WO2016002488A1 - Polyester film with fold retention, low shrinkage and excellent concealment properties - Google Patents

Polyester film with fold retention, low shrinkage and excellent concealment properties Download PDF

Info

Publication number
WO2016002488A1
WO2016002488A1 PCT/JP2015/067175 JP2015067175W WO2016002488A1 WO 2016002488 A1 WO2016002488 A1 WO 2016002488A1 JP 2015067175 W JP2015067175 W JP 2015067175W WO 2016002488 A1 WO2016002488 A1 WO 2016002488A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
temperature
polyester film
mol
Prior art date
Application number
PCT/JP2015/067175
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 石丸
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2015534700A priority Critical patent/JP6641999B2/en
Publication of WO2016002488A1 publication Critical patent/WO2016002488A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof

Definitions

  • paper Since paper has excellent folding retention properties, it is widely used for various types of wrapping paper, handbags, origami. However, paper is inferior in water resistance, and when it gets wet with rain or the like, tearing may occur or printing may be discolored. For this reason, plastic films have been studied as a substitute for paper.
  • Patent Document 1 a polyethylene terephthalate film capable of maintaining good folding retention by reducing the density of the film is disclosed.
  • the polyethylene terephthalate film of Patent Document 1 has a problem of high heat shrinkability. It is pointed out that if a bag using such a film is left in a midsummer car or in a warehouse without temperature control, the film shrinks and deforms and cannot be used. Further, in a processing step requiring high temperature such as printing on a film or adhesion by hot melt, there is a problem that processing cannot be performed due to shrinkage of the film.
  • an object of the present invention is to provide a polyester film having an excellent folding holding angle, extremely low heat shrinkability under a high temperature environment, and excellent contents concealment.
  • the present invention has the following configuration.
  • a polyester film comprising an amorphous polyester containing an ethylene terephthalate unit and satisfying the following requirements (1) to (3).
  • (1) About 40% elongation stress in the longitudinal and width directions of the film, the average value of the 40% elongation stress in the longitudinal direction and the 40% elongation stress in the width direction is 30 MPa or more and 90 MPa or less (2 ) When heated for 10 seconds in hot water at 80 ° C, the hot shrinkage in the longitudinal and width directions is -10% to 10%.
  • Total light transmittance is 20% to 50%.
  • the folding holding angle is 15 degrees or more and 45 degrees or less.
  • the polyester film as described in. 3. 1.
  • the melting start temperature in the DSC temperature rise profile is 100 ° C.
  • a method for continuously producing any polyester film wherein a melt-extruded, cooled and solidified unstretched sheet is stretched in a longitudinal direction and / or a width direction, and then a temperature of not less than the melting start temperature of the polyester and not more than 240 ° C.
  • a method for producing a polyester film characterized by heat-treating.
  • the polyester film of the present invention has excellent folding retention properties, low heat shrinkability under high temperature environment, excellent concealment of contents, and excellent water resistance, transparency and printability. Therefore, it can be suitably used for paper replacement applications such as origami, handbags, book covers, and wrapping paper.
  • the polyester composition used for the polyester film of the present invention has an ethylene terephthalate unit as a main constituent component.
  • the ethylene terephthalate unit is preferably 40 mol% or more, more preferably 50 mol% or more, and even more preferably 55 mol% or more in 100 mol% of the polyester constituting unit of the polyester composition.
  • the film strength and heat resistance are insufficient, which is not preferable.
  • dicarboxylic acid components constituting the polyester composition include aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, and An alicyclic dicarboxylic acid etc. can be mentioned.
  • aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid
  • aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid
  • An alicyclic dicarboxylic acid etc. can be mentioned.
  • diol components constituting the polyester composition include aliphatic diols such as 1,3-propanediol, 1,4-butanediol, neopentyl glycol and hexanediol, and alicyclic rings such as 1,4-cyclohexanedimethanol. And aromatic diols such as formula diol and bisphenol A.
  • a cyclic diol such as 1,4-cyclohexanedimethanol, or a diol having 3 to 6 carbon atoms (for example, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, hexane) Diol, etc.) and a polyester elastomer containing ⁇ -caprolactone, tetramethylene glycol, etc. can be used to lower the melting start temperature (details will be described later). Therefore, it is preferable to use at least one kind.
  • the polyester composition constituting the film is reduced.
  • the amount of the polyester elastomer is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, and most preferably 15 mol% or more.
  • the amount of the polyester elastomer is preferably 30 mol% or less, more preferably 25 mol% or less with respect to all the polyester units of the polyester composition constituting the film.
  • a foam material may be mixed and extruded, but a preferable method is to mix a polyester in a thermoplastic resin that is incompatible with the polyester, and at least uniaxially stretch to obtain a cavity.
  • the thermoplastic resin incompatible with the polyester used in the present invention is arbitrary, and is not particularly limited as long as it is incompatible with the polyester. Specific examples include polystyrene resins, polyolefin resins, polyacrylic resins, polycarbonate resins, polysulfone resins, and cellulose resins. In particular, a polystyrene resin or a polyolefin resin such as polymethylpentene or polypropylene is preferable because of the formation of cavities.
  • Polystyrene resin refers to a thermoplastic resin containing a polystyrene structure as a basic component, and grafted or block copolymerized with other components in addition to homopolymers such as atactic polystyrene, syndiotactic polystyrene, and isotactic polystyrene.
  • Modified resins such as impact-resistant polystyrene resins and modified polyphenylene ether resins, and mixtures of thermoplastic resins having compatibility with these polystyrene resins, such as polyphenylene ether, are included.
  • thermoplastic resin that is incompatible with the polyester of the present invention exists in various forms such as a spherical shape, an elliptic spherical shape, or a thread shape in the polyester.
  • various additives such as waxes, antioxidants, antistatic agents, crystal nucleating agents, viscosity reducing agents are added as necessary.
  • fine particles as a lubricant for improving the workability (slidability) of the film and fine particles as a concealing aid for reducing the total light transmittance.
  • the fine particles any one can be selected. For example, as inorganic fine particles, silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate, etc.
  • organic fine particles for example, acrylic resin Examples thereof include particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles.
  • the average particle diameter of the fine particles is in the range of 0.05 to 3.0 ⁇ m (when measured with a Coulter counter) and can be appropriately selected as necessary.
  • the fine particles as a lubricant are preferably contained in an amount of 50 ppm or more, more preferably 100 ppm or more based on the total weight of the film. However, if the content of the lubricant is too large, the film surface unevenness may become large. Therefore, it is preferably set to 3000 ppm or less, more preferably 1000 ppm or less.
  • a method of blending the above particles into the resin forming the polyester film for example, it can be added at any stage of producing the polyester resin. It is preferable to add as a slurry dispersed in ethylene glycol or the like at the stage before the start of the reaction to advance the polycondensation reaction. Also, a method of blending a slurry of particles dispersed in ethylene glycol or water using a vented kneading extruder and a polyester resin raw material, or a dried particle and a polyester resin raw material using a kneading extruder It is also preferable to carry out by blending method.
  • the film in the present invention is preferably provided with a layer B that does not contain cavities on at least one side of the layer A that contains many cavities inside. By doing so, the roughness of the surface is reduced, and the film does not impair the aesthetic appearance when printed. In addition, since there are portions where there are not many cavities in the film, the strength of the film is not significantly impaired.
  • a particularly preferable laminated structure is a B / A / B type two-type three-layer structure.
