JPH08198955A - Oriented polylactic acid film and sheet and their production - Google Patents

Oriented polylactic acid film and sheet and their production

Info

Publication number
JPH08198955A
JPH08198955A JP7007694A JP769495A JPH08198955A JP H08198955 A JPH08198955 A JP H08198955A JP 7007694 A JP7007694 A JP 7007694A JP 769495 A JP769495 A JP 769495A JP H08198955 A JPH08198955 A JP H08198955A
Authority
JP
Japan
Prior art keywords
film
sheet
δhm
polylactic acid
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7007694A
Other languages
Japanese (ja)
Other versions
JP3391593B2 (en
Inventor
Shigenori Terada
滋憲 寺田
Jun Takagi
潤 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11672887&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08198955(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP769495A priority Critical patent/JP3391593B2/en
Publication of JPH08198955A publication Critical patent/JPH08198955A/en
Application granted granted Critical
Publication of JP3391593B2 publication Critical patent/JP3391593B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE: To provide an oriented polylactic acid film or sheet having strength and dimensional stability sufficient for ordinary use and provide a process for the production of the film or sheet. CONSTITUTION: This oriented polylactic acid film or sheet has a planar orientation degree ΔP of >=3.0×10<-3> and satisfies the formulas (ΔHm-ΔHc)>=20J/g and (ΔHm-ΔHc)/ΔHm>=0.75 wherein ΔHm is heat of crystal fusion generated by raising the temperature of the film or sheet and ΔHc is heat of crystallization generated by the crystallization during temperature increase. The film or sheet is produced by heat-treating a film or sheet of a polylactic acid polymer having a planar orientation degree ΔP of >=3.0×10<-3> under conditions to satisfy (1) the heat-treatment temperature T( deg.C) is between 70 deg.C and the melting point Tm of the polymer and (2) the heat-treatment period t(sec) satisfies the formula Log(t)>=-4.6Log(T)+11. The shrinkage of the film or sheet at 80 deg.C is <=3%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ポリ乳酸系重合体か
らなるフィルムおよびシートならびにそれらの製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film and sheet made of a polylactic acid polymer and a method for producing them.

【0002】[0002]

【従来の技術】現在、透明性に優れ、機械的強度の高い
材料としてポリエチレンテレフタレート延伸フィルムま
たはポリプロピレン系延伸フィルム等が知られている。
このフィルムは、その結晶性のため熱処理することで寸
法安定性が付与できる一方で、共重合により結晶化度を
低下させたり、延伸・熱処理条件を選定することで収縮
フィルムとしても用いられている。これらのフィルムが
包装分野に用いられる割合も高い。しかしながら、これ
らのプラスチック製フィルムは化学的、生物的に安定な
ため自然環境中に散乱した場合、分解せず、鳥獣類・魚
類の生活環境を汚染する。また、ゴミとして回収され埋
め立てられてもほとんど分解せずに残留し、埋立地の寿
命を短くする等の不都合があった。
2. Description of the Related Art At present, polyethylene terephthalate stretched film, polypropylene stretched film and the like are known as materials having excellent transparency and high mechanical strength.
While this film can be given dimensional stability by heat treatment due to its crystallinity, it is also used as a shrink film by reducing the crystallinity by copolymerization or by selecting stretching / heat treatment conditions. . The proportion of these films used in the packaging field is also high. However, since these plastic films are chemically and biologically stable, they do not decompose when scattered in the natural environment and pollute the living environment of birds and animals. Further, even if the waste is collected and landfilled, it remains without being decomposed and shortens the life of the landfill.

【0003】そこで、これらの問題を生じない分解性重
合体から成る材料が要求されており、実際多くの研究・
開発がなされている。その一例として、ポリ乳酸があ
る。ポリ乳酸は土壌中または水中において自然に加水分
解が進行し、土中または水中に原形が残らず、次いで微
生物により無害な分解物となることが知られている。
Therefore, there is a demand for a material composed of a decomposable polymer that does not cause these problems.
Development is being done. One example is polylactic acid. It is known that polylactic acid undergoes spontaneous hydrolysis in soil or water, does not remain in its original form in soil or water, and then becomes a harmless decomposed product by microorganisms.

【0004】しかし、ポリ乳酸からなるフィルム・シー
トはそのままでは伸びの低い、もろい材料である。ポリ
乳酸重合体を延伸・配向させることで強伸度が向上し、
もろさが改良されることが知られているが、そのままで
はガラス転移点以上での雰囲気下では寸法安定性に乏し
く、用途によっては使用範囲を制限せざるを得なかっ
た。
However, a film or sheet made of polylactic acid is a fragile material having low elongation as it is. By stretching and orienting the polylactic acid polymer, the strength and elongation is improved,
It is known that the brittleness is improved, but as it is, the dimensional stability is poor in an atmosphere above the glass transition point, and the range of use must be limited depending on the application.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は通常の
使用時に支障の無い強度、寸法安定性をもつ配向ポリ乳
酸系フィルムまたはシートならびにそれらの製造方法を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an oriented polylactic acid-based film or sheet having strength and dimensional stability that do not hinder normal use and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者は上記目的のた
め、鋭意検討の結果、ポリ乳酸系重合体からなり、面配
向度ΔPが3.0×10-3以上であるフィルムやシート
等の成形体を熱処理し、フィルム・シートを昇温したと
きの結晶融解熱量ΔHmと昇温中の結晶化により発生す
る結晶化熱量ΔHcとの差(ΔHm−ΔHc)が20J
/g以上で、かつ(ΔHm−ΔHc)/ΔHmが0.7
5以上である場合に、80℃での収縮率が多くとも3%
以内になることを見い出した。
Means for Solving the Problems For the above-mentioned purpose, the present inventors have made earnest studies and, as a result, have made a film or sheet comprising a polylactic acid-based polymer and having a plane orientation degree ΔP of 3.0 × 10 −3 or more. The difference (ΔHm-ΔHc) between the heat of crystal fusion ΔHm when the film / sheet is heated and the heat of crystallization ΔHc generated by crystallization during heating is 20 J.
/ G or more and (ΔHm-ΔHc) / ΔHm is 0.7
If it is 5 or more, the shrinkage at 80 ° C is at most 3%
I found it within.

【0007】さらに、本発明者は上記目的のため、鋭意
検討の結果、ポリ乳酸系重合体からなり、面配向度ΔP
が3.0×10-3以上あるフィルムやシート等の成形体
を、熱処理温度T(℃)が、70℃〜(重合体の融点
Tm)の範囲内で、熱処理温度t(秒)が、Logt
≧−4.6LogT+11を満足させる条件で熱処理す
ることで80℃での収縮率が3%以内になることを見い
出し、本発明を完成させた。
Further, for the above-mentioned purpose, the present inventor has made earnest studies and, as a result, made up of a polylactic acid-based polymer and had a plane orientation degree ΔP.
Of a molded product such as a film or sheet having a heat treatment temperature of 3.0 × 10 −3 or more, a heat treatment temperature T (° C.) within a range of 70 ° C. to (melting point Tm of polymer), and a heat treatment temperature t (second) Logt
The present invention has been completed by discovering that the shrinkage rate at 80 ° C. is within 3% by heat treatment under the condition of satisfying ≧ −4.6 LogT + 11.

