JP3330273B2 - Heat-shrinkable polylactic acid-based film and method for producing the same - Google Patents

Heat-shrinkable polylactic acid-based film and method for producing the same

Info

Publication number
JP3330273B2
JP3330273B2 JP291296A JP291296A JP3330273B2 JP 3330273 B2 JP3330273 B2 JP 3330273B2 JP 291296 A JP291296 A JP 291296A JP 291296 A JP291296 A JP 291296A JP 3330273 B2 JP3330273 B2 JP 3330273B2
Authority
JP
Japan
Prior art keywords
film
stretching
lactic acid
poly
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP291296A
Other languages
Japanese (ja)
Other versions
JPH09187863A (en
Inventor
滋憲 寺田
潤 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP291296A priority Critical patent/JP3330273B2/en
Publication of JPH09187863A publication Critical patent/JPH09187863A/en
Application granted granted Critical
Publication of JP3330273B2 publication Critical patent/JP3330273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自然環境下で分解
する2軸配向1軸熱収縮性ポリ乳酸系フィルム、詳しく
ポリ(L−乳酸)、ポリ(D−乳酸)、ポリ(DL−
乳酸)もしくはこれらの混合体を延伸してなる耐衝撃性
に優れ、実質的に1軸方向に熱収縮性するフィルムに関
する。
[0001] The present invention relates to a biaxially oriented uniaxially heat-shrinkable polylactic acid-based film which decomposes in a natural environment, more specifically, poly (L-lactic acid), poly (D-lactic acid), poly (DL-lactic acid).
Lactic acid) or a mixture of these, which is excellent in impact resistance and substantially heat-shrinkable in one axis direction.

【0002】[0002]

【従来の技術】熱収縮性フィルムは加熱によって収縮す
る性質を利用して、収縮包装、収縮ラベル、キャップシ
ールなどの用途に広く用いられている。これらには従
来、塩化ビニル系樹脂、ポリスチレン系樹脂、さらに最
近ではポリエステル系樹脂製の延伸フィルムが用いられ
ている。特に1軸方向に延伸して、該方向を主たる収縮
方向にして得られるフィルムは、ポリエチレンテレフタ
レート(PET)ボトルをはじめとする各種プラスチッ
ク容器やガラス容器などのラベル用フィルムあるいは結
束用フィルムとして使用量は拡大している。
2. Description of the Related Art Heat shrinkable films are widely used for shrink wrapping, shrink labels, cap seals and the like, utilizing the property of shrinking by heating. For these, a stretched film made of a vinyl chloride resin, a polystyrene resin, and more recently a polyester resin has been used. In particular, the film obtained by stretching in the uniaxial direction and setting the direction as the main shrinkage direction is used as a label film or a bundling film for various plastic containers and glass containers such as polyethylene terephthalate (PET) bottles. Is expanding.

【0003】しかしながら、これらの材料は発熱量が高
く、焼却処理中に燃焼炉を痛める恐れがある。さらに現
在でも使用量の多い塩化ビニル系樹脂製フィルムはその
自己消火性のため燃焼することができない。また、この
ような焼却できない材料も含めプラスチック製品は埋立
処理されることが多いが、その化学的、生物的安定性の
ためほとんど分解せず残留し、埋立地の寿命を短くする
などの問題をおこしている。したがって燃焼熱量が低
く、土壌中で分解し、かつ安全であるものが望まれ、多
くの研究がなされている。その一例としてポリ乳酸があ
る。ポリ乳酸は燃焼熱量はポリエチレンの半分以下、土
中・水中で自然に加水分解が進行し、次いで微生物によ
り無害な分解物となる。現在、ポリ乳酸を用いてフィル
ム・シートやボトルなどの容器などを得る研究がなされ
ている。
[0003] However, these materials have a high calorific value and may damage the combustion furnace during the incineration process. Furthermore, a vinyl chloride resin film, which is still used in a large amount, cannot be burned due to its self-extinguishing property. In addition, plastic products, including materials that cannot be incinerated, are often landfilled, but due to their chemical and biological stability, they remain with little decomposition and shorten the life of landfills. I'm offended. Therefore, a material that has a low heat of combustion, decomposes in soil, and is safe is desired, and many studies have been made. One example is polylactic acid. Polylactic acid has a heat of combustion less than half that of polyethylene, and hydrolyzes spontaneously in soil and water, and then becomes harmless degradation products by microorganisms. At present, studies are being made to obtain containers such as films, sheets and bottles using polylactic acid.