  • the ratio of the incompatible resin in the layer A is 0% or more and 20% or less by weight. 0% indicates that no incompatible resin is contained. In this case, the concealability is exhibited by adding fine particles as a concealing aid that reduces the total light transmittance described above. Further, if the incompatible resin is contained in an amount of 20% or more, the void content in the A layer is increased, and the physical strength of the film is lowered, which is not preferable. More preferably, it is 5% or more and 15% or less.
  • inorganic particles such as titanium dioxide, calcium carbonate and barium sulfate together.
  • the amount of these inorganic particles in the A layer is 2 to 25% by weight, preferably 5 to 22% by weight from the viewpoint of concealability.
  • the added amount of the inorganic particles is less than 2% by weight, the concealability is insufficient, which is not preferable.
  • the added amount of inorganic particles is more than 22% by weight, film formation becomes unstable and breakage frequently occurs, which is not preferable.
  • fine particles as fine particles as a lubricant for improving the slipperiness of the film.
  • the fine particles as the lubricant inorganic particles such as silica, alumina, titanium dioxide, calcium carbonate, kaolin, and barium sulfate can be used.
  • the amount of the inorganic particles is preferably 50 ppm or more, more preferably 100 ppm or more based on the weight of the B layer film.
  • it is preferably set to 3000 ppm or less, more preferably 1000 ppm or less.
  • polyester film of the present invention can be subjected to corona treatment, coating treatment, flame treatment or the like in order to improve the adhesion of the film surface.
  • the plastic deformation strain on the crease peak side varies depending on the thickness of the film and the degree of folding, but is considered to be within 20% to 60%.
  • this average value of 40% is defined as plastic deformation strain, it is considered that the higher the stress at 40% elongation (deformation), the greater the restoring force when the film is folded, that is, the repulsion, and the lower the folding property.
  • the stress at 40% elongation is low, it is considered that the film easily yields, that is, is easy to be creased.
  • the stress at 40% elongation is a value read from the point that the horizontal axis strain is 40% in the stress-strain curve obtained from the tensile test shown in FIG.
  • the polyester composition constituting the film is preferably an amorphous polyester, and in 100 mol% of the polyhydric alcohol component in the polyester or
  • the total of at least one monomer component that can be an amorphous component in 100 mol% of the polyvalent carboxylic acid component is 13 mol% or more, preferably 14 mol% or more, more preferably 15 mol% or more, particularly preferably 16 mol. % Or more.
  • the upper limit of the total of the monomer components that can be an amorphous component is not particularly limited, but the upper limit is preferably 30 mol%.
  • the stress at 40% elongation is further reduced. More preferable. Further, in the final heat treatment step in the film forming step described later, it is necessary to heat at a temperature not lower than the melting start temperature of the polyester resin and not higher than 240 ° C. Through this heat treatment step, the molecular orientation of the film is partially collapsed, and the stress at 40% elongation can be reduced.
  • the monomer that can be an amorphous component include neopentyl glycol, 1,4-cyclohexanedimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,3-propanediol. 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di- Examples thereof include n-butyl-1,3-propanediol and hexanediol.
  • cyclic diols such as 1,4-cyclohexanedimethanol, diols having 3 to 6 carbon atoms (for example, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, hexanediol, etc.),
  • a polyester elastomer containing ⁇ -caprolactone, tetramethylene glycol, or the like the melting start temperature can be lowered. Therefore, it is preferable to use at least one kind.
  • the polyester composition constituting the film is reduced.
  • the content is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, and most preferably 15 mol% or more.
  • the ethylene terephthalate unit responsible for physical strength is relatively reduced, and the film strength, heat resistance, etc. may be insufficient. Since it arises, it is preferable to set it as 30 mol% or less with respect to all the polyester units of the polyester composition which comprises a film, More preferably, it is 25 mol% or less.
  • the polyester film of the present invention preferably has a hot water heat shrinkage in the width direction and the longitudinal direction of not less than -10% and not more than 10% when treated in hot water at 80 ° C. for 10 seconds. If it exceeds 10%, the film shrinks and deforms in a high temperature environment such as in a midsummer car or in a warehouse without temperature control, which is not preferable.
  • the upper limit of hot water heat shrinkage is more preferably 9% or less, and even more preferably 8% or less.
  • the hot water heat shrinkage rate is less than -10%, it is difficult to maintain the original shape of the film as in the case where the shrinkage rate is high.
  • the lower limit value of the hot water heat shrinkage is more preferably ⁇ 7% or more, and further preferably ⁇ 4% or more.
  • heat treatment should be performed at a temperature not lower than the melting start temperature of the polyester resin and not higher than 240 ° C in the final heat treatment step in the film forming step described later. Is preferred.
  • the shrinkage rate exceeds 10%, which is not preferable.
  • the content of the monomer that can be an amorphous component is preferably 30 mol% or less, more preferably 25 mol% or less, based on all the polyester units of the polyester composition constituting the film. If it exceeds 30 mol%, the shrinkage rate becomes too high even in a heat treatment at a temperature higher than the melting start temperature.
  • the total light transmittance of the polyester film of the present invention must be 20% or more and 50% or less. If the total light transmittance is 50% or more, the concealability of the film is inferior, and an object to be packaged can be seen when used as a packaging material.
  • the total light transmittance of the film is preferably less than 20%, but in the present invention, 20% was the limit, so 20% was made the lower limit.
  • the polyester film of the present invention preferably has a folding holding angle of 15 degrees or more and 45 degrees or less measured by a method described later (FIG. 2). When it is 50 degrees or less, the crease opens when folded with origami or packaging, and a beautiful aesthetic appearance can be obtained.
  • the folding holding angle is more preferably 40 degrees or less, and further preferably 35 degrees or less. Further, the smaller the folding holding angle, the better.
  • the range of the present invention is 15 degrees as a lower limit, and even if it is 20 degrees or more, it can be said that it is practically preferable.
  • the total of at least one monomer component that can be an amorphous component as described above is 13 mol% or more, preferably 14 mol% or more.
  • the polyester resin is preferably used in an amount of 15 mol% or more, particularly preferably 16 mol% or more, and in the final heat treatment step during the film forming step, heat treatment is performed at a temperature not lower than the melting start temperature of the polyester resin and not higher than 240 ° C. It is preferable. Under these conditions, the stress at 40% elongation can be adjusted from 30 MPa to 90 MPa, and the folding angle can be adjusted from 15 degrees to 45 degrees.
  • the thickness of the film is preferably 3 ⁇ m or more and 200 ⁇ m or less. If the thickness of the film is less than 3 ⁇ m, processing such as printing may become difficult. On the other hand, when the film thickness is greater than 200 ⁇ m, the film is not foldable, and the weight of the film used increases and the cost increases, which is not preferable.
  • the thickness of the film is more preferably 5 ⁇ m or more and 190 m or less, and further preferably 7 ⁇ m or more and 180 ⁇ m or less.
  • the thickness ratio of the A layer in the entire film is determined by the amount of thermoplastic resin and inorganic particles that are incompatible with polyester, but from the viewpoint of maintaining the strength of the film and concealing properties, it is 20% to 80% of the total film thickness. Is preferably 25% or more and 75% or less, and more preferably 30% or more and 70% or less.
  • the thickness of the A layer is less than 20% of the total thickness of the film, the amount of thermoplastic resin and inorganic particles that are incompatible with the polyester that needs to be added to the A layer becomes large, and film formation becomes difficult.
  • the thickness of the A layer is larger than 80%, the thickness of the B layer is relatively decreased and the film strength is decreased, which is not preferable.
