JP6030878B2 - Method for manufacturing piezoelectric body - Google Patents

Method for manufacturing piezoelectric body Download PDF

Info

Publication number
JP6030878B2
JP6030878B2 JP2012164876A JP2012164876A JP6030878B2 JP 6030878 B2 JP6030878 B2 JP 6030878B2 JP 2012164876 A JP2012164876 A JP 2012164876A JP 2012164876 A JP2012164876 A JP 2012164876A JP 6030878 B2 JP6030878 B2 JP 6030878B2
Authority
JP
Japan
Prior art keywords
film
poly
lactic acid
polylactic acid
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012164876A
Other languages
Japanese (ja)
Other versions
JP2014027055A (en
Inventor
吉田 哲男
哲男 吉田
温子 加藤
温子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2012164876A priority Critical patent/JP6030878B2/en
Publication of JP2014027055A publication Critical patent/JP2014027055A/en
Application granted granted Critical
Publication of JP6030878B2 publication Critical patent/JP6030878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)

Description

本発明は、ポリ乳酸を用いた圧電体の製造方法に関する。   The present invention relates to a method for manufacturing a piezoelectric body using polylactic acid.

ポリ乳酸に延伸を施すことで、高分子圧電材料として用いられることが知られている(特許文献1、2)。また、このような高分子圧電材料を用いてバイモルフ構造またはマルチモルフ構造を形成し、圧電特性をより高めて、マイクロホン、ピックアップ、ブザー、スピーカー、光スイッチ、ファン等の振動体や、圧電体アクチュエーターとして用いられることが知られている(特許文献3〜5)。
そして、前述のようなバイモルフ構造やマルチモルフ構造を形成するためには、ポリ乳酸フィルムをカットして、各ポリ乳酸フィルムの圧電特性が打ち消しあわないように注意深くカットされたフィルムを積層することが必要であった。
一方、圧電体とは関係のない、偏光膜、位相差膜等、傾斜配向の光学用シート・フィルムの分野などでは、光学特性の観点から配向軸を揃えてロールtoロールで製造できるように、製膜方向に対して斜め方向に延伸する技術が提案されている(特許文献6〜8)。
It is known that polylactic acid is used as a polymer piezoelectric material by stretching (Patent Documents 1 and 2). In addition, a bimorph structure or a multimorph structure is formed using such a polymer piezoelectric material, and the piezoelectric characteristics are further enhanced, so that it can be used as a vibrating body such as a microphone, pickup, buzzer, speaker, optical switch, fan, or piezoelectric actuator. It is known to be used (Patent Documents 3 to 5).
In order to form a bimorph structure or multimorph structure as described above, it is necessary to cut polylactic acid films and laminate carefully cut films so that the piezoelectric properties of each polylactic acid film do not cancel each other. Met.
On the other hand, in the field of tilted alignment optical sheets and films, such as polarizing films, retardation films, etc., which are not related to the piezoelectric body, in order to be able to manufacture with roll-to-roll with the alignment axis aligned from the viewpoint of optical characteristics, Techniques have been proposed for stretching in an oblique direction with respect to the film forming direction (Patent Documents 6 to 8).

特開平05−152638号公報JP 05-152638 A 特開2005−213376号公報JP 2005-213376 A 特開昭59−115580号公報JP 59-115580 A 特開昭59−222977号公報JP 59-2222977 A 実開昭58−078673号公報Japanese Utility Model Publication No. 58-076783 特開2008−023775号公報JP 2008-023775 A 特開2009−119774号公報JP 2009-119774 A 特開2005−284024号公報JP 2005-284024 A

本発明者らは、製膜方向に直交する方向に延伸したポリ乳酸フィルムをカットして積層してマルチモルフ構造体を作成したところ、それぞれのポリ乳酸フィルムに同じ条件で導電層を形成して積層しても、出来上がった圧電体を多数評価すると、その性能に大きなバラツキがあることを見出した。
そのため、本発明の課題は、ポリ乳酸フィルムと導電層と交互に積層した圧電体としたとき、性能のバラツキが小さい圧電体の製造方法を提供することにある。
The present inventors cut and laminated polylactic acid films stretched in a direction perpendicular to the film forming direction to create a multimorph structure, and formed and laminated a conductive layer on each polylactic acid film under the same conditions. Even when many of the completed piezoelectric bodies were evaluated, it was found that there was a great variation in the performance.
Therefore, an object of the present invention is to provide a method for manufacturing a piezoelectric body with small variations in performance when the piezoelectric body is formed by alternately laminating a polylactic acid film and a conductive layer.

本発明者らは上記課題を解決しようと鋭意研究した結果、驚くべきことに製膜方向に対して斜め方向に延伸したフィルムを用いたとき、圧電体としたときのバラツキが小さく、しかも平均的な性能も高い圧電体が得られることを見出し、本発明に到達した。   As a result of diligent research to solve the above-mentioned problems, the present inventors have surprisingly found that when a film stretched obliquely with respect to the film-forming direction is used, there is little variation when used as a piezoelectric body, and average The inventors have found that a piezoelectric body having a high performance can be obtained, and have reached the present invention.

かくして本発明によれば、以下の(1)〜(8)の圧電体の製造方法が提供される。
(1)ポリL−乳酸またはポリD−乳酸のいずれかからなる未延伸フィルムを、主配向軸が製膜方向に対して製膜方向と主配向軸のなす角度が40〜50度の範囲の斜め方向になるように延伸して、配向ポリ乳酸フィルムとする工程、配向ポリ乳酸フィルムの一方の面に導電層を形成して積層体Aとする工程、および積層体Aを配向ポリ乳酸フィルム層と導電層とが交互に配列されるように積層して圧着する工程とを有する圧電体の製造方法。
(2)配向ポリ乳酸フィルムの合計層数が4層以上である上記(1)に記載の圧電体の製造方法。
(3)配向ポリ乳酸フィルムの厚みが15μm以下である上記(1)に記載の圧電体の製造方法。
(4)配向ポリ乳酸フィルムの製膜方向および幅方向の110℃での熱収縮率が3%以下の範囲にある上記(1)に記載の圧電体の製造方法。
(5)配向ポリ乳酸フィルムの製膜方向に直交する方向(幅方向)における厚み斑が30%以下である上記(1)に記載の圧電体の製造方法。
(6)隣り合う配向ポリ乳酸フィルムが、いずれもポリL−乳酸またはポリD−乳酸である場合はそれらの主配向軸が直交方向となるように、他方ポリL−乳酸とポリD−乳酸である場合はそれらの主配向軸が同一方向となるように積層する上記(1)に記載の圧電体の製造方法。
(7)全ての配向ポリ乳酸フィルムが、いずれもポリL−乳酸またはポリD−乳酸である上記(6)に記載の圧電体の製造方法。
(8)複数の積層体Aのロールを用意し、それらを重ねて巻き取り、圧着する上記(1)に記載の圧電体の製造方法。
Thus, according to the present invention, the following methods (1) to (8) for manufacturing a piezoelectric body are provided.
(1) In an unstretched film made of either poly L-lactic acid or poly D-lactic acid, the angle between the main orientation axis and the main orientation axis is 40 to 50 degrees with respect to the film production direction. Stretching in an oblique direction to form an oriented polylactic acid film, forming a conductive layer on one surface of the oriented polylactic acid film to form a laminate A, and laminate A as an oriented polylactic acid film layer And a step of laminating and press-bonding so that the conductive layers and the conductive layers are alternately arranged.
(2) The method for producing a piezoelectric body according to (1), wherein the total number of oriented polylactic acid films is 4 or more.
(3) The method for producing a piezoelectric body according to (1), wherein the oriented polylactic acid film has a thickness of 15 μm or less.
(4) The method for producing a piezoelectric body according to (1), wherein the heat shrinkage rate at 110 ° C. in the film forming direction and the width direction of the oriented polylactic acid film is in the range of 3% or less.
(5) The method for manufacturing a piezoelectric body according to (1), wherein the thickness unevenness in a direction (width direction) orthogonal to the film forming direction of the oriented polylactic acid film is 30% or less.
(6) When adjacent oriented polylactic acid films are both poly-L-lactic acid or poly-D-lactic acid, the other oriented poly-L-lactic acid and poly-D-lactic acid so that their main orientation axes are perpendicular to each other. In some cases, the method for producing a piezoelectric body according to the above (1), in which the main orientation axes are laminated in the same direction.
(7) The method for producing a piezoelectric body according to (6), wherein all the oriented polylactic acid films are all poly L-lactic acid or poly D-lactic acid.
(8) The method for manufacturing a piezoelectric body according to (1), wherein a plurality of rolls of the laminated body A are prepared, and the rolls are stacked, wound, and pressure-bonded.

また、本発明によれば、以下の(9)〜(17)の圧電体も提供することができる。
(9)ポリL−乳酸またはポリD−乳酸のいずれかからなる主配向軸が製膜方向に対して斜め方向である配向ポリ乳酸フィルムと、該配向ポリ乳酸フィルムの一方の面に形成された導電層とからなる積層体Aを、配向ポリ乳酸フィルム層と導電層とが交互になるように積層し圧着された圧電体。
(10)配向ポリ乳酸フィルムの合計層数が4層以上である上記(9)に記載の圧電体。
(11)配向ポリ乳酸フィルムの厚みが15μm以下である上記(9)に記載の圧電体。
(12)配向ポリ乳酸フィルムの製膜方向および幅方向の110℃での熱収縮率が3%以下の範囲にある上記(9)に記載の圧電体。
(13)配向ポリ乳酸フィルムの製膜方向に直交する方向(幅方向)における厚み斑が30%以下である上記(9)に記載の圧電体。
(14)隣り合う配向ポリ乳酸フィルムが、いずれもポリL−乳酸またはポリD−乳酸である場合はそれらの主配向軸が直交方向となるように、他方ポリL−乳酸とポリD−乳酸である場合はそれらの主配向軸が同一方向となるように積層された上記(9)に記載の圧電体。
(15)全ての配向ポリ乳酸フィルムが、いずれもポリL−乳酸またはポリD−乳酸である上記(14)に記載の圧電体。
In addition, according to the present invention, the following piezoelectric bodies (9) to (17) can also be provided.
(9) An oriented polylactic acid film in which the main orientation axis composed of either poly-L-lactic acid or poly-D-lactic acid is oblique with respect to the film forming direction, and formed on one surface of the oriented polylactic acid film A piezoelectric body obtained by laminating a laminate A composed of a conductive layer so that an oriented polylactic acid film layer and a conductive layer are alternately arranged and press-bonded.
(10) The piezoelectric body according to (9), wherein the total number of oriented polylactic acid films is 4 or more.
(11) The piezoelectric body according to (9), wherein the oriented polylactic acid film has a thickness of 15 μm or less.
(12) The piezoelectric body according to (9), wherein the thermal shrinkage rate at 110 ° C. in the film forming direction and the width direction of the oriented polylactic acid film is in the range of 3% or less.
(13) The piezoelectric body according to (9), wherein the thickness unevenness in a direction (width direction) orthogonal to the film forming direction of the oriented polylactic acid film is 30% or less.
(14) When the adjacent oriented polylactic acid films are both poly L-lactic acid or poly D-lactic acid, the other is made of poly L-lactic acid and poly D-lactic acid so that their main orientation axes are perpendicular to each other. In some cases, the piezoelectric body according to the above (9), which is laminated so that the main orientation axes thereof are in the same direction.
(15) The piezoelectric body according to (14), wherein all the oriented polylactic acid films are all poly L-lactic acid or poly D-lactic acid.

本発明によれば、圧電体としたときのバラツキが小さい圧電体を効率的に製造することができる。   According to the present invention, it is possible to efficiently manufacture a piezoelectric body having small variations when used as a piezoelectric body.

本発明における配向フィルムに導電層を設けた積層体Aの説明図である。上側が右マージン用の樹脂層と導電層を設けた積層体Aで、下側が左マージン用の樹脂層と導電層を設けた積層体Aである。It is explanatory drawing of the laminated body A which provided the conductive layer in the oriented film in this invention. The upper side is a laminate A provided with a resin layer and a conductive layer for the right margin, and the lower side is a laminate A provided with a resin layer and a conductive layer for the left margin. 本発明における積層体の説明図であり、図2の一番上の図は、図1の右マージン用の樹脂層と導電層を設けた積層体Aと、図1の左マージン用の樹脂層と導電層を設けた積層体Aとを交互に配置した図であり、図2の真ん中の図は、それらを圧着して積層した積層体Bの図であり、図2の最も下の図は、積層体Bの両端部に導電ペーストを設けた図である。2 is an explanatory diagram of a laminate in the present invention, and the top diagram in FIG. 2 shows a laminate A provided with a resin layer and a conductive layer for the right margin in FIG. 1, and a resin layer for the left margin in FIG. 2 and the laminate A provided with conductive layers are alternately arranged. The middle diagram in FIG. 2 is a diagram of a laminate B obtained by pressure-bonding them, and the lowermost diagram in FIG. FIG. 4 is a diagram in which a conductive paste is provided at both ends of a laminate B. 本発明における圧電体の圧電特性の評価方法を示した図である。It is the figure which showed the evaluation method of the piezoelectric characteristic of the piezoelectric material in this invention.

<圧電体の製造方法>
本発明の圧電体の製造方法は、ポリL−乳酸またはポリD−乳酸のいずれかからなる未延伸フィルムを、主配向軸が製膜方向に対して斜め方向になるように延伸して、配向ポリ乳酸フィルムとする工程、
配向ポリ乳酸フィルムの一方の面に導電層を形成して積層体Aとする工程、および
積層体Aを配向ポリ乳酸フィルム層と導電層とが交互になるように積層して圧着する工程とを有する。
<Method for manufacturing piezoelectric body>
In the method for producing a piezoelectric body of the present invention, an unstretched film made of either poly-L-lactic acid or poly-D-lactic acid is stretched so that the main orientation axis is oblique with respect to the film forming direction. A process for forming a polylactic acid film,
Forming a conductive layer on one surface of the oriented polylactic acid film to form a laminate A, and laminating the laminate A so that the oriented polylactic acid film layer and the conductive layer alternate, and pressing the laminate. Have.