【0008】すなわち、本発明の第1の解決手段に従う
配向ポリ乳酸系フィルムまたはシートは面配向度ΔPが
3.0×10-3以上であり、フィルムまたはシートを昇
温したときの結晶融解熱量ΔHmと昇温中の結晶化によ
り発生する結晶化熱量ΔHcとの差(ΔHm−ΔHc)
が20J/g以上で、かつ(ΔHm−ΔHc)/ΔHm
が0.75以上であることを特徴とする。
That is, the oriented polylactic acid-based film or sheet according to the first solution of the present invention has a plane orientation degree ΔP of 3.0 × 10 −3 or more, and the heat of crystal fusion when the film or sheet is heated. Difference between ΔHm and heat of crystallization ΔHc generated by crystallization during heating (ΔHm-ΔHc)
Is 20 J / g or more, and (ΔHm-ΔHc) / ΔHm
Is 0.75 or more.

【0009】本発明の第2の解決手段に従う配向ポリ乳
酸系フィルムまたはシートは上述した第1の解決手段に
従うフィルムまたはシートにおいて、乳酸が、L−乳酸
またはD−乳酸、もしくはそれらの混合物であり、その
割合が100:0〜94:6の範囲内または0:100
〜6:94の範囲内にある共重合体あるいはこれらの混
合体からなることを特徴とする。
The oriented polylactic acid-based film or sheet according to the second solution of the present invention is the film or sheet according to the above-mentioned first solution, wherein the lactic acid is L-lactic acid or D-lactic acid, or a mixture thereof. , The ratio is within the range of 100: 0 to 94: 6 or 0: 100.
It is characterized by comprising a copolymer or a mixture thereof within the range of to 6:94.

【0010】本発明の第3の解決手段に従う配向ポリ乳
酸系フィルムまたはシートの製造方法は面配向度ΔPが
3.0×10-3以上であるポリ乳酸系重合体のフィルム
またはシートを 熱処理温度T(℃)が、70℃〜(重合体の融点T
m)の範囲内、 熱処理時間t(秒)が、Logt≧−4.6LogT
+11を満足する条件で熱処理することを特徴とする。
A method for producing an oriented polylactic acid-based film or sheet according to the third solution of the present invention is a method for producing a polylactic acid-based polymer film or sheet having a degree of plane orientation ΔP of 3.0 × 10 −3 or more at a heat treatment temperature. T (° C) is 70 ° C to (melting point T of polymer
m), heat treatment time t (seconds) is Logt ≧ −4.6LogT
It is characterized in that the heat treatment is performed under the condition that +11 is satisfied.

【0011】本発明の第4の解決手段に従う配向ポリ乳
酸系フィルムまたはシートの製造方法は前記第3の解決
手段に従う方法において、乳酸が、L−乳酸またはD−
乳酸、もしくはそれらの混合物であり、その割合が10
0:0〜94:6の範囲内または0:100〜6:94
の範囲内にある共重合体あるいはこれらの混合体からな
ることを特徴とする。
The method for producing an oriented polylactic acid-based film or sheet according to the fourth solution of the present invention is the method according to the third solution, wherein lactic acid is L-lactic acid or D-lactic acid.
Lactic acid, or a mixture thereof, with a ratio of 10
Within the range of 0: 0 to 94: 6 or 0: 100 to 6:94
It is characterized by comprising a copolymer within the range of or a mixture thereof.

【0012】以下、本発明を詳しく説明する。The present invention will be described in detail below.

【0013】本発明でフィルム・シートの製造に用いら
れるポリ乳酸系重合体とは、ポリ乳酸または乳酸と他の
ヒドロキシカルボン酸との共重合体、もしくはこれらの
混合物であり、本発明の効果を阻害しない範囲で他の高
分子材料が混入されても構わない。また、成形加工性、
フィルム物性を調整する目的で、可塑剤、滑剤、無機フ
ィラー、紫外線吸収剤などの添加剤、改質剤を添加する
ことも可能である。
The polylactic acid-based polymer used in the production of the film / sheet in the present invention is polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid, or a mixture thereof, and the effect of the present invention is obtained. Other polymer materials may be mixed in such a range that does not hinder it. In addition, molding processability,
For the purpose of adjusting the physical properties of the film, it is possible to add additives such as a plasticizer, a lubricant, an inorganic filler and an ultraviolet absorber, and a modifier.

【0014】乳酸としては、L−乳酸、D−乳酸が挙げ
られる。他のヒドロキシカルボン酸としては、グリコー
ル酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−
ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロ
キシカプロン酸などが代表的に挙げられる。
Examples of lactic acid include L-lactic acid and D-lactic acid. Other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid and 3-hydroxybutyric acid.
Representative examples thereof include hydroxyvaleric acid, 4-hydroxyvaleric acid, and 6-hydroxycaproic acid.

【0015】これらの重合法としては、縮合重合法、開
環重合法など公知のいずれの方法を採用することも可能
であり、さらには、分子量増大を目的として少量の鎖延
長剤、例えば、ジイソシアネート化合物、エポキシ化合
物、酸無水物などを使用しても構わない。重合体の重量
平均分子量としては、5万から100万が好ましく、か
かる範囲を下まわると実用物性がほとんど発現されず、
上まわる場合には、溶融粘度が高くなりすぎ成形加工性
に劣る。
As the polymerization method, any known method such as condensation polymerization method and ring-opening polymerization method can be adopted, and a small amount of a chain extender such as diisocyanate is used for the purpose of increasing the molecular weight. A compound, an epoxy compound, an acid anhydride, etc. may be used. The weight average molecular weight of the polymer is preferably 50,000 to 1,000,000, and practical physical properties are hardly expressed below this range.
If it exceeds, the melt viscosity becomes too high and the moldability becomes poor.

【0016】本発明におけるポリ乳酸系フィルム・シー
トは、これらの重合体を押出法、カレンダー法、プレス
法などの一般的な溶融成形法により、平面状または円筒
状の未延伸シートまたはシート状溶融体にし、次いで、
これをロール法、テンター法、チューブラ法、インフレ
ーション法などにより延伸することによって得られる。
The polylactic acid-based film / sheet in the present invention is obtained by melting these polymers by a general melt-molding method such as an extrusion method, a calender method, a pressing method or the like to obtain a flat or cylindrical unstretched sheet or a sheet-shaped melt. Body and then
This can be obtained by stretching by a roll method, a tenter method, a tubular method, an inflation method or the like.

【0017】未延伸フィルム・シートの製膜条件につい
て説明する。ポリ乳酸系重合体を十分に乾燥し、水分を
除去したのち押出機で溶融する。溶融温度は組成によっ
て変化するので、それに対応して適宜選択することが好
ましい。実際には140℃から250℃の温度範囲が通
常選ばれる。この溶融されたポリ乳酸系重合体をフィル
ム・シート状に成形する。シートの厚さは通常5μm〜
500μmである。
Film forming conditions for the unstretched film / sheet will be described. The polylactic acid polymer is sufficiently dried to remove water, and then melted by an extruder. Since the melting temperature changes depending on the composition, it is preferable to appropriately select the melting temperature. In practice, a temperature range of 140 ° C to 250 ° C is usually chosen. The melted polylactic acid polymer is formed into a film or sheet. The thickness of the sheet is usually 5 μm
It is 500 μm.