  • the polyester-based film of the present invention described above is obtained by melting and extruding the above-described polyester raw material with an extruder to form an unstretched film, and then stretching the unstretched film uniaxially or biaxially by a predetermined method shown below. Further, it can be obtained by heat treatment.
  • the polyester can be obtained by polycondensing the above-described preferred dicarboxylic acid component and diol component by a known method. In general, it is preferable to use two or more kinds of chip-like polyester as a raw material for the film.
  • the polyester raw material is preferably dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in such a manner, it is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder. In extruding, any existing method such as a T-die method or a tubular method can be employed.
  • an unstretched film can be obtained by quenching the extruded sheet-like molten resin.
  • a method of rapidly cooling the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and rapidly solidifying it can be suitably employed.
  • the film stretching direction may be either the film longitudinal (longitudinal) direction or the lateral (width) direction.
  • longitudinal stretching-lateral stretching method in which longitudinal stretching is performed first and then lateral stretching will be described.
  • transverse stretching-longitudinal stretching in which the order is reversed, only the main orientation direction is changed. I do not care.
  • stretching direction is only a vertical direction or only a horizontal direction, as long as it does not deviate from the structural requirements of this invention, it does not matter.
  • the substantially unoriented film is preferably stretched longitudinally at a temperature of Tg or more and Tg + 30 ° C. or less so as to have a magnification of 3.0 to 4.5 times.
  • Tg or more and Tg + 30 ° C. or less so as to have a magnification of 3.0 to 4.5 times.
  • a preferable upper limit of the longitudinal draw ratio is 4.5 times or less, and more preferably 4.4 times or less. It is also possible to control the specific gravity by relaxing the film in the longitudinal direction after the longitudinal stretching.
  • Relaxing is performed by relaxing the film at an arbitrary magnification in the longitudinal direction by heating the film after longitudinal stretching at a temperature of Tg or more and Tg + 90 ° C or less, and using means such as using a speed difference between rolls.
  • the heating means any of a roll, a near infrared ray, a far infrared ray, a hot air heater and the like can be used.
  • the longitudinal draw ratio is lower than 3.0 times, the thickness unevenness in the longitudinal direction of the film may be deteriorated, which causes a problem such as winding deviation when the film is wound as a roll.
  • it can be controlled by performing relaxation after performing longitudinal stretching at 3.0 times or more.
  • the preferable lower limit of the longitudinal draw ratio is 3.2 times or more, and more preferably 3.4 times or more. As described above, if the transverse stretching is performed, the longitudinal stretching may not be performed.
  • stretching in the transverse direction is performed.
  • the stretching in the transverse direction is preferably performed at a temperature of Tg or more and Tg + 30 ° C. or less at a temperature of about 3.5 to 5.0 times in a state where both ends in the film width direction are held by clips in the tenter.
  • preheating is preferably performed at a temperature of Tg-10 ° C. or higher and Tg + 50 ° C. or lower.
  • the heat treatment temperature is preferably equal to or higher than the melting start temperature obtained from the DSC temperature rise profile of the polyester resin used as a raw material.
  • a relaxation process for reducing the distance between the clips in the lateral direction may be performed at an arbitrary magnification.
  • the crystal orientation of the film produced by stretching can be partially collapsed to adjust the stress at 40% elongation, and has the effect of reducing the folding angle.
  • the heat treatment at the melting start temperature or higher can also collapse the amorphous orientation of the film produced by stretching, thereby reducing shrinkage.
  • the heat treatment temperature is lower than the melting start temperature, heat treatment is performed in the region where the film crystallizes, and the shrinkage of the film decreases, but the folding holding angle increases, which is not preferable.
  • the heat treatment temperature exceeds 240 ° C., the amorphous polyester resin is used in the present invention, so that the shrinkage of the film is increased during the heat treatment.
  • the thickness unevenness of the film during film formation deteriorates, and further overheating is not preferable because the film completely melts and breaks.
  • the evaluation method of the film is as follows.
  • the longitudinal direction and the width direction cannot be specified immediately because the film area is small, the longitudinal direction and the width direction may be determined. Even if the longitudinal direction and the width direction are wrong by 90 degrees, there is no particular problem.
  • the measurement in the longitudinal direction was carried out by changing the measurement in the width direction and the preparation direction of the sample piece by 90 degrees.
  • the stress was set to 0 MPa.
  • the average value of stress obtained from each of the width direction and the longitudinal direction was used as the stress at 40% strain.
  • Total light transmittance Based on JIS-K-7136, it measured using a haze meter (Nippon Denshoku Industries Co., Ltd., 300A). The measurement was performed twice and the average value was obtained.
  • Glass transition point (Tg) It calculated
  • Polyester 1 contains 1% by-product diethylene glycol (DEG). The composition is shown in Table 1.
  • polyesters 2 to 5 shown in Table 1 were obtained.
  • TPA is terephthalic acid
  • IPA isophthalic acid
  • EG is ethylene glycol
  • BD is 1,4-butanediol
  • NPG is neopentyl glycol
  • ⁇ -CL is ⁇ -caprolactone.
  • the intrinsic viscosities of the respective polyesters were as follows: Polyester 2: 0.73 dL / g, Polyester 3: 0.80 dL / g, Polyester 4: 1.20 dL / g, Polyester 5: 0.78 dL / g. Each polyester was appropriately formed into a chip shape.
  • Example 1 Polyester 1, Polyester 2, and Polyester 3 are mixed at a weight ratio of 10:80:10, and SiO 2 (Silicia 266 manufactured by Fuji Silysia) is added as a lubricant to a concentration of 50 ppm with respect to the polyester mixture.
  • the raw material for layer A is polyester 1, polyester 2 and polyester 3 mixed at a weight ratio of 10:80:10, and polystyrene resin (G797N manufactured by Nippon Polystyrene) 10% by weight and titanium dioxide (TA-300 manufactured by Fuji Titanium) 10 wt% was added and mixed.
  • the raw materials of layer A and layer B are put into separate twin screw extruders, mixed, melted, and joined by a feed block, melt extruded at 280 ° C from a T-die, and cooled to a surface temperature of 30 ° C.
  • the 240 ⁇ m-thick unstretched film obtained as described above was guided to a longitudinal stretching machine in which a plurality of roll groups were continuously arranged, and stretched in the longitudinal direction using the difference in the rotational speed of the rolls.
  • the film after longitudinal stretching is preheated until the surface temperature of the film reaches 100 ° C. with the clips held at both ends in the width direction in the tenter, and then in the transverse direction at 90 ° C. Stretched 4.0 times.
  • the laterally stretched film was guided to a heat treatment zone in the tenter with both ends in the width direction held by clips, and cooled in the heat treatment zone at a temperature of 200 ° C. for 10 seconds.
  • the obtained biaxially stretched film was a film having a low folding angle, hot water shrinkage, and total light transmittance, and was very preferable overall.
  • Example 3 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinal stretching and lateral stretching were performed in the same manner as in Example 1.
  • a biaxially stretched film having a thickness of about 20 ⁇ m was continuously produced over a predetermined length by forming a film under the same conditions as in Example 1 except that the film after transverse stretching was heat-treated at 180 ° C.
  • the evaluation results are shown in Table 2.
  • a good film was obtained as in Example 1.
  • Example 4 In Example 1, heat shrinkage was carried out in the same manner as in Example 1 except that 10% by weight of the polystyrene resin added to the raw material of the A layer was changed to 10% by weight of crystalline polypropylene resin (FO-50F ground polymer). Film was continuously produced. And the characteristic of the obtained film was evaluated by the same method as Example 1. The evaluation results are shown in Table 2. A good film was obtained as in Example 1.