【0004】ポリ乳酸についても1軸延伸することで1
軸収縮フィルムを得ることができ、上記ラベルや結束用
フィルムとして用いることもできる。しかし、ポリ乳酸
はそのままでは脆いといった欠点を有し、1軸延伸する
ことで該方向への脆さ、特に強度および伸びは改良され
るが、該方向と垂直方向については脆いままとなる。一
方、2軸に延伸して得られる2軸配向フィルムは長手方
向および幅方向ともに脆さが改良され、強度が増すこと
が特表平5−508819、特開平6−23836ある
いは特開平7−205278に開示されている。また、
特開平7−2027041では結晶性の高いポリ乳酸を
延伸した後、熱処理することで2軸に熱寸法安定性にす
ぐれたポリ乳酸系フィルムが得られることが記述されて
いる。しかし、これでは所望の1軸収縮フィルムを得る
ことはできない。
[0004] Polylactic acid can also be obtained by uniaxial stretching.
An axially shrinkable film can be obtained, and can be used as the label or the binding film. However, polylactic acid has a disadvantage that it is brittle as it is, and although uniaxial stretching improves brittleness in the direction, particularly strength and elongation, it remains brittle in a direction perpendicular to the direction. On the other hand, a biaxially oriented film obtained by stretching biaxially has improved brittleness in both the longitudinal direction and the width direction and has increased strength, as shown in JP-A-5-508819, JP-A-6-23836 or JP-A-7-205278. Is disclosed. Also,
Japanese Patent Application Laid-Open No. 7-2027041 describes that a polylactic acid-based film having excellent thermal dimensional stability can be obtained biaxially by stretching polylactic acid having high crystallinity and then performing heat treatment. However, this does not make it possible to obtain a desired uniaxially shrinkable film.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、結晶
性ポリ乳酸系重合体を用い予熱温度、延伸温度、延伸倍
率を調整することにより脆さの改良された、すなわち耐
衝撃性に優れた2軸配向1軸収縮性ポリ乳酸系フィルム
を提供することにある。
Accordingly, the present invention has improved brittleness by using a crystalline polylactic acid-based polymer and adjusting the preheating temperature, the stretching temperature, and the stretching ratio, that is, it has excellent impact resistance. An object of the present invention is to provide a biaxially oriented uniaxially contractible polylactic acid-based film.

【0006】[0006]

【課題を解決するための手段】すなわち本発明の要旨
は、ポリ(L−乳酸)、ポリ(D−乳酸)、ポリ(DL
−乳酸)もしくはこれらの混合体からなり、フィルムの
長手方向及び幅方向の引張破断伸びがいずれも30%以
上であり、さらに100℃での熱収縮率がいずれかの方
向で30%以上、かつ該収縮方向と直行する方向の熱収
縮率が10%以下である2軸配向1軸熱収縮性ポリ乳酸
系フィルムにある。
That is, the gist of the present invention is to provide poly (L-lactic acid), poly (D-lactic acid) and poly (DL-lactic acid).
-Lactic acid) or a mixture thereof, the tensile elongation at break in the longitudinal and width directions of the film is 30% or more, and the heat shrinkage at 100 ° C is 30% or more in either direction, and The biaxially oriented uniaxially heat-shrinkable polylactic acid-based film has a heat shrinkage in a direction perpendicular to the shrinkage direction of 10% or less.

【0007】また、ポリ(L−乳酸)、ポリ(D−乳
酸)、ポリ(DL−乳酸)もしくはこれらの混合体の未
延伸シートを逐次2軸延伸するにあたり、未延伸シート
を1軸延伸後、1軸延伸後のフィルムの結晶化温度Tc
以上の温度で予熱し、引き続き前記1軸延伸方向に対し
て直行する方向に2軸目の延伸を行うことを特徴とする
上記2軸配向1軸熱収縮性ポリ乳酸系フィルムの製造
方法を提供するものである。
Further, poly (L-lactic acid), poly (D-milk)
Acid), poly (DL-lactic acid) or a mixture thereof, in which the unstretched sheet is successively biaxially stretched. After the unstretched sheet is uniaxially stretched, the crystallization temperature Tc of the film after uniaxially stretching is obtained.
Preheating at the above temperature, and subsequently stretching the second axis in a direction perpendicular to the uniaxial stretching direction.
An object of the present invention is to provide a method for producing the above-mentioned biaxially oriented uniaxial heat-shrinkable polylactic acid-based film.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明におけるポリ乳酸は、乳酸の構造単位がL−乳酸
であるポリ(L−乳酸)、構造単位がD−乳酸であるポ
リ(D−乳酸)、さらにはL−乳酸とD−乳酸の共重合
体であるポリ(DL−乳酸)があり、またこれらの混合
体もある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The polylactic acid in the present invention includes poly (L-lactic acid) whose structural unit is L-lactic acid, poly (D-lactic acid) whose structural unit is D-lactic acid, and a copolymer of L-lactic acid and D-lactic acid. There is a polymer, poly (DL-lactic acid), and also a mixture thereof.

【0009】重合法としては、縮重合法、開環重合法な
ど公知のいずれの方法も採用することができる。例え
ば、縮重合法ではL−乳酸またはD−乳酸あるいはこれ
らの混合物を直接脱水縮重合して任意の組成を持ったポ
リ乳酸を得ることができる。また開環重合法では、乳酸
の環状2量体であるラクチドを、必要に応じて重合調整
剤等を用いながら、選ばれた触媒を使用してポリ乳酸を
得ることができる。ラクチドにはL−乳酸の2量体であ
るL−ラクチド、D−乳酸の2量体であるD−ラクチ
ド、さらにL−乳酸とD−乳酸からなるDL−ラクチド
があり、これらを必要に応じて混合して重合することに
より任意の組成、結晶性をもつポリ乳酸を得ることがで
きる。
As the polymerization method, any known method such as a condensation polymerization method and a ring-opening polymerization method can be employed. For example, in the polycondensation method, polylactic acid having an arbitrary composition can be obtained by directly dehydrating polycondensation of L-lactic acid or D-lactic acid or a mixture thereof. In the ring-opening polymerization method, lactide, which is a cyclic dimer of lactic acid, can be used to obtain polylactic acid using a selected catalyst while using a polymerization regulator and the like as necessary. Lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, and DL-lactide comprising L-lactic acid and D-lactic acid. By mixing and polymerizing, polylactic acid having any composition and crystallinity can be obtained.

