JP4623265B2 - Biaxially stretched polyester film - Google Patents

Biaxially stretched polyester film Download PDF

Info

Publication number
JP4623265B2
JP4623265B2 JP2004160184A JP2004160184A JP4623265B2 JP 4623265 B2 JP4623265 B2 JP 4623265B2 JP 2004160184 A JP2004160184 A JP 2004160184A JP 2004160184 A JP2004160184 A JP 2004160184A JP 4623265 B2 JP4623265 B2 JP 4623265B2
Authority
JP
Japan
Prior art keywords
polyester resin
film
layer
polyester
biaxially stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004160184A
Other languages
Japanese (ja)
Other versions
JP2005335308A (en
Inventor
裕之 上野
克史 山本
尚伸 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2004160184A priority Critical patent/JP4623265B2/en
Publication of JP2005335308A publication Critical patent/JP2005335308A/en
Application granted granted Critical
Publication of JP4623265B2 publication Critical patent/JP4623265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、二軸延伸ポリエステルフィルムに関する。さらに詳しくは、二軸延伸ポリエステルフィルムの優れた特性である耐熱性、保香性、耐水性等を失うことなく実用面の特性を維持し、良好なひねり保持性を具備し、ひねり包装、折曲げ包装に適した、折曲げ固定の可能な二軸延伸ポリエステルフィルムに関する。   The present invention relates to a biaxially stretched polyester film. More specifically, it maintains the practical characteristics without losing the excellent properties of the biaxially stretched polyester film, such as heat resistance, scent retention, water resistance, etc., has good twist retention, twist packaging, folding The present invention relates to a biaxially stretched polyester film suitable for bending packaging and capable of being bent and fixed.

従来から、ひねり保持性や折曲げ性の優れたフィルムとしては、セロファンが知られている。セロファンはその優れた透明性と易切断性、ひねり保持性等の特性により各種包装材料や粘着テープ用として使用されている。しかし、一方で、セロファンは吸湿性を有するために特性が季節により変動し、一定の品質のものを常に供給することが困難であった。また、ポリエチレンテレフタレートフィルムをベースフィルムとした包装材料は、延伸されたポリエチレンテレフタレートフィルムの強靭性、耐熱性、耐水性、透明性等の優れた特性により各種用途に好適に使用されており、特にガスバリア性フィルムとして無機物等が蒸着される基材フィルムとしては、寸法安定性のよいポリエステルフィルムが使用されてきた。その反面、切断性や包装用袋での口引裂き性における欠点、粘着テープでは切れにくいという欠点がある。また、折曲げ性が要求される用途では、腰が強いために折曲げ後にその形状保持ができないという欠点があった。さらに、ひねり包装用途においては、ひねり保持性が劣る等の欠点があり、セロファン代替品として使用することは困難であった。   Conventionally, cellophane has been known as a film excellent in twist retention and bendability. Cellophane is used for various packaging materials and pressure-sensitive adhesive tapes due to its excellent transparency, easy cutting property, and twist retention. However, on the other hand, since cellophane has hygroscopicity, its characteristics fluctuate depending on the season, and it is difficult to always supply a product of a certain quality. In addition, a packaging material using a polyethylene terephthalate film as a base film is suitably used for various applications due to excellent properties such as toughness, heat resistance, water resistance, and transparency of a stretched polyethylene terephthalate film. A polyester film having good dimensional stability has been used as a base film on which an inorganic substance or the like is deposited as a conductive film. On the other hand, there are drawbacks in terms of cutability, mouth tearability in packaging bags, and difficulty in tearing with adhesive tape. Further, in applications requiring bendability, there is a drawback that the shape cannot be maintained after folding because of its strong waist. Furthermore, in twist packaging applications, there are drawbacks such as poor twist retention, making it difficult to use as a cellophane substitute.

また、ひねり包装に見られる固体物の包装フィルムは、包装するための機械によって容易に扱えるものでなければならず、例えば、一台の機械で1分間当り200〜1000個の固体物を包装できるものでなければならない。すなわち、一般的には物品をひねり包装する前に包装するのに必要な面積を切り取らなければならず、フィルムは包装前、切断後において完全に平面でなければならない。また、印刷や蒸着加工を行った後のフィルムにシワや寸法変化によるひずみがあると、切断や包装の際に歪んだり、包装品の見栄えが悪いといった問題が生じる。   In addition, the solid packaging film found in twist packaging must be easily handled by the packaging machine, for example, 200 to 1000 solids per minute can be packaged on a single machine. Must be a thing. That is, generally, the area required for wrapping must be cut before twisting and wrapping the article, and the film must be completely flat before and after wrapping. In addition, if the film after printing or vapor deposition is wrinkled or distorted due to dimensional changes, problems such as distortion during cutting or packaging, and poor appearance of the packaged product arise.

上記欠点を解決する方法として、ポリエチレンテレフタレートの共重合物からなる二軸延伸フィルムであって、応力−ひずみ曲線において降伏点を有し、かつ、該共重合物の未延伸フィルムの平均屈折率をN、二軸延伸フィルムの平均屈折率をNとしたとき、0.003≦N−N≦0.021を満足する易折曲げポリエステルフィルム(例えば、特許文献1参照)やポリエステル樹脂(1)層の少なくとも一方の面に、ポリエステル樹脂(1)層の融点よりも10℃以上高い融点を有し、かつ、全体厚みに対し5%以上、60%以下の厚みのポリエステル樹脂(2)層を積層した未延伸積層フィルムを少なくとも一軸延伸後にポリエステル樹脂(1)層の融点より10℃低い温度以上、かつ、ポリエステル樹脂(2)層の融点未満の温度で熱処理する引裂き性とひねり保持性の良好なポリエステルフィルムの製造方法(例えば、特許文献2参照)などが提案されている。
特許第2505474号公報 特開平5−104618号公報
As a method for solving the above drawbacks, a biaxially stretched film made of a copolymer of polyethylene terephthalate, having a yield point in the stress-strain curve, and an average refractive index of the unstretched film of the copolymer An easily foldable polyester film satisfying 0.003 ≦ N 1 −N 0 ≦ 0.021 (for example, see Patent Document 1) or a polyester resin, where N 0 and the average refractive index of the biaxially stretched film are N 1 (1) A polyester resin (2) having a melting point higher by 10 ° C. or higher than the melting point of the polyester resin (1) layer on at least one surface of the layer and having a thickness of 5% or more and 60% or less with respect to the total thickness. ) At least a temperature lower than the melting point of the polyester resin (1) layer by at least 10 ° C. after the unstretched laminated film laminated with the layer is at least uniaxially stretched, and the melting point of the polyester resin (2) layer is not yet melted. A method for producing a polyester film having a good tearing property and twist holding property that is heat-treated at a full temperature (for example, see Patent Document 2) has been proposed.
Japanese Patent No. 2505474 Japanese Patent Laid-Open No. 5-104618