  • Example 5 the heat-shrinkable film was continuously formed in the same manner as in Example 1 except that the polyester 3 was used as the raw material polyester 3 for the A layer and B layer to be fed into the extruder and the weight ratio was the same as in Example 1. Manufactured. And the characteristic of the obtained film was evaluated by the same method as Example 1. The evaluation results are shown in Table 2. A good film was obtained as in Example 1.
  • Example 6 Polyester 1, Polyester 2, Polyester 3, and Polyester 5 are mixed at a weight ratio of 20: 50: 10: 20, and SiO 2 (Silicia 266 manufactured by Fuji Silysia) as a lubricant is 50 ppm with respect to the polyester mixture.
  • the raw material resin for layer A is polyester 1, polyester 2, polyester 3, and polyester 5 mixed at a weight ratio of 20: 50: 10: 20, 10% by weight of polystyrene resin (G797N made by Nippon Polystyrene) and titanium dioxide (TA- (300 Fuji Titanium) 10% by weight was added and mixed. Thereafter, a film was continuously produced by the same method as in Example 1. And the characteristic of the obtained film was evaluated by the same method as Example 1. The evaluation results are shown in Table 2. A good film was obtained as in Example 1.
  • Example 7 The above polyester 1, polyester 2, and polyester 3 are mixed at a weight ratio of 30:60:10, and SiO2 (Silicia 266 manufactured by Fuji Silysia) as a lubricant is added so as to be 50 ppm with respect to the polyester mixture.
  • the raw material resin for layer A is polyester 1, polyester 2 and polyester 3 mixed at a weight ratio of 30:60:10.
  • Polystyrene resin G797N made by Nippon Polystyrene
  • titanium dioxide TA-300 made by Fuji Titanium
  • the unstretched film having a thickness of 180 ⁇ m obtained as described above was longitudinally stretched in the same manner as in Example 1 except that the stretching temperature was 94 ° C. and the stretching ratio was 3.0 times. Thereafter, transverse stretching was performed in the same manner as in Example 1 except that the preheating temperature and the stretching temperature were 100 ° C. and the stretching ratio was 3.0 times.
  • the temperature of the subsequent heat treatment zone was set to room temperature, and the zone was passed through without being subjected to the heat treatment. Thereafter, both edges were cut and removed and wound into a roll having a width of 400 mm, whereby a biaxially stretched film of about 20 ⁇ m was continuously produced over a predetermined length.
  • the properties of the obtained film were evaluated by the method described above. The evaluation results are shown in Table 2.
  • the obtained biaxially stretched film had high hot water shrinkage and total light transmittance, and an unfavorable film for the present invention was obtained.
  • SiO 2 (Silicia 266 manufactured by Fuji Silysia) as a lubricant was added to the above polyester 1 so as to be 50 ppm with respect to the polyester mixture, and used as a raw material for the B layer.
  • the raw material for layer A was polyester 1 and 20% by weight of polystyrene resin (G797N manufactured by Nippon Polystyrene) and 20% by weight of titanium dioxide (TA-300 manufactured by Fuji Titanium).
  • the film after longitudinal stretching was stretched in the same manner as in Example 1 except that the preheating temperature and stretching temperature were 135 ° C. and the stretching ratio was 3.5 times.
  • the film after transverse stretching was subjected to heat treatment and cooling in the same manner as in Example 1 except that the heat treatment temperature was 220 ° C.
  • both edges were cut and removed and wound into a roll having a width of 400 mm, whereby a biaxially stretched film of about 20 ⁇ m was continuously produced over a predetermined length.
  • the properties of the obtained film were evaluated by the method described above. The evaluation results are shown in Table 2. Since the obtained biaxially stretched film could not be measured because the film was cracked when evaluating the folding angle, an unfavorable film was obtained as the present invention.
  • Example 3 The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinal stretching and lateral stretching were performed in the same manner as in Example 1.
  • a biaxially stretched film of about 20 ⁇ m was continuously produced over a predetermined length by forming a film under the same conditions as in Example 1 except that the film after transverse stretching was heat-treated at 120 ° C.
  • the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 2.
  • the obtained film had a high hot water shrinkage rate, and an unfavorable film was obtained in the present invention.
  • the polyester film of the present invention has excellent folding retention properties, low heat shrinkability under high temperature environment, excellent concealment of contents, and excellent water resistance, transparency and printability. Therefore, it can be suitably used for paper replacement applications such as origami, handbags, book covers, and wrapping paper.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a polyester film, which has a superior fold retention angle, for which thermal shrinkage in high temperature environments is very low, and which has excellent content concealment properties. The present invention is a polyester film characterized in being obtained from non-crystalline polyester containing ethylene terephthalate units and in satisfying conditions (1) through (3) below. (1) With regard to stress at 40% elongation in respective tension tests in the longitudinal and width directions of the film, the mean values for the stress at 40% elongation for the longitudinal direction and the stress at 40% elongation for the width direction are 30 MPa - 90 MPa. (2) The hot water thermal shrinkage ratios in the longitudinal and width directions when treated for 10 seconds in hot water of 80°C were both -10% - 10%. (3) The total light transmittance is 20% - 50%.

Description

折畳み保持性、低収縮性及び隠蔽性に優れたポリエステルフィルムPolyester film with excellent folding retention, low shrinkage and hiding
 本発明は包装紙、手提げ袋、折り紙等として使用可能な折畳み保持性に優れたポリエステルフィルムに関するものであり、耐水性、隠蔽性、高温環境下での低収縮性に優れたポリエステルフィルムに関する。 The present invention relates to a polyester film excellent in folding retention that can be used as wrapping paper, handbags, origami, etc., and relates to a polyester film excellent in water resistance, concealment, and low shrinkage in a high temperature environment.
 紙は優れた折畳み保持性を有することにより、各種包装紙、手提げ袋、折り紙等、幅広く使用されている。しかし、紙は耐水性に劣り、雨等で濡れた場合に破れが生じたり印刷が変色したりすることがある。そのため、紙の代替としてプラスチックフィルムが過去より検討されてきた。 Since paper has excellent folding retention properties, it is widely used for various types of wrapping paper, handbags, origami. However, paper is inferior in water resistance, and when it gets wet with rain or the like, tearing may occur or printing may be discolored. For this reason, plastic films have been studied as a substitute for paper.
 紙の代替となりうる折畳み保持性の優れたフィルムとして、過去には透明性のあるセロハンが使用されてきた。しかしながら、セロハンは吸湿性を有するため特性が季節により変動し、製品の品質を一定に維持しながら供給することが困難であり、かつ厚みの不均一性に起因する加工性の悪さが欠点とされてきた。 In the past, transparent cellophane has been used as a film with excellent folding retention that can replace paper. However, since cellophane has hygroscopic properties, its characteristics vary depending on the season, it is difficult to supply while maintaining the product quality constant, and the poor workability due to uneven thickness is a disadvantage. I came.
 一方、ポリエチレンテレフタレートフィルムは強靱性、耐水性、透明性等の優れた特性の良さがある反面、折畳み保持性が劣るという欠点があった。 On the other hand, the polyethylene terephthalate film has excellent properties such as toughness, water resistance, and transparency, but has a drawback of poor folding retention.
 かかる欠点を解消する方法として、フィルムの密度を低減させることで折り畳み保持性を良好に保つことの出来るポリエチレンテレフタレートフィルムが開示されている(特許文献1)。 As a method for eliminating such drawbacks, a polyethylene terephthalate film capable of maintaining good folding retention by reducing the density of the film is disclosed (Patent Document 1).
