JP3074404B2 - Polymer piezoelectric material - Google Patents

Polymer piezoelectric material

Info

Publication number
JP3074404B2
JP3074404B2 JP03215948A JP21594891A JP3074404B2 JP 3074404 B2 JP3074404 B2 JP 3074404B2 JP 03215948 A JP03215948 A JP 03215948A JP 21594891 A JP21594891 A JP 21594891A JP 3074404 B2 JP3074404 B2 JP 3074404B2
Authority
JP
Japan
Prior art keywords
piezoelectric
polylactic acid
piezoelectric material
polymer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03215948A
Other languages
Japanese (ja)
Other versions
JPH05152638A (en
Inventor
保夫 敷波
邦広 畑
英和 棒谷
栄一 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP03215948A priority Critical patent/JP3074404B2/en
Publication of JPH05152638A publication Critical patent/JPH05152638A/en
Application granted granted Critical
Publication of JP3074404B2 publication Critical patent/JP3074404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、医用超音波変成器、音
響変成器、計測機器、超音波応用計測器、圧電振動子、
機械的フィルター、圧電トランス、遅延装置などの分野
に用途が見込まれる高分子圧電材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical ultrasonic transformer, an acoustic transformer, a measuring instrument, an ultrasonic measuring instrument, a piezoelectric vibrator,
The present invention relates to a polymer piezoelectric material expected to be used in fields such as a mechanical filter, a piezoelectric transformer, and a delay device.

【0002】[0002]

【従来の技術】現在知られている高分子圧電材料として
は、ポリγベンジルLグルタメート等のポリペプチド型
のもの、ポリ塩化ビニル等のエレクトレット型のもの、
ポリ弗化ビニリデン、弗化ビニリデン三弗化エチレン共
重合体、ビニリデンシアナイド酢酸ビニル共重合体等の
強誘電体型のものなど種々あるが、最も代表的なものは
強誘電体型のポリ弗化ビニリデンのフィルムであり、既
に超音波探触子などに使用されている。
2. Description of the Related Art Currently known polymer piezoelectric materials include polypeptide-type materials such as poly-gamma-benzyl L-glutamate, electret-type materials such as polyvinyl chloride, and the like.
There are various ferroelectric types such as polyvinylidene fluoride, vinylidene fluoride ethylene trifluoride copolymer, and vinylidene cyanide vinyl acetate copolymer, and the most typical one is a ferroelectric type polyvinylidene fluoride. This film has already been used for ultrasonic probes and the like.

【0003】[0003]

【発明が解決しようとする課題】合成極性高分子の強誘
電体型の圧電材料であるポリ弗化ビニリデン、弗化ビニ
リデン三弗化エチレン共重合体、ビニリデンシアナイド
酢酸ビニル共重合体は、配向の制御方法は延伸及び電場
配向であり、保持機構は自発分極及び凍結分極であり、
配向の状態は一軸極性配向である。これらの材料は圧電
性を得るためには延伸処理とポーリング処理を必要とす
る。中でもポリ弗化ビニリデンは最も圧電性の高い材料
であるが、誘電率が13であり、高分子材料の中では高
誘電率である。従って、圧電d定数を誘電率で割った値
である圧電g定数(単位応力当たりの開放電圧)はあま
り大きいとはいえない。そのため、電気から音響への変
換効率は良好であるが、音響から電気への変換効率にや
や不満が残る。
SUMMARY OF THE INVENTION Polyvinylidene fluoride, vinylidene fluoride ethylene trifluoride copolymer, and vinylidene cyanide vinyl acetate copolymer, which are ferroelectric piezoelectric materials of synthetic polar polymers, have a high degree of orientation. The control method is stretching and electric field orientation, the holding mechanism is spontaneous polarization and freeze polarization,
The state of orientation is uniaxial polar orientation. These materials require stretching and poling to obtain piezoelectricity. Above all, polyvinylidene fluoride is the material having the highest piezoelectricity, but has a dielectric constant of 13 and has a high dielectric constant among polymer materials. Therefore, the piezoelectric g constant (open voltage per unit stress), which is a value obtained by dividing the piezoelectric d constant by the dielectric constant, is not very large. Therefore, the conversion efficiency from electricity to sound is good, but the conversion efficiency from sound to electricity is still slightly unsatisfactory.