以下、本発明を詳細に説明する。
<圧電体の積層構成>
本発明の製造方法で得られる圧電体の積層構成について、図1と2を用いて説明する。図1と2は、本発明の圧電体の積層構成の一例を示す模式図である。図1において、符号1は右マージン用の樹脂層で、配向ポリ乳酸フィルム層(1)、符号2は左マージン用の樹脂層で配向ポリ乳酸フィルム層(1)に隣り合う配向ポリ乳酸フィルム層(2)をそれぞれ示す。本発明の圧電体は、このように、配向ポリ乳酸フィルム層(1)と(2)とが複数交互に積層されている。なお、図2は、配向ポリ乳酸フィルム層(1)が3枚、配向ポリ乳酸フィルム層(2)が3枚、合計6枚の場合である。
符号3は、導電層Mを示す。本発明においては、配向ポリ乳酸フィルム層(1)と(2)の間に導電層M(3)を有する。また、圧電体の少なくとも一方の表面に導電層M(3)を有することが好ましく、さらにもう一方の表面に導電層M(3)を有していてもよい。
Hereinafter, the present invention will be described in detail.
<Laminated structure of piezoelectric body>
The laminated structure of the piezoelectric body obtained by the manufacturing method of the present invention will be described with reference to FIGS. 1 and 2 are schematic views showing an example of the laminated structure of the piezoelectric body of the present invention. In FIG. 1, reference numeral 1 denotes a resin layer for the right margin and an oriented polylactic acid film layer (1), and reference numeral 2 denotes a resin layer for the left margin and an oriented polylactic acid film layer adjacent to the oriented polylactic acid film layer (1). (2) is shown respectively. In the piezoelectric body of the present invention, a plurality of oriented polylactic acid film layers (1) and (2) are alternately laminated as described above. FIG. 2 shows a case where the number of oriented polylactic acid film layers (1) is three and the number of oriented polylactic acid film layers (2) is six, for a total of six.
Reference numeral 3 denotes a conductive layer M. In the present invention, a conductive layer M (3) is provided between the oriented polylactic acid film layers (1) and (2). In addition, the conductive layer M (3) is preferably provided on at least one surface of the piezoelectric body, and the conductive layer M (3) may be provided on the other surface.

そして、図2に示すように、導電層(3)を導電性ペースト(6)で、一つ置きに短絡するようにすることで、隣り合う導電層(3)に逆の電荷を掛けられるようにする。そのため、隣り合う配向フィルム層(1)と(2)とは、それぞれ逆の電荷がかけられたときに、圧電特性が打ち消しあわないように積層される。そのため、隣り合う配向ポリ乳酸フィルムが、いずれもポリL−乳酸またはポリD−乳酸である場合はそれらの主配向軸が直交方向となるように、他方ポリL−乳酸とポリD−乳酸である場合はそれらの主配向軸が同一方向となるように積層される。なお、本発明における隣り合う配向ポリ乳酸フィルムの主配向軸が直交するとは、ほぼ90度の角度であることを意味し、90度に近くなればなるほど圧電特性はより効果的に発現される。そのような観点から、隣り合う配向ポリ乳酸フィルムがいずれもポリL−乳酸またはポリD−乳酸である場合、好ましい隣り合う配向ポリ乳酸フィルムの主配向軸がなす鋭角の角度は、80度以上であることが好ましく、さらに85度以上であることが好ましく、特に88度以上であることが好ましい。また、本発明における隣り合う配向ポリ乳酸フィルムの主配向軸が同一方向とは、ほぼ0度の角度であることを意味し、0度に近くなればなるほど圧電特性はより効果的に発現される。そのような観点から、隣り合う配向ポリ乳酸フィルムがポリL−乳酸とポリD−乳酸である場合は、好ましい隣り合う配向ポリ乳酸フィルムの主配向軸がなす鋭角の角度は、10度以下であることが好ましく、さらに5度以下であることが好ましく、特に2度以下であることが好ましい。   Then, as shown in FIG. 2, by alternately short-circuiting the conductive layer (3) with the conductive paste (6), it is possible to apply an opposite charge to the adjacent conductive layer (3). To. Therefore, the adjacent oriented film layers (1) and (2) are laminated so that the piezoelectric characteristics do not cancel each other when opposite charges are applied. Therefore, when the adjacent oriented polylactic acid films are both poly-L-lactic acid or poly-D-lactic acid, they are poly-L-lactic acid and poly-D-lactic acid so that their main orientation axes are perpendicular to each other. In some cases, the layers are laminated so that their main orientation axes are in the same direction. In addition, the fact that the main orientation axes of adjacent oriented polylactic acid films in the present invention are orthogonal means an angle of approximately 90 degrees, and the closer to 90 degrees, the more effectively the piezoelectric characteristics are expressed. From such a viewpoint, when the adjacent oriented polylactic acid films are both poly L-lactic acid or poly D-lactic acid, the acute angle formed by the main orientation axis of the preferred adjacent oriented polylactic acid film is 80 degrees or more. It is preferable that it is 85 degrees or more, more preferably 88 degrees or more. In the present invention, the main orientation axes of adjacent oriented polylactic acid films in the same direction mean an angle of almost 0 degrees, and the closer to 0 degrees, the more effectively the piezoelectric characteristics are expressed. . From such a viewpoint, when the adjacent oriented polylactic acid films are poly L-lactic acid and poly D-lactic acid, the acute angle formed by the main orientation axis of the preferred adjacent oriented polylactic acid film is 10 degrees or less. It is preferably 5 degrees or less, more preferably 2 degrees or less.

<ポリ乳酸>
本発明におけるポリL−乳酸は、実質的にL−乳酸単位のみから構成されるポリL−乳酸(以下、PLLAと省略する場合がある。)や、L−乳酸とその他のモノマーとの共重合体等であるが、特に、実質的にL−乳酸単位だけで構成されるポリL−乳酸であることが好ましい。
<Polylactic acid>
The poly L-lactic acid in the present invention is substantially composed of only L-lactic acid units (hereinafter may be abbreviated as PLLA), and the co-polymerization of L-lactic acid and other monomers. Although it is a coalescence etc., it is especially preferable that it is poly L-lactic acid substantially comprised only by L-lactic acid unit.

また、本発明におけるポリD−乳酸は、実質的にD−乳酸単位のみから構成されるポリD−乳酸(以下、PDLAと省略する場合がある。)や、D−乳酸とその他のモノマーとの共重合体等であるが、特に、実質的にD−乳酸単位だけで構成されるポリD−乳酸であることが好ましい。
なお、ここで「主たる」とは、各層を構成する樹脂の質量に対して、ポリ乳酸(層LにおいてはポリL−乳酸、層DにおいてポリD−乳酸)が60質量%以上、好ましくは75質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上であることを示す。また、「実質的に」とは、ポリL−(D―)乳酸におけるL−(D−)乳酸単位の量が90モル%以上であることを示す。
The poly-D-lactic acid in the present invention is composed of poly-D-lactic acid (hereinafter sometimes abbreviated as PDLA) substantially composed only of D-lactic acid units, D-lactic acid and other monomers. Although it is a copolymer etc., it is especially preferable that it is poly D-lactic acid substantially comprised only from a D-lactic acid unit.
Here, “main” means that 60% by mass or more of polylactic acid (poly L-lactic acid in layer L and poly D-lactic acid in layer D) is 60% by mass or more with respect to the mass of the resin constituting each layer, preferably 75. It indicates that it is at least mass%, more preferably at least 90 mass%, particularly preferably at least 95 mass%. Further, “substantially” indicates that the amount of L- (D-) lactic acid units in poly L- (D-) lactic acid is 90 mol% or more.

ポリL−(D−)乳酸におけるL−(D−)乳酸単位の量は、結晶性の観点、また圧電特性の向上効果を高くするという観点、およびフィルム耐熱性などの観点より、好ましくは90〜100モル%、より好ましくは95〜100モル%、さらに好ましくは98〜100モル%である。すなわち、L−(D−)乳酸単位以外の単位の含有量は、好ましくは0〜10モル%、より好ましくは0〜5モル%、さらに好ましくは0〜2モル%である。   The amount of L- (D-) lactic acid units in poly L- (D-) lactic acid is preferably 90 from the viewpoints of crystallinity, enhancing the improvement of piezoelectric properties, and film heat resistance. It is -100 mol%, More preferably, it is 95-100 mol%, More preferably, it is 98-100 mol%. That is, the content of units other than L- (D-) lactic acid units is preferably 0 to 10 mol%, more preferably 0 to 5 mol%, and still more preferably 0 to 2 mol%.

かかるポリ乳酸は、結晶性を有していることが好ましく、前述のような配向・結晶の態様とすることが容易となり、圧電特性の向上効果を高くすることができる。またその融点は150℃以上190℃以下であることが好ましく、160℃以上190℃以下であることがさらに好ましい。このような態様であるとフィルムの耐熱性に優れる。
本発明におけるポリ乳酸は、その重量平均分子量(Mw)が8万から25万の範囲であることが好ましく、10万から25万以下であることがより好ましい。とりわけ好ましくは12万から20万の範囲である。重量平均分子量Mwが上記数値範囲にあると、フィルムの剛性に優れ、またフィルムの厚み斑が良好になる。
Such polylactic acid preferably has crystallinity, and it becomes easy to obtain the orientation / crystal mode as described above, and the effect of improving the piezoelectric characteristics can be enhanced. The melting point is preferably 150 ° C. or higher and 190 ° C. or lower, and more preferably 160 ° C. or higher and 190 ° C. or lower. With such an embodiment, the film has excellent heat resistance.
The polylactic acid in the present invention preferably has a weight average molecular weight (Mw) in the range of 80,000 to 250,000, and more preferably 100,000 to 250,000 or less. Particularly preferred is a range of 120,000 to 200,000. When the weight average molecular weight Mw is in the above numerical range, the rigidity of the film is excellent and the thickness unevenness of the film becomes good.

(共重合成分)
本発明で用いられるポリL−乳酸、ポリD−乳酸には、本発明の目的を損なわない範囲で所望により、L−乳酸、D−乳酸以外の共重合成分を含有させることができる。このとき、ポリ乳酸の結晶性を大きく損なわない範囲で含有させることが好ましい。かかる共重合成分は、特に限定されるものではないが、例えば、グリコール酸、カプロラクトン、ブチロラクトン、プロピオラクトンなどのヒドロキシカルボン酸類、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−プロパンジオール、1,5−プロパンジオール、ヘキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、炭素数が2から30の脂肪族ジオール類、コハク酸、マレイン酸、アジピン酸、炭素数2から30の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、ヒドロキシ安息香酸、ヒドロキノンなど芳香族ジオール、芳香族ジカルボン酸などから選ばれる1種以上のモノマーを選ぶことが出来る。
(Copolymerization component)
The poly L-lactic acid and poly D-lactic acid used in the present invention can contain a copolymer component other than L-lactic acid and D-lactic acid, as desired, within a range not impairing the object of the present invention. At this time, it is preferable to contain in the range which does not impair the crystallinity of polylactic acid largely. Such copolymerization component is not particularly limited. For example, hydroxycarboxylic acids such as glycolic acid, caprolactone, butyrolactone, propiolactone, ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-propanediol, 1,5-propanediol, hexanediol, octanediol, decanediol, dodecanediol, aliphatic diols having 2 to 30 carbon atoms, succinic acid, maleic acid, adipic acid, 2 carbon atoms To 30 or more monomers selected from aromatic diols such as aliphatic dicarboxylic acid, terephthalic acid, isophthalic acid, hydroxybenzoic acid, hydroquinone, and aromatic dicarboxylic acid.

(ポリ乳酸の製造方法)
ポリL−乳酸およびポリD−乳酸を製造する方法は特別に限定されるものではなく、従来公知の方法が好適に使用できる。例えば、L−乳酸またはD−乳酸を直接脱水縮合する方法、L−またはD−乳酸オリゴマーを固相重合する方法、L−またはD−乳酸を一度脱水環化してラクチドとした後、溶融開環重合する方法等が例示される。
なかでも、直接脱水縮合方法、あるいはラクチド類の溶融開環重合法により得られるポリ乳酸が、品質、生産効率の観点から好ましく、中でもラクチド類の溶融開環重合法が特に好ましく選択される。
(Polylactic acid production method)
The method for producing poly L-lactic acid and poly D-lactic acid is not particularly limited, and conventionally known methods can be suitably used. For example, a method of directly dehydrating and condensing L-lactic acid or D-lactic acid, a method of solid-phase polymerizing L- or D-lactic acid oligomers, once dehydrating and cyclizing L- or D-lactic acid into lactide, and then melt-opening The method of superposing | polymerizing etc. is illustrated.
Among them, polylactic acid obtained by a direct dehydration condensation method or a melt ring-opening polymerization method of lactides is preferable from the viewpoint of quality and production efficiency, and among them, a melt ring-opening polymerization method of lactides is particularly preferably selected.

これらの製造法において使用する触媒は、ポリ乳酸が前述した所定の特性を有するように重合させることができるものであれば特に限定されず、それ自体公知のものを適宜使用できる。
得られたポリL−乳酸およびポリD−乳酸は、従来公知の方法により、重合触媒を除去したり、失活剤を用いて重合触媒の触媒活性を失活、不活性化したりするのが、フィルムの溶融安定性、湿熱安定性のために好ましい。
The catalyst used in these production methods is not particularly limited as long as polylactic acid can be polymerized so as to have the predetermined characteristics described above, and a known catalyst can be used as appropriate.
The obtained poly L-lactic acid and poly D-lactic acid may be removed by a conventionally known method or the catalytic activity of the polymerization catalyst is deactivated or deactivated using a deactivator. It is preferable for the melt stability and wet heat stability of the film.