【0018】フィルム・シート状に溶融成形された重合
体は、回転するキャスティングドラム(冷却ドラム)に
接触させて急冷するのが好ましい。キャスティングドラ
ムの温度は60℃以下が適当である。これより高いとポ
リマーがキャスティングドラムに粘着し、引き取れない
ため、また、結晶化が促進されて、球晶が発達し延伸で
きなくなるため、上記温度範囲に設定して急冷し実質上
非晶性にすることが好ましい。
The polymer melt-formed into a film or sheet is preferably brought into contact with a rotating casting drum (cooling drum) to be rapidly cooled. The temperature of the casting drum is suitably 60 ° C. or lower. If it is higher than this, the polymer sticks to the casting drum and cannot be removed.Also, crystallization is promoted, and spherulites develop and it becomes impossible to stretch.Therefore, it is set to the above temperature range and rapidly cooled to become substantially amorphous. Preferably.

【0019】延伸方法は1軸延伸もしくは逐次2軸延伸
または同時2軸延伸のいずれでもかまわない。上述した
未延伸シート・フィルムの延伸において、延伸倍率は縦
方向、横方向それぞれ1.5〜5倍の範囲で、延伸温度
は50℃〜90℃の範囲で適宜選定する。未延伸の無配
向シート・フィルムでは1.0×10-3以下である面配
向度ΔPを、本発明では3.0×10-3以上に増大させ
ることが重要である。以下、フィルム・シートの特性等
に関しフィルムを例にとって説明するがシートの場合も
同様である。
The stretching method may be uniaxial stretching, sequential biaxial stretching or simultaneous biaxial stretching. In the above-described stretching of the unstretched sheet / film, the stretching ratio is appropriately selected in the range of 1.5 to 5 times in the longitudinal direction and the transverse direction, and the stretching temperature is appropriately selected in the range of 50 ° C to 90 ° C. In the present invention, it is important to increase the plane orientation degree ΔP, which is 1.0 × 10 −3 or less in the unstretched non-oriented sheet / film, to 3.0 × 10 −3 or more. Hereinafter, the characteristics of the film / sheet will be described taking the film as an example, but the same applies to the case of the sheet.

【0020】本発明においては、重合体の組成と成形加
工条件との兼ね合いにより、フィルムの面配向度ΔP
と、フィルムの結晶融解熱量と結晶化熱量との差(ΔH
m−ΔHc)および(ΔHm−ΔHc)/ΔHmとを、
それぞれ一定の値以上にすることが最も重要である。
In the present invention, the degree of plane orientation ΔP of the film is determined by the balance between the composition of the polymer and the molding processing conditions.
And the difference between the heat of crystal fusion and the heat of crystallization of the film (ΔH
m-ΔHc) and (ΔHm-ΔHc) / ΔHm,
It is most important that each be a certain value or more.

【0021】すなわち、ポリ乳酸系フィルムにおいて
は、素材が本来有しているところの脆性をΔPを増大さ
せることにより改良し、ΔPの上昇に伴い低下する熱寸
法安定性を(ΔHm−ΔHc)と(ΔHm−ΔHc)/
ΔHmとをそれぞれ増大させることにより改良できるも
のである。
That is, in the polylactic acid-based film, the inherent brittleness of the material is improved by increasing ΔP, and the thermal dimensional stability that decreases with an increase in ΔP is defined as (ΔHm-ΔHc). (ΔHm-ΔHc) /
It can be improved by increasing ΔHm and ΔHm, respectively.

【0022】ΔPは、フィルムの厚み方向に対する面方
向の配向度を表し、通常直交3軸方向の屈曲率を測定し
以下の式で算出される。
ΔP represents the degree of orientation in the plane direction with respect to the thickness direction of the film, and is usually calculated by the following formula by measuring the bending ratio in the directions of three orthogonal axes.

【0023】[0023]

【数1】 ΔP={(γ+β)/2}−α (α<β<γ) ここで、γ,βがフィルム面に平行な直交2軸の屈折
率、αはフィルム厚さ方向の屈折率である。
## EQU1 ## ΔP = {(γ + β) / 2} -α (α <β <γ) where γ and β are biaxial refractive indices parallel to the film surface, and α is a refractive index in the film thickness direction. Is.

【0024】ΔPは結晶化度や結晶配向にも依存する
が、大きくはフィルム面内の分子配向に依存する。つま
りΔPの増大はフィルム面内、特にフィルムの流れ方向
および/またはそれと直交する方向に対し、分子配向を
増大させ、フィルムの強度を高め、もろさを改良するこ
とにつながる。
ΔP depends on the crystallinity and crystal orientation, but largely depends on the molecular orientation in the film plane. That is, the increase in ΔP leads to an increase in the molecular orientation in the plane of the film, particularly in the flow direction of the film and / or a direction orthogonal thereto, thereby increasing the strength of the film and improving the brittleness.

【0025】ΔPを増大させる方法としては、既知のあ
らゆるフィルム延伸法に加え電場や磁場を利用した分子
配向法を採用することもできる。
As a method for increasing ΔP, a molecular orientation method using an electric field or a magnetic field can be adopted in addition to any known film stretching method.

【0026】しかし、ΔPが3.0×10-3以上となる
と、フィルムの熱寸法安定性が不良となり、夏の暑い時
期にはフィルムが収縮してしまい、フィルムとして使い
物にならなくなる。したがって、常温よりもやや高い温
度、50℃以上の雰囲気下で収縮せず元の形でいられる
かは重要であり、好適には80℃以上で寸法安定性(例
えば収縮率が3%以内)があれば通常の使用に十分耐え
られる。
However, if ΔP is 3.0 × 10 −3 or more, the thermal dimensional stability of the film becomes poor, and the film shrinks during the hot summer months, making it unusable as a film. Therefore, it is important whether or not the original shape can be obtained without shrinking in an atmosphere of slightly higher than room temperature and 50 ° C. or higher, and preferably dimensional stability at 80 ° C. or higher (for example, shrinkage ratio within 3%). If there is, it can sufficiently withstand normal use.

【0027】ΔPが3.0×10-3以上のポリ乳酸系フ
ィルムにおいては、実用的な熱寸法安定性を得るため
に、フィルムの(ΔHm−ΔHc)を20J/g以上、
かつ(ΔHm−ΔHc)/ΔHmが0.75以上に制御
することが重要であり、この条件を満足することで80
℃での収縮率が3%以内に抑えることができる。
In the case of a polylactic acid-based film having a ΔP of 3.0 × 10 −3 or more, the (ΔHm-ΔHc) of the film is 20 J / g or more in order to obtain practical thermal dimensional stability.
In addition, it is important to control (ΔHm-ΔHc) / ΔHm to 0.75 or more. By satisfying this condition, 80
The shrinkage rate at ° C can be suppressed within 3%.

【0028】ΔHm,ΔHcは、それぞれ結晶融解熱
量、結晶化熱量であり、フィルムサンプルの示差走査熱
量測定(DSC)により求められる。すなわち、ΔHm
は昇温速度10℃/分で昇温したときの全結晶を溶解さ
せるのに必要な熱量であって、重合体の結晶融点付近に
現れる結晶融解による吸熱ピークの面積から求められ
る。またΔHcは、昇温過程で生じる結晶化の際に発生
する発熱ピークの面積から求められる。
ΔHm and ΔHc are the heat of fusion of crystal and the heat of crystallization, respectively, and are determined by differential scanning calorimetry (DSC) of a film sample. That is, ΔHm
Is the amount of heat required to dissolve all the crystals when the temperature is raised at a heating rate of 10 ° C./minute, and is calculated from the area of the endothermic peak due to crystal melting that appears near the crystal melting point of the polymer. Further, ΔHc is obtained from the area of the exothermic peak generated during crystallization that occurs during the temperature rising process.