しかしながら、上記の従来技術において、ポリエチレンテレフタレートの共重合物からなる二軸延伸フィルムであって、応力−ひずみ曲線において降伏点を有し、かつ、該共重合物の未延伸フィルムの平均屈折率をN、二軸延伸フィルムの平均屈折率をNとしたとき、0.003≦N−N≦0.021とする方法は、フィルムに分子配向が残っており、本発明が目標とする折曲げ性、ひねり保持性を得ることはできない。また、印刷やラミネート、蒸着等の加工を行った際に熱による収縮によってシワの発生や幅方向のフィルムの寸法変化が発生するといった問題を有していた。また、ポリエステル樹脂(1)層の少なくとも一方の面に、ポリエステル樹脂(1)層の融点よりも10℃以上高い融点を有し、かつ、全体厚みに対し5〜60%の厚みのポリエステル樹脂(2)層を積層した未延伸積層フィルムを少なくとも一軸延伸後にポリエステル樹脂(1)層の融点より10℃低い温度以上、かつ、ポリエステル樹脂(2)層の融点未満の温度で熱処理する方法においては、フィルム強度を得るためには、融点の高いポリエステル樹脂層の厚みを厚くせざるを得ず、そうした際に融点の高いポリエステル樹脂層の影響で十分なひねり保持性が得られないことや、ひねり保持性を発現させるために融点の高い樹脂層の厚みを薄くするとフィルムが脆くなり、ひねり包装の際に内容物の角でフィルムが裂ける、あるいはフィルムを把持しているクリップによってフィルムが引きちぎられるといった問題を有していた。 However, in the above prior art, a biaxially stretched film made of a copolymer of polyethylene terephthalate, having a yield point in the stress-strain curve, and the average refractive index of the unstretched film of the copolymer When the average refractive index of N 0 and the biaxially stretched film is N 1 , the method of 0.003 ≦ N 1 −N 0 ≦ 0.021 leaves molecular orientation in the film, and the present invention is aimed at It is not possible to obtain bending property and twist holding property. In addition, when processing such as printing, laminating, and vapor deposition is performed, there is a problem that wrinkles are generated due to shrinkage due to heat and a dimensional change of the film in the width direction occurs. Further, the polyester resin (1) has a melting point higher by 10 ° C. or more than the melting point of the polyester resin (1) layer on at least one surface of the polyester resin (1) layer and has a thickness of 5 to 60% of the total thickness ( 2) In a method of heat-treating an unstretched laminated film in which layers are laminated at least at a temperature 10 ° C. lower than the melting point of the polyester resin (1) layer after uniaxial stretching and at a temperature lower than the melting point of the polyester resin (2) layer, In order to obtain film strength, it is necessary to increase the thickness of the polyester resin layer having a high melting point, and in such a case, sufficient twist retention cannot be obtained due to the influence of the polyester resin layer having a high melting point, and twist holding If the thickness of the resin layer having a high melting point is reduced in order to develop the properties, the film becomes brittle, and the film is torn at the corners of the contents during twist packaging, or Had problem film is torn off by the clip gripping the Lum.

本発明は、上記従来のポリエステルフィルムの有する問題点に鑑み、優れた特性である耐熱性、保香性、耐水性等を失うことなく実用面の特性を維持し、良好なひねり保持性、折曲げ性を具備し、ひねり包装や折曲げ包装、又は折曲げ固定の可能な二軸延伸ポリエステルフィルムを供給することを目的とする。   In view of the above-mentioned problems of the conventional polyester film, the present invention maintains the characteristics of practical use without losing the excellent characteristics of heat resistance, aroma retention, water resistance, etc. An object of the present invention is to supply a biaxially stretched polyester film that has bendability and can be twisted, folded, or fixed.

上記目的を達成するため、本発明の包装用二軸延伸ポリエステルフィルムは、ポリエステル樹脂(A)層の少なくとも一方の面に、ポリエステル樹脂(B)層が積層されてなるポリエステル積層フィルムであって、ポリエステル樹脂(A)層及びポリエステル樹脂(B)層が、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール/ネオペンチルグリコールを共重合してなるポリエステル樹脂、あるいはジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール/1,4−シクロヘキサンジメタノールを共重合してなるポリエステル樹脂、又は前記ポリエステル樹脂のいずれかとポリエチレンテレフタレートとからなり、二軸延伸後のポリエステル積層フィルムをポリエステル樹脂(A)層の分子配向がなくなる温度以上、かつ、ポリエステル樹脂(B)層の融点未満の温度で熱処理することにより、ポリエステル樹脂(A)層が実質的に分子配向がなく、ポリエステル樹脂(B)層が分子配向を有し、かつ、ポリエステル積層フィルムの長手方向の屈折率Nx、幅方向の屈折率Nyが式|Nx−Ny|≦0.001を満たし、かつ、フィルムの長手方向の屈折率NxがNx≦1.577であり、フィルムの厚み方向の屈折率Nzが1.490≦Nz≦1.550であることを特徴とする。 In order to achieve the above object, the biaxially stretched polyester film for packaging of the present invention is a polyester laminated film in which a polyester resin (B) layer is laminated on at least one surface of a polyester resin (A) layer, polyester resin (a) layer and the polyester resin (B) layer, terephthalic acid as the dicarboxylic acid component, ethylene glycol / neopentyl glycol copolymerized ing with polyester resin as the diol component or terephthalic acid as the dicarboxylic acid component, the diol ethylene glycol / 1,4-cyclohexanedimethanol copolymerized ing to the polyester resin as a component, or the consist either of a polyester resin and a polyethylene terephthalate, a polyester resin (a) layer of a polyester laminated film after biaxial stretching of The polyester resin (A) layer is substantially free of molecular orientation and the polyester resin (B) layer is molecularly oriented by heat treatment at a temperature equal to or higher than the temperature at which the child orientation disappears and below the melting point of the polyester resin (B) layer. And the refractive index Nx in the longitudinal direction of the polyester laminated film and the refractive index Ny in the width direction satisfy the formula | Nx−Ny | ≦ 0.001, and the refractive index Nx in the longitudinal direction of the film is Nx ≦ The refractive index Nz in the thickness direction of the film is 1.490 ≦ Nz ≦ 1.550.

また、ポリエステル樹脂A層が実質的に結晶性でないポリエステル樹脂から形成され、ポリエステル樹脂B層が200〜250℃の融点を持つポリエチレンテレフタレート共重合物から形成されてなることができる。   Further, the polyester resin A layer may be formed from a polyester resin that is not substantially crystalline, and the polyester resin B layer may be formed from a polyethylene terephthalate copolymer having a melting point of 200 to 250 ° C.

ここでいう実質的に結晶性でないポリエステル樹脂とは、DSC(示差走査熱量計)で、ポリエステル樹脂を285℃の温度で15分間加熱した後、液体窒素を用いて急冷処理し、この試料を10℃/分の速度で昇温したときに、結晶化発熱ピーク及び溶融吸熱ピークを有さない樹脂である。   The polyester resin which is not substantially crystalline here is DSC (Differential Scanning Calorimeter), and after heating the polyester resin at a temperature of 285 ° C. for 15 minutes, it is rapidly cooled using liquid nitrogen. It is a resin that does not have a crystallization exothermic peak and a melting endothermic peak when the temperature is raised at a rate of ° C / min.

また、150℃でのフィルム長手方向の熱収縮率を5.0%以下とすることができる。   Moreover, the thermal contraction rate of the film longitudinal direction in 150 degreeC can be 5.0% or less.

また、上記の包装用二軸延伸ポリエステルフィルムを用い被包装物をひねり包装した包装体とすることができる。 Further, it is possible to package that twist wrapping an object to be packaged using the packaging biaxially oriented polyester film described above.

本発明の包装用二軸延伸ポリエステルフィルムによれば、耐熱性、耐寒性、耐水性、透明性、保香性等のポリエステルフィルム本来の特性を有しながら、ひねり保持性、折曲げ性に優れ、強靭性を維持し、印刷やラミネート、蒸着膜形成等の後加工時にシワが発生するようなことがない。 According to the biaxially stretched polyester film for packaging of the present invention, while having the original characteristics of a polyester film such as heat resistance, cold resistance, water resistance, transparency, and fragrance retention, it is excellent in twist retention and bendability. The toughness is maintained, and wrinkles are not generated during post-processing such as printing, laminating and vapor deposition film formation.

本発明における二軸延伸ポリエステルフィルムは、積層フィルムの長手方向の屈折率Nx、幅方向の屈折率Nyが式|Nx−Ny|≦0.001を満たし、かつ、フィルムの長手方向の屈折率NxがNx≦1.577であり、フィルムの厚み方向の屈折率Nzが1.490≦Nz≦1.550である特性を有するポリエステル積層フィルムであって、かかる積層フィルムは、ポリエステル樹脂A層の少なくとも一方の面にポリエステル樹脂B層が積層されたフィルムである。   In the biaxially stretched polyester film of the present invention, the refractive index Nx in the longitudinal direction of the laminated film and the refractive index Ny in the width direction satisfy the formula | Nx−Ny | ≦ 0.001, and the refractive index Nx in the longitudinal direction of the film. Nx ≦ 1.577, and the refractive index Nz in the thickness direction of the film is 1.490 ≦ Nz ≦ 1.550, and the laminated film has at least the polyester resin A layer. It is a film in which a polyester resin B layer is laminated on one surface.

かかる特性を示すポリエステル積層フィルムとしては、ポリエステル樹脂A層が実質的に分子配向がなく、ポリエステル樹脂B層が分子配向を有する特性を有する積層フィルムからなることができ、また、ポリエステル樹脂A層が実質的に結晶性でないポリエステル樹脂から形成され、ポリエステル樹脂B層が200〜250℃の融点を持つポリエチレンテレフタレート共重合物から形成されてなる積層フィルムからなることがでる。   As the polyester laminated film exhibiting such characteristics, the polyester resin A layer can be composed of a laminated film having substantially no molecular orientation and the polyester resin B layer has molecular orientation. It can be formed of a laminated film formed of a polyester resin that is formed of a polyester resin that is substantially non-crystalline and the polyester resin B layer is formed of a polyethylene terephthalate copolymer having a melting point of 200 to 250 ° C.