【0010】また分子量増大を目的として少量の鎖延長
剤、例えば、ジイソシアネート化合物、エポキシ化合
物、酸無水物などを使用できる。重合体の重量平均分子
量の好ましい範囲としては6万から70万であり、この
範囲を下回る場合は実用物性がほとんど発現されず、上
回る場合には、溶融粘度が高すぎ成形加工性に劣る。
In order to increase the molecular weight, a small amount of a chain extender, for example, a diisocyanate compound, an epoxy compound or an acid anhydride can be used. The preferred range of the weight average molecular weight of the polymer is from 60,000 to 700,000. If it is below this range, practical physical properties are hardly exhibited, and if it is over this range, the melt viscosity is too high and molding processability is poor.

【0011】次に未延伸シートの製膜条件について説明
する。ポリ乳酸系重合体を十分に乾燥し、水分を除去し
たのち押出機で溶融する。溶融温度は組成によって変化
するので、それに対応して適宜選択することが好まし
い。実際には140から250℃の温度範囲が通常選ば
れる。
Next, the film forming conditions of the unstretched sheet will be described. The polylactic acid-based polymer is sufficiently dried to remove water, and then melted by an extruder. Since the melting temperature varies depending on the composition, it is preferable to appropriately select the melting temperature accordingly. In practice, a temperature range of 140 to 250 ° C. is usually chosen.

【0012】シート状に溶融成形された重合体は、回転
するキャスティングドラム(冷却ドラム)に接触させて
急冷するのが好ましい。キャスティングドラムの温度は
60℃以下が適当である。これより高いとポリマーがキ
ャスティングドラムに粘着し、引き取れない。また、結
晶化が促進されて、球晶が発達し延伸できなくなるた
め、上記温度範囲に設定して急冷し実質上非晶性にする
ことが好ましい。
It is preferable that the polymer melt-formed into a sheet is rapidly cooled by contact with a rotating casting drum (cooling drum). The temperature of the casting drum is suitably 60 ° C. or less. Above this, the polymer sticks to the casting drum and cannot be pulled off. In addition, since crystallization is promoted and spherulites develop and cannot be stretched, it is preferable to set the temperature in the above-mentioned temperature range and rapidly cool to make them substantially amorphous.

【0013】本発明における延伸方法は特に限定するも
のではないが、フィルム製造上、逐次2軸延伸法を用い
ることが有利である。逐次2軸延伸法は1軸方向に延伸
したフィルムを、続いて予熱して1軸延伸方向に対して
直交する方向に2軸目の延伸を行う。現在、逐次2軸延
伸装置は、フィルムの長手方向に延伸(縦延伸)した
後、次いで幅方向に延伸(横延伸)するものが多く用い
られているが、本発明においては幅方向に延伸(横延
伸)した後、長手方向に延伸(横延伸)しても構わな
い。
Although the stretching method in the present invention is not particularly limited, it is advantageous to use a sequential biaxial stretching method in film production. In the sequential biaxial stretching method, a film stretched in a uniaxial direction is subsequently preheated to stretch a second axis in a direction orthogonal to the uniaxial stretching direction. At present, a sequential biaxial stretching apparatus that stretches in the longitudinal direction of the film (longitudinal stretching) and then stretches in the width direction (lateral stretching) is often used. After transverse stretching), stretching in the longitudinal direction (lateral stretching) may be performed.

【0014】ポリ(L−乳酸)、ポリ(D−乳酸)、ポ
リ(DL−乳酸)もしくはこれらの混合体では、長手方
向、幅方向それぞれ1.5〜5倍の範囲で、延伸温度は
50〜90℃の範囲で適宜選定して、無配向フィルムで
は1.0×10 −3 以下である面配向度ΔPを3.0×
10 −3 以上に増大させることで、薄肉でも強靱な2軸
配向フィルムを得ることができる。
Poly (L-lactic acid), poly (D-lactic acid), poly (L-lactic acid)
In the case of li (DL-lactic acid) or a mixture thereof, the stretching direction is appropriately selected in the range of 1.5 to 5 times each in the longitudinal direction and the width direction, and the stretching temperature is in the range of 50 to 90 ° C. The plane orientation degree ΔP of 0 × 10 −3 or less is 3.0 ×
By increasing it to 10 −3 or more, a tough biaxially oriented film can be obtained even with a small thickness.

【0015】2軸配向フィルムは、引張強度が無配向フ
ィルムに比べて増大するとともに、脆さ(耐衝撃性)も
改良される。耐衝撃性の向上の一つの目安としては引張
破断伸びで示すことができ、無配向フィルムの伸びが数
%であるのに対し、2軸配向フィルムでは長手方向、幅
方向ともに数十〜数百%までの伸びを得ることができ
る。すなわち、2軸延伸することで実用性に優れたフィ
ルムを得られる。しかし、このままでは本発明の2軸配
向1軸収縮フィルムを得ることはできない。
The biaxially oriented film has an increased tensile strength as compared with a non-oriented film, and also has improved brittleness (impact resistance). One measure of improvement in impact resistance can be indicated by tensile elongation at break, where the elongation of a non-oriented film is several percent, whereas that of a biaxially oriented film is several tens to several hundreds in both the longitudinal and width directions. % Elongation can be obtained. That is, a film excellent in practicality can be obtained by biaxial stretching. However, the biaxially oriented uniaxially shrinkable film of the present invention cannot be obtained as it is.