【0029】ΔHmは、主に重合体そのものの結晶性に
依存し、結晶性が大きい重合体では大きな値を取る。ち
なみにL−乳酸またはD−乳酸の完全ホモポリマーでは
60J/g以上あり、これら2種の乳酸の共重合体では
その組成比によりΔHmは変化する。ΔHcは、重合体
の結晶性に対するその時のフィルムの結晶化度に関係す
る指標であり、ΔHcが大きいときには、昇温過程でフ
ィルムの結晶化が進行している。すなわち重合体が有す
る結晶性を基準にフィルムの結晶化度が相対的に低かっ
たことを表す。逆に、ΔHcが小さい時は、重合体が有
する結晶性を基準にフィルムの結晶化度が相対的に高か
ったことを表す。
ΔHm mainly depends on the crystallinity of the polymer itself, and takes a large value for a polymer having high crystallinity. By the way, the complete homopolymer of L-lactic acid or D-lactic acid is 60 J / g or more, and in the copolymer of these two types of lactic acid, ΔHm changes depending on the composition ratio. ΔHc is an index relating to the crystallinity of the film at that time with respect to the crystallinity of the polymer, and when ΔHc is large, the crystallization of the film is progressing in the temperature rising process. That is, it means that the crystallinity of the film was relatively low based on the crystallinity of the polymer. On the contrary, when ΔHc is small, it means that the crystallinity of the film was relatively high based on the crystallinity of the polymer.

【0030】フィルム・シートの製造方法の面からみる
と、熱処理して寸法安定性を付与させることはフィルム
・シート(以下、単に「フィルム」という)の結晶化度
を高めることである。
From the aspect of the manufacturing method of the film / sheet, the heat treatment to impart the dimensional stability is to increase the crystallinity of the film / sheet (hereinafter, simply referred to as “film”).

【0031】つまり、(ΔHm−ΔHc)を増大するた
めの1つの方向は、結晶性が高い重合体を原料に、結晶
化度の比較的高いフィルムをつくることである。フィル
ムの結晶化度は、重合体の組成に少なからず依存し、比
較的結晶性の高い重合体を選択することが必要である。
ポリ乳酸は、L−乳酸からなる構造単位、D−乳酸から
なる構造単位を有し、どちらかの単体(単独重合体)も
しくは混合体(共重合体)あるいはこれらの混合物から
なる。L−乳酸構造単位とD−乳酸構造単位の組成比に
より結晶性が異なり、結晶性が失われる場合もある。非
晶性重合体あるいは結晶性があっても結晶化度が低い重
合体では熱処理による寸法安定性が付与できず、条件に
よっては付与した配向が緩和して強度が大きく低下する
場合もある。
That is, one direction for increasing (ΔHm-ΔHc) is to form a film having a relatively high degree of crystallinity from a polymer having a high crystallinity as a raw material. The crystallinity of the film depends to a large extent on the composition of the polymer and it is necessary to select a polymer with a relatively high degree of crystallinity.
Polylactic acid has a structural unit composed of L-lactic acid and a structural unit composed of D-lactic acid, and is composed of either a simple substance (homopolymer) or a mixture (copolymer) or a mixture thereof. In some cases, the crystallinity may be lost due to the difference in crystallinity depending on the composition ratio of the L-lactic acid structural unit and the D-lactic acid structural unit. An amorphous polymer or a polymer having crystallinity but low crystallinity cannot impart dimensional stability by heat treatment, and depending on the conditions, the imparted orientation may be relaxed and the strength may be greatly reduced.

【0032】重合体の結晶化度を高めるためには重合体
そのもののΔHmを20J/g以上にすることが必要で
ある。この場合、L−乳酸とD−乳酸の組成比が10
0:0〜94:6の範囲内または0:100〜6:94
の範囲内にするのが好ましい。すなわち、L−乳酸また
はD−乳酸の混在率が6%を超えると結晶化度が下がり
すぎるので、混在率は6%以下が好ましい。
In order to increase the crystallinity of the polymer, it is necessary that ΔHm of the polymer itself is 20 J / g or more. In this case, the composition ratio of L-lactic acid and D-lactic acid is 10
Within the range of 0: 0 to 94: 6 or 0: 100 to 6:94
It is preferably within the range of. That is, if the mixing ratio of L-lactic acid or D-lactic acid exceeds 6%, the crystallinity is too low, so the mixing ratio is preferably 6% or less.

【0033】また、ΔHcを低下させるためには、すな
わちフィルムの結晶化度を高めるためにはフィルムの成
形加工条件を選定することも重要である。
Further, in order to reduce ΔHc, that is, in order to increase the crystallinity of the film, it is important to select the film processing conditions.

【0034】また、(ΔHm−ΔHc)/ΔHmが0.
75以上であることが重要である。この値が0.75未
満のときは実用的な熱寸法安定性の目安である80℃で
の収縮率が3%以内に抑えることができないからであ
る。
Further, (ΔHm-ΔHc) / ΔHm is 0.
It is important that it is 75 or more. If this value is less than 0.75, the shrinkage ratio at 80 ° C., which is a practical index of thermal dimensional stability, cannot be suppressed to within 3%.

【0035】フィルムの成形加工条件としては、ΔPが
3.0×10-3以上のポリ乳酸系フィルムにおいては、
実用的な熱寸法安定性を得るためには、フィルムの結晶
化温度以上で熱処理することが重要である。ただし、フ
ィルムの配向度が高いほど結晶化温度は低下する傾向に
あり、配向度によって適宜熱処理温度を選択することが
できる。少なくとも70℃以上で熱処理すれば効果が得
られる。しかし、熱処理時間が短ければ寸法安定性付与
への効果は低くなる。すなわち、熱処理時間が短かった
りすると、80℃以上での収縮率を抑えることはできな
い。両者の相関を考慮して熱処理温度および熱処理時間
を選択する必要がある。
The film forming conditions are as follows: polylactic acid film having ΔP of 3.0 × 10 −3 or more.
In order to obtain practical thermal dimensional stability, it is important to perform heat treatment at a film crystallization temperature or higher. However, the higher the degree of orientation of the film, the lower the crystallization temperature tends to be, and the heat treatment temperature can be appropriately selected depending on the degree of orientation. The effect can be obtained if the heat treatment is performed at least at 70 ° C. or higher. However, if the heat treatment time is short, the effect of imparting dimensional stability is low. That is, if the heat treatment time is short, the shrinkage rate at 80 ° C. or higher cannot be suppressed. It is necessary to select the heat treatment temperature and heat treatment time in consideration of the correlation between the two.

【0036】成形加工工程、特にテンター法2軸延伸に
おいてフィルムの熱寸法安定性を高めるためには、延伸
倍率を上げ配向結晶化を促進し、次いで結晶化温度以上
の雰囲気で熱処理することが有用である。
In order to increase the thermal dimensional stability of the film in the molding process step, particularly in the biaxial stretching by the tenter method, it is useful to increase the stretching ratio to promote oriented crystallization, and then heat-treat in an atmosphere having a crystallization temperature or higher. Is.

【0037】ポリ乳酸の場合はΔPが大きいほど結晶化
温度が低下する傾向があり、鋭意検討した結果、熱処
理温度T(℃)が70℃〜(重合体の融点Tm)の範囲
内で、熱処理時間t(秒)がLogt≧−4.6Lo
gT+11を満足する条件で熱処理することにより80
℃での熱収縮率が3%以下に抑えることができることを
見出した。
In the case of polylactic acid, the crystallization temperature tends to decrease as ΔP increases, and as a result of intensive studies, heat treatment was carried out at a heat treatment temperature T (° C) in the range of 70 ° C to (melting point Tm of polymer). Time t (seconds) is Logt ≧ −4.6Lo
80 by heat treatment under the condition that gT + 11 is satisfied
It was found that the heat shrinkage rate at 0 ° C can be suppressed to 3% or less.