【0004】また、エレクトレット型のポリ塩化ビニル
等のフィルムも、ポーリング処理により極性基を配向さ
せて圧電性を付与したものであるが、圧電性は強誘電体
型圧電材料ほど強くない。
[0004] Electret-type polyvinyl chloride films and the like are also provided with piezoelectricity by orienting polar groups by poling, but the piezoelectricity is not as strong as ferroelectric type piezoelectric materials.

【0005】これに対し、ポリペプチド型のポリγベン
ジルLグルタメート、DNA、ポリハイドロキシプチレ
ート等の天然高分子関連物質の人工配向フィルムは、配
向の制御方法は力学的延伸であり、保持機構は結晶構造
であり、配向の状態は一軸延伸で無極性である。これら
のフィルムはポーリング処理を行わないでもxy方向の
ずりをフィルムに与えると、z方向に分極する圧電性を
もつものである。けれども、長い側鎖が主鎖ヘリックス
を取り囲んだ分子構造であるため圧電性はあまり強くな
く、緩和型になる。また材料としての機械的強度も不充
分であり、異形の硬質圧電材料を得ることは難しい。
On the other hand, in the artificial orientation film of a natural polymer-related substance such as polypeptide type polyγ-benzyl L-glutamate, DNA, and polyhydroxybutylate, the method of controlling the orientation is mechanical stretching, and the holding mechanism is It has a crystal structure and the orientation state is uniaxial stretching and nonpolar. These films have a piezoelectric property of being polarized in the z direction when a shear in the xy direction is applied to the film without performing the poling process. However, since the long side chain has a molecular structure surrounding the main chain helix, the piezoelectricity is not so strong, and it is a relaxed type. Further, the mechanical strength of the material is insufficient, and it is difficult to obtain a deformed hard piezoelectric material.

【0006】本発明は上記に鑑みてなされたもので、そ
の目的とするところは、ポーリング処理が不要であり、
誘電率がポリ弗化ビニリデン等より低く、圧電性がエレ
クトレット型やポリペプチド型の圧電材料と同等もしく
はそれ以上であり、しかも機械的強度が大きく、フィル
ムから異形物まで種々の形状のものを得ることができる
新規な高分子圧電材を提供することにある。
[0006] The present invention has been made in view of the above, and its object is to eliminate the need for polling processing.
Dielectric constant is lower than polyvinylidene fluoride etc., piezoelectricity is equal to or higher than electret type or polypeptide type piezoelectric material, and mechanical strength is large, and various shapes are obtained from films to irregular shapes. It is an object of the present invention to provide a novel polymer piezoelectric material that can be used.

【0007】[0007]

【課題を解決するための手段】上記の目的は、ポリ乳酸
の成形物を延伸して成る本発明の高分子圧電材によって
達成される。
The above object is achieved by the polymer piezoelectric material of the present invention obtained by stretching a molded product of polylactic acid.

【0008】本発明に用いるポリ乳酸は、光学活性を有
するL体又はD体の乳酸から常法(C.E.Love、
米国特許第2,668,182号明細書)に従って乳酸
の環状二量体であるラクチドを合成し、そのラクチドを
開環重合することによって得られるものである。このポ
リ乳酸はL体又はD体の乳酸のホモポリマーであって
も、L体とD体の乳酸のブロックコポリマーであっても
よい。
The polylactic acid used in the present invention can be prepared from an optically active L-form or D-form lactic acid by a conventional method (CE Love,
It is obtained by synthesizing lactide which is a cyclic dimer of lactic acid according to U.S. Pat. No. 2,668,182) and subjecting the lactide to ring-opening polymerization. This polylactic acid may be a homopolymer of L-form or D-form lactic acid or a block copolymer of L-form and D-form lactic acid.