本発明の二軸延伸ポリエステルフィルムのポリエステル樹脂A層を形成するのに用いるポリエステル樹脂は、通常、実質的に結晶性でないポリエステル樹脂を用いることが好ましい。   As the polyester resin used for forming the polyester resin A layer of the biaxially stretched polyester film of the present invention, it is usually preferable to use a polyester resin that is not substantially crystalline.

また、本発明の二軸延伸ポリエステルフィルムのポリエステル樹脂B層を形成するのに用いるポリエステル樹脂は、通常、融点が200〜250℃のポリエチレンテレフタレートの共重合物を用いることが好ましい。融点が200℃未満では耐熱性が不足し、フィルムの耐熱性が低下する傾向にあり、融点が250℃を超えると折曲げ性、ひねり保持性が低下する傾向にある。   Moreover, it is preferable to use the copolymer of the polyethylene terephthalate whose melting | fusing point is 200-250 degreeC normally for the polyester resin used for forming the polyester resin B layer of the biaxially stretched polyester film of this invention. When the melting point is less than 200 ° C., the heat resistance is insufficient and the heat resistance of the film tends to be lowered, and when the melting point exceeds 250 ° C., the bending property and the twist holding property tend to be lowered.

ポリエステル樹脂A層、ポリエステル樹脂B層を形成するのに通常用いるポリエステル樹脂の構成単量体としては、例えば、テレフタル酸及びエチレングリコールを主成分とし、他の酸成分及び/又は他のグリコール成分を共重合成分として含有するポリエステルである。他の酸成分としては、アジピン酸、セバシン酸、アゼライン酸等の脂肪族のニ塩基酸や、イソフタル酸、ジフェニルジカルボン酸、5−第3ブチルイソフタル酸、2,2,6,6−テトラメチルビフェニル−4,4−ジカルボン酸、2,6−ナフタレンジカルボン酸、1,1,3−トリメチル−3−フェニルインデン−4,5−ジカルボン酸等の芳香族のニ塩基酸が用いられる。グリコール成分としては、ネオペンチルグリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール等の脂肪族ジオールや、1,4−シクロヘキサンジメタノール等の脂肪族ジオール又はキシレングリコール、ビス(4−β−ヒドロキシフェニル)スルホン、2,2−(4−ヒドロキシフェニル)プロパン誘導体等の芳香族ジオールが用いられるが、特に限定されない。   As a constituent monomer of the polyester resin that is usually used for forming the polyester resin A layer and the polyester resin B layer, for example, terephthalic acid and ethylene glycol are the main components, and other acid components and / or other glycol components are used. It is polyester contained as a copolymerization component. Other acid components include aliphatic dibasic acids such as adipic acid, sebacic acid and azelaic acid, isophthalic acid, diphenyldicarboxylic acid, 5-tert-butylisophthalic acid, 2,2,6,6-tetramethyl Aromatic dibasic acids such as biphenyl-4,4-dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,1,3-trimethyl-3-phenylindene-4,5-dicarboxylic acid are used. Examples of the glycol component include aliphatic diols such as neopentyl glycol, diethylene glycol, propylene glycol, butanediol, and hexanediol, aliphatic diols such as 1,4-cyclohexanedimethanol, xylene glycol, and bis (4-β-hydroxyphenyl). ) Aromatic diols such as sulfone and 2,2- (4-hydroxyphenyl) propane derivatives are used, but are not particularly limited.

本発明の、ひねり保持性、折曲げ性に優れるフィルムを得るための好ましい樹脂組成としては、ポリエステル樹脂A層を形成するのに用いる樹脂としては、例えば、ジカルボン酸成分としてテレフタル酸/イソフタル酸、ジオール成分としてエチレングリコールを主体とするポリエステル樹脂、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール/ネオペンチルグリコールを主体とするポリエステル樹脂、あるいはジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール/1,4−シクロヘキサンジメタノールを主体とするポリエステル樹脂等が、特に好ましいポリエステル樹脂として挙げられる。   As a preferred resin composition for obtaining a film excellent in twist retention and bendability of the present invention, as a resin used to form the polyester resin A layer, for example, terephthalic acid / isophthalic acid as a dicarboxylic acid component, Polyester resin mainly composed of ethylene glycol as diol component, terephthalic acid as dicarboxylic acid component, polyester resin mainly composed of ethylene glycol / neopentyl glycol as diol component, or terephthalic acid as dicarboxylic acid component, ethylene glycol / 1 as diol component Polyester resins mainly composed of 1,4-cyclohexanedimethanol are particularly preferred polyester resins.

また、ポリエステル樹脂B層を形成するのに用いる樹脂としては、例えば、ジカルボン酸成分としてテレフタル酸/イソフタル酸、ジオール成分としてエチレングリコールを主体とするポリエステル樹脂、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール/ネオペンチルグリコールを主体とするポリエステル樹脂、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール/ネオペンチルグリコール/ブタンジオールを主体とするポリエステル樹脂、あるいはジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール/1,4−シクロヘキサンジメタノールを主体とするポリエステル樹脂等が、特に好ましいポリエステル樹脂として挙げられる。   Examples of the resin used to form the polyester resin B layer include a polyester resin mainly composed of terephthalic acid / isophthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component, terephthalic acid as a dicarboxylic acid component, and diol component as a diol component. Polyester resin mainly composed of ethylene glycol / neopentyl glycol, terephthalic acid as dicarboxylic acid component, polyester resin mainly composed of ethylene glycol / neopentyl glycol / butanediol as diol component, or terephthalic acid as diol component as diol component Polyester resins mainly composed of ethylene glycol / 1,4-cyclohexanedimethanol are particularly preferred polyester resins.

前記ポリエステル樹脂A層、ポリエステル樹脂B層を形成する樹脂中には、ポリエステル樹脂の他に必要に応じて各種添加剤を含有してもよい。添加剤としては二酸化チタン、微粒子シリカ、カオリン、炭酸カルシウム等の無機滑剤やアクリル系架橋高分子よりなる微粒子の材料として、アクリル酸、メタアクリル酸、アクリル酸エステル、メタアクリル酸エステル等のアクリル系単量体からなる架橋高分子等の有機滑剤等が挙げられる。また、必要に応じて、安定剤、着色剤、酸化防止剤、消泡剤、帯電防止剤、紫外線吸収剤等を単独で含有してもよく、2種以上を併用してもよい。   In the resin which forms the said polyester resin A layer and the polyester resin B layer, you may contain various additives other than a polyester resin as needed. Additives include titanium dioxide, fine particle silica, kaolin, calcium carbonate, and other inorganic lubricants, and fine particle materials made of acrylic cross-linked polymers, such as acrylic acid, methacrylic acid, acrylic ester, and methacrylic ester. Examples thereof include organic lubricants such as cross-linked polymers made of monomers. Moreover, a stabilizer, a coloring agent, antioxidant, an antifoamer, an antistatic agent, a ultraviolet absorber etc. may be contained independently as needed, and 2 or more types may be used together.

前記ポリエステル樹脂は、それぞれ従来公知の方法により重合して製造することができる。例えば、ジカルボン酸とジオールとを直接反応させる直接エステル化法、ジカルボン酸ジメチルエステル等のジアルキルエステルとジオールとを反応させるエステル交換法などを用いてポリエステルが得られる。重合は、回分式及び連続式のいずれの方法で行われてもよい。   Each of the polyester resins can be produced by polymerization by a conventionally known method. For example, a polyester can be obtained using a direct esterification method in which a dicarboxylic acid and a diol are directly reacted, or a transesterification method in which a dialkyl ester such as a dicarboxylic acid dimethyl ester is reacted with a diol. The polymerization may be performed by either a batch method or a continuous method.