【0038】例えば、少なくとも70℃以上、より好適
には90〜170℃の範囲で3秒以上熱処理することで
熱寸法安定性が付与できる。この範囲内で熱処理温度が
高いほど、また熱処理時間が長いほど熱寸法安定性は向
上する。
For example, thermal dimensional stability can be imparted by heat-treating at least 70 ° C. or higher, more preferably 90 to 170 ° C. for 3 seconds or longer. Within this range, the higher the heat treatment temperature and the longer the heat treatment time, the better the thermal dimensional stability.

【0039】[0039]

【実施例】以下に実施例を示すが、これらにより本発明
は何ら制限を受けるものではない。なお、実施例中に示
す測定値は次に示すような条件で測定を行い、算出し
た。
EXAMPLES Examples will be shown below, but the present invention is not limited thereto. The measured values shown in the examples were measured and calculated under the following conditions.

【0040】(1)ΔP アッベ屈折計によって直交3軸方向の屈折率(α,β,
γ)を測定し、次式で算出した。
(1) ΔP The refractive index (α, β,
γ) was measured and calculated by the following formula.

【0041】[0041]

【数2】ΔP={(γ+β)/2}−α (α
<β<γ) γ:フィルム面内に最大屈折率 β:それに直交するフィルム面内方向の屈折率 α:フィルム厚さ方向の屈折率 (2)ΔHm−ΔHc パーキンエルマー製DSC−7を用い、フィルムサンプ
ル10mgをJIS−K7122に基づいて、昇温速度
10℃/分で昇温したときのサーモグラムから結晶融解
熱量ΔHmと結晶化熱量ΔHcを求め、算出した。
## EQU2 ## ΔP = {(γ + β) / 2} -α (α
<Β <γ) γ: Maximum refractive index in the film plane β: Refractive index in the film in-plane direction orthogonal thereto α: Refractive index in the film thickness direction (2) ΔHm-ΔHc Using Perkin Elmer DSC-7, Based on JIS-K7122, a heat quantity of crystal fusion ΔHm and a heat quantity of crystallization ΔHc of crystal fusion were calculated from thermograms when the temperature of the film sample was raised at a temperature rising rate of 10 ° C./min.

【0042】(3)引張り強度 引張り強度は東洋精機テンシロンII型機を用い、JIS
−K7127に基づいて測定した。引張り強度は100
mm/分である。MDはフィルムの流れ方向、TDはフ
ィルムの流れに対し直交する方向を示す。
(3) Tensile strength Tensile strength of Toyo Seiki Tensilon II machine was used for the tensile strength according to JIS.
-Measured based on K7127. Tensile strength is 100
mm / min. MD indicates the flow direction of the film, and TD indicates the direction orthogonal to the flow of the film.

【0043】(4)収縮率 フィルムサンプルをMD、TDに沿って100mm×1
00mmに切り出し、80℃の温水バスに5分間浸漬し
た後、縦横の寸法を計り、次式にしたがって各々の収縮
率を算出した。
(4) Shrinkage rate The film sample is 100 mm × 1 along MD and TD.
After cutting it out to 00 mm and immersing it in a hot water bath at 80 ° C. for 5 minutes, the vertical and horizontal dimensions were measured, and each shrinkage rate was calculated according to the following formula.

【0044】[0044]

【数3】 (Equation 3)

【0045】(実験例1)L−乳酸からなる構造単位と
D−乳酸からなる構造単位の割合がおおよそ98:2で
ガラス転移点58℃、重量平均分子量18万のポリ乳酸
を30mmφ単軸エクストルーダーにて、200℃でT
ダイより押出し、キャスティングロールにて急冷し、厚
み250μmの未延伸シートを得た。このシートの面配
向度ΔPは0.1×10-3、長手方向およびその幅方向
それぞれの引張強度は720kgf/cm2 ,700k
gf/cm2 であった。
Experimental Example 1 Polylactic acid having a glass transition temperature of 58 ° C. and a weight average molecular weight of 180,000 was used in a 30 mmφ uniaxial extension with the ratio of the structural unit consisting of L-lactic acid and the structural unit consisting of D-lactic acid being approximately 98: 2. In the ruder, T at 200 ℃
It was extruded from a die and quenched with a casting roll to obtain an unstretched sheet having a thickness of 250 μm. The plane orientation degree ΔP of this sheet is 0.1 × 10 −3 , and the tensile strengths in the longitudinal direction and its width direction are 720 kgf / cm 2 and 700 k, respectively.
It was gf / cm 2 .

【0046】続いて面配向度ΔPが3×10-3以上にな
るように長手方向にロール延伸、次いで、幅方向にテン
ターで延伸し、テンター内で熱処理した。延伸条件およ
びそれに続く熱処理条件を種々変化させ、表1に示すN
o.1〜7のフィルムサンプルおよび表2に示すNo.
8〜9のフィルムサンプルを得た。フィルムの流れ速度
は2m/分、延伸・熱処理各ゾーンの通過時間はそれぞ
れ約30秒である。
Subsequently, roll stretching was carried out in the longitudinal direction so that the degree of plane orientation ΔP was 3 × 10 −3 or more, then stretching was carried out with a tenter in the width direction, and heat treatment was carried out in the tenter. The stretching conditions and the subsequent heat treatment conditions were variously changed to obtain N shown in Table 1.
o. The film samples of Nos. 1 to 7 and No. 1 shown in Table 2.
8-9 film samples were obtained. The flow rate of the film is 2 m / min, and the passing time through each stretching / heat treatment zone is about 30 seconds.

【0047】次にL−乳酸からなる構造単位とD−乳酸
からなる構造単位の割合がおおよそ96:4でガラス転
移点57℃、重量平均分子量14万のポリ乳酸を上記と
同様の方法で押出し、続いて延伸・熱処理を行い、表2
に示すNo.10および11フィルムを得た。なお、延
伸・熱処理前のシートの面配向度ΔPは0.1×10-3
以下、長手方向およびその幅方向それぞれの引張強度は
650kgf/cm2,660kgf/cm2 であっ
た。
Next, polylactic acid having a ratio of structural units of L-lactic acid and structural units of D-lactic acid of about 96: 4, a glass transition point of 57 ° C. and a weight average molecular weight of 140,000 is extruded by the same method as described above. Then, stretching and heat treatment are performed, and Table 2
No. shown in. 10 and 11 films were obtained. The degree of plane orientation ΔP of the sheet before stretching and heat treatment is 0.1 × 10 −3
Hereinafter, the tensile strengths in the longitudinal direction and the width direction were 650 kgf / cm 2 and 660 kgf / cm 2 , respectively.