【0016】本発明の重要な点は、結晶性のポリ(L−
乳酸)、ポリ(D−乳酸)、ポリ(DL−乳酸)もしく
はこれらの混合体を用い、1軸目の延伸温度、延伸倍率
さらに1軸延伸後のフィルムのTcを考慮し、2軸目の
予熱温度、延伸温度、延伸倍率を適宜選定するところに
ある。
An important point of the present invention is that the crystalline poly (L-
Lactic acid), poly (D-lactic acid), poly (DL-lactic acid) or
Is to select the preheating temperature, the stretching temperature, and the stretching ratio of the second axis appropriately in consideration of the stretching temperature of the first axis, the stretching ratio, and the Tc of the film after the uniaxial stretching.

【0017】本発明のフィルムは、未延伸シートを1軸
延伸した後、その1軸延伸後のフィルムの結晶化温度T
c以上の温度で予熱し、2軸目の延伸を行うことで得ら
れる。無配向(未延伸)ポリ乳酸シートは、L−乳酸単
位とD−乳酸単位の組成比にもよるが、結晶化温度Tc
は90℃以上である。しかし、1軸延伸を行うことで分
子鎖は配向し、Tcは90℃よりも低下する傾向があ
る。したがって、1軸延伸フィルムのTc以上の温度で
予熱後、2軸目の延伸を行うことでフィルム内の配向鎖
の一部を結晶化させ、1軸目延伸方向の収縮率を抑える
ことができる。
The film of the present invention is obtained by uniaxially stretching an unstretched sheet and then subjecting the film to a crystallization temperature T after the uniaxial stretching.
It is obtained by preheating at a temperature equal to or higher than c and performing stretching in the second axis. The non-oriented (unstretched) polylactic acid sheet has a crystallization temperature Tc depending on the composition ratio of L-lactic acid units and D-lactic acid units.
Is 90 ° C. or higher. However, by performing uniaxial stretching, the molecular chains are oriented, and Tc tends to be lower than 90 ° C. Therefore, after preheating at a temperature equal to or higher than Tc of the uniaxially stretched film, by performing the second axial stretching, a part of the oriented chains in the film is crystallized, and the shrinkage in the first axial stretching direction can be suppressed. .

【0018】ただし、予熱温度、2軸目の延伸温度が高
すぎると所望の倍率の延伸を完了する前にフィルムが破
断する恐れがあるので注意を要する。
However, care must be taken because if the preheating temperature and the stretching temperature in the second axis are too high, the film may be broken before stretching at a desired magnification is completed.

【0019】Tcは、フィルムサンプルの示差走査熱量
測定(DSC)により求められるもので、昇温速度10
℃/分で昇温したときの昇温過程で生じる結晶化の際に
発生する発熱ピークから求められる。
Tc is determined by differential scanning calorimetry (DSC) of a film sample, and is calculated by a temperature rise rate of 10
It is determined from an exothermic peak generated at the time of crystallization that occurs during the temperature rise process when the temperature is raised at a rate of ° C./min.

【0020】Tcは、主に重合体そのものの結晶性に依
存し、結晶性が大きい重合体では低い温度をとる。ちな
みに共重合体のないL−乳酸またはD−乳酸のどちらか
のホモポリマーでは、Tcは、分子量にもよるが、90
〜110℃である。また、融点Tmは180℃以上あ
る。これらL−乳酸ホモポリマーもしくはD−乳酸ホモ
ポリマーのそれぞれに相対する乳酸単位が含まれたり、
あるいは他の脂肪族モノマー成分が共重合されると結晶
性は低下して、Tcは上昇し、Tmは低下する。これら
TcとTmが重なりあおうとするところで結晶化しない
非晶性ポリマーとなる。したがって、このようなポリマ
ーでは本発明のフィルムを得ることはできない。
Tc mainly depends on the crystallinity of the polymer itself, and a polymer having high crystallinity takes a low temperature. Incidentally, in the homopolymer of either L-lactic acid or D-lactic acid without a copolymer, Tc depends on the molecular weight.
110110 ° C. The melting point Tm is 180 ° C. or higher. Lactic acid units corresponding to each of these L-lactic acid homopolymers or D-lactic acid homopolymers are included,
Alternatively, when other aliphatic monomer components are copolymerized, the crystallinity decreases, Tc increases, and Tm decreases. An amorphous polymer that does not crystallize where Tc and Tm are about to overlap. Therefore, the film of the present invention cannot be obtained with such a polymer.

【0021】また、2軸延伸後に結晶化温度以上の雰囲
気で熱処理することで、フィルムの長手方向、幅方向と
もに収縮率をさらに抑えることができる。本発明におい
ては2軸延伸後の熱処理は必ずしも必要ないが、収縮率
の制御の点で有効な手段となりうる。
Further, by performing a heat treatment in an atmosphere at a temperature higher than the crystallization temperature after the biaxial stretching, the shrinkage rate can be further suppressed in both the longitudinal direction and the width direction of the film. In the present invention, heat treatment after biaxial stretching is not always necessary, but can be an effective means in controlling the shrinkage.