ここで、本発明の二軸延伸ポリエステルフィルムの製造方法の一例を説明する。真空乾燥した結晶性の異なる2種のポリエステル樹脂(ポリエステル樹脂A及びポリエステル樹脂B)をそれぞれ別の2台の押出機に供給し、それぞれのポリエステル樹脂が完全に溶融する温度で溶融押し出しし、複合アダプターを通過させ、2種3層(結晶性樹脂/実質的に非晶性の樹脂/結晶性樹脂)として口金から押出しし冷却固化させて未延伸フィルムを成形する。   Here, an example of the manufacturing method of the biaxially stretched polyester film of this invention is demonstrated. Two kinds of polyester resins with different crystallinity (polyester resin A and polyester resin B) that have been vacuum-dried are supplied to two different extruders, melt extruded at a temperature at which each polyester resin is completely melted, and combined. An unstretched film is formed by passing through an adapter, extruding from a die as a two-kind three-layer (crystalline resin / substantially amorphous resin / crystalline resin), and solidifying by cooling.

このようにして得られた未延伸フィルムを、2種のポリエステル樹脂のうち、高いガラス転移温度を持つポリエステル樹脂のガラス点移転温度〜ガラス点移転温度+30℃の温度で縦方向に2〜4倍延伸し、直ちに20〜40℃に冷却する。   The unstretched film thus obtained is 2 to 4 times in the longitudinal direction at a temperature of glass point transfer temperature to glass point transfer temperature + 30 ° C. of the polyester resin having a high glass transition temperature among the two types of polyester resins. Stretch and immediately cool to 20-40 ° C.

ついで、縦方向の延伸温度+10〜40℃の温度で横方向に3〜4.5倍延伸する。このようにして得られた二軸延伸後のフィルムを、実質的に非晶性のポリエステル樹脂からなる層が溶融する温度であって、かつ、結晶性のポリエステル樹脂からなる層の融点よりも低い温度により熱処理を行う。この熱処理では、必要に応じて弛緩処理を行ってもよい。上記延伸条件において、好ましくは、縦延伸あるいは横延伸前に、上記樹脂組成を構成する重合体組成物が有するガラス転移温度以上、融点以下の温度で予熱を行う。   Next, the film is stretched 3 to 4.5 times in the transverse direction at a stretching temperature in the longitudinal direction +10 to 40 ° C. The biaxially stretched film thus obtained is at a temperature at which the layer made of a substantially amorphous polyester resin melts and lower than the melting point of the layer made of a crystalline polyester resin. Heat treatment is performed according to temperature. In this heat treatment, a relaxation treatment may be performed as necessary. Under the above stretching conditions, preheating is preferably performed at a temperature not lower than the glass transition temperature and not higher than the melting point of the polymer composition constituting the resin composition before longitudinal stretching or lateral stretching.

本発明の二軸延伸ポリエステルフィルムには、目的に応じて、例えば、コロナ放電処理、プラズマ処理、オゾン処理、薬品処理等の従来公知の方法による表面処理や、公知のアンカー処理剤を用いたアンカー処理等が施されてもよい。また、帯電防止用コート剤として、例えば、アルキルスルホン酸、グリセリンエステル、ポリグリセリンエステル等があり、帯電防止性を付与できるものであれば特に限定されない。コート方法は、従来公知の方法であるリバースロールコーティング法、ロールナイフコーティング法、ダイコーティング法、グラビアコーティング法等があり、特に限定はされない。さらに、インラインでのコーティングによるコートであってもよい。   For the biaxially stretched polyester film of the present invention, depending on the purpose, for example, surface treatment by a conventionally known method such as corona discharge treatment, plasma treatment, ozone treatment, chemical treatment, or an anchor using a known anchor treatment agent. Processing etc. may be given. Examples of the antistatic coating agent include alkylsulfonic acid, glycerin ester, polyglycerin ester, and the like, and are not particularly limited as long as they can impart antistatic properties. Examples of the coating method include a conventionally known reverse roll coating method, roll knife coating method, die coating method, and gravure coating method, and are not particularly limited. Further, it may be a coating by in-line coating.

本発明の二軸延伸ポリエステルフィルムは、通常、ポリエステル樹脂A層が実質的に分子配向がなく、ポリエステル樹脂B層が分子配向を有している。ポリエステル樹脂A層に実質的に分子配向が残っているとひねり保持性、折曲げ性が十分得られない傾向になる。また、ポリエステル樹脂B層は、通常、分子配向を有している。分子配向が残っていないと、製膜が不安定となる。また、フィルムの強度等が不足することになる。このポリエステル樹脂A層の分子配向の程度はフィルムの長手方向の屈折率Nx、幅方向の屈折率Nyの差と長手方向の屈折率であらわすことができる。すなわち、式|Nx−Ny|≦0.001を満たし、かつ、フィルムの長手方向の屈折率NxがNx≦1.577であればポリエステル樹脂A層の分子配向が崩れている、すなわち分子配向がないといえ、|Nx−Ny|が0.001を超えると折曲げ性、ひねり保持性が不足する。また、Nxが1.577を超えても折曲げ性、ひねり保持性が不足する。また、ポリエステル樹脂B層の分子配向の指標としてNzがあり、フィルムの厚み方向の屈折率Nzが1.490≦Nz≦1.550でなければならず、好ましくは1.500≦Nz≦1.540である。Nzが1.490未満では折曲げ性、ひねり保持性不足となり、Nzが1.550を超えると製膜性が不安定となる。   In the biaxially stretched polyester film of the present invention, usually, the polyester resin A layer has substantially no molecular orientation, and the polyester resin B layer has molecular orientation. If the molecular orientation remains substantially in the polyester resin A layer, the twist holding property and the bending property tend not to be obtained sufficiently. Further, the polyester resin B layer usually has molecular orientation. If no molecular orientation remains, film formation becomes unstable. In addition, the strength of the film is insufficient. The degree of molecular orientation of the polyester resin A layer can be expressed by the difference between the refractive index Nx in the longitudinal direction and the refractive index Ny in the width direction and the refractive index in the longitudinal direction. That is, if the formula | Nx−Ny | ≦ 0.001 is satisfied and the refractive index Nx in the longitudinal direction of the film is Nx ≦ 1.577, the molecular orientation of the polyester resin A layer is broken, that is, the molecular orientation is Nonetheless, if | Nx−Ny | exceeds 0.001, the bendability and the twist retention are insufficient. Further, even if Nx exceeds 1.577, the bendability and the twist retention are insufficient. Further, Nz is an index of molecular orientation of the polyester resin B layer, and the refractive index Nz in the thickness direction of the film must be 1.490 ≦ Nz ≦ 1.550, preferably 1.500 ≦ Nz ≦ 1. 540. When Nz is less than 1.490, the bendability and twist retention are insufficient, and when Nz exceeds 1.550, the film forming property becomes unstable.

このような二軸延伸ポリエステルフィルムを得る方法は特に限定されないが、例えば、二軸延伸後の熱処理温度をポリエステル樹脂A層の分子配向が完全になくなる温度以上、かつ、ポリエステル樹脂B層の融点未満の温度とすることにより得られる。ただし、上記以外の方法により本発明の二軸延伸ポリエステルフィルムを製造することは何ら妨げられない。   The method for obtaining such a biaxially stretched polyester film is not particularly limited. For example, the heat treatment temperature after biaxial stretching is equal to or higher than the temperature at which the molecular orientation of the polyester resin A layer is completely eliminated and less than the melting point of the polyester resin B layer. It is obtained by setting it as the temperature of. However, production of the biaxially stretched polyester film of the present invention by a method other than the above is not hindered.

また、ポリエステル樹脂A層とポリエステル樹脂B層の層厚み比は、特に限定するものではないが、通常、
(ポリエステル樹脂A層/ポリエステル樹脂B層)=(1/3〜3/1)
であり、好ましくは
(ポリエステル樹脂A層/ポリエステル樹脂B層)=(1/2〜2/1)
である。
The layer thickness ratio of the polyester resin A layer and the polyester resin B layer is not particularly limited,
(Polyester resin A layer / polyester resin B layer) = (1/3 to 3/1)
Preferably, (Polyester resin A layer / Polyester resin B layer) = (1/2 to 2/1)
It is.