【0048】同様の方法で、L−乳酸からなる構造単位
とD−乳酸からなる構造単位の割合がおおよそ93:7
でガラス転移点55℃、重量平均分子量11万のポリ乳
酸を押出し、続いて延伸・熱処理を行い、表2に示すN
o.12のフィルムを得た。なお表2のNo.13に示
すように140℃で熱処理をおこなうとメルトフローし
た。延伸・熱処理前のシートの面配向度ΔPは0.1×
10-3以下、長手方向およびその幅方向それぞれの引張
強度は610kgf/cm2 であった。
By the same method, the ratio of the structural unit composed of L-lactic acid to the structural unit composed of D-lactic acid was approximately 93: 7.
Polylactic acid having a glass transition temperature of 55 ° C. and a weight average molecular weight of 110,000 was extruded, followed by stretching and heat treatment.
o. 12 films were obtained. No. 2 in Table 2 When heat treatment was performed at 140 ° C. as shown in 13, melt flow occurred. The degree of plane orientation ΔP of the sheet before stretching and heat treatment is 0.1 ×
The tensile strength was 10 −3 or less, and the tensile strength in each of the longitudinal direction and the width direction was 610 kgf / cm 2 .

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】表1および表2の結果から明らかなとお
り、延伸することでフィルムの面配向度ΔPは3×10
-3以上になり強度が無延伸シートに比較して向上してい
ることがわかる。しかし、熱処理条件が本発明内の範囲
外であるNo.1,3,4および8は、収縮率が高い。
またNo.7は重合体の融点を超える温度で熱処理をし
たため融解した。一方、熱処理条件が本発明の範囲内に
あるNo.2,5,6および9は優れた熱寸法安定性を
有している。
As is clear from the results of Tables 1 and 2, the plane orientation degree ΔP of the film is 3 × 10 by stretching.
It can be seen that the strength becomes -3 or more and the strength is improved as compared with the non-stretched sheet. However, the heat treatment condition is outside the range of the present invention. 1, 3, 4 and 8 have high shrinkage rates.
In addition, No. No. 7 melted because it was heat-treated at a temperature higher than the melting point of the polymer. On the other hand, the heat treatment conditions within the range of the present invention No. 2, 5, 6 and 9 have excellent thermal dimensional stability.

【0052】また、L−乳酸とD−乳酸の割合が本発明
の範囲内であるNo.11も優れた寸法安定性を示して
いる一方で、同じ組成のNo.10は、(ΔHm−ΔH
c)は20J/g以上であるが、(ΔHm−ΔHc)/
ΔHmは本発明の範囲外にあり、熱収縮率が高くなって
いることがわかる。
Nos. L-lactic acid and D-lactic acid within the range of the present invention were used. No. 11 of the same composition also has excellent dimensional stability. 10 is (ΔHm-ΔH
c) is 20 J / g or more, but (ΔHm-ΔHc) /
It can be seen that ΔHm is outside the range of the present invention, and the heat shrinkage rate is high.

【0053】No.12は、L−乳酸とD−乳酸が本発
明の範囲外にあり、重合体そのものの結晶性が低く、
(ΔHm−ΔHc)/ΔHmは0.75以上あっても熱
収縮率が高いことがわかる。
No. No. 12 has L-lactic acid and D-lactic acid outside the scope of the present invention, and the crystallinity of the polymer itself is low,
It can be seen that the thermal contraction rate is high even if (ΔHm−ΔHc) / ΔHm is 0.75 or more.

【0054】(実験例2)L−乳酸からなる構造単位と
D−乳酸からなる構造単位の割合がおおよそ98:2で
ガラス転移点58℃、融点175℃、重量平均分子量1
8万のポリ乳酸を30mmφ単軸エクストルーダーに
て、200℃でTダイより押出し、キャスティングロー
ルにて急冷し、厚み250μmの未延伸シートを得た。
このシートの面配向度ΔPは0.1×10-3以下、長手
方向およびその幅方向それぞれの引張強度は720kg
f/cm2 ,700kgf/cm2 であった。
(Experimental Example 2) The ratio of the structural unit composed of L-lactic acid to the structural unit composed of D-lactic acid was approximately 98: 2, the glass transition point was 58 ° C., the melting point was 175 ° C., and the weight average molecular weight was 1
80,000 polylactic acid was extruded from a T-die at 200 ° C. in a 30 mmφ uniaxial extruder and rapidly cooled by a casting roll to obtain an unstretched sheet having a thickness of 250 μm.
The degree of plane orientation ΔP of this sheet is 0.1 × 10 −3 or less, and the tensile strength in the longitudinal direction and its width direction is 720 kg.
f / cm 2 and 700 kgf / cm 2 .

【0055】続いて面配向度ΔPが3×10-3以上にな
るように長手方向にロール延伸、次いで、幅方向にテン
ターで延伸し、テンター内で熱処理を行った。延伸条件
およびそれに続く熱処理条件を種々変化させ、表3に示
すNo.14〜20のフィルムサンプルおよび表4に示
すNo.21のフィルムサンプルを得た。フィルムの流
れ速度は1〜20m/分、熱処理ゾーンの通過時間は3
〜60秒である。ただし、表4に示すNo.21は延伸
後そのままテンター内で60℃、10秒熱処理したフィ
ルムを採取し、固定枠にフィルムを挟み込み、80℃雰
囲気に保持した熱風循環器内で熱処理した。
Subsequently, roll stretching was carried out in the longitudinal direction so that the plane orientation degree ΔP became 3 × 10 −3 or more, and then stretching was carried out in the width direction with a tenter, and heat treatment was carried out in the tenter. The stretching conditions and the subsequent heat treatment conditions were variously changed, and the No. 14 to 20 film samples and Nos. 21 film samples were obtained. The film flow speed is 1 to 20 m / min, the passage time in the heat treatment zone is 3
~ 60 seconds. However, No. shown in Table 4 For No. 21, after stretching, the film was heat treated as it was at 60 ° C. for 10 seconds in a tenter, the film was sandwiched between fixed frames, and heat treated in a hot air circulator kept at 80 ° C. atmosphere.

【0056】また、L−乳酸からなる構造単位とD−乳
酸からなる構造単位の割合がおおよそ96:4でガラス
転移点57℃、融点約152℃、重量平均分子量14万
のポリ乳酸を上記と同様の方法で押出し、未延伸フィル
ムを作成した。続いて延伸・熱処理を行い、表4に示す
No.22および23のフィルムを得た。なお延伸・熱
処理前のシートの面配向度ΔPは0.1×10-3以下、
長手方向およびその幅方向それぞれの引張強度は650
kgf/cm2 ,660kgf/cm2 であった。
Polylactic acid having a ratio of structural units of L-lactic acid to structural units of D-lactic acid of about 96: 4, a glass transition point of 57 ° C., a melting point of about 152 ° C. and a weight average molecular weight of 140,000 is as described above. Extrusion was carried out in the same manner to prepare an unstretched film. Subsequently, stretching and heat treatment are performed, and No. 22 and 23 films were obtained. The degree of plane orientation ΔP of the sheet before stretching and heat treatment is 0.1 × 10 −3 or less,
Tensile strength in the longitudinal direction and its width direction is 650
kgf / cm 2, it was 660kgf / cm 2.