 しかしながら、特許文献1のポリエチレンテレフタレートフィルムは、熱収縮性が大きいことが課題として挙げられる。このようなフィルムを用いた袋等を真夏の車中や温調管理の無い倉庫内等に放置しておくと、フィルムが収縮・変形して使用できなくなる点が指摘される。また、フィルムへの印刷やホットメルトによる接着等、高温を要する加工工程においては、フィルムの収縮によって加工できなくなる問題もあった。 However, the polyethylene terephthalate film of Patent Document 1 has a problem of high heat shrinkability. It is pointed out that if a bag using such a film is left in a midsummer car or in a warehouse without temperature control, the film shrinks and deforms and cannot be used. Further, in a processing step requiring high temperature such as printing on a film or adhesion by hot melt, there is a problem that processing cannot be performed due to shrinkage of the film.
 さらに、特許文献1のポリエチレンテレフタレートフィルムは透明であるため、中身の隠蔽性に欠けるという問題があった。かかる問題を解決するため、ポリエステルフィルム中に微細な空洞を発現させることにより隠蔽性を向上させたポリエステルフィルムが提案されている(特許文献2)。このようなフィルムはフィルムの隠蔽性に優れ、さらに低収縮性にも優れているが、折り畳み保持性には欠けるという欠点があった。 Furthermore, since the polyethylene terephthalate film of Patent Document 1 is transparent, there is a problem that it lacks the concealability of the contents. In order to solve such a problem, there has been proposed a polyester film having improved concealability by expressing fine cavities in the polyester film (Patent Document 2). Such a film has excellent film concealability and excellent low shrinkage, but has a drawback of lacking folding retention.
特許第4308662号公報Japanese Patent No. 4308862 特許第3080190号公報Japanese Patent No. 3080190
 本発明は前記従来技術の問題点を解消することを目的とするものである。即ち、優れた折畳み保持角度を有し、高温環境下での熱収縮性が極めて小さく、中身の隠蔽性に優れたポリエステルフィルムを提供しようとするものである。 The present invention aims to solve the problems of the prior art. That is, an object of the present invention is to provide a polyester film having an excellent folding holding angle, extremely low heat shrinkability under a high temperature environment, and excellent contents concealment.
 本発明は以下の構成よりなる。
1.エチレンテレフタレートユニットを含む非晶性ポリエステルからなり、下記要件(1)から(3)を満たすことを特徴とするポリエステルフィルム。
(1)フィルムの長手方向と幅方向の各々の引張り試験による40%伸張時応力について、長手方向の40%伸張時応力と幅方向の40%伸張時応力の平均値が30MPa以上90MPa以下
(2)80℃の温湯中で10秒間に亘って処理した場合における長手方向及び幅方向の温湯熱収縮率がいずれも-10%以上10%以下
(3)全光線透過率が20%以上50%以下
2.折畳み保持角度が15度以上45度以下であることを特徴とする上記1.に記載のポリエステルフィルム。
3.DSC昇温プロファイルにおける融解開始温度が100℃以上220℃以下であることを特徴とする上記1.又は2.に記載のポリエステルフィルム。
4.上記1.から3.いずれかのポリエステルフィルムを連続的に製造する方法であって、溶融押出され、冷却固化された未延伸シートを長手方向及び/又は幅方向に延伸後、ポリエステルの融解開始温度以上240℃以下の温度で熱処理することを特徴とするポリエステルフィルムの製造方法。
The present invention has the following configuration.
1. A polyester film comprising an amorphous polyester containing an ethylene terephthalate unit and satisfying the following requirements (1) to (3).
(1) About 40% elongation stress in the longitudinal and width directions of the film, the average value of the 40% elongation stress in the longitudinal direction and the 40% elongation stress in the width direction is 30 MPa or more and 90 MPa or less (2 ) When heated for 10 seconds in hot water at 80 ° C, the hot shrinkage in the longitudinal and width directions is -10% to 10%. (3) Total light transmittance is 20% to 50%. 2. 1. The folding holding angle is 15 degrees or more and 45 degrees or less. The polyester film as described in.
3. 1. The melting start temperature in the DSC temperature rise profile is 100 ° C. or higher and 220 ° C. or lower. Or 2. The polyester film as described in.
4). Above 1. To 3. A method for continuously producing any polyester film, wherein a melt-extruded, cooled and solidified unstretched sheet is stretched in a longitudinal direction and / or a width direction, and then a temperature of not less than the melting start temperature of the polyester and not more than 240 ° C. A method for producing a polyester film, characterized by heat-treating.
 本発明のポリエステルフィルムは、優れた折り畳み保持性を有しているうえ、高温環境下での熱収縮性が小さく、中身の隠蔽性に優れ、さらに耐水性、透明性、印刷適性にも優れているため、折り紙、手提げ袋、本のカバー、包装紙等の紙代替用途に好適に使用することが可能である。 The polyester film of the present invention has excellent folding retention properties, low heat shrinkability under high temperature environment, excellent concealment of contents, and excellent water resistance, transparency and printability. Therefore, it can be suitably used for paper replacement applications such as origami, handbags, book covers, and wrapping paper.
40%伸張時応力を評価するための引張り試験における応力-ひずみ曲線の一例である。It is an example of the stress-strain curve in the tension test for evaluating the stress at 40% elongation.
折り畳み保持角度の測定方法の模式図である。It is a schematic diagram of the measuring method of a folding holding angle.
融解開始温度を評価するためのDSCプロファイルの一例である。It is an example of a DSC profile for evaluating the melting start temperature.
 本発明のポリエステルフィルムは、折り紙、紙製の手提げ袋、本のカバー、包装紙等の折畳み保持性が必要とされる紙の代替用途に使用することが可能なフィルムである。印刷はされていても、されていなくても構わない。また、他に折畳み保持性が優れたフィルムとラミネートして積層させて使用しても構わない。以下、ポリエステルフィルムについて説明する。 The polyester film of the present invention is a film that can be used for alternative uses of paper that requires folding retention, such as origami, paper handbags, book covers, and wrapping paper. Printing may or may not be performed. In addition, it may be used by laminating and laminating with a film having excellent folding retention. Hereinafter, the polyester film will be described.
 本発明のポリエステルフィルムに用いるポリエステル組成物は、エチレンテレフタレートユニットを主たる構成成分として有するものである。エチレンテレフタレートユニットは、ポリエステル組成物のポリエステル構成ユニット100モル%中、40モル%以上が好ましく、50モル%以上がより好ましく、55モル%以上がさらに好ましい。フィルムを構成するポリエステル組成物の全ポリエステルユニットに対し、エチレンテレフタレートユニットが40モル%より少ない場合、フィルム強度や耐熱性等が不十分となるため好ましくない。ポリエステル組成物を構成する他のジカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸等を挙げることができる。 The polyester composition used for the polyester film of the present invention has an ethylene terephthalate unit as a main constituent component. The ethylene terephthalate unit is preferably 40 mol% or more, more preferably 50 mol% or more, and even more preferably 55 mol% or more in 100 mol% of the polyester constituting unit of the polyester composition. When the ethylene terephthalate unit is less than 40 mol% with respect to all the polyester units of the polyester composition constituting the film, the film strength and heat resistance are insufficient, which is not preferable. Other dicarboxylic acid components constituting the polyester composition include aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, and An alicyclic dicarboxylic acid etc. can be mentioned.