失活剤を用いる場合、その使用量は、特定金属含有触媒の金属元素1当量あたり0.3から20当量、より好ましくは0.5から15当量、さらに好ましくは0.5から10等量、特に好ましくは0.6から7当量とすればよい。失活剤の使用量が少なすぎると、触媒金属の活性を十分に低下させることができないし、また過剰に使用すると、失活剤が樹脂の分解を引き起こす可能性があり好ましくない。   When using a deactivator, the amount used is 0.3 to 20 equivalents, more preferably 0.5 to 15 equivalents, and even more preferably 0.5 to 10 equivalents per equivalent of metal element of the specific metal-containing catalyst. Particularly preferably, it may be 0.6 to 7 equivalents. If the amount of the deactivator used is too small, the activity of the catalyst metal cannot be lowered sufficiently, and if used excessively, the deactivator may cause decomposition of the resin, which is not preferable.

<配向ポリ乳酸フィルム>
本発明の特徴の一つは、用いる配向ポリ乳酸フィルム層が、製膜方向に対して、斜め方向の主配向軸を有することである。このような斜め方向に主配向軸を持たせるには、前述の特許文献6〜8に記載されたように斜め方向に延伸すればよい。なお、前述の隣り合う配向ポリ乳酸フィルムの主配向軸がなす鋭角の角度を0度や90度にするには、配向ポリ乳酸フィルム層が有する主配向軸が、製膜方向に対して、45度にあることが好ましい。そして、製膜方向と主配向軸がなす角度が45度に近いほど、隣り合う配向ポリ乳酸フィルム層の主配向軸がなす鋭角の角度を0度や90度に近づけることができる。そのような観点から、製膜方向と主配向軸がなす角度は40〜50度、さらに42〜48度の範囲にあることが好ましい。
なお、本発明における主配向軸とは、エリプソメーター(型式M−220;日本分光)を用いて測定された面内方向の最も屈折率の高い方向である。
<Oriented polylactic acid film>
One of the characteristics of the present invention is that the oriented polylactic acid film layer to be used has a main orientation axis in an oblique direction with respect to the film forming direction. In order to have the main orientation axis in such an oblique direction, the film may be stretched in the oblique direction as described in Patent Documents 6 to 8 described above. In order to set the acute angle formed by the main alignment axes of the adjacent aligned polylactic acid films to 0 degrees or 90 degrees, the main alignment axis of the aligned polylactic acid film layer is 45 with respect to the film forming direction. It is preferable that Then, the closer the angle formed by the film forming direction and the main alignment axis is to 45 degrees, the closer the acute angle formed by the main alignment axes of adjacent aligned polylactic acid film layers can be to 0 degrees or 90 degrees. From such a viewpoint, the angle formed by the film forming direction and the main orientation axis is preferably in the range of 40 to 50 degrees, more preferably 42 to 48 degrees.
In addition, the main orientation axis in this invention is a direction with the highest refractive index of the in-plane direction measured using the ellipsometer (model M-220; JASCO).

ところで、このように製膜方向に対して主配向軸を斜め方向にすることで圧電体のバラツキを抑えられる理由は定かではないが、圧電体に積層するまでの間、ロールtoロールで行うことができ、積層する際の角度のずれが生じにくいこと、また圧電特性を発現させるには主配向軸とそれに直交する方向に大きな配向差を必要とし、その結果、熱収縮や線膨張係数などが製膜方向と幅方向で大きく異なるが、製膜方向に対して主配向軸を斜めにしていることから、製膜方向と幅方向とを入れ替えずに、単にそのまま積層したり、裏返すだけでの積層で良いので、それの特性差による影響も緩和されているためと考えられる。
そのような観点から、本発明の製造方法は、複数の積層体Aのロールを用意し、それらを重ねて巻き取り、圧着するのが好ましい。
By the way, the reason why the variation in the piezoelectric body can be suppressed by setting the main orientation axis to be oblique with respect to the film forming direction in this way is not clear, but it is performed by roll-to-roll until it is laminated on the piezoelectric body. It is difficult to cause an angle shift when laminating, and a large orientation difference is required between the main orientation axis and a direction perpendicular to the main orientation axis in order to develop piezoelectric characteristics. Although it differs greatly in the film-forming direction and the width direction, since the main orientation axis is inclined with respect to the film-forming direction, the film-forming direction and the width direction can be simply stacked or turned upside down without changing the film-forming direction and the width direction. It is considered that the effect of the difference in the characteristics is mitigated because the lamination is sufficient.
From such a viewpoint, it is preferable that the manufacturing method of the present invention prepares a plurality of rolls of the laminate A, rolls them up, and crimps them.

以下、本発明における配向ポリ乳酸フィルムの製造法について、説明する。本発明における配向ポリ乳酸フィルムは、ポリL−乳酸またはポリD−乳酸のいずれかからなるポリ乳酸樹脂を、例えば溶融状態で押出し未延伸フィルムとし、製膜方向に対して、斜め方向に例えば3倍以上延伸して配向ポリ乳酸フィルムとする。なお、配向フィルム層の製造については、配向フィルム層Lを製造する方法について説明するが、配向フィルム層Dについても、用いる原料をポリD−乳酸を主たる成分とする樹脂Dとして、同様に製造することができる。   Hereinafter, the manufacturing method of the oriented polylactic acid film in this invention is demonstrated. The oriented polylactic acid film in the present invention is formed by, for example, extruding a polylactic acid resin composed of either poly L-lactic acid or poly D-lactic acid in a molten state to form an unstretched film. The film is stretched at least twice to obtain an oriented polylactic acid film. In addition, about manufacture of an oriented film layer, although the method to manufacture the oriented film layer L is demonstrated, also about the oriented film layer D, it manufactures similarly as the resin D which uses poly D-lactic acid as the main component. be able to.

(押出工程)
まず、所望により後述するカルボキシル基封止剤、滑剤、その他の添加剤等を含有する、ポリL−乳酸(層Lの場合。層Dの場合はポリD−乳酸とする。以下同様。)を主たる成分とする樹脂L(ポリL−乳酸を用いた場合。ポリD−乳酸を用いた場合は樹脂Dとする。以下同様。)を、押出機において溶融し、ダイから冷却ドラム上に押し出す。尚、押出機に供給する樹脂は、溶融時の分解を抑制するため、押出機供給前に乾燥処理を行い、水分含有量を100ppm以下程度にすることが好ましい。
(Extrusion process)
First, poly L-lactic acid (in the case of layer L. In the case of layer D, it is referred to as poly D-lactic acid) containing a carboxyl group-capping agent, a lubricant, and other additives, which will be described later, if desired. Resin L (when poly L-lactic acid is used. When poly D-lactic acid is used, resin D. The same applies hereinafter) is melted in an extruder and extruded from a die onto a cooling drum. In addition, in order to suppress decomposition at the time of melting, the resin supplied to the extruder is preferably subjected to a drying process before being supplied to the extruder so that the water content is about 100 ppm or less.

押出機における樹脂温度は、樹脂が十分に流動性を有する温度、すなわち、樹脂Lの融点をTmとすると、(Tm+20)から(Tm+50)(℃)の範囲で実施されるが、樹脂が分解しない温度で溶融押し出しするのが好ましく、かかる温度としては、好ましくは200〜260℃、さらに好ましくは205〜240℃、特に好ましくは210〜235℃である。上記温度範囲であると流動斑が発生しにくい。   The resin temperature in the extruder is a temperature at which the resin has sufficient fluidity, that is, when the melting point of the resin L is Tm, it is carried out in the range of (Tm + 20) to (Tm + 50) (° C.), but the resin does not decompose. It is preferable to perform melt extrusion at a temperature, and such a temperature is preferably 200 to 260 ° C, more preferably 205 to 240 ° C, and particularly preferably 210 to 235 ° C. Within the above temperature range, flow spots are unlikely to occur.

(キャスティング工程)
ダイから押し出した後、フィルムを冷却ドラムにキャスティングして未延伸フィルムを得る。その際、静電密着法により電極より静電荷を印加させることによって冷却ドラムに十分に密着させて冷却固化するのが好ましい。この時、静電荷を印加する電極はワイヤー状或いはナイフ状の形状のものが好適に使用される。該電極の表面物質は白金であることが好ましく、フィルムより昇華する不純物が電極表面に付着するのを抑制することができる。また、高温空気流を電極或いはその近傍に噴きつけ電極の温度を170〜350℃に保ち、電極上部に排気ノズルを設置することにより不純物の付着を防ぐこともできる。
(Casting process)
After extruding from the die, the film is cast on a cooling drum to obtain an unstretched film. At that time, it is preferable that the electrostatic charge is applied from the electrode by an electrostatic contact method so that it is sufficiently brought into close contact with the cooling drum and cooled and solidified. At this time, the electrode to which an electrostatic charge is applied preferably has a wire shape or a knife shape. The surface material of the electrode is preferably platinum, and can prevent impurities sublimated from the film from adhering to the electrode surface. Further, it is possible to prevent adhesion of impurities by blowing a high-temperature air flow on or near the electrode, keeping the temperature of the electrode at 170 to 350 ° C., and installing an exhaust nozzle above the electrode.

(延伸工程)
前記で得られた未延伸フィルムは、製膜方向に対して、45度の方向に斜め延伸する。かかる斜め延伸フィルムを得るには、未延伸フィルムを延伸可能な温度、例えば樹脂Lのガラス転移点温度(Tg)以上(Tg+80)℃以下の温度に加熱して延伸する。なお、本発明における製膜方向とは、フィルムの進行する方向であり、前述の特許文献8のように、延伸前と延伸後で変わる場合は、延伸後の進行方向を製膜方向として考えればよい。
(Stretching process)
The unstretched film obtained above is stretched obliquely in a direction of 45 degrees with respect to the film forming direction. In order to obtain such an obliquely stretched film, the unstretched film is stretched by heating to a temperature at which the unstretched film can be stretched, for example, a glass transition temperature (Tg) or higher (Tg + 80) ° C. of the resin L. In addition, the film forming direction in the present invention is a direction in which the film travels, and when the direction of stretching after stretching is considered as the film forming direction when it changes before and after stretching as in Patent Document 8 described above. Good.

斜め方向の延伸倍率は、好ましくは3〜10倍、より好ましくは3.5〜8倍である。延伸倍率を上記数値範囲とすることによって圧電特性の向上効果を高くすることができる。延伸倍率が高い場合は、フィルムの機械特性が劣る傾向にあり、他方低い場合は、圧電特性の向上効果が低くなる傾向にある。このような観点から、延伸倍率は、さらに好ましくは4〜7、特に好ましくは4.5〜6である。   The draw ratio in the oblique direction is preferably 3 to 10 times, more preferably 3.5 to 8 times. By making the draw ratio within the above numerical range, the effect of improving the piezoelectric characteristics can be enhanced. When the draw ratio is high, the mechanical properties of the film tend to be inferior, while when it is low, the effect of improving the piezoelectric properties tends to be low. From such a viewpoint, the draw ratio is more preferably 4 to 7, and particularly preferably 4.5 to 6.

(熱処理工程)
上記で得られた配向ポリ乳酸フィルムは、熱処理することが好ましい。熱処理温度は、前述の延伸温度よりも高く、樹脂の融点(Tm)未満の温度で行えばよく、好ましくはガラス転移点温度(Tg+15)℃以上(Tm−10)℃以下、さらに好ましくは(Tg+20)℃以上(Tm−20)℃、特に好ましくは(Tg+30)℃以上(Tm−35)℃である。熱処理温度が上記範囲にあることで、厚み斑や表面の平坦性を良好にしつつ、主配向軸を揃えやすくなり、機械特性も優れたものとできる。熱処理時間は、好ましくは1〜120秒、さらに好ましくは2〜60秒である。
さらに本発明においては、熱処理工程において弛緩処理して、熱寸法安定性を調整することも可能である。
(Heat treatment process)
The oriented polylactic acid film obtained above is preferably heat-treated. The heat treatment temperature may be higher than the above-mentioned stretching temperature and lower than the melting point (Tm) of the resin, preferably the glass transition temperature (Tg + 15) ° C. or more and (Tm−10) ° C. or less, more preferably (Tg + 20). ) ° C. or higher (Tm−20) ° C., particularly preferably (Tg + 30) ° C. or higher (Tm−35) ° C. When the heat treatment temperature is in the above range, the main alignment axis can be easily aligned and the mechanical properties can be excellent while improving the thickness unevenness and surface flatness. The heat treatment time is preferably 1 to 120 seconds, more preferably 2 to 60 seconds.
Furthermore, in the present invention, it is possible to adjust the thermal dimensional stability by performing a relaxation treatment in the heat treatment step.

(コロナ処理、プライマー処理)
かくして得られた配向ポリ乳酸フィルム層は、所望により従来公知の方法で、例えば表面活性化処理、例えばプラズマ処理、アミン処理、コロナ処理を施すことも可能である。
なかでも、導電層Mとの密着性を向上し、積層フィルムの耐久性を高めるという観点から、配向フィルム層の少なくとも片面、好ましくは両面に、コロナ処理を施すことが好ましい。かかるコロナ処理の条件としては、例えば電極距離を5mmとした際に、好ましくは1〜20kV、さらに好ましくは5〜15kVの電圧で、好ましくは1〜60秒、さらに好ましくは5〜30秒、特に好ましくは10〜25秒行うとよい。また、かかる処理は大気中で行うことができる。
(Corona treatment, primer treatment)
The oriented polylactic acid film layer thus obtained can be subjected to surface activation treatment such as plasma treatment, amine treatment or corona treatment by a conventionally known method if desired.
Among these, from the viewpoint of improving the adhesion with the conductive layer M and enhancing the durability of the laminated film, it is preferable to perform corona treatment on at least one side, preferably both sides, of the oriented film layer. As conditions for such corona treatment, for example, when the electrode distance is 5 mm, the voltage is preferably 1 to 20 kV, more preferably 5 to 15 kV, preferably 1 to 60 seconds, more preferably 5 to 30 seconds, particularly Preferably it is 10 to 25 seconds. Further, such treatment can be performed in the atmosphere.