【0057】同様の方法で、L−乳酸からなる構造単位
とD−乳酸からなる構造単位の割合がおおよそ93:7
でガラス転移点57℃、融点約125℃で、重量平均分
子量11万のポリ乳酸を上記と同様の方法で押出し、未
延伸フィルムを作成した。続いて延伸・熱処理を行い、
表4に示すNo.24および25のフィルムを得た。た
だし、No.25は延伸後そのままテンター内で70
℃、約13秒熱処理したフィルムを採取し、固定枠にフ
ィルムを挟み込み、80℃雰囲気に保持した熱風循環器
内で熱処理した。なお延伸・熱処理前のシートの面配向
度ΔPは0.1×10-3以下、長手方向およびその幅方
向それぞれの引張強度は610kgf/cm2 ,610
kgf/cm2 であった。
In the same manner, the ratio of the structural unit composed of L-lactic acid to the structural unit composed of D-lactic acid was approximately 93: 7.
Then, polylactic acid having a glass transition point of 57 ° C. and a melting point of about 125 ° C. and a weight average molecular weight of 110,000 was extruded in the same manner as above to prepare an unstretched film. Then, stretching and heat treatment are performed.
No. shown in Table 4 Films of 24 and 25 were obtained. However, No. 25 is 70 in the tenter as it is after stretching
The film which was heat-treated at ℃ for about 13 seconds was sampled, the film was sandwiched in a fixed frame, and heat-treated in a hot air circulator kept at 80 ℃ atmosphere. The plane orientation degree ΔP of the sheet before stretching and heat treatment is 0.1 × 10 −3 or less, and the tensile strengths in the longitudinal direction and its width direction are 610 kgf / cm 2 and 610, respectively.
It was kgf / cm 2 .

【0058】なお、表3に示すNo.14〜20のフィ
ルムサンプルについて熱処理時間と温度の関係を図1に
示した。斜線部が本発明の範囲であり、No.15,1
7,19および20が本発明の実施例であり、他が比較
例である。
No. 1 shown in Table 3 was used. The relationship between the heat treatment time and the temperature of the film samples 14 to 20 is shown in FIG. The shaded area is the scope of the present invention, and No. 15, 1
7, 19 and 20 are examples of the present invention, and others are comparative examples.

【0059】[0059]

【表3】 [Table 3]

【0060】[0060]

【表4】 [Table 4]

【0061】表3および表4の結果から明らかなとお
り、延伸することでフィルムの面配向度ΔPは3×10
-3以上になり強度が無延伸シートに比較して向上してい
ることがわかる。しかし、熱処理条件が本発明の範囲外
であるNo.14,16および18は、収縮率が比較的
高い。一方、熱処理条件が本発明の範囲内にあるNo.
15,17および19〜21は優れた熱寸法安定性を有
している。
As is clear from the results shown in Tables 3 and 4, the plane orientation degree ΔP of the film was 3 × 10 by stretching.
It can be seen that the strength becomes -3 or more and the strength is improved as compared with the non-stretched sheet. However, the heat treatment conditions are outside the scope of the present invention. 14, 16 and 18 have relatively high shrinkage. On the other hand, the heat treatment conditions within the range of the present invention No.
15, 17 and 19-21 have excellent thermal dimensional stability.

【0062】また、L−乳酸とD−乳酸の割合が本発明
の範囲内であるNo.23も優れた寸法安定性を示して
いる一方で、同じ組成のNo.22は、熱処理時間が本
発明の範囲外であるため、収縮率が比較的高いことがわ
かる。
Nos. L-lactic acid and D-lactic acid in which the ratio is within the range of the present invention. No. 23, which has the same composition, also exhibits excellent dimensional stability. No. 22 has a relatively high shrinkage rate because the heat treatment time is outside the range of the present invention.

【0063】No.24および25は熱処理温度・時間
は本発明の範囲内であるが、L−乳酸とD−乳酸の割合
が本発明の範囲外にあり、熱寸法安定性が不十分である
ことがわかる。
No. It is understood that the heat treatment temperatures and times of 24 and 25 are within the range of the present invention, but the ratio of L-lactic acid and D-lactic acid is outside the range of the present invention, and the thermal dimensional stability is insufficient.

【0064】上記実施例はいずれも、L−乳酸の比率が
高い場合を示しているが、D−乳酸の比率が高い場合も
同様の結果になる。
Although all of the above examples show the case where the ratio of L-lactic acid is high, the same result is obtained when the ratio of D-lactic acid is high.

【0065】[0065]

【発明の効果】本発明の結果、分解性を有するポリ乳酸
系重合体から、延伸・熱処理加工し、実用的な強度、熱
寸法安定性に優れたフィルム、シートを得ることができ
る。
As a result of the present invention, a polylactic acid-based polymer having decomposability can be stretched and heat-treated to obtain a film or sheet excellent in practical strength and thermal dimensional stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】表3の結果である熱処理時間と温度の関係を表
わすグラフである。
FIG. 1 is a graph showing the relationship between heat treatment time and temperature, which are the results of Table 3.

【符号の説明】[Explanation of symbols]

T 熱処理温度(℃) t 熱処理時間(秒) T heat treatment temperature (° C) t heat treatment time (seconds)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 67:04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C08L 67:04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 面配向度ΔPが3.0×10-3以上であ
り、フィルムまたはシートを昇温したときの結晶融解熱
量ΔHmと昇温中の結晶化により発生する結晶化熱量Δ
Hcとの差(ΔHm−ΔHc)が20J/g以上で、か
つ(ΔHm−ΔHc)/ΔHmが0.75以上であるこ
とを特徴とする配向ポリ乳酸系フィルムまたはシート。
1. The degree of plane orientation ΔP is 3.0 × 10 −3 or more, the heat of crystal fusion ΔHm when the film or sheet is heated, and the heat of crystallization Δ generated by crystallization during temperature increase.
An oriented polylactic acid-based film or sheet characterized by having a difference from Hc (ΔHm-ΔHc) of 20 J / g or more and (ΔHm-ΔHc) / ΔHm of 0.75 or more.
【請求項2】 乳酸が、L−乳酸またはD−乳酸、もし
くはそれらの混合物であり、その割合が100:0〜9
4:6の範囲内または0:100〜6:94の範囲内に
ある共重合体あるいはこれらの混合体からなることを特
徴とする請求項1記載の配向ポリ乳酸系フィルムまたは
シート。
2. The lactic acid is L-lactic acid or D-lactic acid, or a mixture thereof, and the ratio thereof is 100: 0-9.
The oriented polylactic acid-based film or sheet according to claim 1, which is composed of a copolymer within the range of 4: 6 or within the range of 0: 100 to 6:94 or a mixture thereof.
【請求項3】 面配向度ΔPが3.0×10-3以上であ
るポリ乳酸系重合体のフィルムまたはシートを 熱処理温度T(℃)が、70℃〜(重合体の融点T
m)の範囲内、 熱処理時間t(秒)が、Logt≧−4.6LogT
+11を満足する条件で熱処理することを特徴とする請
求項1記載の配向ポリ乳酸系フィルムまたはシートの製
造方法。
3. A polylactic acid-based polymer film or sheet having a degree of plane orientation ΔP of 3.0 × 10 −3 or more has a heat treatment temperature T (° C.) of 70 ° C. to (melting point T of polymer).
m), heat treatment time t (seconds) is Logt ≧ −4.6LogT
The method for producing an oriented polylactic acid-based film or sheet according to claim 1, wherein the heat treatment is performed under the condition that +11 is satisfied.
【請求項4】 乳酸が、L−乳酸またはD−乳酸、もし
くはそれらの混合物であり、その割合が100:0〜9
4:6の範囲内または0:100〜6:94の範囲内に
ある共重合体あるいはこれらの混合体からなることを特
徴とする請求項3記載の配向ポリ乳酸系フィルムまたは
シートの製造方法。
4. The lactic acid is L-lactic acid or D-lactic acid, or a mixture thereof, and the ratio thereof is 100: 0-9.
4. The method for producing an oriented polylactic acid-based film or sheet according to claim 3, which comprises a copolymer in the range of 4: 6 or in the range of 0: 100 to 6:94 or a mixture thereof.
JP769495A 1995-01-20 1995-01-20 Oriented polylactic acid-based films and sheets and methods for producing them Ceased JP3391593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP769495A JP3391593B2 (en) 1995-01-20 1995-01-20 Oriented polylactic acid-based films and sheets and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP769495A JP3391593B2 (en) 1995-01-20 1995-01-20 Oriented polylactic acid-based films and sheets and methods for producing them

