WO2015170446A1 - Piezoelectric device and method for manufacturing same - Google Patents

Piezoelectric device and method for manufacturing same Download PDF

Info

Publication number
WO2015170446A1
WO2015170446A1 PCT/JP2015/002050 JP2015002050W WO2015170446A1 WO 2015170446 A1 WO2015170446 A1 WO 2015170446A1 JP 2015002050 W JP2015002050 W JP 2015002050W WO 2015170446 A1 WO2015170446 A1 WO 2015170446A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
layer
film layer
oriented film
main surface
Prior art date
Application number
PCT/JP2015/002050
Other languages
French (fr)
Japanese (ja)
Inventor
大地 幸和
幸博 島崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016517802A priority Critical patent/JP6473896B2/en
Publication of WO2015170446A1 publication Critical patent/WO2015170446A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention relates to a piezoelectric device in which two kinds of oriented film layers having an optical isomer structure are alternately laminated via a conductive layer, and a method for producing the same.
  • a laminated film body in which an oriented film layer containing L-form polylactic acid as a main component and a D-form polylactic acid as a main ingredient and an oriented film layer are laminated via a conductive layer.
  • conductive layers arranged in the laminating direction are alternately connected to a pair of external connection external electrodes provided on the side surface of the laminated film body.
  • the oriented film layer mainly composed of L-form polylactic acid and the oriented film layer composed mainly of D-form polylactic acid have an optical isomer structure, the polarization direction with respect to displacement is reversed, and these are laminated. By doing so, a large piezoelectric characteristic corresponding to the number of stacked layers can be obtained.
  • Patent Document 1 A conventional piezoelectric device similar to this piezoelectric device is disclosed in Patent Document 1, for example.
  • the piezoelectric device includes first and second alignment film layers, a first low-orientation polylactic acid layer made of a first resin bonded to the first alignment film layer, and a first low-orientation polylactic acid layer.
  • the laminated film body which has a conductive layer joined to the 2nd orientation film layer via is provided.
  • the first oriented film layer is made of a resin mainly composed of one first polylactic acid of L-form polylactic acid and D-form polylactic acid.
  • the second oriented film layer is made of a resin mainly composed of one second polylactic acid of L-form polylactic acid or D-form polylactic acid. When the first polylactic acid is L-form polylactic acid, the second polylactic acid is D-form polylactic acid.
  • the second polylactic acid is L-form polylactic acid.
  • the first and second oriented film layers are alternately laminated via a conductive layer.
  • the first low-orientation polylactic acid layer is made of the resin of the first orientation film layer, and the orientation of the molecular chain of the first polylactic acid is lower than that of the first orientation film layer.
  • This piezoelectric device can improve productivity.
  • FIG. 1 is a cross-sectional view of the piezoelectric device according to the first embodiment.
  • FIG. 2 is a schematic diagram showing the power generation principle of the piezoelectric device in the first embodiment.
  • FIG. 3A is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment.
  • FIG. 3B is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment.
  • FIG. 3C is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment.
  • FIG. 3D is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment.
  • FIG. 3A is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment.
  • FIG. 3B is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment.
  • FIG. 3C is a cross-
  • FIG. 3E is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment.
  • FIG. 4 is a cross-sectional view of another piezoelectric device according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the piezoelectric device according to the second embodiment.
  • FIG. 6A is a cross-sectional view illustrating the method for manufacturing a piezoelectric device according to the second embodiment.
  • FIG. 6B is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the second embodiment.
  • FIG. 6C is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the second embodiment.
  • FIG. 6D is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the second embodiment.
  • FIG. 6E is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the second embodiment.
  • FIG. 7 is a cross-sectional view of another piezoelectric device according to the second embodiment.
  • FIG. 1 is a cross-sectional view of a piezoelectric device 2 using a laminated film body 1.
  • the piezoelectric device 2 in the first embodiment is a power generation device that generates electric power.
  • the piezoelectric device 2 is formed by alternately stacking the oriented film layers 3 and the oriented film layers 4 via the conductive layers 5 (105, 205) to form the laminated film body 1, and the end faces 101 of the laminated film body 1 opposite to each other,
  • the external electrodes 6 (106, 206) are arranged on the 201, respectively.
  • the conductive layer 5 is alternately connected to the pair of external electrodes 6 in the stacking order.
  • the conductive layers 105 are alternately arranged with the conductive layers 205.
  • the conductive layer 105 is connected to the external electrode 106, and the conductive layer 205 is connected to the external electrode 206.
  • the oriented film layer 3 has a main surface 3a and a main surface 3b opposite to the main surface 3a.
  • the oriented film layer 4 has a main surface 4a and a main surface 4b opposite to the main surface 4a.
  • FIG. 2 is a schematic diagram showing the power generation principle of the piezoelectric device 2 which is a power generation device.
  • the orientation film layer 3 is formed from the resin which has L type polylactic acid as a main component
  • the orientation film layer 4 is formed from resin which has D type polylactic acid as a main component. Since the oriented film layers 3 and 4 have optical isomer structures, they are polarized in opposite polarization directions with respect to displacement. Therefore, as shown in FIG. 2, by extending and contracting the laminated film body 1 in the direction D1, the odd-numbered conductive layers 205 from the upper side of the laminated film body 1 from the upper side of the laminated film body 1 become positive electrodes that collect positive charges due to the piezoelectric effect.
  • the conductive layer 105 becomes a negative electrode where negative charges are collected.
  • the conductive layer 105 is connected to the external electrode 106 provided on the end face 101
  • the conductive layer 205 is connected to the external electrode 206 provided on the end face 201 different from the end face 101
  • the external electrode 106 functions as a negative electrode.
  • the electrode 206 functions as a positive electrode. Therefore, the electric power generated by the expansion and contraction can be increased according to the total number of the oriented film layers 3 and 4.
  • the improvement in power generation efficiency in accordance with the increase in the number of laminated orientation film layers 3 and 4 having such an optical isomer structure is due to the laminated structure of oriented films mainly composed of a single type of polylactic acid, PVDF (polyfluorinated). This phenomenon does not appear in the laminated structure of polymer films such as vinylidene.
  • 3A to 3E are cross-sectional views illustrating a method for manufacturing the piezoelectric device 2.
  • conductive layers 105 and 205 made of aluminum are formed on the main surfaces 3a and 3b of the oriented film layer 3, respectively.
  • the formation method of the conductive layer 5 (105, 205) is not particularly limited, but it is preferable to employ a vapor deposition method or a sputtering method in order to form the conductivity more uniformly.
  • the conductive layer 5 (105, 205) is made of aluminum, it is excellent in productivity and can be formed at a relatively low temperature. Thermal damage is small, and deterioration of piezoelectric characteristics during film formation can be suppressed.
  • an oriented film layer 104 having a main surface 104a and a main surface 104b opposite to the main surface 104a is prepared.
  • the oriented film layer 104 becomes the oriented film layer 4 shown in FIG.
  • a soluble solvent 7 that melts the oriented film layer 4 well is applied to the main surfaces 104a and 104b of the oriented film layer 104 and dried.
  • the portion of the oriented film layer 104 to which the soluble solvent 7 is applied becomes the low-orientation polylactic acid layer 9.
  • an oriented film layer 4 having a major surface 4a and a major surface 4b opposite to the major surface 4a, and a low-orientation polylactic acid layer 9 (209) provided on the major surface 4a of the oriented film layer 4;
  • the low-orientation polylactic acid layer 9 (109) provided on the main surface 4b of the oriented film layer 4 is obtained.
  • the film thickness of the soluble solvent 7 to be applied is 0.01 ⁇ m to 500 ⁇ m, and the drying temperature is the boiling point ⁇ 20 ° C. of the soluble solvent 7.
  • the soluble solvent 7 is composed of a first solvent that well melts the oriented film layer 4 such as dichloromethane, trifluoromethanesulfonic acid, and toluene.
  • the soluble solvent 7 may be applied by a spray method.
  • the soluble solvent 7 may contain another second solvent that dilutes the first solvent.
  • the second solvent can be mixed without being separated from the first solvent, and is preferably a liquid having a boiling point lower than that of the first solvent.
  • the first solvent has the ability to lower the orientation of the polylactic acid film, and the second solvent does not have the ability to lower the orientation of the polylactic acid film.
  • the first solvent has a higher ability to lower the orientation of the polylactic acid film than the second solvent.
  • both main layers are formed so that the conductive layer 105 is in contact with the low-orientation polylactic acid layer 109 and the conductive layer 205 is in contact with the low-orientation polylactic acid layer 209.
  • the oriented film layer 3 in which the conductive layers 105 and 205 are disposed on the surfaces 3a and 3b, respectively, and the oriented film layer 4 (104) in which the soluble solvent 7 is applied to both main surfaces 4a and 4b (104a and 104b) are alternately laminated.
  • the laminated film body 1 is formed.
  • each layer is fixed by hot pressing the laminated film body 1.
  • the lower limit of the temperature in the hot press is preferably about 10 ° C. lower than the glass transition temperature of the oriented film layers 3 and 4, and the upper limit is preferably about 10 ° C. higher than the melting temperature of the oriented film layers 3 and 4.
  • the temperature of the hot press is preferably 50 ° C. to 180 ° C.
  • the adhesiveness of the orientation film layer 4 (low orientation polylactic acid layer 9) and the conductive layer 5 to be inferior, and when temperature is too high, the orientation of polylactic acid in the orientation film layers 3 and 4 Tends to collapse and inferior in piezoelectric properties.
  • the piezoelectric device 2 can be obtained by forming the external electrodes 106 and 206 having a film thickness of 500 ⁇ m on the opposite end surfaces 101 and 201 of the laminated film body 1 by metal spraying. It can.
  • an alloy metal such as aluminum, zinc, tin, lead, nickel, iron, copper, or brass can be used.
  • the exterior resin layer 8 having moisture resistance is provided. It is desirable to form. However, in a piezoelectric device that obtains characteristics by the piezoelectric effect of the laminated film body 1 such as a power generation device, if the rigidity of the laminated film body 1 due to the formation of the exterior resin layer 8 is increased, the piezoelectric effect is hindered.
  • the exterior resin layer 8 is desirably formed of a resin having elasticity.
  • the exterior resin layer 8 is more preferably formed of a soft resin having a lower elastic modulus than the polylactic acid layer.
  • an adhesive for joining them is required.
  • a thermosetting or thermoplastic adhesive is used as such an adhesive.
  • the adhesive layer formed by the adhesive becomes an unnecessary layer having no piezoelectricity in the laminated film body. Variations in the application of adhesive in unnecessary layers lead to variations in the piezoelectric properties of the laminated film body, and in order to reduce this variation, very high precision application work is required, and productivity of the laminated film body is increased. Reduce.
  • the portion of the oriented film layer 4 to which the soluble solvent 7 is applied has a low orientation property mainly composed of amorphous polylactic acid formed from a resin that forms the oriented film layer 4. It becomes the polylactic acid layer 9 and functions as an adhesion layer that adheres to the conductive layer 5 and the alignment film layer 3 that are in contact with each other.
  • the low-orientation polylactic acid layer 9 formed with the soluble solvent 7 becomes an adhesion layer formed on the basis of the alignment film layer 4, and thus the low-orientation property that is an adhesion layer.
  • the polylactic acid layer 9 functions in the same manner as the oriented film layer 4. Therefore, deterioration of piezoelectric characteristics in the adhesion layer replacing the adhesive layer made of the adhesive in the conventional piezoelectric device is suppressed.
  • the low-orientation polylactic acid layer 9 is formed only on the very surface region of the main surfaces 4a and 4b in contact with the soluble solvent 7 of the oriented film layer 4, its thickness can be reduced to, for example, 10 nm to 20 nm. it can.
  • the adhesive sheet becomes thicker than several ⁇ m and becomes thick.
  • the low-orientation polylactic acid layer 9 can be made thinner, and deterioration of piezoelectric characteristics can be suppressed without impairing the flexibility of the laminated film body 1.
  • the accuracy of the thickness of the application of the soluble solvent 7 to the oriented film layer 4 is not required to be high, and the workability is improved as compared with the application of the conventional adhesive.