また、同様に導電層Mとの密着性を向上するという観点から、配向フィルム層の少なくとも片面、好ましくは両面に、プライマー処理を施し、接着剤層を形成することができる。この際は、かかる接着剤層の厚みは1000nm以下とすることが好ましい。接着剤層の厚みが厚すぎる場合は、共振特性に劣るものとなる。このように、密着性の観点からは、接着剤層の厚みは、適度な密着性を付与することができるように適宜選択すればよいが、共振特性の観点からは、薄い方が好ましく、好ましくは500nm以下、さらに好ましくは200nm以下である。本発明において、共振特性の観点からは、特に好ましい態様は接着剤層を有しない態様である。
かかるプライマー処理は、フィルムを製造する工程において所謂インラインコーティング法により、あるいはフィルムを製造した後に所謂オフラインコーティング法により行うことができる。
Similarly, from the viewpoint of improving the adhesion with the conductive layer M, at least one surface, preferably both surfaces, of the oriented film layer can be subjected to primer treatment to form an adhesive layer. In this case, the thickness of the adhesive layer is preferably 1000 nm or less. When the thickness of the adhesive layer is too thick, the resonance characteristics are inferior. As described above, from the viewpoint of adhesiveness, the thickness of the adhesive layer may be appropriately selected so that appropriate adhesiveness can be imparted. However, from the viewpoint of resonance characteristics, the thinner one is preferable, preferably Is 500 nm or less, more preferably 200 nm or less. In the present invention, from the viewpoint of resonance characteristics, a particularly preferred embodiment is an embodiment that does not have an adhesive layer.
Such primer treatment can be performed by a so-called in-line coating method in the process of producing a film, or by a so-called offline coating method after producing the film.

(密度)
本発明において、配向ポリ乳酸フィルム層の密度は、1.22〜1.27g/cmであることが好ましい。密度が上記数値範囲にあると、共振特性の向上効果を高くすることができる。密度が低い場合は、圧電特性の向上効果が低くなる傾向にあり、他方、密度が高い場合は、共振特性の向上効果は高いもののフィルムの機械特性に劣る傾向にある。このような観点から、密度は、より好ましくは1.225〜1.26g/cm、さらに好ましくは1.23〜1.25g/cmである。
(density)
In the present invention, the density of the oriented polylactic acid film layer is preferably 1.22-1.27 g / cm 3 . When the density is in the above numerical range, the effect of improving the resonance characteristics can be enhanced. When the density is low, the effect of improving the piezoelectric characteristics tends to be low. On the other hand, when the density is high, the effect of improving the resonance characteristics is high, but the mechanical characteristics of the film tend to be inferior. From such a viewpoint, the density is more preferably 1.225 to 1.26 g / cm 3 , and still more preferably 1.23 to 1.25 g / cm 3 .

(配向ポリ乳酸フィルムの厚み)
本発明における配向ポリ乳酸フィルムの厚みは、厚すぎるために剛性が高くなりすぎて共振特性を奏さなくなってしまう傾向を考慮して、共振特性を奏する程度の厚さであれば特に限定されない。共振特性の観点からは薄い方が好ましい。特に、積層数を増加させる際には、各層の厚さを薄くして、積層フィルム全体としての厚さが厚くなりすぎないようにすることが好ましい。このような観点から、配向ポリ乳酸フィルム層の1層の厚みは、好ましくは15μm以下、さらに好ましくは12μm以下、特に好ましくは10μm以下である厚みが上記数値範囲にあると、共振特性の向上効果を高くすることができる。他方、取り扱い性や剛性の観点からは厚い方が好ましく、例えば2μm以上が好ましく、さらに好ましくは3μm以上である。
(Thickness of oriented polylactic acid film)
The thickness of the oriented polylactic acid film in the present invention is not particularly limited as long as it has a thickness that exhibits resonance characteristics in consideration of the tendency that rigidity is too high and resonance characteristics are not exhibited because it is too thick. The thinner one is preferable from the viewpoint of resonance characteristics. In particular, when increasing the number of layers, it is preferable to reduce the thickness of each layer so that the thickness of the entire laminated film does not become too large. From such a viewpoint, the thickness of one layer of the oriented polylactic acid film layer is preferably 15 μm or less, more preferably 12 μm or less, particularly preferably 10 μm or less. Can be high. On the other hand, from the viewpoint of handleability and rigidity, a thicker is preferable, for example, 2 μm or more is preferable, and 3 μm or more is more preferable.

(配向ポリ乳酸フィルム層の熱収縮率)
本発明における配向ポリ乳酸フィルムの製膜方向および幅方向の110℃での熱収縮率は、前述の積層した際の物性差によるバラツキの助長を抑える観点から、3%以下、さらに2.5%以下の範囲にあることが好ましい。また、製膜方向及び幅方向の熱収差が小さいほど好ましく、例えば2%以下、さらに好ましくは1.5%以下である。なお、このような熱収縮率を小さくするには、斜め方向に延伸することと、前述の熱固定処理の温度を上げることもしくは弛緩処理を施すこととすることで調整できる。
(Heat shrinkage of oriented polylactic acid film layer)
The heat shrinkage rate at 110 ° C. in the film forming direction and the width direction of the oriented polylactic acid film in the present invention is 3% or less, and further 2.5%, from the viewpoint of suppressing the promotion of variation due to the difference in physical properties when laminated. It is preferable to be in the following range. Moreover, it is so preferable that the thermal aberration of a film forming direction and the width direction is small, for example, 2% or less, More preferably, it is 1.5% or less. In order to reduce such a heat shrinkage rate, it can be adjusted by stretching in an oblique direction and increasing the temperature of the heat setting process described above or performing a relaxation process.

(配向ポリ乳酸フィルムの厚み斑)
本発明における配向ポリ乳酸フィルムの製膜方向に直交する方向(幅方向)に厚みを見たとき、厚みの最大値と最小値の差を、平均厚みで割った値が30%以下であることが好ましい。通常フィルムに製膜して巻き取る場合、オシレーションといって、幅方向のフィルムの位置をずらしつつ巻き取る。これは、幅方向の位置をずらさないと、フィルムの有する厚み斑がずっと重なっていくことで助長され、非常にロール形状悪いフィルムロールとなって後の工程で問題となるからである。しかしながら、本発明では、主配向軸の角度は一定であることが好ましく、オシレーションはできる限り小さくすることが好ましい。そのような観点から、フィルムの幅方向50cmの範囲に渡ってみたときの厚みの最大値と最小値の差を、平均厚みで割った値は30%以下であることが好ましく、さらに20%以下であることが好ましい。このような厚み斑は、延伸倍率を上げることなどで配向を高くすることや、前述の熱固定処理の温度を高めて結晶化を促進することが有効である。この際、熱固定処理温度を上げ過ぎると配向が緩和したり、結晶が融解したりするので、融点よりもある程度低くする。
(Thickness unevenness of oriented polylactic acid film)
When the thickness is viewed in a direction (width direction) orthogonal to the film-forming direction of the oriented polylactic acid film in the present invention, the value obtained by dividing the difference between the maximum value and the minimum value by the average thickness is 30% or less. Is preferred. When a film is usually formed and wound, it is called oscillation and the film is wound while shifting the position of the film in the width direction. This is because if the position in the width direction is not shifted, the thickness unevenness of the film will continue to overlap, resulting in a film roll with a very poor roll shape, which will be a problem in later steps. However, in the present invention, the angle of the main alignment axis is preferably constant, and the oscillation is preferably as small as possible. From such a viewpoint, the value obtained by dividing the difference between the maximum value and the minimum value of the thickness when viewed over a range of 50 cm in the width direction of the film by the average thickness is preferably 30% or less, and further 20% or less. It is preferable that It is effective to increase the orientation of such thickness spots by increasing the draw ratio or to promote crystallization by increasing the temperature of the heat setting treatment described above. At this time, if the heat setting temperature is raised too much, the orientation is relaxed or the crystals are melted.

(配向ポリ乳酸フィルム層に添加しても良い成分)
(カルボキシル基封止剤)
本発明におけるポリ乳酸は、カルボキシル基量は10当量/10g以下であることが、フィルムキャスティング時の安定性、加水分解抑制、重量平均分子量低下抑制の観点から好ましく、このような観点から、カルボキシル基量は5当量/10g以下であることがさらに好ましく、2当量/10g以下であることが特に好ましい。このような態様とするために、カルボキシル基封止剤を配合することが好ましい。カルボキシル基封止剤は、ポリ乳酸等のポリエステルの末端カルボキシル基の封止に加え、ポリエステルや各種添加剤の分解反応で生成するカルボキシル基、乳酸、ギ酸などの低分子化合物のカルボキシル基を封止し樹脂を安定化することができ、フィルム化時の樹脂温度を、流動斑を抑えるに足る温度まで昇温できる利点ももたらす。
(Components that may be added to the oriented polylactic acid film layer)
(Carboxyl group blocking agent)
In the polylactic acid in the present invention, the amount of carboxyl groups is preferably 10 equivalents / 10 6 g or less from the viewpoint of stability during film casting, hydrolysis inhibition, and weight average molecular weight reduction inhibition. From such a viewpoint, The amount of carboxyl groups is more preferably 5 equivalents / 10 6 g or less, and particularly preferably 2 equivalents / 10 6 g or less. In order to set it as such an aspect, it is preferable to mix | blend a carboxyl group sealing agent. Carboxyl group sealant seals terminal carboxyl groups of polyesters such as polylactic acid, as well as carboxyl groups generated by decomposition reactions of polyester and various additives, and carboxyl groups of low molecular compounds such as lactic acid and formic acid. The resin can be stabilized, and there is an advantage that the resin temperature at the time of film formation can be raised to a temperature sufficient to suppress flow spots.

かかるカルボキシル基封止剤としては、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、イソシアネート化合物から選択される少なくとも1種の化合物を使用することが好ましく、なかでもカルボジイミド化合物が好ましい。
カルボキシル基封止剤の使用量は、各層を構成する樹脂において、ポリ乳酸100質量部あたり、0.01〜10質量部が好ましく、0.03〜5質量部がさらに好ましい。本発明においては、さらに封止反応触媒を使用してもよい。
As such a carboxyl group-capping agent, it is preferable to use at least one compound selected from a carbodiimide compound, an epoxy compound, an oxazoline compound, an oxazine compound, and an isocyanate compound, and among them, a carbodiimide compound is preferable.
As for the usage-amount of a carboxyl group sealing agent, in resin which comprises each layer, 0.01-10 mass parts is preferable per 100 mass parts of polylactic acid, and 0.03-5 mass parts is further more preferable. In the present invention, a sealing reaction catalyst may be further used.

(滑剤)
本発明においては、各配向フィルム層および積層フィルムの巻き取りや走行性を改良する目的で、これらフィルム中に滑剤を含有することができる。
かかる滑剤としては、例えば乾式法で製造されたシリカ、湿式法で製造されたシリカ、ゼオライト、炭酸カルシウム、燐酸カルシウム、カオリン、カオリナイト、クレイ、タルク、酸化チタン、アルミナ、ジルコニア、水酸化アルミニウム、酸化カルシウム、グラファイト、カーボンブラック、酸化亜鉛、炭化珪素、酸化スズ等の無機粒子や、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、メラミン樹脂粒子、架橋シリコーン樹脂粒子等の有機微粒子を好ましく挙げることができる。
滑剤としては、平均粒径が0.001〜5.0μmの微粒子が好ましく、1種類で使用することもできるし2種類以上併用することも可能である。また滑剤は、層Lまたは層Dの各層の質量に対して、0.01〜0.5質量%の範囲で配合することができる。
(Lubricant)
In the present invention, a lubricant may be contained in these films for the purpose of improving the winding and running properties of each oriented film layer and laminated film.
Examples of such lubricants include silica produced by a dry method, silica produced by a wet method, zeolite, calcium carbonate, calcium phosphate, kaolin, kaolinite, clay, talc, titanium oxide, alumina, zirconia, aluminum hydroxide, Preferable examples include inorganic particles such as calcium oxide, graphite, carbon black, zinc oxide, silicon carbide, and tin oxide, and organic fine particles such as crosslinked acrylic resin particles, crosslinked polystyrene resin particles, melamine resin particles, and crosslinked silicone resin particles. .
As the lubricant, fine particles having an average particle diameter of 0.001 to 5.0 μm are preferable, and one kind can be used, or two or more kinds can be used in combination. Moreover, a lubricant can be mix | blended in 0.01-0.5 mass% with respect to the mass of each layer of the layer L or the layer D. FIG.

(樹脂成分)
本発明における配向ポリ乳酸フィルム層には、耐熱性を付与する目的において、ポリ乳酸よりも高融点の樹脂成分を含有することができる。
かかる樹脂成分は、ポリ乳酸よりも、融点が3℃以上高いことが好ましく、耐熱性の向上効果を高くすることができる。このような観点から、樹脂成分の融点は、ポリ乳酸よりも5℃以上高いことがさらに好ましく、10℃以上高いことが特に好ましい。
かかる樹脂成分としては、例えば、ポリエチレンナフタレート、ポリエチレンテレフタレート、ステレオコンプレックス相ポリ乳酸、ポリエーテルイミド、ポリフェニレンエーテル、ポリ(メタ)アクリルアミド、ポリスチレン等を好ましく挙げることができる。
(Resin component)
The oriented polylactic acid film layer in the present invention can contain a resin component having a melting point higher than that of polylactic acid for the purpose of imparting heat resistance.
Such a resin component preferably has a melting point higher by 3 ° C. or more than polylactic acid, and can improve the heat resistance improvement effect. From such a viewpoint, the melting point of the resin component is more preferably 5 ° C. or more higher than that of polylactic acid, and particularly preferably 10 ° C. or more.
Preferred examples of the resin component include polyethylene naphthalate, polyethylene terephthalate, stereocomplex phase polylactic acid, polyetherimide, polyphenylene ether, poly (meth) acrylamide, and polystyrene.