合計総厚み(ポリエステル樹脂A層+ポリエステル樹脂B層)のうち、ポリエステル樹脂B層の層厚みの割合が1/4未満の場合は、得られるフィルムの強度が弱くなり、実用上支障がでるだけでなく、熱処理時にフィルムが溶融しやすくなり製膜が困難となる。また、合計総厚みのうち、ポリエステル樹脂B層の層厚みの割合が3/4を超えると、目的とする折曲げ性、ひねり保持性が低下する。さらに、本発明の目的とする折曲げ性、ひねり保持性が必要な用途に用いられる二軸延伸ポリエステルフィルムの厚みとして12〜50μmであるが、特に限定されない。   Of the total total thickness (polyester resin A layer + polyester resin B layer), when the ratio of the layer thickness of the polyester resin B layer is less than 1/4, the strength of the resulting film is weakened, which only impedes practical use. In addition, the film is likely to melt during heat treatment, making film formation difficult. Moreover, when the ratio of the layer thickness of the polyester resin B layer exceeds 3/4 in the total total thickness, the target bendability and twist retention are lowered. Furthermore, although it is 12-50 micrometers as thickness of the biaxially stretched polyester film used for the use which requires the bendability and twist holding | maintenance property made into the objective of this invention, it is not specifically limited.

また、本発明の二軸延伸ポリエステルフィルムの150℃雰囲気下に30分放置したときの熱収縮率は、フィルム長手方向の熱収縮率が5.0%以下であり、3.0%以下であることがさらに好ましい。150℃に30分間放置したときのフィルム長手方向の熱収縮率が5.0%より大きいとフィルムに印刷やラミネート、蒸着層を形成する等の後加工時にシワの発生や平面性の乱れが生じて好ましくない。   Moreover, the heat shrinkage rate when the biaxially stretched polyester film of the present invention is allowed to stand for 30 minutes in an atmosphere of 150 ° C. is 5.0% or less and 3.0% or less in the film longitudinal direction. More preferably. If the thermal shrinkage in the longitudinal direction of the film when left at 150 ° C for 30 minutes is greater than 5.0%, wrinkles and flatness will be disturbed during post-processing such as printing, laminating, and forming a deposited layer on the film. It is not preferable.

熱収縮率を下げるのに好適な方法としては特に限定されないが、例えば、フィルム製膜方法として、押出機により溶融混練された樹脂をキャストして未延伸フィルムを得る。その後、同時二軸延伸法又は逐次二軸延伸法等の二軸延伸を行い、ついで熱処理する際に、該延伸フィルムを緊張下又は幅方向に弛緩しながら熱処理する方法を用いることができる。この場合、熱処理温度は170〜240℃、より好ましくは180〜230℃の範囲で、熱処理時間は0.5〜10秒の範囲で行うのが好ましい。さらに、熱処理温度から冷却過程で、好ましくは100〜200℃の範囲で長手方向及び/又は幅方向、好ましくは幅方向に対して0.1〜2.0%の範囲で弛緩処理を行う。弛緩処理は1段でもよいし、多段でもよく、温度分布の変化を設けてもよい。   A method suitable for reducing the heat shrinkage rate is not particularly limited. For example, as a film forming method, a resin melt-kneaded by an extruder is cast to obtain an unstretched film. Thereafter, biaxial stretching, such as simultaneous biaxial stretching or sequential biaxial stretching, is performed, and then a heat treatment can be used while the stretched film is relaxed under tension or in the width direction. In this case, the heat treatment temperature is preferably 170 to 240 ° C, more preferably 180 to 230 ° C, and the heat treatment time is preferably 0.5 to 10 seconds. Furthermore, the relaxation treatment is performed in the cooling process from the heat treatment temperature, preferably in the range of 100 to 200 ° C. in the longitudinal direction and / or the width direction, preferably 0.1 to 2.0% with respect to the width direction. The relaxation process may be one stage or multiple stages, and a change in temperature distribution may be provided.

上記のごとく、本発明はセロファンの有する特性のうち、ひねり保持性及び折曲げ性に着目して、耐熱性、耐水性、保香性等に優れ、さらに、ひねり保持性を具備した二軸延伸ポリエステルフィルムを得たものである。ひねり保持性、折曲げ性は、フィルムの配向がないあるいは配向度を低くすること及び/又は結晶化させないあるいは結晶化度を低くすることにより得られるのであり、特にフィルムに配向がなく、かつ、フィルムが結晶化していない層を有することで最も折曲げ性、ひねり保持性に優れたフィルムを得ることができる。   As described above, the present invention pays attention to the twist retention and bendability among the characteristics of cellophane, and is excellent in heat resistance, water resistance, fragrance retention, etc., and further biaxially stretched with twist retention. A polyester film is obtained. Twist retention and bendability are obtained by having no orientation of the film or lowering the orientation degree and / or not crystallizing or lowering the crystallinity, in particular, the film has no orientation, and By having a layer in which the film is not crystallized, it is possible to obtain a film that is most excellent in bendability and twist retention.

また、本発明の二軸延伸ポリエステルフィルムを用い、その優れたひねり保持性及び折曲げ性により各種食品、文具、工業部品等の固形物からなる被包装物を個包装したひねり包装体とすることができるほか、種々の包装形態の包装体とすることができる。   In addition, the biaxially stretched polyester film of the present invention is used to form a twist package that individually wraps an object to be packaged made of solids such as various foods, stationery, and industrial parts due to its excellent twist retention and bendability. In addition, it can be made into a package of various packaging forms.

つぎに本発明フィルムの製造方法の一例を説明するが、これはあくまで具体例であり、本発明内容を拘束するものではない。以下に本発明に用いた各物性、特性の測定、評価方法について記載する。   Next, although an example of the manufacturing method of this invention film is demonstrated, this is a specific example to the last, and does not restrain the content of this invention. The physical properties, characteristics measurement and evaluation methods used in the present invention are described below.

(1)屈折率
試料の状態調節と測定温度を30℃とした以外はJIS−K−7142に準じ、アッベ屈折率計により、NaD線光で屈折率を測定した。マウント液はヨウ化メチレンを用い、長手方向の屈折率(Nx)、幅方向の屈折率(Ny)及び厚み方向の屈折率(Nz)を測定した。
(1) Refractive index The refractive index was measured with NaD ray light by an Abbe refractometer according to JIS-K-7142 except that the state of the sample was adjusted and the measurement temperature was 30 ° C. The mounting liquid was methylene iodide, and the refractive index in the longitudinal direction (Nx), the refractive index in the width direction (Ny), and the refractive index in the thickness direction (Nz) were measured.

(2)融点(Tm)
ロボットDSC(示差走査熱量計)DSC−60(島津製作所社製)にTA60WSディスクステーション(島津製作所社製)を接続して測定した。試料10mgをアルミニウムパンに調整後、DSC装置にセットし(リファレンス:試料を入れていない同タイプのアルミニウムパン)、この試料を10℃/分の速度で昇温し、285℃の温度で15分間加熱した後、液体窒素を用いて急冷処理した。この試料を10℃/分の速度で昇温し、そのDSCチャートから融点(Tm)を測定した。
(2) Melting point (Tm)
Measurement was performed by connecting a TA60WS disk station (manufactured by Shimadzu Corporation) to a robot DSC (differential scanning calorimeter) DSC-60 (manufactured by Shimadzu Corporation). After adjusting 10 mg of the sample to an aluminum pan, it is set in a DSC apparatus (reference: aluminum pan of the same type without a sample). After heating, it was quenched with liquid nitrogen. The sample was heated at a rate of 10 ° C./min, and the melting point (Tm) was measured from the DSC chart.

(3)結晶性
ロボットDSC(示差走査熱量計)DSC−60(島津製作所社製)にTA60WSディスクステーション(島津製作所社製)を接続して測定した。試料10mgをアルミニウムパンに調整後、DSC装置にセットし(リファレンス:試料を入れていない同タイプのアルミニウムパン)、この試料を10℃/分の速度で昇温し、285℃の温度で15分間加熱した後、液体窒素を用いて急冷処理した。この試料を10℃/分の速度で昇温し、そのDSCチャートから結晶化発熱ピーク及び溶融吸熱ピークを測定した。結晶化発熱ピーク及び溶融吸熱ピークを有さない樹脂を実質的に結晶性でないポリエステル樹脂とした。
(3) Crystallinity Measurement was performed by connecting a TA60WS disk station (manufactured by Shimadzu Corporation) to a robot DSC (differential scanning calorimeter) DSC-60 (manufactured by Shimadzu Corporation). After adjusting 10 mg of the sample to an aluminum pan, it is set in a DSC apparatus (reference: aluminum pan of the same type without a sample), the sample is heated at a rate of 10 ° C./min, and the temperature is 285 ° C. for 15 minutes. After heating, it was quenched with liquid nitrogen. The sample was heated at a rate of 10 ° C./min, and the crystallization exothermic peak and the melt endothermic peak were measured from the DSC chart. A resin having no crystallization exothermic peak and no melt endothermic peak was defined as a polyester resin that was not substantially crystalline.