【0009】ポリ乳酸の分子量については、溶融成形及
び延伸が可能な範囲内であれば特に制限されないが、溶
融成形時の分子量低下や、目的とする高分子圧電材の実
用的強度を考慮すると、少なくとも粘度平均分子量が5
万以上、好ましくは10万以上のポリ乳酸を使用するの
がよい。分子量の高いポリ乳酸は高強度の高分子圧電材
を得るのに適するが、分子量があまり高すぎると、溶融
成形の際に高温、高圧が必要となるため分子量が大幅に
低下し、かえって高強度の高分子圧電材を得難くなるの
で、粘度平均分子量が高くても100万以下、好ましく
は50万以下のポリ乳酸を使用するのがよい。
The molecular weight of the polylactic acid is not particularly limited as long as it is within a range in which melt molding and stretching are possible. However, in consideration of a decrease in molecular weight during melt molding and a practical strength of a target polymer piezoelectric material, At least a viscosity average molecular weight of 5
It is good to use 10,000 or more, preferably 100,000 or more polylactic acid. Polylactic acid with a high molecular weight is suitable for obtaining a high-strength polymer piezoelectric material.However, if the molecular weight is too high, the high molecular weight and high pressure are required during melt molding, so the molecular weight is significantly reduced, and the high strength Since it is difficult to obtain a high-molecular piezoelectric material, it is preferable to use a polylactic acid having a viscosity average molecular weight of 1,000,000 or less, preferably 500,000 or less, even if it is high.

【0010】本発明の高分子圧電材は上記のポリ乳酸を
原料とし、これをロッド状や帯板状など適宜の形状に溶
融成形、例えば押出成形やプレス成形した後、更に一軸
延伸するか、或は上記ポリ乳酸を有機溶媒に溶解した溶
液を型枠に注入し、溶媒を蒸発させてフィルム状に成形
した後、更に一軸延伸することによって得られる。
The polymer piezoelectric material of the present invention is prepared by using the above-mentioned polylactic acid as a raw material, melt-forming this into an appropriate shape such as a rod shape or a strip shape, for example, extrusion or press molding, and then further uniaxially stretching. Alternatively, it can be obtained by injecting a solution in which the above-mentioned polylactic acid is dissolved in an organic solvent into a mold, evaporating the solvent to form a film, and further uniaxially stretching.

【0011】溶融成形する場合の条件は、ポリ乳酸の分
子量(融点)や溶融成形の種類等に応じて適宜決定され
るが、例えば溶融押出成形の場合は、通常の押出成形機
を用いて次の温度条件及び圧力条件のもとに行うのが望
ましい。
The conditions for melt-molding are appropriately determined according to the molecular weight (melting point) of polylactic acid, the type of melt-molding, and the like. It is desirable to carry out under the temperature conditions and pressure conditions described above.

【0012】即ち、溶融押出成形の温度は、ポリ乳酸の
融点ないし220℃の範囲に設定する。融点より低い温
度では、溶融押出が困難となり、逆に220℃より高い
温度では、ポリ乳酸の熱不安定性のため分子量低下が著
しくなって高強度の高分子圧電材が得難くなるからであ
る。原料として分子量が10万〜50万程度のポリ乳酸
を使用する場合は、200℃以下の温度条件で溶融押出
成形することが望ましい。
That is, the temperature of the melt extrusion molding is set in a range from the melting point of polylactic acid to 220 ° C. If the temperature is lower than the melting point, melt extrusion becomes difficult. On the other hand, if the temperature is higher than 220 ° C., the molecular weight is significantly reduced due to the thermal instability of polylactic acid, and it is difficult to obtain a high-strength polymer piezoelectric material. When polylactic acid having a molecular weight of about 100,000 to 500,000 is used as a raw material, it is desirable to perform melt extrusion molding under a temperature condition of 200 ° C. or lower.

【0013】同様に、溶融押出成形の圧力についても、
分子量低下を極力抑えるために、ポリ乳酸の溶融粘度
(分子量)に応じて押出可能な最小限の押出圧力とする
のが望ましい。従って、ポリ乳酸の分子量が10万〜5
0万の場合は170〜210kg/cm2 程度の押出圧
力とするのが適当である。
Similarly, regarding the pressure of the melt extrusion molding,
In order to minimize the decrease in molecular weight, it is desirable to set the minimum extrusion pressure at which extrusion is possible according to the melt viscosity (molecular weight) of polylactic acid. Therefore, the molecular weight of polylactic acid is 100,000 to 5
In the case of 100,000, it is appropriate to set the extrusion pressure to about 170 to 210 kg / cm 2 .

【0014】一方、ポリ乳酸を有機溶媒に溶解した溶液
を型枠に注入してフィルム状に成形する場合は、有機溶
媒として例えばジクロロメタン等を用いて常温でポリ乳
酸を完全に溶解させるようにし、型枠に溶液注入後、常
温常圧下で該溶媒を蒸発させるのが好ましい。
On the other hand, when a solution obtained by dissolving polylactic acid in an organic solvent is poured into a mold and formed into a film, the polylactic acid is completely dissolved at room temperature using, for example, dichloromethane as an organic solvent, After injecting the solution into the mold, the solvent is preferably evaporated under normal temperature and normal pressure.