かかる樹脂成分の含有量は、各層の質量を基準として、10〜50質量%であることが好ましい。含有量が上記数値範囲にあると、優れた共振特性を保持したまま、優れた耐熱性を付与することができる。含有量が少なすぎる場合は、耐熱性の向上効果が低くなる傾向にある。このような観点から、樹脂成分の含有量は、さらに好ましくは20質量%以上、特に好ましくは30質量%以上である。他方、含有量が多すぎる場合は、各層の圧電性が低くなる傾向にあり、共振特性の向上効果が低くなる傾向にある。このような観点から、樹脂成分の含有量は、さらに好ましくは45質量%以下、特に好ましくは40質量%以下である。   The content of the resin component is preferably 10 to 50% by mass based on the mass of each layer. When the content is in the above numerical range, excellent heat resistance can be imparted while maintaining excellent resonance characteristics. When the content is too small, the effect of improving heat resistance tends to be low. From such a viewpoint, the content of the resin component is more preferably 20% by mass or more, and particularly preferably 30% by mass or more. On the other hand, when the content is too large, the piezoelectricity of each layer tends to be low, and the effect of improving the resonance characteristics tends to be low. From such a viewpoint, the content of the resin component is more preferably 45% by mass or less, and particularly preferably 40% by mass or less.

樹脂成分を含有させる方法は特に限定されず、例えば配向フィルム層を構成するポリ乳酸のペレットと、樹脂成分のペレットとをあらかじめ混合したペレットの混合体を得て、かかる混合体を押出機に投入して、押出機内でポリ乳酸と樹脂成分とを溶融混練することができる。   The method of containing the resin component is not particularly limited. For example, a mixture of pellets of polylactic acid constituting the oriented film layer and pellets of the resin component are obtained in advance, and the mixture is put into an extruder. Thus, the polylactic acid and the resin component can be melt-kneaded in the extruder.

(その他の添加剤)
また、層Lおよび/または層Dには、本発明の趣旨に反しない範囲において、酸化防止剤、帯電防止剤、着色剤、顔料、蛍光蒼白剤、可塑剤、架橋剤、紫外線吸収剤、その他の樹脂等を必要に応じて添加することができる。
(Other additives)
In addition, the layer L and / or the layer D are provided with an antioxidant, an antistatic agent, a colorant, a pigment, a fluorescent whitening agent, a plasticizer, a cross-linking agent, an ultraviolet absorber, and the like, as long as they do not contradict the spirit of the present invention. These resins can be added as necessary.

<導電層>
本発明における導電層Mは、本発明の圧電体が、電圧印加した際に圧電特性を示すことができる程度の導電性を有していれば、その種類は特に限定されないが、より好適に圧電特性および共振特性を示すことができるという観点から、金属または金属酸化物からなる層であることが好ましい。
<Conductive layer>
The type of the conductive layer M in the present invention is not particularly limited as long as the piezoelectric body of the present invention has conductivity that can exhibit piezoelectric characteristics when a voltage is applied, but the piezoelectric layer is more preferably piezoelectric. From the viewpoint of exhibiting characteristics and resonance characteristics, a layer made of a metal or metal oxide is preferable.

かかる金属または金属酸化物としては、特に限定はされないが、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属、または上記群より選択される少なくとも1種の金属の酸化物が好ましく用いられる。また、金属酸化物には、必要に応じて、さらに上記群に示された金属、または上記群に示された他の金属の酸化物を含んでいてもよい。例えば、酸化スズを含有する酸化インジウム、アンチモンを含有する酸化スズ等が好ましく用いられる。   Such metal or metal oxide is not particularly limited, but is selected from the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten. Preferably, at least one metal selected from the group described above or an oxide of at least one metal selected from the above group is preferably used. Further, the metal oxide may further contain an oxide of a metal shown in the above group or another metal shown in the above group, if necessary. For example, indium oxide containing tin oxide and tin oxide containing antimony are preferably used.

導電層Mの厚さは特に制限されないが、その表面抵抗値が1×10Ω/□以下、好ましくは5×10Ω/□以下、さらに好ましくは1×10Ω/□以下となるような厚みを選択すればよく、例えば、厚さ10nm以上とするのが好ましい。さらに、導電性と、層形成のし易さの観点から、15〜35nmであることが好ましく、より好ましくは20〜30nmである。厚さが薄すぎると、表面抵抗値が高くなる傾向にあり、かつ連続被膜になり難くなる。他方、厚すぎると、品質過剰であり、また圧電体の形成が困難となったり、圧電体の層間の強度が弱くなったりする傾向にある。 The thickness of the conductive layer M is not particularly limited, but the surface resistance value is 1 × 10 4 Ω / □ or less, preferably 5 × 10 3 Ω / □ or less, more preferably 1 × 10 3 Ω / □ or less. Such a thickness may be selected. For example, the thickness is preferably 10 nm or more. Furthermore, it is preferable that it is 15-35 nm from a viewpoint of electroconductivity and the ease of layer formation, More preferably, it is 20-30 nm. If the thickness is too thin, the surface resistance value tends to be high, and it becomes difficult to form a continuous film. On the other hand, if it is too thick, the quality is excessive, and it is difficult to form the piezoelectric body, and the strength between the layers of the piezoelectric body tends to be weakened.

本発明の圧電体の製造方法は、後述の製造方法で得た配向フィルムの一方の面に導電層を形成した積層体を用意し、後述の主配向方向の関係となるように配向フィルムと導電層とが交互になるように積層する。   The piezoelectric body manufacturing method of the present invention is a laminate in which a conductive layer is formed on one surface of an alignment film obtained by the manufacturing method described later, and the alignment film and the conductive film are in a relationship of the main alignment direction described later. Laminate layers alternately.

導電層Mの形成方法としては特に限定されず、従来公知の方法を採用することができる。具体的には、例えば真空蒸着法、スパッタリング法、イオンプレーティング法を例示でき、優れた導電性を有する導電層を均一に、容易に得ることができるという観点から、蒸着法またはスパッタリング法を採用することが好ましい。なお、金属層を形成した後、必要に応じて、100〜150℃の範囲内でアニール処理を施して結晶化することができる。このため、層Lおよび層Dは、100℃以上、更には110℃以上の耐熱性を有することが好ましい。また、導電層Mは、配向フィルム層の両面に形成してもよいが、密着性の観点からは、片面のみに導電層Mを形成することが好ましい。   It does not specifically limit as a formation method of the conductive layer M, A conventionally well-known method is employable. Specifically, for example, a vacuum deposition method, a sputtering method, and an ion plating method can be exemplified, and a vapor deposition method or a sputtering method is adopted from the viewpoint that a conductive layer having excellent conductivity can be obtained uniformly and easily. It is preferable to do. In addition, after forming a metal layer, it can crystallize by giving an annealing process within the range of 100-150 degreeC as needed. For this reason, it is preferable that the layer L and the layer D have heat resistance of 100 ° C. or higher, more preferably 110 ° C. or higher. Moreover, although the conductive layer M may be formed on both surfaces of the oriented film layer, it is preferable to form the conductive layer M only on one surface from the viewpoint of adhesion.

<その他の層>
本発明においては、前述の圧電体のような積層構成を有していれば、本発明の目的を阻害しない範囲において、さらにその他の層を有していても良い。例えば、積層フィルムの表面に、積層フィルムの剛性を高めるための、例えばポリエチレンテレフタレートやポリエチレンナフタレートのような芳香族ポリエステル層を有することができる。一方、共振特性の観点からは、このような層は、その厚みが薄いことが好ましく、有しないことが特に好ましい。
<Other layers>
In the present invention, as long as it has a laminated structure like the above-described piezoelectric body, it may have other layers within a range not impairing the object of the present invention. For example, an aromatic polyester layer such as polyethylene terephthalate or polyethylene naphthalate for increasing the rigidity of the laminated film can be provided on the surface of the laminated film. On the other hand, from the viewpoint of resonance characteristics, such a layer is preferably thin and particularly preferably not.

<圧電体の製造方法>
本発明の製造方法は、上記により得られた導電層Mを有する配向ポリ乳酸フィルム層を、前述の積層構成となるように積層して圧着して積層体を作成する。
かかる圧着の温度条件は、(Tg−5)〜(Tsm+20)℃とすることが好ましい。ここでTgは、積層フィルムの形成に用いる配向フィルム層Lを構成する樹脂Lのガラス転移温度および配向フィルム層Dを構成する樹脂Dのガラス転移温度のうち、最も高いガラス転移温度を示す。また、Tsmは、積層フィルムの形成に用いる配向フィルム層Lのサブピーク温度および配向フィルム層Dのサブピーク温度のうち、最も低いサブピーク温度を示す。なお、サブピーク温度とは、フィルム製造プロセスにおける熱固定温度に起因する温度であるである。上記温度条件を採用することにより、優れた共振特性を奏する積層フィルムを得ることができる。また、同時に、積層フィルムの各層の密着性に優れる。温度が低すぎると密着性に劣る傾向にあり、他方高すぎると配向が崩れてしまい共振特性に劣る傾向にある。このような観点より、さらに好ましい温度条件はTgからTsm+15であり、特に好ましくはTg+10〜Tsm+10である。
<Method for manufacturing piezoelectric body>
In the production method of the present invention, the oriented polylactic acid film layer having the conductive layer M obtained as described above is laminated and pressure-bonded so as to have the above-described laminated structure, thereby producing a laminate.
It is preferable that the temperature conditions for such pressure bonding are (Tg-5) to (Tsm + 20) ° C. Here, Tg indicates the highest glass transition temperature among the glass transition temperature of the resin L constituting the oriented film layer L used for forming the laminated film and the glass transition temperature of the resin D constituting the oriented film layer D. Tsm indicates the lowest sub-peak temperature among the sub-peak temperature of the oriented film layer L and the sub-peak temperature of the oriented film layer D used for forming the laminated film. In addition, subpeak temperature is temperature resulting from the heat setting temperature in a film manufacturing process. By adopting the above temperature condition, a laminated film having excellent resonance characteristics can be obtained. At the same time, the adhesion of each layer of the laminated film is excellent. If the temperature is too low, the adhesion tends to be inferior. On the other hand, if the temperature is too high, the orientation is lost and the resonance characteristics tend to be inferior. From such a viewpoint, more preferable temperature conditions are Tg to Tsm + 15, and particularly preferably Tg + 10 to Tsm + 10.

また、圧力条件は、1〜100MPaとすることが好ましい。これにより優れた共振特性を有しながら、密着性に優れた積層フィルムを得ることができる。圧力が低すぎると密着性に劣る傾向にあり、他方高すぎると共振特性に劣る傾向にある。このような観点より、さらに好ましい圧力条件は2〜80MPaであり、特に好ましくは2〜50MPaである。
以上のような温度条件および圧力条件において、10〜600秒の熱ラミネートを行うことが好ましい。これにより優れた共振特性を有しながら、密着性に優れた積層フィルムを得ることができる。時間が短すぎると密着性に劣る傾向にあり、他方長すぎると共振特性に劣る傾向にある。このような観点より、さらに好ましい時間条件は30〜300秒であり、特に好ましくは60〜180秒である。
Moreover, it is preferable that pressure conditions shall be 1-100 Mpa. Thereby, it is possible to obtain a laminated film excellent in adhesion while having excellent resonance characteristics. If the pressure is too low, the adhesion tends to be inferior, whereas if the pressure is too high, the resonance characteristics tend to be inferior. From such a viewpoint, the more preferable pressure condition is 2 to 80 MPa, and particularly preferably 2 to 50 MPa.
It is preferable to perform thermal lamination for 10 to 600 seconds under the above temperature and pressure conditions. Thereby, it is possible to obtain a laminated film excellent in adhesion while having excellent resonance characteristics. If the time is too short, the adhesion tends to be inferior, while if too long, the resonance characteristics tend to be inferior. From such a viewpoint, a more preferable time condition is 30 to 300 seconds, and particularly preferably 60 to 180 seconds.

<圧電体>
本発明の製造方法で得られる圧電体は、配向ポリ乳酸フィルム層(1)と導電層M、および配向ポリ乳酸フィルム層(2)と導電層Mとを積層したものであり、圧電特性を高くする観点から、配向ポリ乳酸フィルム層の合計層数は4以上であることが好ましく、さらに8以上あることが好ましく、特に10以上であることが好ましい。他方、配向ポリ乳酸フィルム層にある程度取扱い性を具備する厚さを持たせつつ、圧電積層体全体の厚みを、過度に強直にならないようにする観点から、合計総数の上限は、300以下、さらに200以下であることが好ましい。
<Piezoelectric body>
The piezoelectric body obtained by the production method of the present invention is a laminate of the oriented polylactic acid film layer (1) and the conductive layer M, and the oriented polylactic acid film layer (2) and the conductive layer M, and has high piezoelectric characteristics. In view of the above, the total number of oriented polylactic acid film layers is preferably 4 or more, more preferably 8 or more, and particularly preferably 10 or more. On the other hand, the upper limit of the total number is 300 or less from the viewpoint of preventing the thickness of the entire piezoelectric laminate from becoming excessively strong while giving the oriented polylactic acid film layer a thickness that has a certain degree of handleability. It is preferable that it is 200 or less.