  • the productivity of the laminated film body 1 and this The productivity of the piezoelectric device 2 using can be increased.
  • the oriented film layer 3 is made of a resin containing L-form polylactic acid as a main component
  • the oriented film layer 4 is made of a resin containing D-form polylactic acid as a main component. Contrary to this, even if the oriented film layer 3 is made of a resin containing D-form polylactic acid as a main component and the oriented film layer 4 is made of a resin containing L-form polylactic acid as a main component, the same effect can be obtained. It is. That is, the oriented film layer 3 is made of a resin mainly composed of one of L-form polylactic acid and D-form polylactic acid.
  • the oriented film layer 4 is made of a resin mainly composed of one of L-form polylactic acid and D-form polylactic acid.
  • the polylactic acid as the main component of the resin of the oriented film layer 3 is L-form polylactic acid
  • the polylactic acid as the main component of the resin of the oriented film layer 4 is D-form polylactic acid.
  • the polylactic acid as the main ingredient of the resin of the oriented film layer 4 is L-form polylactic acid.
  • FIG. 4 is a cross-sectional view of another piezoelectric device 2a according to the first embodiment. 4, the same parts as those of the piezoelectric device 2 shown in FIG.
  • the conductive layer 105 is formed on the main surface 3 a of the oriented film layer 3
  • the conductive layer 205 is formed on the main surface 4 b of the oriented film layer 4.
  • a low-orientation polylactic acid layer 209 is formed by applying a soluble solvent to the main surface 3 b of the oriented film layer 3, and a low-orientation polylactic acid layer 109 is applied to the main surface 4 a of the oriented film layer 4. Is formed.
  • the conductive layer 105 is bonded to the low-orientation polylactic acid layer 109, and the conductive layer 205 is bonded to the low-orientation polylactic acid layer 209.
  • the piezoelectric device 2a has the same effect as the piezoelectric device 2 shown in FIG.
  • the piezoelectric devices 2 and 2a in this embodiment are power generation devices, they are not limited to this embodiment, and two kinds of oriented film layers having an optical isomer structure are interposed via the conductive layer 5. The same effect is produced in the laminated film body 1 utilizing the piezoelectric effect using the laminated film bodies 1 laminated alternately and the piezoelectric device using the laminated film body 1.
  • Piezo device 2 sample no. 1-No. Four types of samples were prepared.
  • Sample No. Reference numeral 1 denotes an outermost layer of the laminated film body 1 which is an oriented film layer 3. Twenty oriented film layers 3 and 4 are alternately laminated.
  • Sample No. 1 the conductive layer 5 is formed on the main surfaces 3 a and 3 b of the oriented film layer 3, the soluble solvent 7 is applied to both the main surfaces 4 a and 4 b of the oriented film layer 4, and the low-orientated polylactic acid layer 9 is formed. These are laminated and the external electrode 6 is formed by metal spraying.
  • Sample No. 2 is sample no. 1 was formed by applying a metal paste.
  • Sample No. 3 is sample no.
  • Sample No. 4 a conductive layer 5 is formed on one main surface 3 a of the oriented film layer 3 and one main surface 4 a of the oriented film layer 4, and a low-orientation polylactic acid layer 9 is formed on the other main surfaces 3 b and 4 b.
  • the orientation film layers 3 and 4 are alternately laminated.
  • the power generation characteristics and durability of these samples were evaluated.
  • the power generation characteristics were evaluated based on the lighting state of the LED mini-bulb when a light-emitting diode (LED) mini-bulb (4.8 V) was connected to the piezoelectric device 2 and vibration with a frequency of 10 Hz was applied for 1 minute.
  • the durability was evaluated by the change in the lighting state of the LED mini-bulb when the piezoelectric device 2 was continuously vibrated at a frequency of 10 Hz for a long time. The results are shown in Table 1.
  • G indicates a state in which the LED miniature bulb is lit
  • F indicates a state in which the LED miniature bulb is flashing
  • NG indicates that the LED miniature bulb is not lit or flashing.
  • the state which turns off is shown.
  • the durability is evaluated by the change in the lighting state of the LED mini-bulb with respect to the number of vibrations having a frequency of 10 Hz continuously applied to the piezoelectric device 2, and whether or not the lighting state deteriorates from lighting to blinking or extinguishing, or lighting Indicates whether the state deteriorates from blinking to off.
  • VG indicates that the lighting state does not deteriorate even with vibration of 500,000 times or more
  • G indicates that the lighting state has deteriorated with vibration of 100,000 times or more and less than 500,000 times
  • F indicates that the vibration is degraded by 10,000 times or more and less than 100,000 times
  • NG indicates that the vibration is degraded by vibrations of less than 10,000 times.
  • the low-orientation polylactic acid layer 9 is formed from low-orientation polylactic acid in which the orientation of the molecular chain is lower than that of the L-form polylactic acid or the D-form polylactic acid in the orientation film layer 3 or the orientation film layer 4 as the base material.
  • the low-orientation polylactic acid layer 9 in which the orientation of the molecular chain of polylactic acid is lower than that of the base polylactic acid may be formed from polylactic acid in which the molecular chain of the polylactic acid itself is cut. good.
  • the low-orientation polylactic acid layer 9 preferably has a uniform low orientation as a whole than the oriented film layers 3 and 4, but may have a non-uniform (partial) low orientation.
  • FIG. 5 is a cross-sectional view of the piezoelectric device 502 according to the second embodiment.
  • the piezoelectric device 502 in the second embodiment is a power generation device that generates electric power.
  • a piezoelectric device 502 in the second embodiment includes a laminated film body 501 instead of the laminated film body 1 of the piezoelectric device 2 in the first embodiment.
  • the laminated film body 501 further includes a thermosetting resin layer 10 provided between the conductive layer 5 and the low-orientation polylactic acid layer 9 of the laminated film body 1 in the first embodiment shown in FIG.
  • the thermosetting resin layer 10 is formed by reacting a polyamideimide resin agent with good heat resistance and an epoxy resin agent (crosslinking agent).
  • 6A to 6E are cross-sectional views illustrating a method for manufacturing the piezoelectric device 502.
  • the manufacturing method also includes first to fifth steps.
  • the difference from the manufacturing method according to the first embodiment is the second step and the third step.
  • the soluble solvent used is different from that in the first embodiment, and the oriented film layer 4 coated with the soluble solvent is dried and solidified by heating at the first temperature.
  • the thermosetting resin agent is cured by hot pressing at a second temperature higher than the first temperature in the second step.
  • aluminum is formed on the main surfaces 3 a and 3 b of the oriented film layer 3 as in the first step in the method for manufacturing the piezoelectric device 2 in the first embodiment shown in FIG. 3A.
  • Conductive layers 105 and 205 are formed.
  • an oriented film layer 104 having a main surface 104a and a main surface 104b opposite to the main surface 104a is prepared.
  • the oriented film layer 104 becomes the oriented film layer 4 shown in FIG.
  • a soluble solvent 507 that melts the oriented film layer 104 well is applied to the main surfaces 104 a and 104 b of the oriented film layer 104.
  • the soluble solvent 7 used in the first embodiment is a solvent (first solvent) that well melts the oriented film layer 104 such as dichloromethane, trifluoromethanesulfonic acid, and toluene.
  • the soluble solvent 507 used in the second embodiment contains a thermosetting resin agent in addition to the first solvent that well melts the oriented film layer 104.
  • the soluble solvent 507 may further contain a second solvent that dilutes the first solvent.
  • thermosetting resin agent when a polyamideimide resin agent having a good heat resistance and a crosslinking agent (for example, an epoxy resin agent) are used, the drying solidification temperature (first temperature) is adjusted by adjusting the blending ratio thereof.
  • the curing temperature (second temperature) can be adjusted.
  • the thermosetting resin agent solidifies by rapidly proceeding at a first temperature in the range of 85 ° C. to 95 ° C. (dry stage). Then, the cure reaction proceeds rapidly at a second temperature of 120 ° C. to cure (C stage).
  • the portion of the oriented film layer 104 having crystallinity to which the soluble solvent 507 is applied has a low orientation made of amorphous polylactic acid in which the orientation of the molecular chain of polylactic acid is lowered.
  • the polylactic acid layer 9 (109, 209) is formed.
  • the low orientation polylactic acid layer 109 is formed on the main surface 4 b of the oriented film layer 4, and the low orientation polylactic acid layer 209 is formed on the main surface 4 a of the oriented film layer 4.
  • the solidified layers 112 and 212 do not have adhesiveness. Thereby, the main surface 4b of the oriented film layer 4 is located on one main surface 109a of the low-orientation polylactic acid layer 109, and the solidified layer 112 is located on the other main surface 109b on the opposite side. Similarly, the main surface 4a of the oriented film layer 4 is positioned on one main surface 209b of the low-orientation polylactic acid layer 209, and the solidified layer 212 is positioned on the other main surface 209a on the opposite side.
  • a plurality of oriented film layers 3 obtained in the first step shown in FIG. 6A and a plurality of oriented film layers 4 obtained in the second step shown in FIG. 6B. are laminated alternately to obtain a laminated film body 501.
  • the oriented film layers 3 and 4 are arranged so that the conductive layer 105 is in contact with the solidified layer 112 and the conductive layer 205 is in contact with the solidified layer 212.
  • thermosetting resin layers 110 and 210 made of thermosetting resin are fixed.
  • the metal spraying method is applied to the opposite end surfaces 101 and 201 of the laminated film body 501.
  • the external electrodes 106 and 206 having a film thickness of 500 ⁇ m are formed.
  • the solidified layers 112 and 212 which are portions that function as an adhesive, and low orientation properties.
  • the shape of the polylactic acid layer 9 (109, 209) can be maintained. Therefore, the sag of the soluble solvent 507 in the subsequent process, the thickness change of the solidified layers 112 and 212 and the low-orientation polylactic acid layer 9 (109, 209), and the oriented film layers 3 and 4 in the laminating process. Can be suppressed, and the lamination accuracy in the production stage of the laminated film body 501 can be improved. Therefore, the productivity of the laminated film body 501 and thus the piezoelectric device 502 can be increased.
  • the curing reaction at the time of the hot press is performed in the same process as the solidification reaction. Can be completed. Thereby, the interlayer adhesion in resin curing and the heat resistance of the layer formed with the soluble solvent 507 can be ensured. That is, through such a process, both productivity and heat resistance can be achieved.
  • the concentration of the solvent in dichloromethane, trifluoromethanesulfonic acid, toluene or the like is the soluble solvent 507. It is preferable to set it as 5 wt% or more with respect to the whole. If it is less than 5 wt%, it becomes difficult to form the low-orientation polylactic acid layer 9.
  • the oriented film layer 4 and the conductive layer 5 are brought into close contact with each other by the low-orientation polylactic acid layer.
  • the thermosetting resin layer 10 is further provided.
  • the adhesion between the oriented film layer 4 and the conductive layer 5 can be improved.
  • thermosetting resin layer 10 preferably has a smaller elastic modulus than the polylactic acid layers such as the oriented film layers 3 and 4 and the low-orientated polylactic acid layer 9. Thereby, deterioration of piezoelectric characteristics can be suppressed without impairing the flexibility of the laminated film body 501.
  • FIG. 7 is a cross-sectional view of another piezoelectric device 502a according to the second embodiment. 7, the same parts as those of the piezoelectric device 2a shown in FIG.
  • the conductive layer 105 is formed on the main surface 3 a of the oriented film layer 3
  • the conductive layer 205 is formed on the main surface 4 b of the oriented film layer 4.
  • a low-orientation polylactic acid layer 209 is formed by applying a soluble solvent to the main surface 3 b of the oriented film layer 3, and a low-orientation polylactic acid layer 109 is applied to the main surface 4 a of the oriented film layer 4. Is formed.
  • the main surface 209a of the low-orientation polylactic acid layer 209 is located on the main surface 3b of the oriented film layer 3, and the main surface 109b of the low-orientation polylactic acid layer 109 is located on the main surface 4a of the oriented film layer 4.
  • the thermosetting resin layer 210 obtained through the solidified layer 212 is provided on the main surface 209b of the low-orientation polylactic acid layer 209, and the main surface 109a of the low-orientation polylactic acid layer 109 is obtained through the solidified layer 112.
  • a thermosetting resin layer 110 is provided.
  • the conductive layer 105 is bonded to the thermosetting resin layer 110, and the conductive layer 205 is bonded to the thermosetting resin layer 210.
  • the piezoelectric device 502a has the same effect as the piezoelectric device 502 shown in FIG.
  • the piezoelectric device according to the present invention has an effect of suppressing deterioration of piezoelectric characteristics and improving productivity, and is particularly effective in a power generation device that requires high piezoelectric characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Laminated Bodies (AREA)