【0015】上記のようにして得られたロッド状、帯板
状、フィルム状のポリ乳酸成形物はポリマー分子が無配
向であるため圧電性を示さない。そこで、この成形物を
更に加熱窒素気流中で長軸方向(押出方向)に一軸延伸
することによってポリマー分子を配向させ、圧電性を付
与すると共に、機械的強度を向上させる。
The rod-shaped, strip-shaped, and film-shaped polylactic acid molded products obtained as described above do not exhibit piezoelectricity because the polymer molecules are non-oriented. Then, the molded product is further uniaxially stretched in a long axis direction (extrusion direction) in a heated nitrogen stream to orient the polymer molecules, impart piezoelectricity, and improve mechanical strength.

【0016】この一軸延伸は60〜180℃、好ましく
は80〜160℃の温度条件で行うことが必要である。
This uniaxial stretching needs to be performed at a temperature of 60 to 180 ° C., preferably 80 to 160 ° C.

【0017】また、延伸倍率については10倍程度まで
可能であるが、延伸倍率が小さすぎるとポリ乳酸の分子
配向が不充分となり、延伸倍率が大きすぎるとフィブリ
ル化してポーラスな状態となるので、2〜6倍とするの
が望ましい。圧電性、機械的強度などを考慮すれば、最
良の延伸倍率は4倍である。
The stretching ratio can be up to about 10 times. However, if the stretching ratio is too small, the molecular orientation of the polylactic acid becomes insufficient, and if the stretching ratio is too large, it becomes fibrillated and becomes porous. It is desirable to make it 2-6 times. In consideration of piezoelectricity, mechanical strength, and the like, the best stretching ratio is 4 times.

【0018】このように一軸延伸されたポリ乳酸の成形
物はその延伸方向を考慮して切削加工され、種々の異形
状の高分子圧電材として製品化される。また、延伸され
た成形物がフィルムである場合は適当な大きさにカット
されて製品となる。尚、ポリ乳酸は加水分解するが、表
面を非透水性の電極膜で被覆すれば実用上問題はない。
The uniaxially stretched molded article of polylactic acid is cut in consideration of the stretching direction, and commercialized as variously shaped polymer piezoelectric materials. When the stretched molded product is a film, it is cut into an appropriate size to obtain a product. Although polylactic acid is hydrolyzed, there is no practical problem if the surface is covered with a water-impermeable electrode membrane.

【0019】[0019]

【作用】以上のような本発明の高分子圧電材は、ポリ乳
酸の分子配向によって隣接する分子主鎖のC=OとC−
Hが主鎖と交叉する方向に水素結合しており、しかも側
鎖が非極性のメチル基であるので緩和作用がないため、
下記実施例のデータによって裏付けられるように、従来
のポリペプチド型やエレクトレット型の圧電材料と同等
若しくはそれ以上の圧電性を示す。また誘電率が低いた
め、圧電g定数が大きく、強誘電体型のポリ弗化ビニリ
デンより高い電圧感度が得られる。
The polymer piezoelectric material according to the present invention as described above is characterized in that the C = O and C-
Since H is hydrogen-bonded in the direction crossing the main chain, and because the side chain is a non-polar methyl group, there is no relaxation effect.
As evidenced by the data of the following examples, the material exhibits piezoelectricity equal to or higher than that of conventional polypeptide-type or electret-type piezoelectric materials. Further, since the dielectric constant is low, the piezoelectric g constant is large, and a higher voltage sensitivity than that of the ferroelectric polyvinylidene fluoride can be obtained.

【0020】[0020]

【実施例】次に本発明の高分子圧電材の実施例について
説明する。 (実施例1)初期の粘度平均分子量(クロロホルム25
℃中)が33万のポリ−L−乳酸25gをジクロロメタ
ン1000mlに混合し、常温下にマグネチックスター
ラーで6時間攪伴して完全に溶解した後、型枠に注入
し、常温、常圧下で溶媒を蒸発させてポリ−L−乳酸の
フィルムを得た。
EXAMPLES Next, examples of the polymer piezoelectric material of the present invention will be described. (Example 1) Initial viscosity average molecular weight (chloroform 25
25 g of poly-L-lactic acid having a melting point of 330,000 (in ° C) was mixed with 1000 ml of dichloromethane and completely dissolved by stirring with a magnetic stirrer at room temperature for 6 hours. The solvent was evaporated to obtain a poly-L-lactic acid film.