(4)極限粘度
チップサンプル0.1gを精秤し、25mLのフェノール/テトラクロロエタン=6/4(質量比)の混合溶媒に溶解し、オストワルド粘度計を用いて30℃で測定した。なお、測定は3回行い、その平均値を求めた。
(4) Intrinsic viscosity A chip sample (0.1 g) was precisely weighed, dissolved in 25 mL of a mixed solvent of phenol / tetrachloroethane = 6/4 (mass ratio), and measured at 30 ° C. using an Ostwald viscometer. In addition, the measurement was performed 3 times and the average value was calculated | required.

(5)熱収縮率
下記以外は、JIS−C−2318に準じて測定した。フィルムの長手方向に、幅10mm、長さ250mmのサンプルを切出し、200mm間隔で印をつけ、5gの一定張力で間隔Aを測る。続いて、150℃の雰囲気中のオーブンに無荷重で30分間放置した。オーブンから取出し室温まで冷却後に、5gの一定張力で間隔Bを求め、以下の式により熱収縮率を求めた。測定は、フィルムの幅方向に等間隔に5ヶ所からサンプルを切出し測定し、その最大値及びバラツキ(最大値と最小値の差)を求めた。
熱収縮率=(A−B)/A×100(%)
(5) Thermal contraction rate Except the following, it measured according to JIS-C-2318. In the longitudinal direction of the film, a sample having a width of 10 mm and a length of 250 mm is cut out, marked at intervals of 200 mm, and the interval A is measured with a constant tension of 5 g. Subsequently, it was left in an oven in an atmosphere at 150 ° C. for 30 minutes with no load. After taking out from the oven and cooling to room temperature, the interval B was obtained with a constant tension of 5 g, and the thermal shrinkage rate was obtained by the following equation. For measurement, samples were cut out from five locations at equal intervals in the width direction of the film, and the maximum value and variation (difference between the maximum value and the minimum value) were obtained.
Thermal contraction rate = (A−B) / A × 100 (%)

(6)ひねり保持性
テンチ社製ひねり包装機TA200型を用い、200個/分の速度にてひねり包装を行った。フィルムは1.5回転(540度)ひねられて個包装となる。その後若干の戻りがあった後のひねりが保持された角度(以下「ひねり保持角度」と表記する)を測定した。
この保持角度が大きい程ひねり保持性は優れており、下記のとおり分類評価した。
○:ひねり保持角度が230度以上
×:ひねり保持角度が230度未満
(6) Twist retention property Twist packaging was performed at a rate of 200 pieces / minute using a twist packaging machine TA200 type manufactured by Tenchi. The film is twisted 1.5 turns (540 degrees) into individual packages. Thereafter, the angle at which the twist was held after a slight return (hereinafter referred to as “twist holding angle”) was measured.
The larger the holding angle, the better the twist holding ability, and the classification was evaluated as follows.
○: Twist holding angle is 230 degrees or more ×: Twist holding angle is less than 230 degrees

(7)耐熱性
耐熱性は蒸着後の平面性で評価した。フィルムを巻取り式真空蒸着装置の巻出し側にセットし、チャンバー内を4×10−3Paまで減圧し、高周波誘導過熱によりアルミニウムを蒸発させ、厚さ50nmのアルミニウム蒸着層を形成した。このときのフィルム供給速度は40m/分、チルロール温度は−15℃とした。蒸着後のフィルムをロールから巻き出し、目視によりフィルムの平面性を観察し、以下に示す3段階評価を行った。
○:張力をかけない状態でも平面性は良好。
△:フィルムに若干張力を加えると平面性良好であり、実用上問題なし。
×:張力をかけても平面しに乱れがあり実用上問題あり。
(7) Heat resistance Heat resistance was evaluated by the flatness after vapor deposition. The film was set on the unwinding side of a wind-up type vacuum deposition apparatus, the pressure in the chamber was reduced to 4 × 10 −3 Pa, and aluminum was evaporated by high-frequency induction overheating to form an aluminum deposition layer having a thickness of 50 nm. At this time, the film supply speed was 40 m / min, and the chill roll temperature was −15 ° C. The film after vapor deposition was unwound from a roll, the flatness of the film was observed visually, and the following three-stage evaluation was performed.
○: Flatness is good even when no tension is applied.
(Triangle | delta): When tension | tensile_strength is applied to a film slightly, flatness will be favorable and there will be no problem practically.
X: Even if tension is applied, there is a problem in practical use because there is a disorder in flatness.

(8)ガラス転移温度
島津製作所社製DSC−60型示差走査熱量計を用い、昇温速度20℃/分で測定した。ガラス転移温度(Tg)は変位の接線交点を測定した。
(8) Glass transition temperature Using a DSC-60 differential scanning calorimeter manufactured by Shimadzu Corporation, the glass transition temperature was measured at a temperature elevation rate of 20 ° C / min. The glass transition temperature (Tg) was measured at the tangential intersection of displacement.

以下、本発明を実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
(実施例1)
ネオペンチルグリコールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル100重量%からなるポリエステル樹脂Aとポリエチレンテレフタレート55重量%、ネオペンチルグリコールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル45重量%からなるポリエステル樹脂Bを285℃で別々の押出機により溶融し、この溶融体を複合アダプターで合流させた後にTダイより押出し、30℃の冷却ドラムで急冷して(B/A/B)3層構成の未延伸シートを得た。ここで、ポリエステル樹脂Aの極限粘度は0.72dL/g、ポリエステル樹脂Bの極限粘度は0.67dL/gであった。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these Examples.
Example 1
Polyester resin A composed of 100% by weight of ethylene terephthalate copolymer polyester copolymerized with 30% by mole of neopentyl glycol and 55% by weight of polyethylene terephthalate copolymer, 45% by weight of ethylene terephthalate copolymer polyester copolymerized with 30% by mole of neopentyl glycol Polyester resin B consisting of the above is melted at 285 ° C. by separate extruders, and this melt is joined by a composite adapter, extruded from a T die, and rapidly cooled by a cooling drum at 30 ° C. (B / A / B) 3 An unstretched sheet having a layer structure was obtained. Here, the intrinsic viscosity of the polyester resin A was 0.72 dL / g, and the intrinsic viscosity of the polyester resin B was 0.67 dL / g.

該シートをまず縦方向に90℃で3.7倍延伸し、ついでテンターにおいて横方向に4.0倍に延伸した後、3%の弛緩処理を行いつつ215℃にて熱処理を行い、厚さ18μmとなる二軸延伸ポリエステルフィルムを得た。このフィルムのB/A/B各層の厚み比率は1/2/1とした。   The sheet was first stretched 3.7 times in the longitudinal direction at 90 ° C., then stretched 4.0 times in the transverse direction in the tenter, and then heat treated at 215 ° C. while performing a 3% relaxation treatment. A biaxially stretched polyester film having a thickness of 18 μm was obtained. The thickness ratio of each layer of B / A / B of this film was 1/2/1.

(実施例2)
ポリエステル樹脂Aをポリエチレンテレフタレート35重量%、ネオペンチルグリコールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル65重量%の混合物、ポリエステル樹脂Bをポリエチレンテレフタレート70重量%、ネオペンチルグリコールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル30重量%の混合物とし、二軸延伸後の熱処理温度を225℃とした以外は実施例1と同様にして厚さ18μmとなる二軸延伸ポリエステルフィルムを得た。ポリエステル樹脂Aの極限粘度は0.69dL/g、ポリエステル樹脂Bの極限粘度は0.65dL/gであった。
(Example 2)
Polyester resin A 35% by weight polyethylene terephthalate and 30% by mole of neopentyl glycol copolymerized ethylene terephthalate copolymer 65% by weight polyester, polyester resin B 70% by weight polyethylene terephthalate and 30% by mole neopentyl glycol A biaxially stretched polyester film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that a mixture of 30% by weight of polymerized ethylene terephthalate copolymer polyester was used and the heat treatment temperature after biaxial stretching was 225 ° C. The intrinsic viscosity of the polyester resin A was 0.69 dL / g, and the intrinsic viscosity of the polyester resin B was 0.65 dL / g.