Abstract

A piezoelectric device is equipped with a laminate film composed of: a first oriented film layer and a second oriented film layer; a first weakly oriented polylactic acid layer which is bound to the first oriented film layer and is composed of a first resin; and a conductive layer which is bound to the second oriented film layer with the first weakly oriented polylactic acid layer interposed therebetween. The first oriented film layer is composed of a resin containing, as the main component, a first polylactic acid component that is L-polylactic acid or D-polylactic acid. The second oriented film layer is composed of a resin containing, as the main component, a second polylactic acid component that is L-polylactic acid or D-polylactic acid. When the first polylactic acid component is L-polylactic acid, the second polylactic acid component is D-polylactic acid. When the first polylactic acid component is D-polylactic acid, the second polylactic acid component is L-polylactic acid. The first oriented film layer and the second oriented film layer are laminated alternately with the conductive layer interposed therebetween. The first weakly oriented polylactic acid layer is composed of a resin that is the same as that used in the first oriented film layer, and is decreased in the degree of orientation of a molecular chain of the first polylactic acid component compared with that in the first oriented film layer. The piezoelectric device has improved productivity.

Description

圧電デバイスおよびそれの製造方法Piezoelectric device and manufacturing method thereof
 本発明は、光学異性体構造を有する2種類の配向フィルム層を、導電層を介して交互に積層した圧電デバイス、およびそれの製造方法に関する。 The present invention relates to a piezoelectric device in which two kinds of oriented film layers having an optical isomer structure are alternately laminated via a conductive layer, and a method for producing the same.
 L体ポリ乳酸を主成分とする配向フィルム層と、D体ポリ乳酸を主成分と配向フィルム層とを導電層を介して積層した積層フィルム体が知られている。この積層フィルム体を用いた圧電デバイスは、積層フィルム体の側面に設けられた一対の外部接続用の外部電極に、積層方向に配置した導電層を交互に接続している。なお、L体ポリ乳酸を主成分とする配向フィルム層とD体ポリ乳酸を主成分とする配向フィルム層とは光学異性体構造であることから、変位に対する分極方向が逆向きとなり、これらを積層することで積層数に応じた大きな圧電特性を得ることができる。 There is known a laminated film body in which an oriented film layer containing L-form polylactic acid as a main component and a D-form polylactic acid as a main ingredient and an oriented film layer are laminated via a conductive layer. In the piezoelectric device using the laminated film body, conductive layers arranged in the laminating direction are alternately connected to a pair of external connection external electrodes provided on the side surface of the laminated film body. In addition, since the oriented film layer mainly composed of L-form polylactic acid and the oriented film layer composed mainly of D-form polylactic acid have an optical isomer structure, the polarization direction with respect to displacement is reversed, and these are laminated. By doing so, a large piezoelectric characteristic corresponding to the number of stacked layers can be obtained.
 この圧電デバイスに類似の従来の圧電デバイスは、例えば、特許文献1に開示されている。 A conventional piezoelectric device similar to this piezoelectric device is disclosed in Patent Document 1, for example.
特開2012-232497号公報JP 2012-232497 A
 圧電デバイスは、第1と第2の配向フィルム層と、第1の配向フィルム層に接合する第1の樹脂よりなる第1の低配向性ポリ乳酸層と、第1の低配向性ポリ乳酸層を介して第2の配向フィルム層と接合する導電層とを有する積層フィルム体を備える。第1の配向フィルム層は、L体ポリ乳酸とD体ポリ乳酸のうちの一方の第1のポリ乳酸を主成分とする樹脂よりなる。第2の配向フィルム層は、L体ポリ乳酸またはD体ポリ乳酸のうちの一方の第2のポリ乳酸を主成分とする樹脂よりなる。第1のポリ乳酸がL体ポリ乳酸である場合には第2のポリ乳酸はD体ポリ乳酸である。第1のポリ乳酸がD体ポリ乳酸である場合には第2のポリ乳酸はL体ポリ乳酸である。第1と第2の配向フィルム層とは、導電層を介して交互に積層されている。第1の低配向性ポリ乳酸層は、第1の配向フィルム層の樹脂からなると共に第1の配向フィルム層よりも第1のポリ乳酸の分子鎖の配向性が低下している。 The piezoelectric device includes first and second alignment film layers, a first low-orientation polylactic acid layer made of a first resin bonded to the first alignment film layer, and a first low-orientation polylactic acid layer. The laminated film body which has a conductive layer joined to the 2nd orientation film layer via is provided. The first oriented film layer is made of a resin mainly composed of one first polylactic acid of L-form polylactic acid and D-form polylactic acid. The second oriented film layer is made of a resin mainly composed of one second polylactic acid of L-form polylactic acid or D-form polylactic acid. When the first polylactic acid is L-form polylactic acid, the second polylactic acid is D-form polylactic acid. When the first polylactic acid is D-form polylactic acid, the second polylactic acid is L-form polylactic acid. The first and second oriented film layers are alternately laminated via a conductive layer. The first low-orientation polylactic acid layer is made of the resin of the first orientation film layer, and the orientation of the molecular chain of the first polylactic acid is lower than that of the first orientation film layer.
 この圧電デバイスは生産性を高めることができる。 This piezoelectric device can improve productivity.
図1は第1実施形態における圧電デバイスの断面図である。FIG. 1 is a cross-sectional view of the piezoelectric device according to the first embodiment. 図2は第1実施形態における圧電デバイスの発電原理を示す模式図である。FIG. 2 is a schematic diagram showing the power generation principle of the piezoelectric device in the first embodiment. 図3Aは第1実施形態における圧電デバイスの製造方法を示す断面図である。FIG. 3A is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment. 図3Bは第1実施形態における圧電デバイスの製造方法を示す断面図である。FIG. 3B is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment. 図3Cは第1実施形態における圧電デバイスの製造方法を示す断面図である。FIG. 3C is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment. 図3Dは第1実施形態における圧電デバイスの製造方法を示す断面図である。FIG. 3D is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment. 図3Eは第1実施形態における圧電デバイスの製造方法を示す断面図である。FIG. 3E is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the first embodiment. 図4は第1実施形態における他の圧電デバイスの断面図である。FIG. 4 is a cross-sectional view of another piezoelectric device according to the first embodiment. 図5は第2実施形態における圧電デバイスの断面図である。FIG. 5 is a cross-sectional view of the piezoelectric device according to the second embodiment. 図6Aは第2実施形態における圧電デバイスの製造方法を示す断面図である。FIG. 6A is a cross-sectional view illustrating the method for manufacturing a piezoelectric device according to the second embodiment. 図6Bは第2実施形態における圧電デバイスの製造方法を示す断面図である。FIG. 6B is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the second embodiment. 図6Cは第2実施形態における圧電デバイスの製造方法を示す断面図である。FIG. 6C is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the second embodiment. 図6Dは第2実施形態における圧電デバイスの製造方法を示す断面図である。FIG. 6D is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the second embodiment. 図6Eは第2実施形態における圧電デバイスの製造方法を示す断面図である。FIG. 6E is a cross-sectional view illustrating the method for manufacturing the piezoelectric device according to the second embodiment. 図7は第2実施形態における他の圧電デバイスの断面図である。FIG. 7 is a cross-sectional view of another piezoelectric device according to the second embodiment.
 (第1実施形態)
 図1は積層フィルム体1を用いた圧電デバイス2の断面図である。第1実施形態における圧電デバイス2は電力を発生する発電デバイスである。圧電デバイス2は、配向フィルム層3と配向フィルム層4を、導電層5(105、205)を介して交互に積み重ね積層フィルム体1を形成し、積層フィルム体1の互いに反対側の端面101、201にそれぞれ外部電極6(106、206)を配置した構造である。なお、導電層5は一対の外部電極6に対して積層順で交互に接続している。導電層105は導電層205と交互に配設されている。導電層105は外部電極106に接続され、導電層205は外部電極206に接続されている。配向フィルム層3は、主面3aと、主面3aの反対側の主面3bとを有する。配向フィルム層4は、主面4aと、主面4aの反対側の主面4bとを有する。
(First embodiment)
FIG. 1 is a cross-sectional view of a piezoelectric device 2 using a laminated film body 1. The piezoelectric device 2 in the first embodiment is a power generation device that generates electric power. The piezoelectric device 2 is formed by alternately stacking the oriented film layers 3 and the oriented film layers 4 via the conductive layers 5 (105, 205) to form the laminated film body 1, and the end faces 101 of the laminated film body 1 opposite to each other, In this structure, the external electrodes 6 (106, 206) are arranged on the 201, respectively. The conductive layer 5 is alternately connected to the pair of external electrodes 6 in the stacking order. The conductive layers 105 are alternately arranged with the conductive layers 205. The conductive layer 105 is connected to the external electrode 106, and the conductive layer 205 is connected to the external electrode 206. The oriented film layer 3 has a main surface 3a and a main surface 3b opposite to the main surface 3a. The oriented film layer 4 has a main surface 4a and a main surface 4b opposite to the main surface 4a.
 図2は発電デバイスである圧電デバイス2の発電原理を示す模式図である。第1実施形態では、配向フィルム層3はL体ポリ乳酸を主成分とする樹脂から形成され、配向フィルム層4はD体ポリ乳酸を主成分とする樹脂から形成されている。配向フィルム層3、4は互いに光学異性体構造となることから変位に対して互いに逆の分極方向に分極する。したがって、図2に示すように積層フィルム体1を方向D1に伸縮させることで、圧電効果により積層フィルム体1の上側から奇数段目の導電層205は正の電荷が集まる正極となり、偶数段目の導電層105は負の電荷が集まる負極となる。導電層105が端面101に設けられた外部電極106に接続され、導電層205が端面101と異なる端面201に設けられた外部電極206に接続されており、外部電極106は負極として機能し、外部電極206は正極として機能する。したがって、配向フィルム層3、4の総数に応じて、伸縮により発生する電力を大きくすることができる。このような光学異性体構造を有する配向フィルム層3、4の積層数の増加に応じた発電効率の向上は、単一種のポリ乳酸を主成分とする配向フィルムの積層構造や、PVDF(ポリフッ化ビニリデン)のような高分子フィルムの積層構造では発現しない現象である。 FIG. 2 is a schematic diagram showing the power generation principle of the piezoelectric device 2 which is a power generation device. In 1st Embodiment, the orientation film layer 3 is formed from the resin which has L type polylactic acid as a main component, and the orientation film layer 4 is formed from resin which has D type polylactic acid as a main component. Since the oriented film layers 3 and 4 have optical isomer structures, they are polarized in opposite polarization directions with respect to displacement. Therefore, as shown in FIG. 2, by extending and contracting the laminated film body 1 in the direction D1, the odd-numbered conductive layers 205 from the upper side of the laminated film body 1 from the upper side of the laminated film body 1 become positive electrodes that collect positive charges due to the piezoelectric effect. The conductive layer 105 becomes a negative electrode where negative charges are collected. The conductive layer 105 is connected to the external electrode 106 provided on the end face 101, the conductive layer 205 is connected to the external electrode 206 provided on the end face 201 different from the end face 101, and the external electrode 106 functions as a negative electrode. The electrode 206 functions as a positive electrode. Therefore, the electric power generated by the expansion and contraction can be increased according to the total number of the oriented film layers 3 and 4. The improvement in power generation efficiency in accordance with the increase in the number of laminated orientation film layers 3 and 4 having such an optical isomer structure is due to the laminated structure of oriented films mainly composed of a single type of polylactic acid, PVDF (polyfluorinated). This phenomenon does not appear in the laminated structure of polymer films such as vinylidene.
 次に、圧電デバイス2の製造方法について説明する。図3Aから図3Eは圧電デバイス2の製造方法を説明する断面図である。 Next, a method for manufacturing the piezoelectric device 2 will be described. 3A to 3E are cross-sectional views illustrating a method for manufacturing the piezoelectric device 2.
 先ず、第1工程として、図3Aに示すように、配向フィルム層3の主面3a、3bにアルミニウムからなる導電層105、205をそれぞれ形成する。なお、導電層5(105、205)の形成方法は特に限定されないが、より導電性を均一形成するためには、蒸着法またはスパッタリング法を採用することが好ましい。また、導電層5(105、205)はアルミニウムとすることで、生産性に優れており、かつ比較的低温度での製膜が実現できるため、導電層5が形成される配向フィルム層への熱ダメージが小さく、成膜における圧電特性の劣化を抑制できる。 First, as a first step, as shown in FIG. 3A, conductive layers 105 and 205 made of aluminum are formed on the main surfaces 3a and 3b of the oriented film layer 3, respectively. In addition, the formation method of the conductive layer 5 (105, 205) is not particularly limited, but it is preferable to employ a vapor deposition method or a sputtering method in order to form the conductivity more uniformly. Moreover, since the conductive layer 5 (105, 205) is made of aluminum, it is excellent in productivity and can be formed at a relatively low temperature. Thermal damage is small, and deterioration of piezoelectric characteristics during film formation can be suppressed.