【0021】得られたフィルムを3〜4cm巾にカット
し、108℃に設定された恒温室の窒素中に該フィルム
をセットして2分間放置した。そして該フィルムを4倍
に延伸した後、2分間アニーリングして厚さ180μm
の圧電フィルムを得た。
The obtained film was cut into a width of 3 to 4 cm, and the film was set in nitrogen in a constant temperature room set at 108 ° C. and allowed to stand for 2 minutes. Then, after stretching the film 4 times, annealing for 2 minutes and thickness of 180 μm
Was obtained.

【0022】この圧電フィルムを長さ1.64cm、巾
1cmに切断して試験片を作製し、圧電性測定装置(株
式会社東洋精機製作所製の「レオログラフリソッドS−
1型」を用いて、周波数9.76Hzで該試験片の複素
圧電率d14=d14′−id14″およびe14=e14′−i
14″、複素誘電率ε=ε′−iε″、複素弾性率c=
c′+ic″を測定した。その結果を図1〜図4のグラ
フに示す。
This piezoelectric film was cut into a length of 1.64 cm and a width of 1 cm to prepare a test piece, and a piezoelectricity measuring device (“Rheographic Lisod S- made by Toyo Seiki Seisaku-sho, Ltd.”) was used.
Using the “type 1”, the complex piezoelectric moduli d 14 = d 14 ′ -id 14 ″ and e 14 = e 14 ′ -i of the test piece at a frequency of 9.76 Hz.
e 14 ″, complex permittivity ε = ε′−iε ″, complex elastic modulus c =
c ′ + ic ″ was measured, and the results are shown in the graphs of FIGS.

【0023】図1,図2はそれぞれ圧電d定数及び圧電
e定数の温度スペクトルである。図1より、30〜11
5℃の測定温度域において、応力あたりの圧電率−
14′はおよそ10〜20×10-12 C/Nの値を示し
た。85〜90℃付近で−d14′が増加し、−d14″が
ピークを示しているのは、分子鎖のミクロブラウン運動
の開始による力学的緩和に基づくものである。図2よ
り、歪みあたりの圧電率−e 14′は常温付近でおよそ1
9〜20×10-3C/m2 の値を示し、−e14″は−d
14″と同様に85〜90℃付近にピークを示した。
FIGS. 1 and 2 show a piezoelectric d constant and a piezoelectric d constant, respectively.
It is a temperature spectrum of e constant. According to FIG.
Piezoelectricity per stress in 5 ° C measurement temperature range-
d14'Is about 10-20 × 10-12Shows the value of C / N
Was. -D around 85-90 ° C14′ Increases and −d14"But
The peak shows the micro-brownian motion of the molecular chain.
Based on the mechanical relaxation due to the start of Figure 2
And the piezoelectric modulus per strain-e 14′ Is about 1 around room temperature
9-20 × 10-3C / mTwoAnd -e14″ Is -d
14", A peak was observed at around 85 to 90 ° C.

【0024】図3は誘電率の温度スペクトルである。誘
電率ε′はおよそ3.5であり、誘電損失ε″は85℃
付近にピークを示した。
FIG. 3 is a temperature spectrum of the dielectric constant. The dielectric constant ε ′ is about 3.5, and the dielectric loss ε ″ is 85 ° C.
A peak was shown in the vicinity.

【0025】図4は弾性率の温度スペクトルである。常
温付近における弾性率c′はおよそ2×109 N/m2
であり、圧電率、誘電率と同様にc″は85℃付近に力
学的緩和によるピークを示した。
FIG. 4 is a temperature spectrum of the elastic modulus. The elastic modulus c 'at around normal temperature is about 2 × 10 9 N / m 2
As in the case of the piezoelectric constant and the dielectric constant, c ″ showed a peak at around 85 ° C. due to mechanical relaxation.

