JP2587664B2 (en) * 1987-12-28 1997-03-05 タキロン株式会社 Biodegradable and absorbable surgical materials
US5502158A (en) * 1988-08-08 1996-03-26 Ecopol, Llc Degradable polymer composition
JP2725870B2 (en) * 1988-08-08 1998-03-11 バイオパック テクノロジー,リミテッド Degradable lactide thermoplastic
JPH0759630B2 (en) * 1988-12-06 1995-06-28 帝人株式会社 Packaging material
US5076983A (en) * 1990-07-16 1991-12-31 E. I. Du Pont De Nemours And Company Polyhydroxy acid films
EP0548284A1 (en) * 1990-09-06 1993-06-30 Biopak Technology Ltd Packaging thermoplastics from lactic acid
AU8611391A (en) * 1990-09-11 1992-03-30 E.I. Du Pont De Nemours And Company Films containing polyhydroxy acids and a compatibilizer
DE69114140T2 (en) * 1990-09-11 1996-05-30 Du Pont HEAT SHRINKABLE FILMS CONTAINING POLYHYDROXYCARBOXYLIC ACIDS.
JP3054451B2 (en) * 1991-03-11 2000-06-19 三井化学株式会社 Hydrolysable resin composition
JP3167411B2 (en) * 1991-04-26 2001-05-21 三井化学株式会社 Porous film
JP3105020B2 (en) * 1991-05-10 2000-10-30 三井化学株式会社 Thermoplastic decomposable polymer composition
JP3071881B2 (en) * 1991-08-08 2000-07-31 三井化学株式会社 Degradable laminate composition
JP3074404B2 (en) * 1991-07-31 2000-08-07 タキロン株式会社 Polymer piezoelectric material
JPH0539381A (en) * 1991-08-08 1993-02-19 Mitsui Toatsu Chem Inc Biodegradable polymer composition
JP3297068B2 (en) * 1992-02-06 2002-07-02 三井化学株式会社 Shrink label film
JP3218066B2 (en) * 1992-02-06 2001-10-15 三井化学株式会社 Heat shrinkable foam composite sheet
JP2988783B2 (en) * 1992-07-07 1999-12-13 三井化学株式会社 Recovered paper binding strap
JPH0623836A (en) * 1992-07-09 1994-02-01 Shimadzu Corp Production of stretched film of polylactic acid
JPH06122148A (en) * 1992-08-24 1994-05-06 Mitsui Toatsu Chem Inc L-lactic acid based polymer molded form and manufacture thereof
JP3197358B2 (en) * 1992-09-09 2001-08-13 三井化学株式会社 Fruit growing bag
JPH06330001A (en) * 1992-09-28 1994-11-29 Mitsui Toatsu Chem Inc Degradable tacky film
US5338822A (en) * 1992-10-02 1994-08-16 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
JP3023471B2 (en) * 1992-11-06 2000-03-21 タキロン株式会社 Internal fixation material for osteosynthesis
JP3372976B2 (en) * 1992-11-30 2003-02-04 三井化学株式会社 Twist packaging film
JPH06171664A (en) * 1992-12-04 1994-06-21 Mitsui Toatsu Chem Inc Film for packing coin
JP3311404B2 (en) * 1992-12-25 2002-08-05 三井化学株式会社 Degradable self-adhesive tape for binding vegetables
JPH06256480A (en) * 1993-03-04 1994-09-13 Toyobo Co Ltd Biodegradable packaging film
JPH06256481A (en) * 1993-03-05 1994-09-13 Toyobo Co Ltd Biodegrdable agricultural film
US5359026A (en) * 1993-07-30 1994-10-25 Cargill, Incorporated Poly(lactide) copolymer and process for manufacture thereof
JPH0776628A (en) * 1993-09-08 1995-03-20 Mitsui Toatsu Chem Inc Cushioning sheet and composite sheet therefrom
JP3258823B2 (en) * 1993-09-09 2002-02-18 カネボウ株式会社 Biodegradable polyester copolymer, method for producing the same, and molded article from the copolymer
JP3316972B2 (en) * 1993-10-22 2002-08-19 大日本インキ化学工業株式会社 Lactic acid based polymer composition
JP3347440B2 (en) * 1993-12-22 2002-11-20 三井化学株式会社 Agricultural film
JPH07205278A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Production of stretched film of polylactic acid polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
松本喜代一 他,ポリ乳酸フィルムの延伸に伴う構造と物性の変化,材料(J.Soc.Mat.Sci.Japan),日本,1994年12月,Vol.43,No.495,,pp.1520−1524

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10253145B2 (en) 2008-10-02 2019-04-09 Nitto Denko Corporation Method for producing a polylactic acid-based film or sheet
US8916631B2 (en) 2010-01-08 2014-12-23 Nitto Denko Corporation Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof
US10138336B2 (en) 2010-01-28 2018-11-27 Nitto Denko Corporation Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof

Also Published As

Publication number Publication date
JPH07207041A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
JP3330712B2 (en) Method for producing polylactic acid-based film
JP3217240B2 (en) Polylactic acid based molded body
EP1449867B1 (en) Window of polylactic acid based resin films
JP3391593B2 (en) Oriented polylactic acid-based films and sheets and methods for producing them
JP3549968B2 (en) Stretched polylactic acid film or sheet
JPWO2008013295A1 (en) Polylactic acid-based stretched film
JP3328418B2 (en) Heat-shrinkable polylactic acid film
JPH07205278A (en) Production of stretched film of polylactic acid polymer
CN112644123A (en) Toughened biaxially-oriented polylactic acid film and preparation method thereof
JPH1024518A (en) Polylactic biodegradable gas barrier film
WO2002034818A1 (en) Biaxially oriented aliphatic polyester film and process for producing the same
JP2972913B2 (en) Shape memory method and shape restoration method for biodegradable shape memory polymer molded article
JP3366738B2 (en) Degradability information recording card
JP2004051959A (en) Aliphatic polyester film and laminated product
JP3330273B2 (en) Heat-shrinkable polylactic acid-based film and method for producing the same
JP4386386B2 (en) Easy tear laminated polyester film
JP2002371144A (en) Polylactide film
JP3167595B2 (en) Packaging bag made of polylactic acid polymer
JP3522344B2 (en) Degradable protective film for helmet shields and goggle lenses
JP2003002984A (en) Polylactic acid film
JP4543743B2 (en) Biaxially stretched polylactic acid film and container for molding
JPH01229042A (en) Readily cuttable polyester film
KR100888779B1 (en) Polyeseter film having good twistable property
JP2004352334A (en) Stretched polylactic acid packaging film and bag
JP2605812B2 (en) Biaxially stretched polyester film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RVOP Cancellation by post-grant opposition