 次いで、第2工程として、図3Bに示すように、主面104aと、主面104aの反対側の主面104bとを有する配向フィルム層104を準備する。配向フィルム層104は図5に示す配向フィルム層4となる。配向フィルム層104の主面104a、104bに配向フィルム層4を良く溶融させる可溶溶剤7を塗布して乾燥させる。これにより、配向フィルム層104の可溶溶剤7が塗布された部分が低配向性ポリ乳酸層9となる。すなわち、主面4aと、主面4aの反対側の主面4bとを有する配向フィルム層4と、配向フィルム層4の主面4a上に設けられた低配向性ポリ乳酸層9(209)と、配向フィルム層4の主面4b上に設けられた低配向性ポリ乳酸層9(109)とが得られる。塗布する可溶溶剤7の膜厚を0.01μmから500μmとし、乾燥温度は可溶溶剤7の沸点±20℃とする。可溶溶剤7はジクロロメタン、トリフルオロメタンスルホン酸、トルエンなど配向フィルム層4を良く溶融させる第1溶剤よりなる。あるいは、スプレー法により可溶溶剤7を塗布してもよい。可溶溶剤7は、上記第1溶剤を希釈する他の第2溶剤を含有していてもよい。この場合、第2溶剤は第1溶剤と分離せずに混合することができ、また、第1溶剤より沸点が低い液体であることが好ましい。第1溶剤はポリ乳酸フィルムの配向性を低下させる能力があり、第2溶剤はポリ乳酸フィルムの配向性を低下させる能力がない。第1溶剤は第2溶剤に比べてポリ乳酸フィルムの配向性を低下させる能力が高い。 Next, as a second step, as shown in FIG. 3B, an oriented film layer 104 having a main surface 104a and a main surface 104b opposite to the main surface 104a is prepared. The oriented film layer 104 becomes the oriented film layer 4 shown in FIG. A soluble solvent 7 that melts the oriented film layer 4 well is applied to the main surfaces 104a and 104b of the oriented film layer 104 and dried. As a result, the portion of the oriented film layer 104 to which the soluble solvent 7 is applied becomes the low-orientation polylactic acid layer 9. That is, an oriented film layer 4 having a major surface 4a and a major surface 4b opposite to the major surface 4a, and a low-orientation polylactic acid layer 9 (209) provided on the major surface 4a of the oriented film layer 4; The low-orientation polylactic acid layer 9 (109) provided on the main surface 4b of the oriented film layer 4 is obtained. The film thickness of the soluble solvent 7 to be applied is 0.01 μm to 500 μm, and the drying temperature is the boiling point ± 20 ° C. of the soluble solvent 7. The soluble solvent 7 is composed of a first solvent that well melts the oriented film layer 4 such as dichloromethane, trifluoromethanesulfonic acid, and toluene. Alternatively, the soluble solvent 7 may be applied by a spray method. The soluble solvent 7 may contain another second solvent that dilutes the first solvent. In this case, the second solvent can be mixed without being separated from the first solvent, and is preferably a liquid having a boiling point lower than that of the first solvent. The first solvent has the ability to lower the orientation of the polylactic acid film, and the second solvent does not have the ability to lower the orientation of the polylactic acid film. The first solvent has a higher ability to lower the orientation of the polylactic acid film than the second solvent.
 次に、第3工程として、図3Cに示すように、導電層105が低配向性ポリ乳酸層109に当接してかつ導電層205が低配向性ポリ乳酸層209に当接するように、両主面3a、3bに導電層105、205をそれぞれ配置した配向フィルム層3と、両主面4a、4b(104a、104b)に可溶溶剤7を塗布した配向フィルム層4(104)を交互に積層して積層フィルム体1を形成する。 Next, as a third step, as shown in FIG. 3C, both main layers are formed so that the conductive layer 105 is in contact with the low-orientation polylactic acid layer 109 and the conductive layer 205 is in contact with the low-orientation polylactic acid layer 209. The oriented film layer 3 in which the conductive layers 105 and 205 are disposed on the surfaces 3a and 3b, respectively, and the oriented film layer 4 (104) in which the soluble solvent 7 is applied to both main surfaces 4a and 4b (104a and 104b) are alternately laminated. Thus, the laminated film body 1 is formed.
 次に、第4工程として、積層フィルム体1を熱プレスすることにより各層を固着させる。なお、熱プレスにおける温度の下限は配向フィルム層3、4のガラス転移点温度より10℃程度低く、上限は配向フィルム層3、4の溶融温度より10℃程度高いことが好ましい。第1実施形態では、熱プレスの温度は50℃~180℃とすることが好ましい。なお、温度が低すぎると配向フィルム層4(低配向性ポリ乳酸層9)と導電層5の密着性が劣る傾向にあり、温度が高すぎると配向フィルム層3、4でのポリ乳酸の配向が崩れてしまい圧電特性に劣る傾向にある。 Next, as a fourth step, each layer is fixed by hot pressing the laminated film body 1. The lower limit of the temperature in the hot press is preferably about 10 ° C. lower than the glass transition temperature of the oriented film layers 3 and 4, and the upper limit is preferably about 10 ° C. higher than the melting temperature of the oriented film layers 3 and 4. In the first embodiment, the temperature of the hot press is preferably 50 ° C. to 180 ° C. In addition, when temperature is too low, there exists a tendency for the adhesiveness of the orientation film layer 4 (low orientation polylactic acid layer 9) and the conductive layer 5 to be inferior, and when temperature is too high, the orientation of polylactic acid in the orientation film layers 3 and 4 Tends to collapse and inferior in piezoelectric properties.
 次に、図3Dに示すように、積層フィルム体1の互いに反対側の端面101、201に、金属溶射法により膜厚500μmの外部電極106、206を形成することで圧電デバイス2を得ることができる。外部電極6の材料としては、アルミニウム、亜鉛、錫、鉛、ニッケル、鉄、銅、真鍮など、これらの合金系金属を用いることができる。 Next, as shown in FIG. 3D, the piezoelectric device 2 can be obtained by forming the external electrodes 106 and 206 having a film thickness of 500 μm on the opposite end surfaces 101 and 201 of the laminated film body 1 by metal spraying. it can. As a material of the external electrode 6, an alloy metal such as aluminum, zinc, tin, lead, nickel, iron, copper, or brass can be used.
 図3Eに示すように、外部電極6が形成されていない積層フィルム体1の外部電極6から露出する部分に、配向フィルム層3、4の防湿性を高めるため、防湿性を有する外装樹脂層8を形成することが望ましい。ただし、発電デバイスのように積層フィルム体1の圧電効果により特性を得る圧電デバイスにおいては、外装樹脂層8を形成したことによる積層フィルム体1の剛性が高くなれば圧電効果の阻害につながるので、外装樹脂層8は弾性を有する樹脂で形成することが望ましい。また、外装樹脂層8はポリ乳酸層よりも弾性率の低い、柔らかい樹脂で形成することがより望ましい。 As shown in FIG. 3E, in order to increase the moisture resistance of the oriented film layers 3 and 4 in the portion exposed from the external electrode 6 of the laminated film body 1 where the external electrode 6 is not formed, the exterior resin layer 8 having moisture resistance is provided. It is desirable to form. However, in a piezoelectric device that obtains characteristics by the piezoelectric effect of the laminated film body 1 such as a power generation device, if the rigidity of the laminated film body 1 due to the formation of the exterior resin layer 8 is increased, the piezoelectric effect is hindered. The exterior resin layer 8 is desirably formed of a resin having elasticity. The exterior resin layer 8 is more preferably formed of a soft resin having a lower elastic modulus than the polylactic acid layer.
 前述の従来の圧電デバイスでは、導電層を配置した配向フィルム層を積層する場合、これらを接合する接着剤が必要となる。このような接着剤としては熱硬化性、あるいは熱可塑性の接着剤が用いられる。この接着剤により形成される接着層が積層フィルム体においては圧電性を持たない不要層となる。不要層における接着剤の塗布バラツキなどが積層フィルム体における圧電特性のバラツキに繋がってしまい、このバラツキを低減するためには非常に高い精度での塗布作業が要求され、積層フィルム体の生産性を低下させる。 In the above-described conventional piezoelectric device, when an oriented film layer having a conductive layer disposed thereon is laminated, an adhesive for joining them is required. As such an adhesive, a thermosetting or thermoplastic adhesive is used. The adhesive layer formed by the adhesive becomes an unnecessary layer having no piezoelectricity in the laminated film body. Variations in the application of adhesive in unnecessary layers lead to variations in the piezoelectric properties of the laminated film body, and in order to reduce this variation, very high precision application work is required, and productivity of the laminated film body is increased. Reduce.
 第1実施形態における圧電デバイス2では、配向フィルム層4の可溶溶剤7を塗布した部分が、配向フィルム層4を形成する樹脂から形成された非晶質ポリ乳酸を主成分とする低配向性ポリ乳酸層9となり、当接する導電層5や配向フィルム層3とに接着する密着層として機能する。これにより、従来の圧電デバイスで用いていた接着剤が不要となる。接着剤は、配向フィルム層3、4が有する圧電特性を有しないので、積層フィルム体1として圧電特性を発揮させるためには不要層となる。第1実施形態における圧電デバイス2では、可溶溶剤7により形成された低配向性ポリ乳酸層9は、配向フィルム層4を基に形成された密着層となるので、密着層である低配向性ポリ乳酸層9は配向フィルム層4と同様に機能する。したがって、従来の圧電デバイスでの接着剤よりなる接着層に代わる密着層における圧電特性の劣化が抑制される。 In the piezoelectric device 2 according to the first embodiment, the portion of the oriented film layer 4 to which the soluble solvent 7 is applied has a low orientation property mainly composed of amorphous polylactic acid formed from a resin that forms the oriented film layer 4. It becomes the polylactic acid layer 9 and functions as an adhesion layer that adheres to the conductive layer 5 and the alignment film layer 3 that are in contact with each other. This eliminates the need for adhesives used in conventional piezoelectric devices. Since the adhesive does not have the piezoelectric characteristics of the oriented film layers 3 and 4, it becomes an unnecessary layer in order to exhibit the piezoelectric characteristics as the laminated film body 1. In the piezoelectric device 2 according to the first embodiment, the low-orientation polylactic acid layer 9 formed with the soluble solvent 7 becomes an adhesion layer formed on the basis of the alignment film layer 4, and thus the low-orientation property that is an adhesion layer. The polylactic acid layer 9 functions in the same manner as the oriented film layer 4. Therefore, deterioration of piezoelectric characteristics in the adhesion layer replacing the adhesive layer made of the adhesive in the conventional piezoelectric device is suppressed.
 また、低配向性ポリ乳酸層9は、配向フィルム層4の可溶溶剤7に接する主面4a、4bのごく表面領域にしか形成されないので、その厚さは例えば10nm~20nmと薄くすることができる。それに対して、例えば、非晶質ポリ乳酸を接着シートとして配向フィルム層の上に配置すると、その接着シートは数μm以上の厚さとなって厚くなる。本実施形態における圧電デバイス2では低配向性ポリ乳酸層9をより薄くでき、積層フィルム体1の柔軟性を損なわずに圧電特性の劣化を抑制することができる。 Further, since the low-orientation polylactic acid layer 9 is formed only on the very surface region of the main surfaces 4a and 4b in contact with the soluble solvent 7 of the oriented film layer 4, its thickness can be reduced to, for example, 10 nm to 20 nm. it can. On the other hand, for example, when amorphous polylactic acid is disposed on the oriented film layer as an adhesive sheet, the adhesive sheet becomes thicker than several μm and becomes thick. In the piezoelectric device 2 in the present embodiment, the low-orientation polylactic acid layer 9 can be made thinner, and deterioration of piezoelectric characteristics can be suppressed without impairing the flexibility of the laminated film body 1.
 したがって、配向フィルム層4に対する可溶溶剤7の塗布の厚みの精度は高い精度が要求されず、従来の接着剤の塗布に比べ作業性が向上し、結果として積層フィルム体1の生産性及びこれを用いた圧電デバイス2の生産性を高めることができるのである。 Therefore, the accuracy of the thickness of the application of the soluble solvent 7 to the oriented film layer 4 is not required to be high, and the workability is improved as compared with the application of the conventional adhesive. As a result, the productivity of the laminated film body 1 and this The productivity of the piezoelectric device 2 using can be increased.
 なお、本実施形態においては、配向フィルム層3はL体ポリ乳酸を主成分とする樹脂よりなり、配向フィルム層4はD体ポリ乳酸を主成分とする樹脂よりなる。これとは逆に、配向フィルム層3がD体ポリ乳酸を主成分とする樹脂よりなり、配向フィルム層4がL体ポリ乳酸を主成分とする樹脂よりなっていても同様の効果を奏するものである。すなわち、配向フィルム層3はL体ポリ乳酸とD体ポリ乳酸のうちの一方のポリ乳酸を主成分とする樹脂からなる。配向フィルム層4はL体ポリ乳酸とD体ポリ乳酸のうちの一方のポリ乳酸を主成分とする樹脂からなる。配向フィルム層3の樹脂の主成分のポリ乳酸がL体ポリ乳酸である場合には配向フィルム層4の樹脂の主成分のポリ乳酸はD体ポリ乳酸である。配向フィルム層3の樹脂の主成分のポリ乳酸がD体ポリ乳酸である場合には配向フィルム層4の樹脂の主成分のポリ乳酸はL体ポリ乳酸である。 In this embodiment, the oriented film layer 3 is made of a resin containing L-form polylactic acid as a main component, and the oriented film layer 4 is made of a resin containing D-form polylactic acid as a main component. Contrary to this, even if the oriented film layer 3 is made of a resin containing D-form polylactic acid as a main component and the oriented film layer 4 is made of a resin containing L-form polylactic acid as a main component, the same effect can be obtained. It is. That is, the oriented film layer 3 is made of a resin mainly composed of one of L-form polylactic acid and D-form polylactic acid. The oriented film layer 4 is made of a resin mainly composed of one of L-form polylactic acid and D-form polylactic acid. When the polylactic acid as the main component of the resin of the oriented film layer 3 is L-form polylactic acid, the polylactic acid as the main component of the resin of the oriented film layer 4 is D-form polylactic acid. When the polylactic acid as the main component of the resin of the oriented film layer 3 is D-form polylactic acid, the polylactic acid as the main ingredient of the resin of the oriented film layer 4 is L-form polylactic acid.