【0026】図1〜図4に示した圧電性、誘電性、動的
粘弾性はいずれも高分子の分子運動と密接に関連してお
り、緩和現象として取り扱うことができる。図1〜図4
においてd″、e″、ε″、c″が85〜90℃の温度
域でピークを示しているのは、いずれもポリ乳酸の分子
鎖のミクロブラウン運動による力学的緩和に基づくもの
であり、同一の現象を異なった測定法によって測定して
いるものである。
The piezoelectricity, dielectricity, and dynamic viscoelasticity shown in FIGS. 1 to 4 are all closely related to the molecular motion of a polymer, and can be treated as a relaxation phenomenon. 1 to 4
The reason that d ″, e ″, ε ″, and c ″ show peaks in the temperature range of 85 to 90 ° C. are based on mechanical relaxation due to micro-Brownian motion of the molecular chain of polylactic acid. The same phenomenon is measured by different measurement methods.

【0027】(実施例2)初期の粘度平均分子量が32
万のポリ−D−乳酸を用いた以外は実施例1と同様にし
て厚さ180μmの圧電フィルムを得た。この圧電フィ
ルムについて圧電率、誘電率、及び弾性率を測定したと
ころ、実施例1とほぼ同様の結果が得られた。但し圧電
率d14及びe14の符号はポリ−L−乳酸と反対であっ
た。
Example 2 The initial viscosity average molecular weight was 32.
A 180-μm-thick piezoelectric film was obtained in the same manner as in Example 1 except that 10,000 poly-D-lactic acid was used. When the piezoelectric constant, the dielectric constant, and the elastic modulus of the piezoelectric film were measured, almost the same results as in Example 1 were obtained. However the sign of the piezoelectric constant d 14 and e 14 were opposed poly -L- acid.

【0028】[0028]

【発明の効果】以上より明らかなように、本発明の高分
子圧電材はポーリング処理が不要でポリ乳酸成形物を一
軸延伸するだけで得ることができ、エレクトレット型や
ポリペプチド型の圧電材料と同等もしくはそれ以上の圧
電性を有し、しかも誘電率がポリ弗化ビニリデン等より
低いので電圧感度が高く音響から電気への変換効率が良
好であり、また従来の高分子圧電材よりも機械的強度が
大きく、フィルムから異形物まで種々の形状のものを得
ることができるといった顕著な効果を奏する。
As is clear from the above, the polymer piezoelectric material of the present invention can be obtained only by uniaxially stretching a polylactic acid molded product without the need for poling treatment, and is compatible with electret-type or polypeptide-type piezoelectric materials. It has the same or better piezoelectricity, and its dielectric constant is lower than that of polyvinylidene fluoride, etc., so it has high voltage sensitivity and good conversion efficiency from sound to electricity, and is more mechanical than conventional polymer piezoelectric materials. It has a remarkable effect that it has high strength and can obtain various shapes from films to irregular shapes.

【0029】このような効果を有する本発明の高分子圧
電材は、医用超音波変成器、音響変成器、計測機器、超
音波応用計測機器、圧電振動子、機械的フィルター、圧
電トランス、遅延装置などの分野への応用が見込まれ
る。また、生体内で自然に吸収される性質を有している
ので、骨の成長促進のための埋め込み型の圧電素子、初
期の骨成長促進効果を有する骨接合材として応用するこ
とが可能である。
The polymer piezoelectric material of the present invention having such an effect can be used as a medical ultrasonic transformer, an acoustic transformer, a measuring instrument, an ultrasonic measuring instrument, a piezoelectric vibrator, a mechanical filter, a piezoelectric transformer, a delay device. Application to such fields as is expected. In addition, since it has the property of being naturally absorbed in a living body, it can be applied as an implantable piezoelectric element for promoting bone growth, and as an osteosynthesis material having an initial bone growth promoting effect. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明高分子圧電材の圧電d定数と温度の関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the piezoelectric d constant and the temperature of the polymer piezoelectric material of the present invention.

【図2】本発明高分子圧電材の圧電e定数と温度の関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the piezoelectric e constant and the temperature of the polymer piezoelectric material of the present invention.

【図3】本発明高分子圧電材の誘電率と温度の関係を示
すグラフである。
FIG. 3 is a graph showing the relationship between the dielectric constant and the temperature of the piezoelectric polymer material of the present invention.