Publications (2)

Publication Number Publication Date
JPH08198955A true JPH08198955A (en) 1996-08-06
JP3391593B2 JP3391593B2 (en) 2003-03-31

Family

ID=11672887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP769495A Ceased JP3391593B2 (en) 1995-01-20 1995-01-20 Oriented polylactic acid-based films and sheets and methods for producing them

Country Status (1)

Country Link
JP (1) JP3391593B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252895A (en) * 1995-03-16 1996-10-01 Mitsubishi Plastics Ind Ltd Decomposable laminated material
JPH09187863A (en) * 1996-01-11 1997-07-22 Mitsubishi Plastics Ind Ltd Heat-shrinkable polylactic acid-based film and its production
JP2002187964A (en) * 2000-12-21 2002-07-05 Toray Ind Inc Polyester film for molding
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
WO2003037966A1 (en) * 2001-11-01 2003-05-08 Asahi Kasei Life & Living Corporation Biaxially oriented polylactic acid-based resin films
JP2003212270A (en) * 2002-10-30 2003-07-30 Mitsubishi Plastics Ind Ltd Container for seeing through contents
JP2004027222A (en) * 2003-06-02 2004-01-29 Mitsubishi Plastics Ind Ltd Biodegradable film
US6713175B1 (en) 1999-10-26 2004-03-30 Mitsubishi Plastics, Inc. Biaxially stretched biodegradable film
WO2005082981A1 (en) * 2004-02-26 2005-09-09 Mitsubishi Plastics, Inc. Biodegradable wrap film
JP2006219684A (en) * 2006-05-29 2006-08-24 Mitsubishi Plastics Ind Ltd Biodegradable flexible film
JP2006299270A (en) * 2006-05-01 2006-11-02 Mitsubishi Plastics Ind Ltd Polylactic acid based shrink sheet-like article and packaging material or shrink label material using the same
WO2007139236A1 (en) 2006-06-01 2007-12-06 Tohcello Co., Ltd. Moldings of polylactic acid compositions
EP1967603A3 (en) * 1998-07-22 2008-12-10 Toyo Boseki Kabushiki Kaisha Aliphatic polyester film and gas barrier film
EP1867679A4 (en) * 2005-03-10 2010-07-28 Tohcello Co Ltd Polylactic acid composition and moldings thereof
JP2013216743A (en) * 2012-04-05 2013-10-24 Lonseal Corp Heat-resistant polylactic acid-based molded article and method for producing the same
EP3581608A1 (en) * 2018-06-14 2019-12-18 Stichting Wageningen Research Polymeric products

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207041A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Polylactic acid film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207041A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Polylactic acid film

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252895A (en) * 1995-03-16 1996-10-01 Mitsubishi Plastics Ind Ltd Decomposable laminated material
JPH09187863A (en) * 1996-01-11 1997-07-22 Mitsubishi Plastics Ind Ltd Heat-shrinkable polylactic acid-based film and its production
EP1967603A3 (en) * 1998-07-22 2008-12-10 Toyo Boseki Kabushiki Kaisha Aliphatic polyester film and gas barrier film
US6713175B1 (en) 1999-10-26 2004-03-30 Mitsubishi Plastics, Inc. Biaxially stretched biodegradable film
JP2002187964A (en) * 2000-12-21 2002-07-05 Toray Ind Inc Polyester film for molding
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
US7175917B2 (en) 2001-11-01 2007-02-13 Asahi Kasei Life & Living Corporation Biaxially oriented polylactic acid-based resin films
WO2003037966A1 (en) * 2001-11-01 2003-05-08 Asahi Kasei Life & Living Corporation Biaxially oriented polylactic acid-based resin films
JPWO2003037966A1 (en) * 2001-11-01 2005-04-07 旭化成ライフ&リビング株式会社 Polylactic acid resin biaxially stretched film
JP2003212270A (en) * 2002-10-30 2003-07-30 Mitsubishi Plastics Ind Ltd Container for seeing through contents
JP2004027222A (en) * 2003-06-02 2004-01-29 Mitsubishi Plastics Ind Ltd Biodegradable film
WO2005082981A1 (en) * 2004-02-26 2005-09-09 Mitsubishi Plastics, Inc. Biodegradable wrap film
KR100752976B1 (en) * 2004-02-26 2007-08-30 미쓰비시 쥬시 가부시끼가이샤 Biodegradable wrap film
EP1867679A4 (en) * 2005-03-10 2010-07-28 Tohcello Co Ltd Polylactic acid composition and moldings thereof
JP2006299270A (en) * 2006-05-01 2006-11-02 Mitsubishi Plastics Ind Ltd Polylactic acid based shrink sheet-like article and packaging material or shrink label material using the same
JP2006219684A (en) * 2006-05-29 2006-08-24 Mitsubishi Plastics Ind Ltd Biodegradable flexible film
WO2007139236A1 (en) 2006-06-01 2007-12-06 Tohcello Co., Ltd. Moldings of polylactic acid compositions
JP2013216743A (en) * 2012-04-05 2013-10-24 Lonseal Corp Heat-resistant polylactic acid-based molded article and method for producing the same
EP3581608A1 (en) * 2018-06-14 2019-12-18 Stichting Wageningen Research Polymeric products
WO2019240583A1 (en) * 2018-06-14 2019-12-19 Stichting Wageningen Research Polymeric products

Also Published As

Publication number Publication date
JP3391593B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
JP3330712B2 (en) Method for producing polylactic acid-based film
JP3391593B2 (en) Oriented polylactic acid-based films and sheets and methods for producing them
JP3217240B2 (en) Polylactic acid based molded body
JPH0623836A (en) Production of stretched film of polylactic acid
JP3549968B2 (en) Stretched polylactic acid film or sheet
JPH07205278A (en) Production of stretched film of polylactic acid polymer
JP3328418B2 (en) Heat-shrinkable polylactic acid film
CN112644123A (en) Toughened biaxially-oriented polylactic acid film and preparation method thereof
JPH1024518A (en) Polylactic biodegradable gas barrier film
JPH10147653A (en) Biodegradable oriented film
JPH09272794A (en) Biodegradable film
JP2972913B2 (en) Shape memory method and shape restoration method for biodegradable shape memory polymer molded article
EP2935416B1 (en) Packaging and labelling films
JP3366738B2 (en) Degradability information recording card
JP3330273B2 (en) Heat-shrinkable polylactic acid-based film and method for producing the same
JP3522344B2 (en) Degradable protective film for helmet shields and goggle lenses
JP3167595B2 (en) Packaging bag made of polylactic acid polymer
JP2002371144A (en) Polylactide film
KR100888779B1 (en) Polyeseter film having good twistable property
JP2003002984A (en) Polylactic acid film
JP3619055B2 (en) Biodegradable packing band and manufacturing method thereof
JP2006069218A (en) Polylactic acid based biodegradable gas barrier film
JPH0657116A (en) Poly@(3754/24)butylene terephthalate)-based resin composition with excellent stretchability for biaxially stretched tubular film
JPS62255122A (en) Oriented polymer film
JP5116196B2 (en) Polylactic acid film and packaging bag comprising the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040521

RVOP Cancellation by post-grant opposition