 ポリエステル組成物を構成する他のジオール成分としては、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等の脂肪族ジオール、1,4-シクロヘキサンジメタノール等の脂環式ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。 Other diol components constituting the polyester composition include aliphatic diols such as 1,3-propanediol, 1,4-butanediol, neopentyl glycol and hexanediol, and alicyclic rings such as 1,4-cyclohexanedimethanol. And aromatic diols such as formula diol and bisphenol A.
 また、フィルムを構成しているポリエステル組成物は非晶性ポリエステルであり、ポリエステル中における多価アルコール成分100モル%中あるいは多価カルボン酸成分100モル%中の非晶質成分となり得る1種以上のモノマー成分の合計が13モル%以上、好ましくは14モル%以上、より好ましくは15モル%以上、特に好ましくは16モル%以上である。また非晶質成分となり得るモノマー成分の合計の上限は特に限定されないが、上限は30モル%が好ましい。 Further, the polyester composition constituting the film is an amorphous polyester, and one or more kinds that can be an amorphous component in 100 mol% of a polyhydric alcohol component or 100 mol% of a polyvalent carboxylic acid component in the polyester. The total of the monomer components is 13 mol% or more, preferably 14 mol% or more, more preferably 15 mol% or more, and particularly preferably 16 mol% or more. Further, the upper limit of the total of the monomer components that can be an amorphous component is not particularly limited, but the upper limit is preferably 30 mol%.
 本発明において、非晶質成分となり得るモノマーの具体例としては、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオールを挙げることができる。これらの中でも、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸が好ましい。 In the present invention, specific examples of the monomer that can be an amorphous component include neopentyl glycol, 1,4-cyclohexanedimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1, 3-propanediol, 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-isopropyl-1,3-propanediol, 2, Examples include 2-di-n-butyl-1,3-propanediol and hexanediol. Among these, neopentyl glycol, 1,4-cyclohexanedimethanol and isophthalic acid are preferable.
 また本発明においては、1,4-シクロヘキサンジメタノール等の環状ジオールや、炭素数3~6個を有するジオール(例えば、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等)、ε-カプロラクトンやテトラメチレングリコール等を含むポリエステルエラストマーを含有させることにより、融解開始温度を低下させることができるため(詳細は後述)、少なくとも1種以上使用することが好ましい。 In the present invention, a cyclic diol such as 1,4-cyclohexanedimethanol, or a diol having 3 to 6 carbon atoms (for example, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, hexane) Diol, etc.) and a polyester elastomer containing ε-caprolactone, tetramethylene glycol, etc. can be used to lower the melting start temperature (details will be described later). Therefore, it is preferable to use at least one kind.
 例えば、1,3-プロパンジオール、1,4-ブタンジオール、ε-カプロラクトンやテトラメチレングリコール等を含むポリエステルエラストマーを含ませて融解開始温度を低下させる場合、フィルムを構成するポリエステル組成物に対して、ポリエステルエラストマー量は1モル%以上含有されていることが好ましく、より好ましくは5モル%以上、更に好ましくは10モル%以上、最も好ましくは15モル%以上含有されていることが好ましい。但し、あまりにも多くの前記の融解開始温度を低下させるエラストマー成分が含有されていると、物理的強度を担うエチレンテレフタレートユニットが相対的に少なくなるため、フィルム強度、耐熱性等が不充分となる恐れを生じるので、フィルムを構成するポリエステル組成物の全ポリエステルユニットに対しポリエステルエラストマー量は30モル%以下としておくことが好ましく、より好ましくは25モル%以下である。 For example, in the case where a polyester elastomer containing 1,3-propanediol, 1,4-butanediol, ε-caprolactone, tetramethylene glycol, or the like is included to lower the melting start temperature, the polyester composition constituting the film is reduced. The amount of the polyester elastomer is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, and most preferably 15 mol% or more. However, if too much of the above-mentioned elastomer component that lowers the melting start temperature is contained, the ethylene terephthalate unit responsible for physical strength is relatively reduced, so that the film strength, heat resistance, etc. are insufficient. Because of fear, the amount of the polyester elastomer is preferably 30 mol% or less, more preferably 25 mol% or less with respect to all the polyester units of the polyester composition constituting the film.
 本発明において、フィルムの隠蔽性を向上させるために、内部に微細な空洞を含有させることが好ましい。例えば発泡材などを混合して押出してもよいが、好ましい方法としてはポリエステル中にポリエステルとは非相溶な熱可塑性樹脂を混合し、少なくとも一軸方向に延伸することにより、空洞を得ることである。本発明に用いられるポリエステルに非相溶の熱可塑性樹脂は任意であり、ポリエステルに非相溶性のものであれば特に制限されるものではない。具体的には、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリアクリル系樹脂、ポリカーボネート系樹脂、ポリスルホン系樹脂、セルロース系樹脂などがあげられる。特に空洞の形成性からポリスチレン系樹脂あるいはポリメチルペンテン、ポリプロピレンなどのポリオレフィン系樹脂が好ましい。 In the present invention, in order to improve the concealability of the film, it is preferable to contain fine cavities inside. For example, a foam material may be mixed and extruded, but a preferable method is to mix a polyester in a thermoplastic resin that is incompatible with the polyester, and at least uniaxially stretch to obtain a cavity. . The thermoplastic resin incompatible with the polyester used in the present invention is arbitrary, and is not particularly limited as long as it is incompatible with the polyester. Specific examples include polystyrene resins, polyolefin resins, polyacrylic resins, polycarbonate resins, polysulfone resins, and cellulose resins. In particular, a polystyrene resin or a polyolefin resin such as polymethylpentene or polypropylene is preferable because of the formation of cavities.
 ポリスチレン系樹脂とは、ポリスチレン構造を基本構成要素として含む熱可塑性樹脂を指し、アタクティックポリスチレン、シンジオタクティックポリスチレン、アイソタクティックポリスチレン等のホモポリマーの外、その他の成分をグラフトあるいはブロック共重合した改質樹脂、例えば耐衝撃性ポリスチレン樹脂や変性ポリフェニレンエーテル樹脂等、更にはこれらのポリスチレン系樹脂と相溶性を有する熱可塑性樹脂例えばポリフェニレンエーテルとの混合物を含む。 Polystyrene resin refers to a thermoplastic resin containing a polystyrene structure as a basic component, and grafted or block copolymerized with other components in addition to homopolymers such as atactic polystyrene, syndiotactic polystyrene, and isotactic polystyrene. Modified resins, such as impact-resistant polystyrene resins and modified polyphenylene ether resins, and mixtures of thermoplastic resins having compatibility with these polystyrene resins, such as polyphenylene ether, are included.
 ポリメチルペンテン系樹脂とは、80モル%以上、好ましくは90モル%以上が4-メチルペンテン-1から誘導される単位を有するポリマーであり、他の成分としてはエチレン単位、プロピレン単位、ブテン-1単位、3-メチルブテン-1等からの誘導単位が例示される。 The polymethylpentene resin is a polymer having units derived from 4-methylpentene-1 at 80 mol% or more, preferably 90 mol% or more, and other components include ethylene units, propylene units, butene- Examples are units derived from 1 unit, 3-methylbutene-1, and the like.
 本発明におけるポリプロピレン系樹脂としては、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン等のホモポリマーの外、その他の成分をグラフトあるいはブロック共重合した改質樹脂も含まれる。 The polypropylene resin in the present invention includes modified resins obtained by grafting or block copolymerizing other components in addition to homopolymers such as isotactic polypropylene and syndiotactic polypropylene.