【図4】本発明高分子圧電材の弾性率と温度の関係を示
すグラフである。
FIG. 4 is a graph showing the relationship between the elastic modulus and temperature of the polymer piezoelectric material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑 邦広 大阪市中央区安土町2丁目3番13号 タ キロン株式会社内 (72)発明者 棒谷 英和 大阪市中央区安土町2丁目3番13号 タ キロン株式会社内 (72)発明者 深田 栄一 神奈川県川崎市宮前区宮前平3−6−2 −301 (58)調査した分野(Int.Cl.7,DB名) H01L 41/193 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Kunihiro Hata 2-3-1-13 Azuchicho, Chuo-ku, Osaka City Inside Takiron Co., Ltd. (72) Hidekazu Baroya 2-3-113 Azuchicho, Chuo-ku, Osaka City No. Takiron Co., Ltd. (72) Inventor Eiichi Fukada 3-6-2-301 Miyamaehira, Miyamae-ku, Kawasaki City, Kanagawa Prefecture (58) Fields investigated (Int. Cl. 7 , DB name) H01L 41/193

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリ乳酸の成形物を延伸して成る高分子圧
電材。
1. A piezoelectric polymer material obtained by stretching a molded product of polylactic acid.
JP03215948A 1991-07-31 1991-07-31 Polymer piezoelectric material Expired - Lifetime JP3074404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03215948A JP3074404B2 (en) 1991-07-31 1991-07-31 Polymer piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03215948A JP3074404B2 (en) 1991-07-31 1991-07-31 Polymer piezoelectric material

Publications (2)

Publication Number Publication Date
JPH05152638A JPH05152638A (en) 1993-06-18
JP3074404B2 true JP3074404B2 (en) 2000-08-07

Family

ID=16680908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03215948A Expired - Lifetime JP3074404B2 (en) 1991-07-31 1991-07-31 Polymer piezoelectric material

Country Status (1)

Country Link
JP (1) JP3074404B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102349170A (en) * 2009-03-13 2012-02-08 三井化学株式会社 Piezoelectric polymer material, process for producing same, and piezoelectric element