また、前述の通り、圧電特性が打ち消しあわないよう、隣り合う配向ポリ乳酸フィルムが、いずれもポリL−乳酸またはポリD−乳酸である場合はそれらの主配向軸が直交方向となるように、他方ポリL−乳酸とポリD−乳酸である場合はそれらの主配向軸が同一方向となるように積層することが好ましい。
その中でも、本発明における圧電体を形成する全ての配向ポリ乳酸フィルム層は、ポリL−乳酸またはポリD−乳酸のいずれかからなることが好ましい。ポリL−乳酸からなるフィルム層とポリD−乳酸からなるフィルム層とを交互に積層する方式では、使用する原料が異なるため、同じ条件で作成するだけでは、両者の配向などを完全に一致させにくいが、ポリL−乳酸またはポリD−乳酸のいずれかであれば、同じ原料を同じ条件で製膜するだけでよく、より制御が簡便に行える。
Further, as described above, when the adjacent oriented polylactic acid films are both poly L-lactic acid or poly D-lactic acid so that the piezoelectric properties do not cancel each other, the main orientation axes thereof are orthogonal to each other. On the other hand, in the case of poly L-lactic acid and poly D-lactic acid, it is preferable to laminate them so that their main orientation axes are in the same direction.
Among them, all the oriented polylactic acid film layers forming the piezoelectric body in the present invention are preferably composed of either poly L-lactic acid or poly D-lactic acid. In the method of alternately laminating film layers made of poly-L-lactic acid and film layers made of poly-D-lactic acid, the raw materials used are different. Although it is difficult, as long as it is either poly L-lactic acid or poly D-lactic acid, it is only necessary to form a film of the same raw material under the same conditions, and the control can be performed more easily.

なお、隣り合う配向ポリ乳酸フィルム層が、いずれもポリL−乳酸またはポリD−乳酸である場合は、配向ポリ乳酸フィルム層の一方の表面に導電層を形成したものと、配向ポリ乳酸フィルム層の他方の表面に導電層を形成したものとを用意し、それらを交互に積層するのが好ましい。また、隣り合う配向ポリ乳酸フィルム層が、ポリL−乳酸とポリD−乳酸である場合は、配向ポリ乳酸フィルム層の同じ側の表面に導電層を形成したものをそれぞれ用意し、それらを交互に積層するのが好ましい。   When the adjacent oriented polylactic acid film layers are both poly L-lactic acid or poly D-lactic acid, a conductive layer is formed on one surface of the oriented polylactic acid film layer, and the oriented polylactic acid film layer. It is preferable to prepare a layer having a conductive layer formed on the other surface and laminate them alternately. In addition, when the adjacent oriented polylactic acid film layers are poly L-lactic acid and poly D-lactic acid, each prepared by forming a conductive layer on the same surface of the oriented polylactic acid film layer is prepared, and these are alternately arranged. It is preferable to laminate.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。なお、実施例中の各値は以下の方法に従って求めた。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention does not receive limitation at all by this. In addition, each value in an Example was calculated | required according to the following method.

(1)圧電特性
得られた圧電積層体の両方の短辺に、図2に示すごとく、導電性接着剤(藤倉化成製、ドータイトD550)を塗布して電極(符号6)を形成し、圧電性構造体を作成した。これにより、各アルミ蒸着層において、マージンを有する側においてはかかる導電性接着剤とアルミ蒸着層とが短絡せず、マージンを有しない側においてはかかる導電性接着剤とアルミ蒸着層とが短絡した構成となる。
この圧電積層体のそれぞれの電極にアルミ箔を取り付け、図3に示すように、圧電特性測定装置12(Agilent Technologies社製、商品名:プレシジョン インピーダンスアナライザ 4294A)に取り付け、二端子法によるアドミッタンスの共振測定を行った。この時、共振に影響が無いよう、図3に示すように圧電積層体は円柱11の上に置き、机上面との接触面積が少なくなるように設置した。なお、アドミッタンスの共振測定は、等価回路パターンEにて圧電共振波形を測定する方法で行い、得られた各種パラメータから圧電率(単位:pC/N)を算出した。圧電率が高いほど圧電性能に優れることを意味する。
なお、上記測定は、サンプルを10個作成し、それぞれについて行い、それらの平均を圧電率とした。また、10個の測定値の中の最大値と最小値の差を、最小値で割ったものを、圧電率のバラツキ(%)として算出した。
(1) Piezoelectric properties As shown in FIG. 2, a conductive adhesive (made by Fujikura Kasei, Dotite D550) is applied to both short sides of the obtained piezoelectric laminate to form an electrode (symbol 6), and the piezoelectric A sex structure was created. Thus, in each aluminum vapor deposition layer, the conductive adhesive and the aluminum vapor deposition layer are not short-circuited on the side having a margin, and the conductive adhesive and the aluminum vapor deposition layer are short-circuited on the side having no margin. It becomes composition.
An aluminum foil is attached to each electrode of this piezoelectric laminate, and as shown in FIG. 3, it is attached to a piezoelectric characteristic measuring apparatus 12 (manufactured by Agilent Technologies, trade name: Precision Impedance Analyzer 4294A), and resonance of admittance by the two-terminal method. Measurements were made. At this time, as shown in FIG. 3, the piezoelectric laminate was placed on the cylinder 11 so as to reduce the contact area with the desk surface so as not to affect the resonance. The admittance resonance was measured by a method of measuring a piezoelectric resonance waveform with the equivalent circuit pattern E, and the piezoelectric ratio (unit: pC / N) was calculated from the various parameters obtained. Higher piezoelectricity means better piezoelectric performance.
In addition, the said measurement produced 10 samples and performed about each, and made those averages the piezoelectricity. Further, the difference between the maximum value and the minimum value among the ten measured values divided by the minimum value was calculated as the variation (%) in piezoelectricity.

(2)積層フィルムの剥離
積層フィルムの端部をしごく等して切欠をつくり、各層を剥離し、配向フィルム層Lおよび層Dを剥離して取り出し、各層についての物性評価に用いた。
(2) Peeling of laminated film The end of the laminated film was squeezed to make a notch, each layer was peeled off, the oriented film layer L and layer D were peeled off, and used for evaluating physical properties of each layer.

(3)密度
積層フィルムから剥離したフィルムサンプルについて、JIS規格 C2151に準じて測定した。
(3) Density The film sample peeled from the laminated film was measured according to JIS standard C2151.

(4)主配向軸
エリプソメーター(型式M−220 ; 日本分光)を用い、得られたフィルムを550nm単色光の入射角度を変化させた透過光測定に供し、フィルムを固定した試料台を、光軸を中心に光軸に対して垂直な面内にて回転させて、面内方向の最も屈折率の高い方向を求め、その方向を主配向軸とした。また、主配向軸と製膜方向とがなす角度を求め、表1に示した。
(4) Main orientation axis Using an ellipsometer (model M-220; JASCO), the obtained film was subjected to transmitted light measurement with the incident angle of 550 nm monochromatic light varied, and the sample stage on which the film was fixed was By rotating in a plane perpendicular to the optical axis about the axis, the direction with the highest refractive index in the in-plane direction was determined, and that direction was defined as the main alignment axis. The angles formed by the main orientation axis and the film forming direction were determined and are shown in Table 1.

(5)ガラス転移温度(Tg)、サブピーク温度(Tsm)、融点(Tm)
製膜により得られた、積層フィルムとする前の配向フィルム層について、サンプル約10mgを測定用のアルミニウム製パンに封入して示差熱量計(TAinstruments社製商品名「DSC2920」)に装着し、25℃から10℃/分の速度で210℃まで昇温させ、フィルムのサブピーク温度(Tsm:℃)および融点(Tm:℃)を測定した。次いで、引き続き210℃で3分間保持した後、取り出し、直ちに氷の上に移して急冷し、このパンを再度示差熱量計に装着し、25℃から10℃/分の速度で昇温させて、フィルムを構成する樹脂のガラス転移温度(Tg:℃)および融点(Tm:℃)を測定した。
(5) Glass transition temperature (Tg), sub-peak temperature (Tsm), melting point (Tm)
About the oriented film layer obtained as a laminated film before forming a laminated film, about 10 mg of a sample is enclosed in an aluminum pan for measurement and attached to a differential calorimeter (trade name “DSC2920” manufactured by TA instruments), 25 The film was heated from 210 ° C. to 210 ° C. at a rate of 10 ° C./min, and the sub-peak temperature (Tsm: ° C.) and melting point (Tm: ° C.) of the film were measured. Next, after continuously holding at 210 ° C. for 3 minutes, it is taken out, immediately transferred onto ice and rapidly cooled, this pan is again attached to the differential calorimeter, and the temperature is raised from 25 ° C. at a rate of 10 ° C./min. The glass transition temperature (Tg: ° C.) and melting point (Tm: ° C.) of the resin constituting the film were measured.

(6)導電性(表面抵抗値)
三菱化学社製、商品名:Lorester MCP−T600を用いて、JIS K7194に準拠して測定した。測定は、1つのフィルムから3つの測定用サンプル片を採取し、それぞれ任意の5箇所について実施し、それらの平均値を表面抵抗値(単位:Ω/□)とした。
(6) Conductivity (surface resistance value)
It measured based on JISK7194 using Mitsubishi Chemical Corporation make and brand name: Lorester MCP-T600. The measurement was performed by taking three measurement sample pieces from one film and carrying out the measurement at five arbitrary locations, and taking the average value as the surface resistance value (unit: Ω / □).

[参考例1]ラクチドの溶融開環重合によるポリL−乳酸(PLLA)の合成
真空配管および窒素ガス配管、触媒、L−ラクチド溶液添加配管、アルコール開始剤添加配管を具備したフルゾーン翼具備縦型攪拌槽(40L)を窒素置換した。その後、L−ラクチド30Kg、ステアリルアルコール0.90kg(0.030モル/kg)、オクチル酸スズ6.14g(5.05×10−4モル/1kg)を仕込み、窒素圧106.4kPaの雰囲気下、150℃に昇温した。内容物が溶解した時点で、攪拌を開始、内温をさらに190℃に昇温した。内温が180℃を超えると反応が始まるため、冷却しながら内温を185℃から190℃に保持し1時間反応を継続した。さらに攪拌しつつ、窒素圧106.4kPa、内温200℃から210℃で1時間反応を行なった後、攪拌を停止しリン系の触媒失活剤を添加した。
さらに20分間静置して気泡除去をおこなった後、内圧を窒素圧で2から3気圧に昇圧し、プレポリマーをチップカッターに押し出し、重量平均分子量13万、分子量分散1.8のプレポリマーをペレット化した。
さらに、ペレットを押出機で溶解させ、無軸籠型反応装置に15kg/hrで投入し、10.13kPaに減圧して残留するラクチドを低減処理し、それを再度チップ化した。得られたポリL−乳酸(PLLA)は、ガラス転移点温度(Tg)55℃、融点(Tm)175℃、重量平均分子量12万、分子量分散1.8、ラクチド含有量0.005質量%であった。
[Reference Example 1] Synthesis of poly L-lactic acid (PLLA) by melt ring-opening polymerization of lactide Vertical type equipped with full zone blades equipped with vacuum piping and nitrogen gas piping, catalyst, L-lactide solution addition piping, and alcohol initiator addition piping The stirring tank (40 L) was purged with nitrogen. Thereafter, 30 kg of L-lactide, 0.90 kg of stearyl alcohol (0.030 mol / kg), and 6.14 g of tin octylate (5.05 × 10 −4 mol / 1 kg) were charged in an atmosphere with a nitrogen pressure of 106.4 kPa. The temperature was raised to 150 ° C. When the contents were dissolved, stirring was started and the internal temperature was further raised to 190 ° C. Since the reaction started when the internal temperature exceeded 180 ° C., the internal temperature was maintained from 185 ° C. to 190 ° C. while cooling and the reaction was continued for 1 hour. The reaction was further carried out at a nitrogen pressure of 106.4 kPa and an internal temperature of 200 ° C. to 210 ° C. for 1 hour while stirring, and then stirring was stopped and a phosphorus-based catalyst deactivator was added.
After removing the bubbles by standing still for 20 minutes, the internal pressure was increased from 2 to 3 atm with nitrogen pressure, the prepolymer was pushed out to a chip cutter, and a prepolymer having a weight average molecular weight of 130,000 and a molecular weight dispersion of 1.8 was obtained. Pelletized.
Further, the pellets were dissolved by an extruder, charged into a non-axial vertical reactor at 15 kg / hr, reduced in pressure to 10.13 kPa to reduce the remaining lactide, and chipped again. The obtained poly L-lactic acid (PLLA) has a glass transition temperature (Tg) of 55 ° C., a melting point (Tm) of 175 ° C., a weight average molecular weight of 120,000, a molecular weight dispersion of 1.8, and a lactide content of 0.005% by mass. there were.

[参考例2]ラクチドの溶融開環重合によるポリD−乳酸(PDLA)の合成
また、L−ラクチドの代わりにD−ラクチドを使用する以外は上記と同様にして、ガラス転移点温度(Tg)55℃、融点(Tm)175℃、重量平均分子量12万、分子量分散1.8、ラクチド含有量0.005質量%のポリD−乳酸(PDLA)を得た。
[Reference Example 2] Synthesis of poly D-lactic acid (PDLA) by melt ring-opening polymerization of lactide Glass transition temperature (Tg) in the same manner as above except that D-lactide was used instead of L-lactide. Poly-D-lactic acid (PDLA) having a temperature of 55 ° C., a melting point (Tm) of 175 ° C., a weight average molecular weight of 120,000, a molecular weight dispersion of 1.8, and a lactide content of 0.005% by mass was obtained.