 本発明のポリエステルに非相溶性の熱可塑性樹脂は、ポリエステル中に球状もしくは楕円球状、もしくは糸状など様々な形状で分散した形態をとって存在する。 The thermoplastic resin that is incompatible with the polyester of the present invention exists in various forms such as a spherical shape, an elliptic spherical shape, or a thread shape in the polyester.
 本発明のポリエステルと本発明のポリエステルに非相溶な熱可塑性樹脂の混合物には、必要に応じて各種の添加剤、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。また、フィルムの作業性(滑り性)を良好にする滑剤としての微粒子や、全光線透過率を低下させる隠蔽補助剤としての微粒子を添加することが好ましい。微粒子としては、任意のものを選択することができるが、例えば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等、有機系微粒子としては、例えば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05~3.0μmの範囲内(コールターカウンタにて測定した場合)で、必要に応じて適宜選択することができる。滑剤としての微粒子は、フィルム全体重量に対して、50ppm以上含有されていることが好ましく、より好ましくは100ppm以上である。しかしながら、あまりにも滑剤の含有量が多いと、フィルム表面凹凸が大きくなる場合があるので、3000ppm以下としておくことが好ましく、より好ましくは1000ppm以下である。 For the mixture of the polyester of the present invention and the thermoplastic resin incompatible with the polyester of the present invention, various additives such as waxes, antioxidants, antistatic agents, crystal nucleating agents, viscosity reducing agents are added as necessary. An agent, a heat stabilizer, a coloring pigment, a coloring inhibitor, an ultraviolet absorber, and the like can be added. Further, it is preferable to add fine particles as a lubricant for improving the workability (slidability) of the film and fine particles as a concealing aid for reducing the total light transmittance. As the fine particles, any one can be selected. For example, as inorganic fine particles, silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate, etc. As organic fine particles, for example, acrylic resin Examples thereof include particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles. The average particle diameter of the fine particles is in the range of 0.05 to 3.0 μm (when measured with a Coulter counter) and can be appropriately selected as necessary. The fine particles as a lubricant are preferably contained in an amount of 50 ppm or more, more preferably 100 ppm or more based on the total weight of the film. However, if the content of the lubricant is too large, the film surface unevenness may become large. Therefore, it is preferably set to 3000 ppm or less, more preferably 1000 ppm or less.
 ポリエステルフィルムを形成する樹脂の中に上記粒子を配合する方法としては、例えば、ポリエステル樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。 As a method of blending the above particles into the resin forming the polyester film, for example, it can be added at any stage of producing the polyester resin. It is preferable to add as a slurry dispersed in ethylene glycol or the like at the stage before the start of the reaction to advance the polycondensation reaction. Also, a method of blending a slurry of particles dispersed in ethylene glycol or water using a vented kneading extruder and a polyester resin raw material, or a dried particle and a polyester resin raw material using a kneading extruder It is also preferable to carry out by blending method.
 本発明におけるフィルムは内部に多数の空洞を含有する層Aの少なくとも片面に空洞を含まない層Bを設けることが好ましい。こうすることにより表面の荒れが少なくなり、印刷した際に美観を損なわないフィルムとなる。また、フィルム中に空洞が多数存在しない部分が存在するため、フィルムの強度を著しく損なうことはなくなる。この構成にするためには、異なる原料をA、Bそれぞれ異なる押出機に投入、溶融し、T-ダイの前またはダイ内にて溶融状態で貼り合わせ、冷却ロールに密着固化させた後、後に述べる方法で延伸することが好ましい。特に好ましい積層構成はB/A/B型の二種三層構成である。前記の二種三層構成とすることにより、ポリエステルに非相溶な熱可塑性樹脂が熱せられて生じる発煙による生産設備の汚れを防止でき、また、製品フィルムの両面を平滑にでき、特に好ましい。 The film in the present invention is preferably provided with a layer B that does not contain cavities on at least one side of the layer A that contains many cavities inside. By doing so, the roughness of the surface is reduced, and the film does not impair the aesthetic appearance when printed. In addition, since there are portions where there are not many cavities in the film, the strength of the film is not significantly impaired. In order to achieve this configuration, different raw materials are put into different extruders A and B, melted, bonded in a molten state before or in the T-die, and solidified in close contact with the cooling roll, and thereafter It is preferable to stretch by the method described. A particularly preferable laminated structure is a B / A / B type two-type three-layer structure. By adopting the above-mentioned two-type three-layer structure, it is possible to prevent the production equipment from being soiled by fuming generated when a thermoplastic resin incompatible with polyester is heated, and both surfaces of the product film can be smoothed.
 A層(空洞含有層)における非相溶樹脂の割合は、重量比で0%以上20%以下である。0%は非相溶樹脂を含まないことを示す。この場合は、上記に記載した全光線透過率を低下させる隠蔽補助剤としての微粒子を添加することで隠蔽性を発現させることになる。また、非相溶樹脂が20%以上含有させると、A層中の空洞含有率が大きくなり、フィルムの物理強度が低下するため好ましくない。より好ましくは5%以上15%以下である。 The ratio of the incompatible resin in the layer A (void-containing layer) is 0% or more and 20% or less by weight. 0% indicates that no incompatible resin is contained. In this case, the concealability is exhibited by adding fine particles as a concealing aid that reduces the total light transmittance described above. Further, if the incompatible resin is contained in an amount of 20% or more, the void content in the A layer is increased, and the physical strength of the film is lowered, which is not preferable. More preferably, it is 5% or more and 15% or less.
 さらにポリオレフィン系樹脂等の空洞発現剤による隠蔽性で不十分の場合には、二酸化チタン、炭酸カルシウム、硫酸バリウム等の無機粒子を併せて用いることが一般的である。A層におけるこれら、無機粒子の量は隠蔽性の観点から2~25重量%が、好ましくは5~22重量%である。無機粒子の添加量が2重量%より少ない場合、隠蔽性が不足するので好ましくない。一方、無機粒子の添加量が22重量%より多い場合、製膜が不安定になり破断が多発するため好ましくない。 In addition, when the hiding property by the cavity developing agent such as polyolefin resin is insufficient, it is common to use inorganic particles such as titanium dioxide, calcium carbonate and barium sulfate together. The amount of these inorganic particles in the A layer is 2 to 25% by weight, preferably 5 to 22% by weight from the viewpoint of concealability. When the added amount of the inorganic particles is less than 2% by weight, the concealability is insufficient, which is not preferable. On the other hand, when the added amount of inorganic particles is more than 22% by weight, film formation becomes unstable and breakage frequently occurs, which is not preferable.
 B層には、フィルムの滑り性を良好にする滑剤としての微粒子として、微粒子を添加することが好ましい。滑剤としての微粒子は、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等の無機粒子を用いることができる。無機粒子の量はB層フィルム重量に対して、50ppm以上含有されていることが好ましく、より好ましくは100ppm以上である。しかしながら、あまりにも滑剤の含有量が多いと、フィルム表面凹凸が大きくなる場合があるので、3000ppm以下としておくことが好ましく、より好ましくは1000ppm以下である。 In the B layer, it is preferable to add fine particles as fine particles as a lubricant for improving the slipperiness of the film. As the fine particles as the lubricant, inorganic particles such as silica, alumina, titanium dioxide, calcium carbonate, kaolin, and barium sulfate can be used. The amount of the inorganic particles is preferably 50 ppm or more, more preferably 100 ppm or more based on the weight of the B layer film. However, if the content of the lubricant is too large, the film surface unevenness may become large. Therefore, it is preferably set to 3000 ppm or less, more preferably 1000 ppm or less.