【0022】[0022]

【実施例】以下に実施例を示すが、これらにより本発明
は何ら制限を受けるものではない。なお、実施例中に示
す測定値は次に示すような条件で測定を行った。また、
本実施例中の縦方向はフィルムの長手方向を、横方向は
フィルムの幅方向を表す。 (1)引張強度と引張破断伸び 引張強度および引張破断伸びは、フィルムサンプルの縦
横それぞれについて東洋精機社製テンシロンII型機を
用い、JIS−K7127に基づいて測定した。引張速
度は100mm/分である。
The present invention is not limited by the following examples. The measurement values shown in the examples were measured under the following conditions. Also,
In this embodiment, the vertical direction indicates the longitudinal direction of the film, and the horizontal direction indicates the width direction of the film. (1) Tensile strength and tensile elongation at break Tensile strength and tensile elongation at break were measured for each of the length and width of the film sample using a Tensilon II type machine manufactured by Toyo Seiki Co., Ltd. in accordance with JIS-K7127. The pulling speed is 100 mm / min.

【0023】(2)Tc パ−キンエルマ−製DSC−7を用い、フィルムサンプ
ル10mgをJIS−K7122に基づいて、昇温速度
10℃/分で昇温したときのサ−モグラムから発熱に基
づく結晶化ピークTcを求めた。
(2) Tc Crystal based on heat generation from a thermogram when 10 mg of a film sample was heated at a rate of 10 ° C./min based on JIS-K7122 using DSC-7 manufactured by PerkinElmer. The activation peak Tc was determined.

【0024】(3)熱収縮率 フィルムサンプルを縦横に沿って100mm×100m
mに切り出し、100℃の温水中に5分間浸漬した後、
縦横それぞれの寸法を計り、(収縮前の寸法)に対する
{(収縮前の寸法)−(収縮後の寸法)}の比率を%表
示した。
(3) Heat shrinkage rate A film sample was placed 100 mm × 100 m along the length and width.
m, immersed in warm water of 100 ° C for 5 minutes,
The length and width were measured, and the ratio of {(dimension before shrinkage) − (dimension after shrinkage)} to (dimension before shrinkage) was expressed as%.

【0025】(4)耐衝撃性 島津製作所製高速衝撃試験機HTM−1型(ハイドロシ
ョット)を用い、耐衝撃性を測定した。100mm×1
00mmに切り出したフィルムをクランプで固定し、フ
ィルム中央に落垂で衝撃を与え、破壊に至るまでのエネ
ルギーを読みとった。測定温度は23℃、落垂の落下速
度は3m/秒である。
(4) Impact Resistance The impact resistance was measured using a high-speed impact tester HTM-1 (Hydroshot) manufactured by Shimadzu Corporation. 100mm x 1
The film cut to 00 mm was fixed with a clamp, a drop was applied to the center of the film to give an impact, and the energy up to breakage was read. The measurement temperature is 23 ° C., and the falling speed of the drop is 3 m / sec.

【0026】(実施例1)L−乳酸からなる構造単位と
D−乳酸からなる構造単位の割合がおおよそ99:1で
ガラス転移点57℃、結晶化温度102℃、融点178
℃、重量平均分子量13万のポリL−乳酸を30mmφ
単軸エクストルーダーにて、200℃でTダイより押出
し、キャスティングロールで急冷して約300μmの未
延伸シートを得、続いて赤外線ヒーターでフィルム温度
が75℃になるように設定して縦(長手)方向に2.6
倍にロール延伸を行った。次いで、縦延伸後のフィルム
をテンター内で75℃で予熱した後、75℃に設定した
延伸ゾーンで横(幅)方向に縦延伸前のフィルム幅に対
して2.4倍延伸して厚み45μmのフィルムを得た。
2軸延伸後の熱処理ゾーンは60℃に設定し、実質熱処
理を行わずに通過させた。予熱・延伸・熱処理各ゾーン
の通過時間はそれぞれ約20秒であった。なお、縦延伸
後のフィルムのTcをDSCで測定したところ72℃で
あった。得られた2軸配向フィルムの性能を表1に示
す。
(Example 1) The ratio of the structural unit composed of L-lactic acid to the structural unit composed of D-lactic acid was approximately 99: 1, the glass transition point was 57 ° C, the crystallization temperature was 102 ° C, and the melting point was 178.
° C, poly L-lactic acid having a weight average molecular weight of 130,000
Extruded from a T-die at 200 ° C with a single-screw extruder, quenched with a casting roll to obtain an unstretched sheet of about 300 µm, and then set to a film temperature of 75 ° C with an infrared heater, and set to a longitudinal (longitudinal) direction. 2.6) direction
Roll stretching was performed twice. Next, the film after longitudinal stretching is preheated in a tenter at 75 ° C., and then stretched 2.4 times in the transverse (width) direction with respect to the film width before longitudinal stretching in a stretching zone set at 75 ° C. to a thickness of 45 μm. Was obtained.
The heat treatment zone after the biaxial stretching was set at 60 ° C., and passed without substantial heat treatment. The passage time in each of the preheating, stretching and heat treatment zones was about 20 seconds. The Tc of the film after longitudinal stretching was 72 ° C. when measured by DSC. Table 1 shows the performance of the obtained biaxially oriented film.