参考例1
ポリエステル樹脂Bをポリエチレンテレフタレート60重量%、ネオペンチルグリコールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル30重量%、ポリブチレンテレフタレート10重量%の混合物とし、二軸延伸後の熱処理温度を210℃とした以外は実施例2と同様にして厚さ18μmとなる二軸延伸ポリエステルフィルムを得た。ポリエステル樹脂Bの極限粘度は0.71dL/gであった。
( Reference Example 1 )
Polyester resin B is a mixture of 60% by weight of polyethylene terephthalate, 30% by weight of ethylene terephthalate copolymer polyester copolymerized with 30% by mole of neopentyl glycol, and 10% by weight of polybutylene terephthalate, and the heat treatment temperature after biaxial stretching is 210 ° C. A biaxially stretched polyester film having a thickness of 18 μm was obtained in the same manner as in Example 2 except that. The intrinsic viscosity of the polyester resin B was 0.71 dL / g.

(実施例
ポリエステル樹脂Aを1,4−シクロヘキサンジメタノールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル100重量%とし、ポリエステル樹脂Bをポリエチレンテレフタレート70重量%、1,4−シクロヘキサンジメタノールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル30重量%の混合物とし、二軸延伸後の熱処理温度を220℃とした以外は実施例1と同様にして厚さ18μmとなる二軸延伸ポリエステルフィルムを得た。ポリエステル樹脂Aの極限粘度は0.72dL/g、ポリエステル樹脂Bの極限粘度は0.65dL/gであった。
(Example 3 )
Polyester resin A is 100% by weight of ethylene terephthalate copolymer polyester copolymerized with 30% by mole of 1,4-cyclohexanedimethanol, polyester resin B is 70% by weight of polyethylene terephthalate, and 30% by mole of 1,4-cyclohexanedimethanol. A biaxially stretched polyester film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that a copolymer of 30% by weight of copolymerized ethylene terephthalate copolymer polyester was used and the heat treatment temperature after biaxial stretching was 220 ° C. . The intrinsic viscosity of the polyester resin A was 0.72 dL / g, and the intrinsic viscosity of the polyester resin B was 0.65 dL / g.

(参考例
ポリエステル樹脂Aをイソフタル酸を20モル%共重合したエチレンテレフタレート系共重合ポリエステル100重量%とし、ポリエステル樹脂Bをポリエチレンテレフタレート50重量%、イソフタル酸を20モル%共重合したエチレンテレフタレート系共重合ポリエステル50重量%とし、二軸延伸後の熱処理温度を200℃とした以外は実施例1と同様にして厚さ18μmとなる二軸延伸ポリエステルフィルムを得た。ポリエステル樹脂Aの極限粘度は0.64dL/g、ポリエステル樹脂Bの極限粘度は0.63dL/gであった。
(Reference Example 2 )
Ethylene terephthalate copolymer polyester 50 obtained by copolymerizing polyester resin A with 100% by weight of ethylene terephthalate copolymer polyester copolymerized with 20% by mole of isophthalic acid, polyester resin B with 50% by weight of polyethylene terephthalate, and 20% by mole of isophthalic acid. A biaxially stretched polyester film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that the weight was% and the heat treatment temperature after biaxial stretching was 200 ° C. The intrinsic viscosity of the polyester resin A was 0.64 dL / g, and the intrinsic viscosity of the polyester resin B was 0.63 dL / g.

(比較例1)
ポリエステル樹脂Bをポリエチレンテレフタレート90重量%、ネオペンチルグリコールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル10重量%の混合物とした以外は実施例2と同様にして厚さ18μmとなる二軸延伸ポリエステルフィルムを得た。ポリエステル樹脂Bの極限粘度は0.63dL/gであった。
(Comparative Example 1)
Biaxial stretching with a thickness of 18 μm in the same manner as in Example 2 except that the polyester resin B is a mixture of 90% by weight of polyethylene terephthalate and 10% by weight of ethylene terephthalate copolymer polyester copolymerized with 30% by mole of neopentyl glycol. A polyester film was obtained. The intrinsic viscosity of the polyester resin B was 0.63 dL / g.

(比較例2)
ポリエステル樹脂Aをポリエチレンテレフタレート20重量%、ネオペンチルグリコールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル80重量%の混合物とし、二軸延伸後の熱処理温度を190℃とした以外は実施例1と同様にして厚さ18μmとなる二軸延伸ポリエステルフィルムを得た。ポリエステル樹脂Aの極限粘度は0.70dL/gであった。
(Comparative Example 2)
Example 1 except that polyester resin A is a mixture of 20% by weight of polyethylene terephthalate and 80% by weight of ethylene terephthalate copolymer polyester copolymerized with 30% by mole of neopentyl glycol, and the heat treatment temperature after biaxial stretching is 190 ° C. In the same manner as above, a biaxially stretched polyester film having a thickness of 18 μm was obtained. The intrinsic viscosity of the polyester resin A was 0.70 dL / g.

(比較例3)
ポリエステル樹脂Aをポリエチレンテレフタレート70重量%、ネオペンチルグリコールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル30重量%の混合物、ポリエステル樹脂Bをポリエチレンテレフタレート80重量%、ネオペンチルグリコールを30モル%共重合したエチレンテレフタレート系共重合ポリエステル20重量%の混合物とし、二軸延伸後の熱処理温度を180℃とした以外は実施例1と同様にして厚さ18μmとなる二軸延伸ポリエステルフィルムを得た。ポリエステル樹脂Aの極限粘度は0.65dL/g、ポリエステル樹脂Bの極限粘度は0.64dL/gであった。
(Comparative Example 3)
Polyester resin A 70% by weight of polyethylene terephthalate and 30% by mole of neopentyl glycol copolymerized 30% by weight of ethylene terephthalate copolymer polyester, polyester resin B 80% by weight of polyethylene terephthalate and 30% by mole of neopentyl glycol A biaxially stretched polyester film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that a mixture of 20% by weight of polymerized ethylene terephthalate copolymer polyester was used and the heat treatment temperature after biaxial stretching was 180 ° C. The intrinsic viscosity of the polyester resin A was 0.65 dL / g, and the intrinsic viscosity of the polyester resin B was 0.64 dL / g.

(比較例4)
熱処理温度を170℃とした以外は参考例2と同様にして厚さ18μmとなる二軸延伸ポリエステルフィルムを得た。
(Comparative Example 4)
A biaxially stretched polyester film having a thickness of 18 μm was obtained in the same manner as in Reference Example 2 except that the heat treatment temperature was set to 170 ° C.

実施例1、2、3、参考例1、2及び比較例1、2、3、4で得られたフィルムの評価結果を表1に示す。表1から明らかなように、実施例1、2、3得られたフィルムはいずれもひねり保持性が良好であった。また、耐熱性も良好であった。本発明の二軸延伸ポリエステルフィルムは高品質で実用性が高く、ひねり包装や折曲げ包装用として好適である。 Table 1 shows the evaluation results of the films obtained in Examples 1, 2, and 3, Reference Examples 1 and 2, and Comparative Examples 1, 2, 3, and 4. As is clear from Table 1, the films obtained in Examples 1 , 2 , and 3 all had good twist retention. Moreover, heat resistance was also favorable. The biaxially stretched polyester film of the present invention has high quality and high practicality, and is suitable for twist packaging and folding packaging.

一方、比較例1、2、3、4で得られたフィルムはいずれもひねり保持性が劣る。また、比較例2、3は耐熱性も劣る。このように、比較例で得られた二軸延伸ポリエステルフィルムはいずれも品質が劣り、実用性が低いものであった。   On the other hand, all of the films obtained in Comparative Examples 1, 2, 3, and 4 have poor twist retention. Moreover, Comparative Examples 2 and 3 are also inferior in heat resistance. Thus, all the biaxially stretched polyester films obtained in the comparative examples were inferior in quality and low in practicality.

Figure 0004623265
Figure 0004623265

以上、本発明の二軸延伸ポリエステルフィルムについて、複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、各実施例に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As described above, the biaxially stretched polyester film of the present invention has been described based on a plurality of examples. However, the present invention is not limited to the configurations described in the above examples, and the configurations described in the respective examples are appropriately selected. The configuration can be changed as appropriate within a range not departing from the gist, such as a combination.