 図4は第1実施形態における他の圧電デバイス2aの断面図である。図4において、図1に示す圧電デバイス2と同じ部分には同じ参照番号を付す。図4に示す圧電デバイス2aでは、配向フィルム層3の主面3aに導電層105が形成されており、配向フィルム層4の主面4bに導電層205が形成されている。配向フィルム層3の主面3bに可溶溶剤が塗布されて低配向性ポリ乳酸層209が形成され、配向フィルム層4の主面4aに可溶溶剤が塗布されて低配向性ポリ乳酸層109が形成されている。導電層105は低配向性ポリ乳酸層109に接合し、導電層205は低配向性ポリ乳酸層209に接合している。圧電デバイス2aは図1に示す圧電デバイス2と同様の効果を奏する。 FIG. 4 is a cross-sectional view of another piezoelectric device 2a according to the first embodiment. 4, the same parts as those of the piezoelectric device 2 shown in FIG. In the piezoelectric device 2 a shown in FIG. 4, the conductive layer 105 is formed on the main surface 3 a of the oriented film layer 3, and the conductive layer 205 is formed on the main surface 4 b of the oriented film layer 4. A low-orientation polylactic acid layer 209 is formed by applying a soluble solvent to the main surface 3 b of the oriented film layer 3, and a low-orientation polylactic acid layer 109 is applied to the main surface 4 a of the oriented film layer 4. Is formed. The conductive layer 105 is bonded to the low-orientation polylactic acid layer 109, and the conductive layer 205 is bonded to the low-orientation polylactic acid layer 209. The piezoelectric device 2a has the same effect as the piezoelectric device 2 shown in FIG.
 また、本実施形態における圧電デバイス2、2aは発電デバイスであるが、この本実施形態に限定されるものではなく、光学異性体構造を有する2種類の配向フィルム層を、導電層5を介して交互に積層した積層フィルム体1を用いて圧電効果を活用する積層フィルム体1およびこれを用いた圧電デバイスにおいて同様の効果を奏する。 Moreover, although the piezoelectric devices 2 and 2a in this embodiment are power generation devices, they are not limited to this embodiment, and two kinds of oriented film layers having an optical isomer structure are interposed via the conductive layer 5. The same effect is produced in the laminated film body 1 utilizing the piezoelectric effect using the laminated film bodies 1 laminated alternately and the piezoelectric device using the laminated film body 1.
 上述した圧電デバイス2において、構成の異なる数種のサンプルを作製し評価を行った結果について以下に説明する。 In the piezoelectric device 2 described above, several types of samples having different configurations were prepared and evaluated, and the results will be described below.
 圧電デバイス2のサンプルNo.1~No.4の4種類のサンプルを作成した。サンプルNo.1は積層フィルム体1の最表層は配向フィルム層3であり。20層の配向フィルム層3、4が交互に積層されている。サンプルNo.1では、配向フィルム層3の主面3a、3bに導電層5を形成し、配向フィルム層4の両主面4a、4bに可溶溶剤7を塗布し低配向性ポリ乳酸層9を形成し、これらを積層し、外部電極6を金属溶射で形成する。サンプルNo.2はサンプルNo.1における外部電極6を金属ペーストの塗布により形成する構成とした。サンプルNo.3はサンプルNo.1の配向フィルム層3、4の接合を接着剤により行う構成とした。サンプルNo.4では、配向フィルム層3の一方の主面3aと配向フィルム層4の一方の主面4aに導電層5を形成し、他方の主面3b、4bに低配向性ポリ乳酸層9を形成し、配向フィルム層3、4を交互に積層する構成とした。 Piezo device 2 sample no. 1-No. Four types of samples were prepared. Sample No. Reference numeral 1 denotes an outermost layer of the laminated film body 1 which is an oriented film layer 3. Twenty oriented film layers 3 and 4 are alternately laminated. Sample No. 1, the conductive layer 5 is formed on the main surfaces 3 a and 3 b of the oriented film layer 3, the soluble solvent 7 is applied to both the main surfaces 4 a and 4 b of the oriented film layer 4, and the low-orientated polylactic acid layer 9 is formed. These are laminated and the external electrode 6 is formed by metal spraying. Sample No. 2 is sample no. 1 was formed by applying a metal paste. Sample No. 3 is sample no. It was set as the structure which joins the 1 oriented film layers 3 and 4 with an adhesive agent. Sample No. 4, a conductive layer 5 is formed on one main surface 3 a of the oriented film layer 3 and one main surface 4 a of the oriented film layer 4, and a low-orientation polylactic acid layer 9 is formed on the other main surfaces 3 b and 4 b. The orientation film layers 3 and 4 are alternately laminated.
 これらのサンプルの発電特性と耐久性を評価した。発電特性は、圧電デバイス2に発光ダイオード(LED)豆電球(4.8V)を接続配線し、周波数10Hzの振動を1分間与えた際のLED豆電球の点灯状態で評価した。耐久性は、圧電デバイス2に周波数10Hzの振動を長時間連続的に与えた場合のLED豆電球の点灯状態の変化で評価した。その結果を表1に示す。 The power generation characteristics and durability of these samples were evaluated. The power generation characteristics were evaluated based on the lighting state of the LED mini-bulb when a light-emitting diode (LED) mini-bulb (4.8 V) was connected to the piezoelectric device 2 and vibration with a frequency of 10 Hz was applied for 1 minute. The durability was evaluated by the change in the lighting state of the LED mini-bulb when the piezoelectric device 2 was continuously vibrated at a frequency of 10 Hz for a long time. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1での発電特性については、「G」はLED豆電球が点灯する状態を示し、「F」はLED豆電球が点滅する状態を示し、「NG」はLED豆電球が点灯も点滅もしない消灯する状態を示している。耐久性については、圧電デバイス2に連続的に与えた周波数10Hzの振動の回数に対するLED豆電球の点灯状態の変化で評価し、点灯状態が点灯から点滅または消灯に劣化するか否か、または点灯状態が点滅から消灯に劣化するか否かを示す。表1での耐久性において、「VG」が50万回以上の振動でも点灯状態が劣化しないことを示し、「G」が10万回以上50万回未満の振動で点灯状態が劣化したことを示し、「F」が1万回以上10万回未満の振動で劣化したことを示し、「NG」が1万回未満の振動で劣化したことを示している。 Regarding the power generation characteristics in Table 1, “G” indicates a state in which the LED miniature bulb is lit, “F” indicates a state in which the LED miniature bulb is flashing, and “NG” indicates that the LED miniature bulb is not lit or flashing. The state which turns off is shown. The durability is evaluated by the change in the lighting state of the LED mini-bulb with respect to the number of vibrations having a frequency of 10 Hz continuously applied to the piezoelectric device 2, and whether or not the lighting state deteriorates from lighting to blinking or extinguishing, or lighting Indicates whether the state deteriorates from blinking to off. In the durability in Table 1, “VG” indicates that the lighting state does not deteriorate even with vibration of 500,000 times or more, and “G” indicates that the lighting state has deteriorated with vibration of 100,000 times or more and less than 500,000 times. “F” indicates that the vibration is degraded by 10,000 times or more and less than 100,000 times, and “NG” indicates that the vibration is degraded by vibrations of less than 10,000 times.
 表1に示すように、積層フィルム体1における配向フィルム層3、4と導電層5を低配向性ポリ乳酸層9で接合しているサンプルNo.1、2、4は発電特性が高いことが確認できた。また、この発電特性の高い積層フィルム体1に設けた外部電極6を、金属溶射により形成することで圧電デバイス2における耐久性も高められることが確認できた。 As shown in Table 1, sample No. 1 in which the oriented film layers 3 and 4 and the conductive layer 5 in the laminated film body 1 are joined with a low-orientation polylactic acid layer 9. 1, 2 and 4 were confirmed to have high power generation characteristics. Moreover, it has confirmed that the durability in the piezoelectric device 2 was improved by forming the external electrode 6 provided on the laminated film body 1 having high power generation characteristics by metal spraying.
 低配向性ポリ乳酸層9は、基材である配向フィルム層3あるいは配向フィルム層4におけるL体ポリ乳酸あるいはD体ポリ乳酸より分子鎖の配向性が低下した低配向性ポリ乳酸から形成されているが、他の物理的態様であっても良い。例えば、基材のポリ乳酸よりもポリ乳酸の分子鎖の配向性が低下している低配向性ポリ乳酸層9は、ポリ乳酸の分子鎖自体が切断されているポリ乳酸から形成されていても良い。導電層5が、低配向性ポリ乳酸層9を介して配向フィルム層4と接合することにより、前述したような効果を享受することができる。 The low-orientation polylactic acid layer 9 is formed from low-orientation polylactic acid in which the orientation of the molecular chain is lower than that of the L-form polylactic acid or the D-form polylactic acid in the orientation film layer 3 or the orientation film layer 4 as the base material. However, other physical aspects are possible. For example, the low-orientation polylactic acid layer 9 in which the orientation of the molecular chain of polylactic acid is lower than that of the base polylactic acid may be formed from polylactic acid in which the molecular chain of the polylactic acid itself is cut. good. When the conductive layer 5 is joined to the oriented film layer 4 through the low-orientation polylactic acid layer 9, the effects as described above can be enjoyed.
 なお、低配向性ポリ乳酸層9においては、配向フィルム層3、4よりも層全体として均一に低配向であることが好ましいが、不均一(部分的)に低配向であっても良い。 The low-orientation polylactic acid layer 9 preferably has a uniform low orientation as a whole than the oriented film layers 3 and 4, but may have a non-uniform (partial) low orientation.
 (第2実施形態)
 図5は第2実施形態における圧電デバイス502の断面図である。図5において、図1に示す第1実施形態における圧電デバイス2と同じ部分には同じ参照番号を付す。第2実施形態における圧電デバイス502は電力を発生する発電デバイスである。第2実施形態における圧電デバイス502は第1実施形態における圧電デバイス2の積層フィルム体1の代わりに積層フィルム体501を備える。積層フィルム体501は、図1に示す第1実施形態における積層フィルム体1の導電層5と低配向性ポリ乳酸層9の間に設けられた熱硬化性樹脂層10をさらに有する。熱硬化性樹脂層10は、耐熱性の良いポリアミドイミド系樹脂剤とエポキシ樹脂剤(架橋剤)を反応させて形成されている。
(Second Embodiment)
FIG. 5 is a cross-sectional view of the piezoelectric device 502 according to the second embodiment. In FIG. 5, the same reference numerals are assigned to the same portions as those of the piezoelectric device 2 in the first embodiment shown in FIG. The piezoelectric device 502 in the second embodiment is a power generation device that generates electric power. A piezoelectric device 502 in the second embodiment includes a laminated film body 501 instead of the laminated film body 1 of the piezoelectric device 2 in the first embodiment. The laminated film body 501 further includes a thermosetting resin layer 10 provided between the conductive layer 5 and the low-orientation polylactic acid layer 9 of the laminated film body 1 in the first embodiment shown in FIG. The thermosetting resin layer 10 is formed by reacting a polyamideimide resin agent with good heat resistance and an epoxy resin agent (crosslinking agent).
 次に、圧電デバイス502の製造方法について説明する。図6Aから図6Eは圧電デバイス502の製造方法を示す断面図である。該製造方法も、第1工程から第5工程を具備している。第2実施形態における製造方法における5つの工程のうち第1実施形態の製造方法と異なるのは、第2工程と第3工程である。第2工程においては使用する可溶溶剤が第1実施形態と異なっており、また、可溶溶剤を塗布した配向フィルム層4を第1温度で加熱することにより乾燥固化(dry)させている。また、第3工程においては、第2工程における第1温度よりも高い第2温度で熱プレスすることにより熱硬化性樹脂剤を硬化(cure)させている。 Next, a method for manufacturing the piezoelectric device 502 will be described. 6A to 6E are cross-sectional views illustrating a method for manufacturing the piezoelectric device 502. The manufacturing method also includes first to fifth steps. Among the five steps in the manufacturing method according to the second embodiment, the difference from the manufacturing method according to the first embodiment is the second step and the third step. In the second step, the soluble solvent used is different from that in the first embodiment, and the oriented film layer 4 coated with the soluble solvent is dried and solidified by heating at the first temperature. In the third step, the thermosetting resin agent is cured by hot pressing at a second temperature higher than the first temperature in the second step.
 先ず、第1工程として、図3Aに示す第1実施形態における圧電デバイス2の製造方法での第1工程と同様に、図6Aに示すように、配向フィルム層3の主面3a、3bにアルミニウムからなる導電層105、205をそれぞれ形成する。 First, as shown in FIG. 6A, as shown in FIG. 6A, aluminum is formed on the main surfaces 3 a and 3 b of the oriented film layer 3 as in the first step in the method for manufacturing the piezoelectric device 2 in the first embodiment shown in FIG. 3A. Conductive layers 105 and 205 are formed.
 第2工程では、図6Bに示すように、主面104aと、主面104aの反対側の主面104bとを有する配向フィルム層104を準備する。配向フィルム層104は図5に示す配向フィルム層4となる。配向フィルム層104の主面104a、104bに配向フィルム層104を良く溶融させる可溶溶剤507を塗布する。第1実施形態で用いた可溶溶剤7はジクロロメタン、トリフルオロメタンスルホン酸、トルエンなどの配向フィルム層104を良く溶融させる溶剤(第1溶剤)である。第2実施形態で用いる可溶溶剤507は、配向フィルム層104を良く溶融させる上記の第1溶剤に加えて熱硬化性樹脂剤を含有している。なお、可溶溶剤507は第1溶剤を希釈する第2溶剤をさらに含有していてもよい。 In the second step, as shown in FIG. 6B, an oriented film layer 104 having a main surface 104a and a main surface 104b opposite to the main surface 104a is prepared. The oriented film layer 104 becomes the oriented film layer 4 shown in FIG. A soluble solvent 507 that melts the oriented film layer 104 well is applied to the main surfaces 104 a and 104 b of the oriented film layer 104. The soluble solvent 7 used in the first embodiment is a solvent (first solvent) that well melts the oriented film layer 104 such as dichloromethane, trifluoromethanesulfonic acid, and toluene. The soluble solvent 507 used in the second embodiment contains a thermosetting resin agent in addition to the first solvent that well melts the oriented film layer 104. The soluble solvent 507 may further contain a second solvent that dilutes the first solvent.