【0027】(実施例2)実施例1と同様に、縦(長
手)方向に70℃で2.2倍にロール延伸し、次いで、
テンターで80℃で予熱した後、76℃に設定した延伸
ゾーンで横(幅)方向に縦延伸前のフィルム幅に対し
2.7倍に延伸した。2軸延伸後の熱処理ゾーンの温度
は65℃に設定して、表1に示すフィルムを得た。な
お、各ゾーンの通過時間は約30秒であった。また、縦
延伸後のフィルムのTcは76℃であった。
(Example 2) In the same manner as in Example 1, the film was roll-stretched 2.2 times in the longitudinal (longitudinal) direction at 70 ° C.
After preheating at 80 ° C. with a tenter, the film was stretched 2.7 times the film width before longitudinal stretching in the transverse (width) direction in a stretching zone set at 76 ° C. The temperature of the heat treatment zone after the biaxial stretching was set at 65 ° C. to obtain films shown in Table 1. The passing time in each zone was about 30 seconds. The Tc of the film after longitudinal stretching was 76 ° C.

【0028】(比較例1)実施例1と同様に押出し、5
0μmの無延伸フィルムを得た。このフィルムの評価を
表1に示す。
(Comparative Example 1) Extruded in the same manner as in Example 1,
A 0 μm unstretched film was obtained. Table 1 shows the evaluation of this film.

【0029】(比較例2)実施例1と同様に押出して1
50μmの無延伸シートを得、縦延伸を行わず、テンタ
ーにて横延伸を行って1軸延伸フィルムを得た。予熱ゾ
ーンおよび延伸ゾーンの設定温度はともに70℃、延伸
倍率は2.5倍で、延伸後の熱処理ゾーンの温度は60
℃であった。各ゾーンの通過時間は約60秒であった。
得られたフィルムの評価を表1に示す。
(Comparative Example 2) Extruded in the same manner as in Example 1,
A 50 μm non-stretched sheet was obtained, and a uniaxially stretched film was obtained by transverse stretching with a tenter without longitudinal stretching. The set temperatures of the preheating zone and the stretching zone are both 70 ° C., the stretching ratio is 2.5 times, and the temperature of the heat treatment zone after the stretching is 60 °.
° C. The transit time in each zone was about 60 seconds.
The evaluation of the obtained film is shown in Table 1.

【0030】(比較例3)実施例2において横延伸の予
熱ゾーンの温度および延伸ゾーンの温度をともに70℃
にした以外は、すべて同様にして表1に示す2軸延伸フ
ィルムを得た。
Comparative Example 3 In Example 2, the temperature of the preheating zone in the transverse stretching and the temperature of the stretching zone were both 70 ° C.
A biaxially stretched film shown in Table 1 was obtained in the same manner except that

【0031】[0031]

【表1】 [Table 1]

【0032】実施例1および実施例2はともに、縦延伸
後のフィルムのTcよりも高い温度で予熱し、横延伸を
行っている。得られたフィルムは縦横ともに引張強度、
伸びが向上し、耐衝撃性に優れた2軸配向フィルムであ
る。加えて、縦方向の収縮がほとんど無い、もしくは抑
制された、実質、1軸方向のみに熱収縮するフィルムで
あることがわかる。
In both Example 1 and Example 2, the film was preheated at a temperature higher than Tc of the film after longitudinal stretching, and the film was transversely stretched. The resulting film has tensile strength in both length and width,
It is a biaxially oriented film having improved elongation and excellent impact resistance. In addition, it can be seen that the film shrinks substantially only in one axial direction, with little or no longitudinal shrinkage.

【0033】一方、比較例1に示す無延伸フィルムは熱
収縮性が無く、また、実用強度に乏しいことがわかる。
また、実施例2では1軸延伸を行ったフィルムを示して
おり、1軸収縮性は優れているが、延伸をしていない縦
方向への引張強度、伸びに乏しく、耐衝撃性に劣ること
がわかる。さらに、2軸延伸を行った比較例3では縦横
とも引張り強度、伸びの向上が認められ、耐衝撃性に優
れているが、縦延伸後のフィルムのTcよりも低い温度
で予熱し、横延伸を行っているために縦方向の収縮性は
抑制されず、2軸収縮性を示している。
On the other hand, it can be seen that the unstretched film shown in Comparative Example 1 has no heat shrinkage and has poor practical strength.
Further, Example 2 shows a film that has been uniaxially stretched, and has excellent uniaxial shrinkage, but has poor tensile strength and elongation in the unstretched longitudinal direction, and is inferior in impact resistance. I understand. Further, in Comparative Example 3 in which biaxial stretching was performed, the tensile strength and elongation were improved in both the longitudinal and transverse directions, and the impact resistance was excellent. However, the film was preheated at a temperature lower than Tc of the film after longitudinal stretching, and the transverse stretching was performed. Is performed, the contractility in the vertical direction is not suppressed, and biaxial contractility is shown.