[実施例1]
(配向ポリL−乳酸単層フィルム1の製造)
参考例1で得られたPLLAを、乾燥機を用いて十分に乾燥させた後、押出機に投入し、220℃で溶融し、溶融樹脂を220℃に保持されたダイより押し出して単層のシート状に成形し、かかるシートを表面温度25℃の冷却ドラムで冷却固化して未延伸フィルムを得た。得られた未延伸フィルムを、Andritz社製、可変式同時二軸延伸機にて、75℃に加熱したテンターに導き、延伸方向が製膜方向に対して45°(したがって、幅方向に対しても45°)の方向になるように進行方向の左側のクリップに対して、右側のクリップの速度を速め、45°方向に4.5倍で延伸し、続いて、延伸したフィルムの両端をクリップで保持しながら、テンター内で110℃の温度条件で30秒間の熱処理を行い、均一に徐冷して室温まで冷やして7μm厚みの45°に主軸を持つ配向ポリL−乳酸単層フィルム1(45°PLLA配向フィルム)を得た。得られたフィルムは、幅700mmで、100m巻き取り、さらに幅70mmにスリットした。
[Example 1]
(Production of oriented poly L-lactic acid monolayer film 1)
The PLLA obtained in Reference Example 1 was sufficiently dried using a dryer, then charged into an extruder, melted at 220 ° C, and the molten resin was extruded from a die held at 220 ° C to form a single layer. The sheet was formed into a sheet, and the sheet was cooled and solidified with a cooling drum having a surface temperature of 25 ° C. to obtain an unstretched film. The obtained unstretched film was led to a tenter heated to 75 ° C. by a variable simultaneous biaxial stretching machine manufactured by Andritz, and the stretching direction was 45 ° with respect to the film forming direction (thus, with respect to the width direction). The clip on the left side in the direction of travel so as to be in the direction of 45 °), the speed of the clip on the right side is increased, the film is stretched 4.5 times in the 45 ° direction, and then the ends of the stretched film are clipped. While maintaining the temperature at 110 ° C. in a tenter for 30 seconds, uniformly cooled, cooled to room temperature, and 7 μm thick oriented poly L-lactic acid monolayer film 1 having a main axis at 45 ° ( 45 ° PLLA oriented film) was obtained. The obtained film was 700 mm in width, wound up to 100 m, and further slit to a width of 70 mm.

(蒸着)
上記のとおり製造した幅100mmの配向ポリL−乳酸単層フィルム1にカスガ製、高周波電源CG−102型を用いて、電圧10kV、処理時間20秒の条件で片面コロナ処理を施した。この時、製膜時の冷却ドラムと接していない側の表面に施したものを配向フィルム45L−A、冷却ドラムと接している側に施したものを配向フィルム45L−Dとし、それぞれコロナ処理面が導電層Mを形成する面とする。次いで、コロナ処理面の幅方向において配向フィルム45L−Aには右側10mm幅の領域を、配向フィルム45L−Dには左側10mm幅の領域をマージンとしてマスキングし、蒸着しない箇所を残した上で、残りの領域(6cm幅の領域)に表面抵抗値が10Ω/□となるような厚みでアルミ蒸着を施した。なお、導電層の厚みは50nmであった。そして、配向フィルム45L−Aと配向フィルム45L−Dとを、図2に示すようにそれぞれのマージンが反対側に配置されるように、かつ、蒸着面が上面になるように重ね、コアに10回(合計20層)巻きつけた。積層したロールは切り開き、110℃で40MPaの圧力を3分間かけて、熱ラミネートにより貼りあわせた。その後、製膜方向に3cm、幅方向7cmのサイズで切り出し、圧電体を作製し、前述の(1)圧電特性の記載の通り、組み立てて圧電特性を測定した。得られた圧電体の特性を表1に示す。
(Vapor deposition)
Single-sided corona treatment was performed on the oriented poly L-lactic acid monolayer film 1 having a width of 100 mm produced as described above using Kasuga's high frequency power source CG-102 type under the conditions of a voltage of 10 kV and a treatment time of 20 seconds. At this time, the film applied to the surface not in contact with the cooling drum during film formation is the oriented film 45L-A, and the film applied to the side in contact with the cooling drum is the oriented film 45L-D. Is a surface on which the conductive layer M is formed. Next, in the width direction of the corona-treated surface, the oriented film 45L-A is masked with a region having a width of 10 mm on the right side, and the oriented film 45L-D is masked with a region having a width of 10 mm on the left side as a margin. The remaining region (6 cm wide region) was subjected to aluminum deposition with a thickness such that the surface resistance value was 10 Ω / □. The conductive layer had a thickness of 50 nm. Then, the orientation film 45L-A and the orientation film 45L-D are overlapped so that the respective margins are arranged on the opposite side as shown in FIG. Wound around (total 20 layers). The laminated rolls were cut open and bonded by heat lamination at 110 ° C. and a pressure of 40 MPa over 3 minutes. Thereafter, the film was cut out in a size of 3 cm in the film forming direction and 7 cm in the width direction to produce a piezoelectric body, which was assembled and the piezoelectric characteristics were measured as described in the above (1) Piezoelectric characteristics. Table 1 shows the characteristics of the obtained piezoelectric body.

[実施例2]
配向ポリL−乳酸単層フィルム1の代わりに、延伸倍率を4.5倍から5倍に変更した厚み7μmの配向ポリL−乳酸単層フィルム2を用いたほかは、実施例1と同様な操作を繰り返した。得られた圧電体の特性を表1に示す。
[Example 2]
Instead of the oriented poly L-lactic acid monolayer film 1, the same as in Example 1 was used except that the oriented poly L-lactic acid monolayer film 2 having a thickness of 7 μm with the draw ratio changed from 4.5 times to 5 times was used. The operation was repeated. Table 1 shows the characteristics of the obtained piezoelectric body.

[実施例3]
配向ポリL−乳酸単層フィルム1の代わりに、熱固定温度を110℃から100℃に変更した厚み7μmの配向ポリL−乳酸単層フィルム3を用いたほかは、実施例1と同様な操作を繰り返した。得られた圧電体の特性を表1に示す。
[Example 3]
Instead of the oriented poly L-lactic acid monolayer film 1, the same operation as in Example 1 was used except that the oriented poly L-lactic acid monolayer film 3 having a thickness of 7 μm with the heat setting temperature changed from 110 ° C. to 100 ° C. was used. Was repeated. Table 1 shows the characteristics of the obtained piezoelectric body.

[実施例4]
参考例2で得られたPDLAを、乾燥機を用いて十分に乾燥させた後、押出機に投入し、220℃で溶融し、溶融樹脂を220℃に保持されたダイより押し出して単層のシート状に成形し、かかるシートを表面温度25℃の冷却ドラムで冷却固化して未延伸フィルムを得た。得られた未延伸フィルムを、Andritz社製、可変式同時二軸延伸機にて、75℃に加熱したテンターに導き、延伸方向が製膜方向に対して45°(したがって、幅方向に対しても45°)の方向になるように進行方向の左側のクリップに対して、右側のクリップの速度を速め、45°方向に4.5倍で延伸し、続いて、延伸したフィルムの両端をクリップで保持しながら、テンター内で110℃の温度条件で30秒間の熱処理を行い、均一に徐冷して室温まで冷やして7μm厚みの45°に主軸を持つ配向ポリD−乳酸単層フィルム1(45°PDLA配向フィルム)を得た。得られたフィルムは、幅700mmで、100m巻き取り、さらに幅70mmにスリットした。
[Example 4]
The PDLA obtained in Reference Example 2 was sufficiently dried using a dryer, then charged into an extruder, melted at 220 ° C, and the molten resin was extruded from a die held at 220 ° C to form a single layer. The sheet was formed into a sheet, and the sheet was cooled and solidified with a cooling drum having a surface temperature of 25 ° C. to obtain an unstretched film. The obtained unstretched film was led to a tenter heated to 75 ° C. by a variable simultaneous biaxial stretching machine manufactured by Andritz, and the stretching direction was 45 ° with respect to the film forming direction (thus, with respect to the width direction). The clip on the left side in the direction of travel so as to be in the direction of 45 °), the speed of the clip on the right side is increased, the film is stretched 4.5 times in the 45 ° direction, and then the ends of the stretched film are clipped. While maintaining the temperature in the tenter for 30 seconds under a temperature condition of 110 ° C., uniformly cooled to room temperature, and 7 μm thick oriented poly D-lactic acid monolayer film 1 having a main axis at 45 ° ( 45 ° PDLA alignment film) was obtained. The obtained film was 700 mm in width, wound up to 100 m, and further slit to a width of 70 mm.

(蒸着)
上記のとおり製造した幅100mmの配向ポリL−乳酸単層フィルム1にカスガ製、高周波電源CG−102型を用いて、電圧10kV、処理時間20秒の条件で片面コロナ処理を施した。この時、製膜時の冷却ドラムと接していない側の表面に施したものを配向フィルム45D−A、冷却ドラムと接している側に施したものを配向フィルム45D−Dとし、それぞれコロナ処理面が導電層Mを形成する面とする。次いで、コロナ処理面の幅方向において配向フィルム45D−Aには右側10mm幅の領域を、配向フィルム45D−Dには左側10mm幅の領域をマージンとしてマスキングし、蒸着しない箇所を残した上で、残りの領域(6cm幅の領域)に表面抵抗値が10Ω/□となるような厚みでアルミ蒸着を施した。なお、導電層の厚みは50nmであった。そして、配向フィルム45D−Aと配向フィルム45D−Dとを、図2に示すようにそれぞれのマージンが反対側に配置されるように、かつ、蒸着面が上面になるように重ね、コアに10回(合計20層)巻きつけ、実施例1と同様な操作を繰り返して、圧電体を作製した。得られた圧電体を実施例1と同様にして評価した。得られた圧電体の特性を表1に示す。
(Vapor deposition)
Single-sided corona treatment was performed on the oriented poly L-lactic acid monolayer film 1 having a width of 100 mm produced as described above using Kasuga's high frequency power source CG-102 type under the conditions of a voltage of 10 kV and a treatment time of 20 seconds. At this time, the film applied to the surface not in contact with the cooling drum at the time of film formation is the oriented film 45D-A, and the film applied to the side in contact with the cooling drum is the oriented film 45D-D. Is a surface on which the conductive layer M is formed. Next, in the width direction of the corona-treated surface, the alignment film 45D-A is masked with a region having a width of 10 mm on the right side, and the alignment film 45D-D is masked with a region having a width of 10 mm on the left side as a margin. The remaining region (6 cm wide region) was subjected to aluminum deposition with a thickness such that the surface resistance value was 10 Ω / □. The conductive layer had a thickness of 50 nm. Then, the orientation film 45D-A and the orientation film 45D-D are overlaid so that the respective margins are arranged on the opposite side as shown in FIG. The piezoelectric body was produced by repeating the same operation as in Example 1 by winding (total 20 layers). The obtained piezoelectric body was evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the obtained piezoelectric body.

[実施例5]
配向ポリL−乳酸単層フィルム1の代わりに、厚みを7μmから10μmに変更した配向ポリL−乳酸単層フィルム4を用いたほかは、実施例1と同様な操作を繰り返した。得られた圧電体の特性を表1に示す。
[Example 5]
Instead of the oriented poly L-lactic acid single layer film 1, the same operation as in Example 1 was repeated except that the oriented poly L-lactic acid single layer film 4 having a thickness changed from 7 μm to 10 μm was used. Table 1 shows the characteristics of the obtained piezoelectric body.

[実施例6]
コアに巻きつける回数を10回(合計20層)から20回(合計40層)に変更したほかは、実施例1と同様な操作を繰り返した。得られた圧電体の特性を表1に示す。
[Example 6]
The same operation as in Example 1 was repeated except that the number of windings around the core was changed from 10 (total 20 layers) to 20 (total 40 layers). Table 1 shows the characteristics of the obtained piezoelectric body.

[実施例7]
コアに巻きつける回数を10回(合計20層)から5回(合計10層)に変更したほかは、実施例1と同様な操作を繰り返した。得られた圧電体の特性を表1に示す。
[Example 7]
The same operation as in Example 1 was repeated except that the number of windings around the core was changed from 10 (total 20 layers) to 5 (total 10 layers). Table 1 shows the characteristics of the obtained piezoelectric body.

[実施例8]
実施例1における配向フィルム45L−Dの代わりに、実施例5における配向フィルム45D−Aを用いたほかは、実施例1と同様な操作を繰り返した。得られた圧電体の特性を表1に示す。
[Example 8]
The same operation as in Example 1 was repeated except that the oriented film 45D-A in Example 5 was used instead of the oriented film 45L-D in Example 1. Table 1 shows the characteristics of the obtained piezoelectric body.

[実施例9]
実施例8において、それぞれの配向フィルムに、ローム・アンド・ハース・ジャパン株式会社社製、コアシェル構造体(パラロイドTMBPM−500)を5質量%添加し、熱ラミネートする時の圧力を20MPaに変更したほかは、実施例8と同様な操作を繰り返した。得られた圧電体の特性を表1に示す。
[Example 9]
In Example 8, 5% by mass of the core shell structure (Paraloid TM BPM-500) manufactured by Rohm & Haas Japan Co., Ltd. was added to each oriented film, and the pressure during thermal lamination was changed to 20 MPa. The same operation as in Example 8 was repeated except that. Table 1 shows the characteristics of the obtained piezoelectric body.