 なお、熱硬化性樹脂剤として、耐熱性の良いポリアミドイミド系樹脂剤と架橋剤(例えば、エポキシ樹脂剤)を用いると、これらの配合比を調節することで乾燥固化温度(第1温度)と硬化温度(第2温度)を調節できる。例えば、樹脂剤の架橋剤に対する配合比を10とした場合、熱硬化性樹脂剤は、固化(dry)反応が85℃から95℃の範囲の第1温度で急速に進んで固化(Bステージ)し、硬化(cure)反応が120℃の第2温度で急激に進んで硬化(Cステージ)する。 As a thermosetting resin agent, when a polyamideimide resin agent having a good heat resistance and a crosslinking agent (for example, an epoxy resin agent) are used, the drying solidification temperature (first temperature) is adjusted by adjusting the blending ratio thereof. The curing temperature (second temperature) can be adjusted. For example, when the compounding ratio of the resin agent to the cross-linking agent is 10, the thermosetting resin agent solidifies by rapidly proceeding at a first temperature in the range of 85 ° C. to 95 ° C. (dry stage). Then, the cure reaction proceeds rapidly at a second temperature of 120 ° C. to cure (C stage).
 可溶溶剤507を用いることにより、結晶性を有する配向フィルム層104の可溶溶剤507を塗布された部分は、ポリ乳酸の分子鎖の配向性が低下した非晶質ポリ乳酸よりなる低配向性ポリ乳酸層9(109、209)となる。低配向性ポリ乳酸層109は配向フィルム層4の主面4bに形成され、低配向性ポリ乳酸層209は配向フィルム層4の主面4aに形成される。 By using the soluble solvent 507, the portion of the oriented film layer 104 having crystallinity to which the soluble solvent 507 is applied has a low orientation made of amorphous polylactic acid in which the orientation of the molecular chain of polylactic acid is lowered. The polylactic acid layer 9 (109, 209) is formed. The low orientation polylactic acid layer 109 is formed on the main surface 4 b of the oriented film layer 4, and the low orientation polylactic acid layer 209 is formed on the main surface 4 a of the oriented film layer 4.
 そして、第2工程で可溶溶剤507を塗布した後に、配向フィルム層4に対して第1温度(第2実施形態では90℃)の熱処理を行うことで、図6Cに示すように、低配向性ポリ乳酸層109、209の露出する表面付近において、溶剤成分が揮発すると共に、揮発せずに残ったポリアミドイミド系樹脂剤と架橋剤が反応してポリアミドイミド系樹脂剤が固化(dry)(仮硬化)した固化層112が配向フィルム層104の主面104bに形成され、固化層212が配向フィルム層104の主面104aに形成される。固化層112、212は粘着性を有していない。これにより、低配向性ポリ乳酸層109の一方の主面109aには配向フィルム層4の主面4bが位置し、反対側の他方の主面109bには固化層112が位置することとなる。同様に、低配向性ポリ乳酸層209の一方の主面209bには配向フィルム層4の主面4aが位置し、反対側の他方の主面209aには固化層212が位置することとなる。 And after apply | coating the soluble solvent 507 at a 2nd process, as shown to FIG. 6C, by performing heat processing of 1st temperature (90 degreeC in 2nd Embodiment) with respect to the oriented film layer 4, low orientation is shown. In the vicinity of the exposed surfaces of the conductive polylactic acid layers 109 and 209, the solvent component is volatilized, and the polyamideimide resin agent remaining without being volatilized reacts with the crosslinking agent to solidify (dry) the polyamideimide resin agent. The temporarily hardened solidified layer 112 is formed on the main surface 104 b of the oriented film layer 104, and the solidified layer 212 is formed on the main surface 104 a of the oriented film layer 104. The solidified layers 112 and 212 do not have adhesiveness. Thereby, the main surface 4b of the oriented film layer 4 is located on one main surface 109a of the low-orientation polylactic acid layer 109, and the solidified layer 112 is located on the other main surface 109b on the opposite side. Similarly, the main surface 4a of the oriented film layer 4 is positioned on one main surface 209b of the low-orientation polylactic acid layer 209, and the solidified layer 212 is positioned on the other main surface 209a on the opposite side.
 次に、第3工程として、図6Dに示すように、図6Aに示す第1工程で得られた複数の配向フィルム層3と図6Bに示す第2工程で得られた複数の配向フィルム層4とを交互に配置して積層することで積層フィルム体501を得る。積層フィルム体501では、導電層105は固化層112に当接し、導電層205は固化層212に当接するように、配向フィルム層3、4が配置されている。 Next, as a third step, as shown in FIG. 6D, a plurality of oriented film layers 3 obtained in the first step shown in FIG. 6A and a plurality of oriented film layers 4 obtained in the second step shown in FIG. 6B. Are laminated alternately to obtain a laminated film body 501. In the laminated film body 501, the oriented film layers 3 and 4 are arranged so that the conductive layer 105 is in contact with the solidified layer 112 and the conductive layer 205 is in contact with the solidified layer 212.
 次に、第4工程として、図6Eに示すように、積層フィルム体501を上記の第2温度で熱プレスする。これにより、固化層112、212は硬化(cure)してそれぞれ熱硬化樹脂よりなる熱硬化樹脂層110、210となり、各層が固着する。 Next, as a fourth step, as shown in FIG. 6E, the laminated film body 501 is hot-pressed at the second temperature. As a result, the solidified layers 112 and 212 are cured to become thermosetting resin layers 110 and 210 made of thermosetting resin, and the respective layers are fixed.
 次に、図3Dと図3Eに示す第1実施形態における圧電デバイス2の製造方法と同様に、図5に示すように、積層フィルム体501の互い反対側の端面101、201に、金属溶射法により膜厚500μmの外部電極106、206を形成する。さらに、外部電極6が形成されていない積層フィルム体501の外部電極6から露出する部分に外装樹脂層8を形成することが望ましい。 Next, similarly to the method for manufacturing the piezoelectric device 2 in the first embodiment shown in FIGS. 3D and 3E, as shown in FIG. 5, the metal spraying method is applied to the opposite end surfaces 101 and 201 of the laminated film body 501. Thus, the external electrodes 106 and 206 having a film thickness of 500 μm are formed. Furthermore, it is desirable to form the exterior resin layer 8 in a portion exposed from the external electrode 6 of the laminated film body 501 where the external electrode 6 is not formed.
 第2実施形態における圧電デバイス502の製造方法において、第3配向フィルム層4に乾燥した固化層112、212を形成することにより、接着剤として機能する部分である固化層112、212や低配向性ポリ乳酸層9(109、209)の形状維持を図ることができる。よって、以降の工程における可溶溶剤507の液ダレやそれによる固化層112、212や低配向性ポリ乳酸層9(109、209)の膜厚変化、及び積層工程での配向フィルム層3、4の横ズレを抑制でき、積層フィルム体501の作製段階における積層精度を向上させることができる。従って、積層フィルム体501ひいては圧電デバイス502の生産性を高めることができる。 In the method for manufacturing the piezoelectric device 502 according to the second embodiment, by forming the dried solidified layers 112 and 212 on the third oriented film layer 4, the solidified layers 112 and 212, which are portions that function as an adhesive, and low orientation properties. The shape of the polylactic acid layer 9 (109, 209) can be maintained. Therefore, the sag of the soluble solvent 507 in the subsequent process, the thickness change of the solidified layers 112 and 212 and the low-orientation polylactic acid layer 9 (109, 209), and the oriented film layers 3 and 4 in the laminating process. Can be suppressed, and the lamination accuracy in the production stage of the laminated film body 501 can be improved. Therefore, the productivity of the laminated film body 501 and thus the piezoelectric device 502 can be increased.
 また、第4工程における熱プレスの第2温度を120℃~135℃程度、より好ましくは120℃~130℃程度で行うことにより、この熱プレスの際の硬化反応を、固化反応と同一プロセスで完了させることができる。これにより、樹脂硬化における層間接着と、可溶溶剤507で形成する層の耐熱性を確保することができる。すなわち、このような工程を経ることで、生産性と耐熱性を両立することができる。 Further, by performing the second temperature of the hot press in the fourth step at about 120 ° C. to 135 ° C., more preferably about 120 ° C. to 130 ° C., the curing reaction at the time of the hot press is performed in the same process as the solidification reaction. Can be completed. Thereby, the interlayer adhesion in resin curing and the heat resistance of the layer formed with the soluble solvent 507 can be ensured. That is, through such a process, both productivity and heat resistance can be achieved.
 第2実施形態の可溶溶剤507においては、配向フィルム層4の表面に低配向性ポリ乳酸層9を形成させるため、ジクロロメタン、トリフルオロメタンスルホン酸、トルエンなどでの溶剤の濃度は可溶溶剤507全体に対して5wt%以上とすることが好ましい。5wt%未満であると低配向性ポリ乳酸層9を形成することが困難となる。 In the soluble solvent 507 of the second embodiment, since the low-orientation polylactic acid layer 9 is formed on the surface of the oriented film layer 4, the concentration of the solvent in dichloromethane, trifluoromethanesulfonic acid, toluene or the like is the soluble solvent 507. It is preferable to set it as 5 wt% or more with respect to the whole. If it is less than 5 wt%, it becomes difficult to form the low-orientation polylactic acid layer 9.
 第1実施形態では低配向性ポリ乳酸層により配向フィルム層4と導電層5とを密着させていたが、第2実施形態ではさらに熱硬化性樹脂層10を備えているので第1実施形態に増して配向フィルム層4と導電層5の密着性を向上させることができる。 In the first embodiment, the oriented film layer 4 and the conductive layer 5 are brought into close contact with each other by the low-orientation polylactic acid layer. However, in the second embodiment, the thermosetting resin layer 10 is further provided. In addition, the adhesion between the oriented film layer 4 and the conductive layer 5 can be improved.
 また、熱硬化性樹脂層10は、配向フィルム層3、4や低配向性ポリ乳酸層9などのポリ乳酸層よりも弾性率が小さいことが好ましい。これにより積層フィルム体501の柔軟性を損なわずに圧電特性の劣化を抑制することができる。 The thermosetting resin layer 10 preferably has a smaller elastic modulus than the polylactic acid layers such as the oriented film layers 3 and 4 and the low-orientated polylactic acid layer 9. Thereby, deterioration of piezoelectric characteristics can be suppressed without impairing the flexibility of the laminated film body 501.
 図7は第2実施形態における他の圧電デバイス502aの断面図である。図7において、図5に示す圧電デバイス2aと同じ部分には同じ参照番号を付す。図7に示す圧電デバイス502aでは、配向フィルム層3の主面3aに導電層105が形成されており、配向フィルム層4の主面4bに導電層205が形成されている。配向フィルム層3の主面3bに可溶溶剤が塗布されて低配向性ポリ乳酸層209が形成され、配向フィルム層4の主面4aに可溶溶剤が塗布されて低配向性ポリ乳酸層109が形成されている。配向フィルム層3の主面3bに低配向性ポリ乳酸層209の主面209aが位置し、配向フィルム層4の主面4aに低配向性ポリ乳酸層109の主面109bが位置する。低配向性ポリ乳酸層209の主面209bに固化層212を経て得られた熱硬化樹脂層210が設けられており、低配向性ポリ乳酸層109の主面109aに固化層112を経て得られた熱硬化樹脂層110が設けられている。導電層105は熱硬化樹脂層110に接合し、導電層205は熱硬化樹脂層210に接合している。圧電デバイス502aは図5に示す圧電デバイス502と同様の効果を奏する。 FIG. 7 is a cross-sectional view of another piezoelectric device 502a according to the second embodiment. 7, the same parts as those of the piezoelectric device 2a shown in FIG. In the piezoelectric device 502 a shown in FIG. 7, the conductive layer 105 is formed on the main surface 3 a of the oriented film layer 3, and the conductive layer 205 is formed on the main surface 4 b of the oriented film layer 4. A low-orientation polylactic acid layer 209 is formed by applying a soluble solvent to the main surface 3 b of the oriented film layer 3, and a low-orientation polylactic acid layer 109 is applied to the main surface 4 a of the oriented film layer 4. Is formed. The main surface 209a of the low-orientation polylactic acid layer 209 is located on the main surface 3b of the oriented film layer 3, and the main surface 109b of the low-orientation polylactic acid layer 109 is located on the main surface 4a of the oriented film layer 4. The thermosetting resin layer 210 obtained through the solidified layer 212 is provided on the main surface 209b of the low-orientation polylactic acid layer 209, and the main surface 109a of the low-orientation polylactic acid layer 109 is obtained through the solidified layer 112. A thermosetting resin layer 110 is provided. The conductive layer 105 is bonded to the thermosetting resin layer 110, and the conductive layer 205 is bonded to the thermosetting resin layer 210. The piezoelectric device 502a has the same effect as the piezoelectric device 502 shown in FIG.
 本発明における圧電デバイスは、圧電特性の劣化抑制及び生産性の向上という効果を有し、特に高い圧電特性が求められる発電デバイスにおいて有効である。 The piezoelectric device according to the present invention has an effect of suppressing deterioration of piezoelectric characteristics and improving productivity, and is particularly effective in a power generation device that requires high piezoelectric characteristics.
1,1a,501,501a  積層フィルム体
2,2a,502,502a  圧電デバイス
3  配向フィルム層(第2の配向フィルム層、第3の配向フィルム層)
4  配向フィルム層(第1の配向フィルム層)
5  導電層(第1の導電層、第2の導電層)
6  外部電極
7,507  可溶溶剤
8  外装樹脂層
9  低配向性ポリ乳酸層
10  熱硬化性樹脂層
112,212  固化層
1, 1a, 501, 501a Laminated film body 2, 2a, 502, 502a Piezoelectric device 3 Oriented film layer (second oriented film layer, third oriented film layer)
4 oriented film layer (first oriented film layer)
5 conductive layers (first conductive layer, second conductive layer)
6 External electrode 7,507 Soluble solvent 8 Exterior resin layer 9 Low orientation polylactic acid layer 10 Thermosetting resin layer 112, 212 Solidified layer