【0034】[0034]

【発明の効果】本発明によれば、分解性を有するポリ乳
酸系重合体から、実用上十分な耐衝撃性をもった1軸熱
収縮性フィルムを得られる。
According to the present invention, a uniaxial heat-shrinkable film having practically sufficient impact resistance can be obtained from a degradable polylactic acid-based polymer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−185510(JP,A) 特開 平5−212790(JP,A) 特開 平6−23836(JP,A) 特開 平6−114934(JP,A) 特開 平6−240037(JP,A) 特開 平7−68639(JP,A) 特開 平7−205278(JP,A) 特開 平7−207041(JP,A) 特開 平7−256753(JP,A) 特開 平7−292134(JP,A) 特開 平8−198955(JP,A) 特開 平8−230036(JP,A) 特開 平8−300481(JP,A) 特開 平9−3177(JP,A) 特開 平9−57849(JP,A) 特開 平9−95605(JP,A) 特開 平9−151310(JP,A) 特表 平4−504731(JP,A) 特表 平5−507109(JP,A) 特表 平5−508819(JP,A) 特表 平6−504799(JP,A) 欧州特許出願公開683207(EP,A 1) (58)調査した分野(Int.Cl.7,DB名) B29C 61/00 - 61/10 B29C 55/00 - 55/30 C08J 5/18 C08G 63/00 - 63/91 CA(STN) REGISTRY(STN) WPI/L(QUESTEL)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-185510 (JP, A) JP-A-5-212790 (JP, A) JP-A-6-23836 (JP, A) JP-A-6-23836 114934 (JP, A) JP-A-6-240037 (JP, A) JP-A-7-68639 (JP, A) JP-A-7-205278 (JP, A) JP-A-7-207041 (JP, A) JP-A-7-275653 (JP, A) JP-A-7-292134 (JP, A) JP-A-8-198955 (JP, A) JP-A-8-230036 (JP, A) JP-A-8-300481 JP-A-9-3177 (JP, A) JP-A-9-57849 (JP, A) JP-A-9-95605 (JP, A) JP-A-9-151310 (JP, A) Table Hei 4-504731 (JP, A) Special table Hei 5-507109 (JP, A) Special table Hei 5-508819 (JP, A) Special table Hei 6-50 4799 (JP, A) European Patent Application Publication 683207 (EP, A1) (58) Fields investigated (Int. Cl. 7 , DB name) B29C 61/00-61/10 B29C 55/00-55/30 C08J 5/18 C08G 63/00-63/91 CA (STN) REGISTRY (STN) WPI / L (QUESTEL)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリ(L−乳酸)、ポリ(D−乳酸)、
ポリ(DL−乳酸)もしくはこれらの混合体からなり、
フィルムの長手方向及び幅方向の引張破断伸びがいずれ
も30%以上であり、さらに100℃での熱収縮率がい
ずれかの方向で30%以上、かつ該収縮方向と直行する
方向の熱収縮率が10%以下である2軸配向1軸熱収縮
性ポリ乳酸系フィルム。
1. Poly (L-lactic acid), poly (D-lactic acid),
Consisting of poly (DL-lactic acid) or a mixture thereof ,
The tensile elongation at break in the longitudinal direction and the width direction of the film are both 30% or more, and the heat shrinkage at 100 ° C. is 30% or more in any direction and the heat shrinkage in the direction perpendicular to the shrinkage direction. There biaxially oriented uniaxially heat-shrinkable polylactic acid film is 10% or less.
【請求項2】 ポリ(L−乳酸)、ポリ(D−乳酸)、
ポリ(DL−乳酸)もしくはこれらの混合体の未延伸シ
ートを逐次2軸延伸するにあたり、未延伸シートを1軸
延伸後、1軸延伸後のフィルムの結晶化温度Tc以上の
温度で予熱し、引き続き前記1軸延伸方向に対して直行
する方向に2軸目の延伸を行うことを特徴とする請求項
1に記載の2軸配向1軸熱収縮性ポリ乳酸系フィルムの
製造方法。
2. Poly (L-lactic acid), poly (D-lactic acid),
In sequentially biaxially stretching an unstretched sheet of poly (DL-lactic acid) or a mixture thereof, the unstretched sheet is pre-heated at a temperature equal to or higher than the crystallization temperature Tc of the film after uniaxial stretching, 2. The method for producing a biaxially oriented uniaxially heat-shrinkable polylactic acid-based film according to claim 1, wherein a second axis of stretching is performed in a direction perpendicular to the uniaxially stretching direction.
JP291296A 1996-01-11 1996-01-11 Heat-shrinkable polylactic acid-based film and method for producing the same Expired - Lifetime JP3330273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP291296A JP3330273B2 (en) 1996-01-11 1996-01-11 Heat-shrinkable polylactic acid-based film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP291296A JP3330273B2 (en) 1996-01-11 1996-01-11 Heat-shrinkable polylactic acid-based film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09187863A JPH09187863A (en) 1997-07-22
JP3330273B2 true JP3330273B2 (en) 2002-09-30

Family

ID=11542573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP291296A Expired - Lifetime JP3330273B2 (en) 1996-01-11 1996-01-11 Heat-shrinkable polylactic acid-based film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3330273B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583537B2 (en) * 2000-02-14 2010-11-17 シーアイ化成株式会社 Polylactic acid resin material and heat shrinkable film
JP4804179B2 (en) * 2005-03-10 2011-11-02 三井化学東セロ株式会社 Polylactic acid composition and molded product comprising the composition
KR100759063B1 (en) * 2006-04-28 2007-09-14 (주)반도 Biodegradable polymer film and process for preparing the same
JP2008062590A (en) * 2006-09-09 2008-03-21 Tohcello Co Ltd Polylactic acid film for shrink wrap
JP5379653B2 (en) * 2009-11-05 2013-12-25 グンゼ株式会社 Resin rod stretching method
JP5537351B2 (en) * 2010-09-08 2014-07-02 三菱樹脂株式会社 Polylactic acid heat shrinkable film