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205278A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Production of stretched film of polylactic acid polymer
JP3330712B2 (en) * 1994-01-11 2002-09-30 三菱樹脂株式会社 Method for producing polylactic acid-based film
WO2003097212A1 (en) * 2002-05-20 2003-11-27 Toyo Boseki Kabushiki Kaisha Wrought fiber sheet and filter unit
JP2003002984A (en) * 2002-06-14 2003-01-08 Mitsubishi Plastics Ind Ltd Polylactic acid film
JP4427665B2 (en) * 2004-07-28 2010-03-10 国立大学法人広島大学 Bending deformation sensor and deformation measuring apparatus
JP5473905B2 (en) 2008-05-12 2014-04-16 学校法人 関西大学 Piezoelectric element and acoustic device
JP5267559B2 (en) 2008-05-29 2013-08-21 株式会社村田製作所 Sheet-type vibrating body and acoustic equipment
WO2009144964A1 (en) * 2008-05-29 2009-12-03 株式会社村田製作所 Piezoelectric speaker, speaker device and tactile feedback device
CN102460351B (en) 2009-06-11 2015-11-25 株式会社村田制作所 Touch panel and touch-type input device
CN102803357B (en) 2009-06-15 2014-07-09 株式会社村田制作所 Piezoelectric sheet, method for manufacturing piezoelectric sheet, and manufacturing apparatus
JP6082511B2 (en) * 2010-05-14 2017-02-15 帝人株式会社 Laminated film
KR101408582B1 (en) 2010-08-25 2014-06-17 어 스쿨 코포레이션 칸사이 유니버시티 Macromolecular piezoelectric material and manufacturing method therefor
JP5656669B2 (en) * 2011-01-26 2015-01-21 帝人株式会社 Laminated film
EP2982938B1 (en) * 2011-04-08 2018-08-29 Murata Manufacturing Co., Ltd. Operation device including displacement sensor
US9136461B2 (en) 2011-10-13 2015-09-15 Mitsui Chemicals, Inc. Polymeric piezoelectric material and process for producing the same
WO2013089148A1 (en) 2011-12-13 2013-06-20 三井化学株式会社 Polymeric piezoelectric material and method for manufacturing same
JP6074414B2 (en) 2012-05-24 2017-02-01 株式会社村田製作所 Sensor devices and electronics
WO2013183594A1 (en) 2012-06-05 2013-12-12 三井化学株式会社 Piezo-electric device, and method of manufacturing piezo-electric device
JP6030878B2 (en) * 2012-07-25 2016-11-24 帝人株式会社 Method for manufacturing piezoelectric body
US10126473B2 (en) * 2013-02-01 2018-11-13 Murata Manufacturing Co., Ltd. Display device and laminated optical film
US20160099403A1 (en) 2013-04-10 2016-04-07 Mitsui Chemicals, Inc. Layered body
CN105247394B (en) * 2013-07-04 2018-01-30 三井化学株式会社 Film and high polymer piezoelectric material
KR20160007623A (en) 2013-07-19 2016-01-20 미쯔이가가꾸가부시끼가이샤 Crystalline polymer film and method for manufacturing same
US20160204337A1 (en) * 2013-09-02 2016-07-14 Mitsui Chemicals, Inc. Layered body
EP3057147A4 (en) 2013-11-26 2017-06-14 Mitsui Chemicals, Inc. Macromolecular piezoelectric material and manufacturing method therefor
KR102364909B1 (en) 2013-12-03 2022-02-17 가부시키가이샤 무라타 세이사쿠쇼 Stretched laminated film for use in piezoelectric polymer material, and manufacturing method thereof
WO2015170446A1 (en) * 2014-05-07 2015-11-12 パナソニックIpマネジメント株式会社 Piezoelectric device and method for manufacturing same
WO2016002604A1 (en) 2014-07-02 2016-01-07 三井化学株式会社 Polymer piezoelectric material, laminate body, method for producing polymer piezoelectric material, and method for producing laminate body
CN107078208B (en) 2014-11-14 2020-06-30 三井化学株式会社 Polymer piezoelectric film
JP6343687B2 (en) 2015-02-13 2018-06-13 三井化学株式会社 Polymer piezoelectric film and manufacturing method thereof
JP6076398B2 (en) * 2015-05-15 2017-02-08 帝人株式会社 Piezoelectric material
JP6384620B2 (en) * 2015-09-15 2018-09-05 株式会社村田製作所 Contact detection device
CN108698371B (en) 2016-03-09 2020-08-28 三井化学株式会社 Laminated body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102349170A (en) * 2009-03-13 2012-02-08 三井化学株式会社 Piezoelectric polymer material, process for producing same, and piezoelectric element
CN102349170B (en) * 2009-03-13 2015-04-08 三井化学株式会社 Piezoelectric polymer material, process for producing same, and piezoelectric element

Also Published As

Publication number Publication date
JPH05152638A (en) 1993-06-18

Similar Documents

Publication Publication Date Title
JP3074404B2 (en) Polymer piezoelectric material
US5298602A (en) Polymeric piezoelectric material
Li et al. Degradable piezoelectric biomaterials for wearable and implantable bioelectronics
Harrison et al. Piezoelectric polymers
US6423412B1 (en) Ferroelectric relaxer polymers
Lay et al. The intrinsic piezoelectric properties of materials–a review with a focus on biological materials
KR101408582B1 (en) Macromolecular piezoelectric material and manufacturing method therefor
Jones et al. More than just fibers: an aqueous method for the production of innovative recombinant spider silk protein materials
US6787238B2 (en) Terpolymer systems for electromechanical and dielectric applications
JP6302935B2 (en) Polymer piezoelectric material and manufacturing method thereof
Fukada Piezoelectricity of natural biomaterials
KR101826402B1 (en) Film and polymeric piezoelectric material
US4863648A (en) Process for making polarized material
Silva et al. On the piezoelectricity of collagen–chitosan films
TWI687450B (en) Polymeric piezoelectric film and process for producing the same
JP2014093487A (en) High-polymer piezoelectric material, and method for manufacturing the same
De Rossi et al. Piezoelectric properties of dry human skin
JPH0473282B2 (en)
Simoes et al. Thermomechanical characterization of PVDF and P (VDF-TrFE) blends containing corn starch and natural rubber
JPH09110968A (en) Polymeric electret material and its production
US5336422A (en) Polarized products and processes
JP3023472B2 (en) Bone formation promoting film
JP3023471B2 (en) Internal fixation material for osteosynthesis
Da Cruz et al. On the piezoelectricity of collagen/natural rubber blend films
JPS61295678A (en) Manufacture of piezoelectric film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12