Claims (10)

  1.    L体ポリ乳酸とD体ポリ乳酸のうちの一方の第1のポリ乳酸を主成分とする第1の樹脂からなる第1の配向フィルム層と、
       L体ポリ乳酸とD体ポリ乳酸のうちの一方の第2のポリ乳酸を主成分とする第2の樹脂からなる第2の配向フィルム層と、
       前記第1の配向フィルム層に接合する前記第1の樹脂よりなる第1の低配向性ポリ乳酸層と、
       前記第1の低配向性ポリ乳酸層を介して前記第2の配向フィルム層と接合する導電層と、
    を有する積層フィルム体を備え、
    前記第1のポリ乳酸がL体ポリ乳酸である場合には前記第2のポリ乳酸はD体ポリ乳酸であり、
    前記第1のポリ乳酸がD体ポリ乳酸である場合には前記第2のポリ乳酸はL体ポリ乳酸であり、
    前記第1の配向フィルム層と前記第2の配向フィルム層とは、前記導電層を介して交互に積層され、
    前記第1の低配向性ポリ乳酸層は、前記第1の樹脂からなると共に前記第1の配向フィルム層よりも前記第1のポリ乳酸の分子鎖の配向性が低下している、圧電デバイス。
    A first alignment film layer made of a first resin mainly composed of one first polylactic acid of L-form polylactic acid and D-form polylactic acid;
    A second alignment film layer composed of a second resin mainly composed of one second polylactic acid among L-form polylactic acid and D-form polylactic acid;
    A first low-orientation polylactic acid layer made of the first resin bonded to the first oriented film layer;
    A conductive layer joined to the second oriented film layer via the first low-orientation polylactic acid layer;
    A laminated film body having
    When the first polylactic acid is L-form polylactic acid, the second polylactic acid is D-form polylactic acid,
    When the first polylactic acid is D-form polylactic acid, the second polylactic acid is L-form polylactic acid,
    The first alignment film layer and the second alignment film layer are alternately laminated via the conductive layer,
    The first low-orientation polylactic acid layer is made of the first resin, and the molecular orientation of the first polylactic acid is lower than that of the first alignment film layer.
  2. 前記第1の低配向性ポリ乳酸層は非晶質ポリ乳酸よりなる、請求項1に記載の圧電デバイス。 The piezoelectric device according to claim 1, wherein the first low-orientation polylactic acid layer is made of amorphous polylactic acid.
  3. 前記第1の低配向性ポリ乳酸層は分子鎖が切れたポリ乳酸から形成されている、請求項1に記載の圧電デバイス。 2. The piezoelectric device according to claim 1, wherein the first low-orientation polylactic acid layer is formed of polylactic acid having a broken molecular chain.
  4. 前記第1の低配向性ポリ乳酸層と前記導電層の間に配設された熱硬化性樹脂よりなる熱硬化性樹脂層をさらに備えた、請求項1から3のいずれか一項に記載の圧電デバイス。 The thermosetting resin layer which consists of a thermosetting resin arrange | positioned between the said 1st low orientation polylactic acid layer and the said conductive layer was further provided as described in any one of Claim 1 to 3 Piezoelectric device.
  5. 前記導電層は前記第2の配向フィルム層と接合する、請求項1から4のいずれか一項に記載の圧電デバイス。 The piezoelectric device according to claim 1, wherein the conductive layer is bonded to the second alignment film layer.
  6. 前記導電層に接続され、前記積層フィルム体上に設けられた外部電極と、
    前記積層フィルム体の前記外部電極から露出する部分を覆う外装樹脂層をさらに備えた、請求項1から5のいずれか一項に記載の圧電デバイス。
    An external electrode connected to the conductive layer and provided on the laminated film body;
    The piezoelectric device according to claim 1, further comprising an exterior resin layer that covers a portion of the laminated film body that is exposed from the external electrode.
  7. L体ポリ乳酸とD体ポリ乳酸のうちの一方の第1のポリ乳酸を主成分とする第1の樹脂からなり、第1の主面と前記第1の主面の反対側の第2の主面とを有する第1の配向フィルム層を準備するステップと、
    L体ポリ乳酸とD体ポリ乳酸のうちの一方の第2のポリ乳酸を主成分とする第2の樹脂からなり、主面を有する第2の配向フィルム層を準備するステップと、
    前記第2の配向フィルム層の前記主面に第1の導電層を形成するステップと、
    前記第1の配向フィルム層の前記第1の主面に第1の可溶溶剤を塗布するステップと、
    前記第1の可溶溶剤を塗布するステップの後で、前記第1の配向フィルム層と、前記第1の配向フィルム層の前記第1の主面に前記第1の導電層を介して前記第2の配向フィルム層を積み重ねることにより積層フィルム体を形成するステップと、
    前記積層フィルム体を熱プレスするステップと、
    を含み、
    前記第1のポリ乳酸がL体ポリ乳酸である場合には前記第2のポリ乳酸はD体ポリ乳酸であり、
    前記第1のポリ乳酸がD体ポリ乳酸である場合には前記第2のポリ乳酸はL体ポリ乳酸である、圧電デバイスの製造方法。
    It consists of 1st resin which has the 1st polylactic acid as a main component of one of L body polylactic acid and D body polylactic acid, and the 2nd on the opposite side of the 1st main surface and the 1st main surface Providing a first oriented film layer having a major surface;
    A step of preparing a second oriented film layer having a main surface, comprising a second resin mainly composed of one second polylactic acid of L-form polylactic acid and D-form polylactic acid;
    Forming a first conductive layer on the main surface of the second oriented film layer;
    Applying a first soluble solvent to the first main surface of the first oriented film layer;
    After the step of applying the first soluble solvent, the first alignment film layer and the first main surface of the first alignment film layer on the first conductive layer via the first conductive layer. Forming a laminated film body by stacking two oriented film layers;
    Hot pressing the laminated film body;
    Including
    When the first polylactic acid is L-form polylactic acid, the second polylactic acid is D-form polylactic acid,
    The method for manufacturing a piezoelectric device, wherein when the first polylactic acid is D-form polylactic acid, the second polylactic acid is L-form polylactic acid.
  8. 前記第1の可溶溶剤は熱硬化性樹脂剤を含有し、
    前記第1の配向フィルム層の前記第1の主面に前記第1の可溶溶剤を塗布するステップの後で、前記第1の配向フィルム層を第1温度で加熱して乾燥固化することにより前記第1の配向フィルム層の前記第1の主面に第1の固化層を形成するステップと、
    前記積層フィルム体を形成するステップの後に、前記積層フィルム体を前記第1温度より高い第2温度で加熱することにより前記第1の固化層から前記第1の配向フィルム層の前記第1の主面に第1の熱硬化性樹脂層を形成するステップと、
    をさらに含む、請求項7に記載の圧電デバイスの製造方法。
    The first soluble solvent contains a thermosetting resin agent,
    After the step of applying the first soluble solvent to the first main surface of the first oriented film layer, the first oriented film layer is heated and solidified by drying at a first temperature. Forming a first solidified layer on the first main surface of the first oriented film layer;
    After the step of forming the laminated film body, the first main layer of the first oriented film layer from the first solidified layer is heated by heating the laminated film body at a second temperature higher than the first temperature. Forming a first thermosetting resin layer on the surface;
    The method for manufacturing a piezoelectric device according to claim 7, further comprising:
  9. 前記第2の樹脂からなり、主面を有する第3の配向フィルム層を準備するステップと、
    前記第3の配向フィルム層の前記主面に第2の導電層を形成するステップと、
    前記第1の配向フィルム層の前記第2の主面に第2の可溶溶剤を塗布するステップと、
    をさらに含み、
    前記積層フィルム体を形成するステップは、前記第1の可溶溶剤を塗布するステップの後で、前記第1の配向フィルム層と、前記第1の配向フィルム層の前記第1の主面に前記第1の導電層を介して前記第2の配向フィルム層を積み重ねることと、前記第2の可溶溶剤を塗布するステップの後で、前記第1の配向フィルム層と、前記第1の配向フィルム層の前記第2の主面に前記第2の導電層を介して前記第3の配向フィルム層を積み重ねることにより前記積層フィルム体を形成するステップを含む、請求項7に記載の圧電デバイスの製造方法。
    Preparing a third oriented film layer comprising the second resin and having a main surface;
    Forming a second conductive layer on the main surface of the third oriented film layer;
    Applying a second soluble solvent to the second main surface of the first oriented film layer;
    Further including
    In the step of forming the laminated film body, after the step of applying the first soluble solvent, the first oriented film layer and the first main surface of the first oriented film layer are arranged on the first main surface. After stacking the second oriented film layer via the first conductive layer and applying the second soluble solvent, the first oriented film layer and the first oriented film The method of manufacturing a piezoelectric device according to claim 7, comprising forming the laminated film body by stacking the third oriented film layer on the second main surface of the layer via the second conductive layer. Method.
  10. 前記第1の可溶溶剤と前記第2の可溶溶剤は熱硬化性樹脂剤を含有し、
    前記第1の配向フィルム層の前記第1の主面に前記第1の可溶溶剤を塗布するステップと前記第1の配向フィルム層の前記第2の主面に前記第2の可溶溶剤を塗布するステップとの後で、前記第1の配向フィルム層を第1温度で加熱して乾燥固化することにより前記第1の配向フィルム層の前記第1の主面と前記第2の主面とに第1の固化層と第2の固化層とをそれぞれ形成するステップと、
    前記積層フィルム体を形成するステップの後に、前記積層フィルム体を前記第1温度より高い第2温度で加熱することにより前記第1の固化層と前記第2の固化層とから前記第1の配向フィルム層の前記第1の主面と前記第2の主面とに第1の熱硬化性樹脂層と第2の熱硬化性樹脂層とをそれぞれ形成するステップと、
    をさらに含む、請求項9に記載の圧電デバイスの製造方法。
    The first soluble solvent and the second soluble solvent contain a thermosetting resin agent,
    Applying the first soluble solvent to the first main surface of the first oriented film layer; and applying the second soluble solvent to the second main surface of the first oriented film layer. After the applying step, the first main surface and the second main surface of the first alignment film layer are heated and solidified by heating the first alignment film layer at a first temperature. Forming a first solidified layer and a second solidified layer respectively,
    After the step of forming the laminated film body, the first orientation is obtained from the first solidified layer and the second solidified layer by heating the laminated film body at a second temperature higher than the first temperature. Forming a first thermosetting resin layer and a second thermosetting resin layer respectively on the first main surface and the second main surface of the film layer;
    The method for manufacturing a piezoelectric device according to claim 9, further comprising:
PCT/JP2015/002050 2014-05-07 2015-04-13 Piezoelectric device and method for manufacturing same WO2015170446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016517802A JP6473896B2 (en) 2014-05-07 2015-04-13 Piezoelectric device and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014095640 2014-05-07
JP2014-095640 2014-05-07
JP2014-095641 2014-05-07
JP2014095641 2014-05-07