[比較例1]
参考例1で得られたPLLAを、乾燥機を用いて十分に乾燥させた後、押出機に投入し、210℃で溶融し、溶融樹脂をダイより押し出して単層のシート状に成形し、かかるシートを表面温度20℃の冷却ドラムで冷却固化して未延伸フィルムを得た。得られた未延伸フィルムを、75℃に加熱したロール群に導き、縦方向に1.1倍に延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き、80℃に加熱された雰囲気中で横方向に4.5倍に延伸した。その後テンター内で110℃の温度条件で30秒間の熱処理を行い、均一に徐冷して室温まで冷やして7μm厚みの幅方向0°に主軸を持つ二軸配向ポリL−乳酸単層フィルム5(PLLA配向フィルムL1)を得た。なお、製膜時の冷却ドラムと接していない側の表面に、カスガ製、高周波電源CG−102型を用いて、電圧10kV、処理時間20秒の条件でコロナ処理を施した。
得られた配向フィルムL1を、製膜方向に対して、45°および135°が長さ方向になるように7cm×3cmで切り出し、それぞれ配向フィルムL1−45、L1−135とした。
次いで、片方の短辺から1cmの領域(1cm×3cmの領域)をマージンとしてマスキングし、蒸着しない箇所を残した上で、残りの領域(6cm×3cmの領域)に表面抵抗値が10Ω/□となるような厚みでアルミ蒸着を施した。なお、導電層の厚みは50nmであった。また、マージンの位置は配向フィルムL1−45と配向フィルムL1−135とで、それぞれ反対側の短辺においてマージンを作成した。得られた蒸着フィルムについて、各10枚、合計20枚を積層し、110℃で40MPaの圧力を3分間かけて、熱ラミネートにより貼りあわせた。電極工程以降、実施例1と同様な操作を繰り返した。得られた圧電体の特性を表1に示す。
[Comparative Example 1]
The PLLA obtained in Reference Example 1 was sufficiently dried using a dryer, then charged into an extruder, melted at 210 ° C., and the molten resin was extruded from a die and formed into a single-layer sheet, The sheet was cooled and solidified with a cooling drum having a surface temperature of 20 ° C. to obtain an unstretched film. The obtained unstretched film was led to a roll group heated to 75 ° C., stretched 1.1 times in the longitudinal direction, and cooled by a roll group at 25 ° C. Subsequently, both ends of the longitudinally stretched film were guided to a tenter while being held with clips, and stretched 4.5 times in the transverse direction in an atmosphere heated to 80 ° C. Thereafter, heat treatment is performed in a tenter at a temperature of 110 ° C. for 30 seconds, uniformly cooled to room temperature, and a 7 μm-thick biaxially oriented poly L-lactic acid monolayer film 5 having a principal axis at 0 ° in the width direction ( A PLLA oriented film L1) was obtained. The surface on the side not in contact with the cooling drum at the time of film formation was subjected to corona treatment under the conditions of a voltage of 10 kV and a treatment time of 20 seconds using a high-frequency power source CG-102 manufactured by Kasuga.
The obtained oriented film L1 was cut out at 7 cm × 3 cm so that 45 ° and 135 ° were in the length direction with respect to the film forming direction, and were used as oriented films L1-45 and L1-135, respectively.
Next, a 1 cm region (1 cm × 3 cm region) from one short side is masked as a margin to leave a portion not deposited, and the surface resistance value is 10 Ω / □ in the remaining region (6 cm × 3 cm region). The aluminum was deposited with such a thickness as follows. The conductive layer had a thickness of 50 nm. Moreover, the margin positions were created on the short sides on the opposite sides of the alignment film L1-45 and the alignment film L1-135. About the obtained vapor deposition film, each 10 sheets, a total of 20 sheets, were laminated | stacked, the pressure of 40 Mpa was applied for 3 minutes at 110 degreeC, and it bonded together by the thermal lamination. After the electrode step, the same operation as in Example 1 was repeated. Table 1 shows the characteristics of the obtained piezoelectric body.

[比較例2]
参考例2で得られたPDLAを、乾燥機を用いて十分に乾燥させた後、押出機に投入し、210℃で溶融し、溶融樹脂をダイより押し出して単層のシート状に成形し、かかるシートを表面温度20℃の冷却ドラムで冷却固化して未延伸フィルムを得た。得られた未延伸フィルムを、75℃に加熱したロール群に導き、縦方向に1.1倍に延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き、80℃に加熱された雰囲気中で横方向に4.5倍に延伸した。その後テンター内で110℃の温度条件で30秒間の熱処理を行い、均一に徐冷して室温まで冷やして7μm厚みの幅方向0°に主軸を持つ二軸配向ポリD−乳酸単層フィルム2(PDLA配向フィルムD1)を得た。なお、製膜時の冷却ドラムと接していない側の表面に、カスガ製、高周波電源CG−102型を用いて、電圧10kV、処理時間20秒の条件でコロナ処理を施した。
得られた配向フィルムL1を、製膜方向に対して、45°が長さ方向になるように7cm×3cmで切り出し、配向フィルムD1−45とした。
そして、比較例1のそれぞれ配向フィルムL1−135の代わりに、配向フィルムD1−45を用いたほかは、比較例1と同様な操作を繰り返した。得られた圧電体の特性を表1に示す。
[Comparative Example 2]
The PDLA obtained in Reference Example 2 was sufficiently dried using a dryer, then charged into an extruder, melted at 210 ° C., and the molten resin was extruded from a die and formed into a single-layer sheet, The sheet was cooled and solidified with a cooling drum having a surface temperature of 20 ° C. to obtain an unstretched film. The obtained unstretched film was led to a roll group heated to 75 ° C., stretched 1.1 times in the longitudinal direction, and cooled by a roll group at 25 ° C. Subsequently, both ends of the longitudinally stretched film were guided to a tenter while being held with clips, and stretched 4.5 times in the transverse direction in an atmosphere heated to 80 ° C. Thereafter, heat treatment is performed in a tenter at a temperature of 110 ° C. for 30 seconds, uniformly cooled to room temperature, and a biaxially oriented poly-D-lactic acid monolayer film 2 having a main axis at 0 ° in the width direction having a thickness of 7 μm ( A PDLA oriented film D1) was obtained. The surface on the side not in contact with the cooling drum at the time of film formation was subjected to corona treatment under the conditions of a voltage of 10 kV and a treatment time of 20 seconds using a high-frequency power source CG-102 manufactured by Kasuga.
The obtained oriented film L1 was cut out at 7 cm × 3 cm so that 45 ° was in the length direction with respect to the film forming direction, to obtain an oriented film D1-45.
And operation similar to the comparative example 1 was repeated except having used the oriented film D1-45 instead of each oriented film L1-135 of the comparative example 1. FIG. Table 1 shows the characteristics of the obtained piezoelectric body.

本発明によれば、バラツキが小さく圧電特性に優れた圧電体が提供でき、マイクロホン、ピックアップ、ブザー、スピーカー、光スイッチ、ファン等の振動体や、圧電体アクチュエーターとして用いることができる。   According to the present invention, a piezoelectric body with small variations and excellent piezoelectric characteristics can be provided, and can be used as a vibrating body such as a microphone, a pickup, a buzzer, a speaker, an optical switch, a fan, or a piezoelectric actuator.

1 右マージン用樹脂層
2 左マージン用樹脂層
3 導電層
4 積層体A
5 積層体B
6 銀ペースト
7 圧電特性測定装置
8 導線
9 クリップ
10 アルミ箔
11 円柱
1 Resin layer for right margin 2 Resin layer for left margin 3 Conductive layer 4 Laminate A
5 Laminate B
6 Silver paste 7 Piezoelectric property measuring device 8 Conductor 9 Clip 10 Aluminum foil 11 Cylinder

Claims (8)

ポリL−乳酸またはポリD−乳酸のいずれかからなる未延伸フィルムを、主配向軸が製膜方向に対して製膜方向と主配向軸のなす角度が40〜50度の範囲の斜め方向になるように延伸して、配向ポリ乳酸フィルムとする工程、
配向ポリ乳酸フィルムの一方の面に導電層を形成して積層体Aとする工程、および
積層体Aを配向ポリ乳酸フィルム層と導電層とが交互に配列されるように積層して圧着する工程とを有する圧電体の製造方法。
An unstretched film made of either poly-L-lactic acid or poly-D-lactic acid is inclined in an oblique direction in which the main orientation axis is in the range of 40 to 50 degrees with respect to the film-forming direction. Stretching to make an oriented polylactic acid film,
A step of forming a conductive layer on one surface of the oriented polylactic acid film to form a laminate A, and a step of laminating and pressing the laminate A so that the oriented polylactic acid film layers and the conductive layers are alternately arranged A method for manufacturing a piezoelectric body comprising:
配向ポリ乳酸フィルムの合計層数が4層以上である請求項1に記載の圧電体の製造方法。   The method for manufacturing a piezoelectric body according to claim 1, wherein the total number of layers of the oriented polylactic acid film is 4 or more. 配向ポリ乳酸フィルムの厚みが15μm以下である請求項1に記載の圧電体の製造方法。   The method for producing a piezoelectric body according to claim 1, wherein the oriented polylactic acid film has a thickness of 15 μm or less. 配向ポリ乳酸フィルムの製膜方向および幅方向の110℃での熱収縮率が3%以下の範囲にある請求項1に記載の圧電体の製造方法。   2. The method for producing a piezoelectric body according to claim 1, wherein the thermal contraction rate at 110 ° C. in the film forming direction and the width direction of the oriented polylactic acid film is in a range of 3% or less. 配向ポリ乳酸フィルムの製膜方向に直交する方向(幅方向)における厚み斑が30%以下である請求項1記載の圧電体の製造方法。   The method for producing a piezoelectric body according to claim 1, wherein the thickness unevenness in a direction (width direction) orthogonal to the film forming direction of the oriented polylactic acid film is 30% or less. 隣り合う配向ポリ乳酸フィルムが、いずれもポリL−乳酸またはポリD−乳酸である場合はそれらの主配向軸が直交方向となるように、他方ポリL−乳酸とポリD−乳酸である場合はそれらの主配向軸が同一方向となるように積層する請求項1に記載の圧電体の製造方法。   When the adjacent oriented polylactic acid films are both poly L-lactic acid or poly D-lactic acid, the main orientation axes thereof are perpendicular to each other, and the other is poly L-lactic acid and poly D-lactic acid. The method for manufacturing a piezoelectric body according to claim 1, wherein lamination is performed so that their main orientation axes are in the same direction. 全ての配向ポリ乳酸フィルムが、いずれもポリL−乳酸またはポリD−乳酸である請求項6記載の圧電体の製造方法。   The method for producing a piezoelectric body according to claim 6, wherein all the oriented polylactic acid films are poly-L-lactic acid or poly-D-lactic acid. 複数の積層体Aのロールを用意し、それらを重ねて巻き取り、圧着する請求項1記載の圧電体の製造方法。   The method for manufacturing a piezoelectric body according to claim 1, wherein a plurality of rolls of the laminated body A are prepared, and the rolls are stacked, wound, and pressure-bonded.
JP2012164876A 2012-07-25 2012-07-25 Method for manufacturing piezoelectric body Active JP6030878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012164876A JP6030878B2 (en) 2012-07-25 2012-07-25 Method for manufacturing piezoelectric body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012164876A JP6030878B2 (en) 2012-07-25 2012-07-25 Method for manufacturing piezoelectric body

Publications (2)

Publication Number Publication Date
JP2014027055A JP2014027055A (en) 2014-02-06
JP6030878B2 true JP6030878B2 (en) 2016-11-24

Family

ID=50200455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012164876A Active JP6030878B2 (en) 2012-07-25 2012-07-25 Method for manufacturing piezoelectric body

Country Status (1)

Country Link
JP (1) JP6030878B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159628A1 (en) * 2014-04-18 2015-10-22 株式会社村田製作所 Pressure sensor
JP6473896B2 (en) * 2014-05-07 2019-02-27 パナソニックIpマネジメント株式会社 Piezoelectric device and manufacturing method thereof
KR101972242B1 (en) 2014-11-14 2019-04-24 미쯔이가가꾸가부시끼가이샤 Piezoelectric polymer film
JP6993555B2 (en) * 2015-05-22 2022-01-13 ダイキン工業株式会社 Organic piezoelectric film
JP6917818B2 (en) * 2017-07-27 2021-08-11 三井化学株式会社 Polymer piezoelectric film and its manufacturing method, piezoelectric film piece and its manufacturing method, laminate, and piezoelectric element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3074404B2 (en) * 1991-07-31 2000-08-07 タキロン株式会社 Polymer piezoelectric material
JP2002141245A (en) * 2000-11-06 2002-05-17 Tdk Corp Method and apparatus for manufacturing ceramic electronic component
CN102027609B (en) * 2008-05-12 2013-11-06 学校法人关西大学 Piezoelectric element and audio equipment
JP5099223B2 (en) * 2008-05-29 2012-12-19 株式会社村田製作所 Piezoelectric speaker, speaker device, and tactile feedback device
JP2010174218A (en) * 2009-02-02 2010-08-12 Teijin Ltd Polylactic acid composition and molded article thereof
WO2011093478A1 (en) * 2010-01-27 2011-08-04 帝人株式会社 Film
JP6082511B2 (en) * 2010-05-14 2017-02-15 帝人株式会社 Laminated film
JP2012023345A (en) * 2010-06-15 2012-02-02 Tokyo Univ Of Science Power generating system and piezoelectric polymer element

Also Published As

Publication number Publication date
JP2014027055A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5647943B2 (en) Laminated film
JP6082511B2 (en) Laminated film
JP6030878B2 (en) Method for manufacturing piezoelectric body
KR100692277B1 (en) Polyester film for heat-resistant capacitor, metallized film thereof, and heat-resistant film capacitor containing the same
JP5656669B2 (en) Laminated film
JP6118517B2 (en) Piezoelectric laminate
JP6300458B2 (en) Multilayer piezoelectric element
JP2014168132A (en) Polymer piezoelectric speaker
TWI687450B (en) Polymeric piezoelectric film and process for producing the same
TW201807032A (en) Film, electrical insulation sheet using same, adhesive tape, and rotating machine
JP6131015B2 (en) Piezoelectric speaker
JP6025477B2 (en) Piezoelectric speaker
JP6050030B2 (en) Actuator and method of moving object using the same
JP2001172482A (en) Polyester film for capacitor, metalized film for capacitor and film capacitor
JP4386386B2 (en) Easy tear laminated polyester film
JP6231580B2 (en) Polyester film for solar cell and protective film for solar cell comprising the same
JP6364466B2 (en) Uniaxially oriented film for piezoelectric laminate
JP2010066088A (en) Film electrode for sensor, and method of manufacturing the same
JP2009123462A (en) Planar heating element, and manufacturing method thereof
JP6126241B2 (en) Stretched laminated film for polymer piezoelectric material and method for producing the same
JP6076398B2 (en) Piezoelectric material
JP2005335226A (en) Heat-resistant multi-layer sheet
JP2001237141A (en) Chip-shaped film capacitor
JP2003136658A (en) Biaxially oriented laminated film and condenser using the same
JP4321026B2 (en) Polyester film for capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161021

R150 Certificate of patent or registration of utility model

Ref document number: 6030878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250