本発明の二軸延伸ポリエステルフィルムは、二軸延伸ポリエステルフィルムの優れた特性である耐熱性、保香性、耐水性等を失うことなく実用面の特性を維持し、良好なひねり保持性、折曲げ性を具備するため、キャンデー、チョコレート、お茶などの各食品や文具などの個包装用の材料等の幅広い用途分野に利用することができ、産業界に寄与することが大である。   The biaxially stretched polyester film of the present invention maintains practical characteristics without losing heat resistance, fragrance retention, water resistance, etc., which are excellent characteristics of the biaxially stretched polyester film, and has good twist retention and folding. Since it has bendability, it can be used in a wide range of application fields such as foods such as candy, chocolate, and tea, and individual packaging materials such as stationery, and contributes greatly to the industry.

Claims (4)

ポリエステル樹脂(A)層の少なくとも一方の面に、ポリエステル樹脂(B)層が積層されてなるポリエステル積層フィルムであって、ポリエステル樹脂(A)層及びポリエステル樹脂(B)層が、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール/ネオペンチルグリコールを共重合してなるポリエステル樹脂、あるいはジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール/1,4−シクロヘキサンジメタノールを共重合してなるポリエステル樹脂、又は前記ポリエステル樹脂のいずれかとポリエチレンテレフタレートとからなり、二軸延伸後のポリエステル積層フィルムをポリエステル樹脂(A)層の分子配向がなくなる温度以上、かつ、ポリエステル樹脂(B)層の融点未満の温度で熱処理することにより、ポリエステル樹脂(A)層が実質的に分子配向がなく、ポリエステル樹脂(B)層が分子配向を有し、かつ、ポリエステル積層フィルムの長手方向の屈折率Nx、幅方向の屈折率Nyが式|Nx−Ny|≦0.001を満たし、かつ、フィルムの長手方向の屈折率NxがNx≦1.577であり、フィルムの厚み方向の屈折率Nzが1.490≦Nz≦1.550であることを特徴とする包装用二軸延伸ポリエステルフィルム。 A polyester laminated film in which a polyester resin (B) layer is laminated on at least one surface of a polyester resin (A) layer, wherein the polyester resin (A) layer and the polyester resin (B) layer are used as a dicarboxylic acid component. terephthalic acid, ethylene glycol / neopentyl glycol copolymerized ing with polyester resin as the diol component or terephthalic acid as the dicarboxylic acid component, that Do by copolymerizing ethylene glycol / 1,4-cyclohexane dimethanol as the diol component Polyester resin or any one of the above polyester resins and polyethylene terephthalate, the polyester laminated film after biaxial stretching is at a temperature higher than the temperature at which the molecular orientation of the polyester resin (A) layer disappears, and less than the melting point of the polyester resin (B) layer of The polyester resin (A) layer has substantially no molecular orientation, the polyester resin (B) layer has molecular orientation, and the polyester laminated film has a refractive index Nx in the longitudinal direction and a width direction. The refractive index Ny of the film satisfies the formula | Nx−Ny | ≦ 0.001, the refractive index Nx in the longitudinal direction of the film is Nx ≦ 1.577, and the refractive index Nz in the thickness direction of the film is 1.490 ≦ A biaxially stretched polyester film for packaging, wherein Nz ≦ 1.550. ポリエステル樹脂(A)層が実質的に結晶性でないポリエステル樹脂から形成され、ポリエステル樹脂(B)層が200〜250℃の融点を持つポリエチレンテレフタレート共重合物から形成されてなることを特徴とする請求項1記載の包装用二軸延伸ポリエステルフィルム。   The polyester resin (A) layer is formed from a substantially non-crystalline polyester resin, and the polyester resin (B) layer is formed from a polyethylene terephthalate copolymer having a melting point of 200 to 250 ° C. Item 2. A biaxially stretched polyester film for packaging according to item 1. 150℃でのフィルム長手方向の熱収縮率が5.0%以下であることを特徴とする請求項1又は2記載の包装用二軸延伸ポリエステルフィルム。   The biaxially stretched polyester film for packaging according to claim 1 or 2, wherein the thermal shrinkage in the film longitudinal direction at 150 ° C is 5.0% or less. 請求項1、2又は3記載の包装用二軸延伸ポリエステルフィルムが、被包装物をひねり包装してなるものであることを特徴とするひねり包装体。   A twist packaging body, wherein the biaxially stretched polyester film for packaging according to claim 1, 2 or 3 is obtained by twist-wrapping an article to be packaged.
JP2004160184A 2004-05-28 2004-05-28 Biaxially stretched polyester film Active JP4623265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160184A JP4623265B2 (en) 2004-05-28 2004-05-28 Biaxially stretched polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160184A JP4623265B2 (en) 2004-05-28 2004-05-28 Biaxially stretched polyester film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008263721A Division JP2009035006A (en) 2008-10-10 2008-10-10 Biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JP2005335308A JP2005335308A (en) 2005-12-08
JP4623265B2 true JP4623265B2 (en) 2011-02-02

Family

ID=35489381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160184A Active JP4623265B2 (en) 2004-05-28 2004-05-28 Biaxially stretched polyester film

Country Status (1)

Country Link
JP (1) JP4623265B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652624B2 (en) 2007-11-14 2014-02-18 Dow Global Technologies Llc Articles and methods of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1044354A (en) * 1996-08-05 1998-02-17 Toyobo Co Ltd Polyester film, laminate metal plate, its manufacture and metal container
JP2002337290A (en) * 2001-05-16 2002-11-27 Toyobo Co Ltd Laminated polyester film
JP2003205967A (en) * 2002-01-17 2003-07-22 Unitika Ltd Upward wrapping packaged item
JP2003311827A (en) * 2002-04-24 2003-11-06 Toyobo Co Ltd Biaxially stretched polyester film
JP2003311828A (en) * 2002-04-24 2003-11-06 Toyobo Co Ltd Biaxially stretched polyester film for twist packaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1044354A (en) * 1996-08-05 1998-02-17 Toyobo Co Ltd Polyester film, laminate metal plate, its manufacture and metal container
JP2002337290A (en) * 2001-05-16 2002-11-27 Toyobo Co Ltd Laminated polyester film
JP2003205967A (en) * 2002-01-17 2003-07-22 Unitika Ltd Upward wrapping packaged item
JP2003311827A (en) * 2002-04-24 2003-11-06 Toyobo Co Ltd Biaxially stretched polyester film
JP2003311828A (en) * 2002-04-24 2003-11-06 Toyobo Co Ltd Biaxially stretched polyester film for twist packaging

Also Published As

Publication number Publication date
JP2005335308A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP7254730B2 (en) Copolyester raw materials for amorphous films, heat-shrinkable polyester films, heat-shrinkable labels, and packages
KR20160002852A (en) Polyester film for sealant use, laminate, and packaging bag
JP2007100102A (en) Biaxially oriented polyester film
WO2003031504A1 (en) Heat-shrinkable polyester film
JP2023178331A (en) Heat-shrinkable polyester film, heat-shrinkable label, and package
JP2018001422A (en) Laminated film, laminated body, and package
JP2001219522A (en) Polylactic acid laminated biaxially stretched film
JP2005335309A (en) Metal vapor deposition biaxially oriented polyester film
JP4623265B2 (en) Biaxially stretched polyester film
JP2004034451A (en) Method for manufacturing heat-shrinkable polyester film
JP4502118B2 (en) Easy-bending biaxially stretched polyester film
JP4484306B2 (en) Laminated polyester film
JP2009035006A (en) Biaxially oriented polyester film
JP4543743B2 (en) Biaxially stretched polylactic acid film and container for molding
JP4576886B2 (en) Laminated polyester film for folding packaging
JP2004181653A (en) Stretched polyester film with excellent torsional properties
JP2005096386A (en) Biaxially oriented polyester resin film for folding
US20070160818A1 (en) Biaxially stretched polyester film
WO2016002488A1 (en) Polyester film with fold retention, low shrinkage and excellent concealment properties
JP4604329B2 (en) Method for producing biaxially oriented polyester film
JP2005335311A (en) Metal deposition polyester film for bending packaging
JP2003313319A (en) Biaxially oriented polyester film
JP2004223835A (en) Heat-sealable polyester film
WO2021230207A1 (en) Copolyester raw material for films, heat-shrinkable polyester films, heat-shrinkable labels, and packages
JP3698249B2 (en) Biaxially oriented polyester film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R151 Written notification of patent or utility model registration

Ref document number: 4623265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350