Publications (1)

Publication Number Publication Date
WO2015170446A1 true WO2015170446A1 (en) 2015-11-12

Family

ID=54392306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002050 WO2015170446A1 (en) 2014-05-07 2015-04-13 Piezoelectric device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6473896B2 (en)
WO (1) WO2015170446A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155006A1 (en) * 2016-03-09 2017-09-14 三井化学株式会社 Laminated article
JP2018133411A (en) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 Piezoelectric device
JP2018133413A (en) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 Piezoelectric device
CN113394337A (en) * 2021-05-26 2021-09-14 江西欧迈斯微电子有限公司 Method for preparing multilayer piezoelectric film, piezoelectric module and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213881A (en) * 1990-02-07 1992-08-04 Philips Gloeilampenfab:Nv Multilayer piezoelectric element and its manufacture
JP2012521902A (en) * 2009-03-27 2012-09-20 トウレ プラスチックス (アメリカ) インコーポレイテッド Biaxially oriented metallized polylactic acid film with high metal adhesion and high barrier properties
JP2013199059A (en) * 2012-03-26 2013-10-03 Toray Ind Inc Laminated film
JP2014027055A (en) * 2012-07-25 2014-02-06 Teijin Ltd Method for producing piezoelectric body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3074404B2 (en) * 1991-07-31 2000-08-07 タキロン株式会社 Polymer piezoelectric material
JP4445277B2 (en) * 2004-01-29 2010-04-07 三井化学株式会社 Polymer piezoelectric material comprising polylactic acid resin and inorganic compound
CN102027609B (en) * 2008-05-12 2013-11-06 学校法人关西大学 Piezoelectric element and audio equipment
JP6082511B2 (en) * 2010-05-14 2017-02-15 帝人株式会社 Laminated film
JP5647943B2 (en) * 2011-05-02 2015-01-07 帝人株式会社 Laminated film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213881A (en) * 1990-02-07 1992-08-04 Philips Gloeilampenfab:Nv Multilayer piezoelectric element and its manufacture
JP2012521902A (en) * 2009-03-27 2012-09-20 トウレ プラスチックス (アメリカ) インコーポレイテッド Biaxially oriented metallized polylactic acid film with high metal adhesion and high barrier properties
JP2013199059A (en) * 2012-03-26 2013-10-03 Toray Ind Inc Laminated film
JP2014027055A (en) * 2012-07-25 2014-02-06 Teijin Ltd Method for producing piezoelectric body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155006A1 (en) * 2016-03-09 2017-09-14 三井化学株式会社 Laminated article
US11088313B2 (en) 2016-03-09 2021-08-10 Mitsui Chemicals, Inc. Layered body
JP2018133411A (en) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 Piezoelectric device
JP2018133413A (en) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 Piezoelectric device
JP7012242B2 (en) 2017-02-14 2022-01-28 パナソニックIpマネジメント株式会社 Piezoelectric device
JP7012243B2 (en) 2017-02-14 2022-01-28 パナソニックIpマネジメント株式会社 Piezoelectric device
CN113394337A (en) * 2021-05-26 2021-09-14 江西欧迈斯微电子有限公司 Method for preparing multilayer piezoelectric film, piezoelectric module and electronic device

Also Published As

Publication number Publication date
JPWO2015170446A1 (en) 2017-04-20
JP6473896B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6473896B2 (en) Piezoelectric device and manufacturing method thereof
JP2016103476A5 (en)
JP2019530988A5 (en)
US20130002095A1 (en) Bending transducer
JP2015088521A5 (en)
JP2011091297A5 (en)
JP2009508298A5 (en)
US20150322220A1 (en) Ultrasonic transducer using ferroelectric polymer
KR20120050529A (en) Multilayer capacitor, manufacturing method thereof, circuit board, and electronic device
JP2012064674A (en) Piezoelectric device and laminated piezoelectric structure
JP2016127011A5 (en)
KR20160000069A (en) Mask frame assembly and method for manufacturing the same
US11456409B2 (en) Micro-vibration sensor and preparation method thereof
JP2016018813A (en) Heat transport sheet and manufacturing method for the same
KR20160054832A (en) Method for manufacturing piezoelectric thin element with flexible material and piezoelectric thin element of the same
JP6565964B2 (en) Piezoelectric actuator
JPWO2020217404A5 (en)
JP7286790B2 (en) Piezoelectric element
KR20200090867A (en) Method of manufacturing a resistor
US20150183203A1 (en) Compound Membrane and Method for Manufacturing Same
JP2010199271A (en) Multilayer piezoelectric element, manufacturing method thereof, and vibrator
JP2707782B2 (en) Multilayer piezoelectric element
JP6524467B2 (en) Piezoelectric actuator and method of manufacturing the same
KR102399830B1 (en) electro-active polymer device and method for fabricating the same
JP2014072302A (en) Multi-ganged element and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789082

Country of ref document: EP

Kind code of ref document: A1