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725870B2 (en) * 1988-08-08 1998-03-11 バイオパック テクノロジー,リミテッド Degradable lactide thermoplastic
US5053482A (en) * 1990-05-11 1991-10-01 E. I. Du Pont De Nemours And Company Novel polyesters and their use in compostable products such as disposable diapers
US5076983A (en) * 1990-07-16 1991-12-31 E. I. Du Pont De Nemours And Company Polyhydroxy acid films
JPH06504799A (en) * 1990-09-06 1994-06-02 バイオパック テクノロジー リミテッド Packaging thermoplastics from lactic acid
JPH05185510A (en) * 1992-01-10 1993-07-27 Shin Etsu Chem Co Ltd Production of thermal shrinkable polyester base film
JP3218066B2 (en) * 1992-02-06 2001-10-15 三井化学株式会社 Heat shrinkable foam composite sheet
JP3297068B2 (en) * 1992-02-06 2002-07-02 三井化学株式会社 Shrink label film
JPH0623836A (en) * 1992-07-09 1994-02-01 Shimadzu Corp Production of stretched film of polylactic acid
JPH06114934A (en) * 1992-10-08 1994-04-26 Shin Etsu Chem Co Ltd Manufacture of thermally shrinkable polyester series film
JPH0768639A (en) * 1993-09-03 1995-03-14 Gunze Ltd Polypropylene heat shrinkable film
JP3330712B2 (en) * 1994-01-11 2002-09-30 三菱樹脂株式会社 Method for producing polylactic acid-based film
JPH07205278A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Production of stretched film of polylactic acid polymer
JP3328418B2 (en) * 1994-03-28 2002-09-24 三菱樹脂株式会社 Heat-shrinkable polylactic acid film
JP3130731B2 (en) * 1994-04-26 2001-01-31 昭和電工株式会社 Heat-shrinkable aliphatic polyester film and method for producing the same
US5763513A (en) * 1994-05-19 1998-06-09 Mitsui Toatsu Chemicals, Inc. L-lactic acid polymer composition, molded product and film
JPH08230036A (en) * 1994-12-27 1996-09-10 Mitsubishi Rayon Co Ltd Heat-shrinkable film and production thereof
JP3391593B2 (en) * 1995-01-20 2003-03-31 三菱樹脂株式会社 Oriented polylactic acid-based films and sheets and methods for producing them
JPH08300481A (en) * 1995-05-08 1996-11-19 Mitsubishi Rayon Co Ltd Heat-shrinkable film and manufacture thereof
JP3482743B2 (en) * 1995-06-22 2004-01-06 大日本インキ化学工業株式会社 Shrink film composed of lactic acid-based polymer
JP4037921B2 (en) * 1995-08-28 2008-01-23 株式会社興人 Heat-shrinkable aliphatic polyester film and method for producing the same
JPH09151310A (en) * 1995-08-30 1997-06-10 Shin Etsu Chem Co Ltd Polymer composition having biodegradability and shrink film
JP3398267B2 (en) * 1995-09-29 2003-04-21 信越化学工業株式会社 Biodegradable shrink film

Also Published As

Publication number Publication date
JPH09187863A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
JP4972012B2 (en) Sequential biaxially stretched polyglycolic acid film, method for producing the same, and multilayer film
JP3549968B2 (en) Stretched polylactic acid film or sheet
JP4198058B2 (en) Polylactic acid resin biaxially stretched film
JP6835214B2 (en) Heat shrinkable polyester film
WO2001030571A1 (en) Biodegradable bag
JP3330712B2 (en) Method for producing polylactic acid-based film
JP3391593B2 (en) Oriented polylactic acid-based films and sheets and methods for producing them
JPH07205278A (en) Production of stretched film of polylactic acid polymer
JP2007119553A (en) Polylactic acid film
JP3330273B2 (en) Heat-shrinkable polylactic acid-based film and method for producing the same
JP3328418B2 (en) Heat-shrinkable polylactic acid film
KR101695926B1 (en) Polyester film and preparation method thereof
JP3182077B2 (en) Biodegradable film
JPH10147653A (en) Biodegradable oriented film
JP3664969B2 (en) Heat-shrinkable polylactic acid polymer film
US20160355649A1 (en) Packaging and Labelling Films
JP3718636B2 (en) Heat-shrinkable film
JP3167595B2 (en) Packaging bag made of polylactic acid polymer
JP2003155358A (en) Biodegradable film
JP3670912B2 (en) Polylactic acid-based shrink film or sheet
JP2000281818A (en) Polylactic acid-based shrinkable sheet material and packaging material or shrinkabale labelling material by using the same
JPH06210720A (en) Molding of polyester film
JP3421620B2 (en) Document holder
JP3754041B2 (en) Method to increase the lubricity and sealing strength of stretched polylactic acid film or sheet
JP3694648B2 (en) Heat shrinkable film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term