 さらに、本発明のポリエステルフィルムには、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。 Furthermore, the polyester film of the present invention can be subjected to corona treatment, coating treatment, flame treatment or the like in order to improve the adhesion of the film surface.
 次に本発明のポリエステルフィルムの諸特性を説明する
まず、本発明のポリエステルフィルムは、フィルムの長手方向と幅方向の各々の引張り試験による40%伸張時応力について、長手方向の40%伸張時応力と幅方向の40%伸張時応力の平均値が30MPa以上90MPa以下であることが好ましい。
Next, the various characteristics of the polyester film of the present invention will be described. First, the polyester film of the present invention has a 40% elongation stress in the longitudinal direction and a 40% elongation stress in the longitudinal direction. The average value of stress at 40% elongation in the width direction is preferably 30 MPa or more and 90 MPa or less.
 フィルムを折りたたんだとき、折り目の谷側は局所的な圧縮やフィルム自身の摩擦による破壊が生じると同時に、折り目の山側は局所的な伸張による塑性変形が生じると考えられる。折り目山側の塑性変形ひずみは、フィルムの厚みや折り畳み度合いによって変化するが、20%以上60%以下の間に収まると考えられる。この平均値である40%を塑性変形ひずみとした場合、40%伸張(変形)時の応力が高いほどフィルムを折り畳んだときの復元力、すなわち反発が大きくなり、折畳み性が低下すると考えられる。逆に、40%伸張時の応力が低いと容易にフィルムが降伏しやすい、すなわち折り目が付きやすいと考えられる。尚、40%伸張時応力は、図1に示した引張り試験から得られた応力-ひずみ曲線において、横軸のひずみが40%である点から読み取った値である。 When the film is folded, it is considered that the valley side of the crease is broken due to local compression or the friction of the film itself, and at the same time, plastic deformation due to local stretching occurs on the crest side of the fold. The plastic deformation strain on the crease peak side varies depending on the thickness of the film and the degree of folding, but is considered to be within 20% to 60%. When this average value of 40% is defined as plastic deformation strain, it is considered that the higher the stress at 40% elongation (deformation), the greater the restoring force when the film is folded, that is, the repulsion, and the lower the folding property. On the contrary, if the stress at 40% elongation is low, it is considered that the film easily yields, that is, is easy to be creased. The stress at 40% elongation is a value read from the point that the horizontal axis strain is 40% in the stress-strain curve obtained from the tensile test shown in FIG.
 40%伸張時の応力を低下させるには、上記記載のように、フィルムを構成しているポリエステル組成物が非晶性ポリエステルであることが好ましく、ポリエステル中における多価アルコール成分100モル%中あるいは多価カルボン酸成分100モル%中の非晶質成分となり得る1種以上のモノマー成分の合計が13モル%以上、好ましくは14モル%以上、より好ましくは15モル%以上、特に好ましくは16モル%以上である。また非晶質成分となり得るモノマー成分の合計の上限は特に限定されないが、上限は30モル%が好ましい。また、1,3-プロパンジオール、1,4-ブタンジオール、ε-カプロラクトンやテトラメチレングリコール等を含むポリエステルエラストマーを含ませて融解開始温度を低下させると、40%伸張時の応力が更に低下してより好ましい。また、後述するフィルムの製膜工程中の最終熱処理工程において、ポリエステル樹脂の融解開始温度以上240℃以下の温度で加熱することが必要となる。この熱処理工程を経ることでフィルムの分子配向を部分的に崩壊させ、40%伸張時の応力を低下させることができる。 In order to reduce the stress at 40% elongation, as described above, the polyester composition constituting the film is preferably an amorphous polyester, and in 100 mol% of the polyhydric alcohol component in the polyester or The total of at least one monomer component that can be an amorphous component in 100 mol% of the polyvalent carboxylic acid component is 13 mol% or more, preferably 14 mol% or more, more preferably 15 mol% or more, particularly preferably 16 mol. % Or more. Further, the upper limit of the total of the monomer components that can be an amorphous component is not particularly limited, but the upper limit is preferably 30 mol%. In addition, if a polyester elastomer containing 1,3-propanediol, 1,4-butanediol, ε-caprolactone, tetramethylene glycol, or the like is included to lower the melting start temperature, the stress at 40% elongation is further reduced. More preferable. Further, in the final heat treatment step in the film forming step described later, it is necessary to heat at a temperature not lower than the melting start temperature of the polyester resin and not higher than 240 ° C. Through this heat treatment step, the molecular orientation of the film is partially collapsed, and the stress at 40% elongation can be reduced.
 フィルム長手方向の40%伸張時応力と幅方向の40%伸張時応力の平均値が90MPaを超えると、折り紙や包装等で折った際に折り目が開き、きれいな美観を得られなくなるので好ましくない。また、フィルム長手方向の40%伸張時応力と幅方向の40%伸張時応力の平均値は85MPa以下が好ましく、80MPa以下がより好ましい。40%伸張時の応力は低いほどフィルムの力学的破壊・変形を起こしやすく、折畳み性が良好となり好ましいが、現状の技術水準では30MPaが下限である。 If the average value of the stress at 40% elongation in the longitudinal direction of the film and the stress at 40% elongation in the width direction exceeds 90 MPa, it is not preferable because a crease opens when folded with origami or packaging, and a beautiful aesthetic cannot be obtained. The average value of the 40% stretching stress in the film longitudinal direction and the 40% stretching stress in the width direction is preferably 85 MPa or less, more preferably 80 MPa or less. The lower the stress at 40% elongation, the easier it is to cause mechanical fracture / deformation of the film and the better the folding property. However, the lower limit is 30 MPa in the current technical level.
 フィルムを高温環境下に放置した際にも十分な耐熱性を有し、また折畳み保持性が良好に維持されるために、フィルムの融解開始温度は100℃から220℃であることが好ましい。前記の如く、フィルムの融解開始温度を100℃から220℃に調整するためには、上記記載のように、非晶質のポリエステル樹脂を原料として用いることが好ましい。 When the film is left in a high temperature environment, the film has sufficient heat resistance, and the folding start temperature of the film is preferably 100 ° C. to 220 ° C. in order to maintain good folding retention. As described above, in order to adjust the melting start temperature of the film from 100 ° C. to 220 ° C., it is preferable to use an amorphous polyester resin as a raw material as described above.
 非晶質成分となり得るモノマーの具体例としては、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオールを挙げることができる。これらの中でも、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸が好ましい。非晶質成分となり得る1種以上のモノマー成分の合計が13モル%以上、好ましくは14モル%以上、より好ましくは15モル%以上、特に好ましくは16モル%以上である。非晶質成分となり得るモノマー成分の合計の上限は特に限定されないが、上限は30モル%が好ましい。また、1,4-シクロヘキサンジメタノール等の環状ジオールや、炭素数3~6個を有するジオール(例えば、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等)、ε-カプロラクトンやテトラメチレングリコール等を含むポリエステルエラストマーを含有させることにより、融解開始温度を低下させることができるため、少なくとも1種以上使用することが好ましい。例えば、1,3-プロパンジオール、1,4-ブタンジオール、ε-カプロラクトンやテトラメチレングリコール等を含むポリエステルエラストマーを含ませて融解開始温度を低下させる場合、フィルムを構成するポリエステル組成物に対して、1モル%以上含有されていることが好ましく、より好ましくは5モル%以上、更に好ましくは10モル%以上、最も好ましくは15モル%以上含有されていることが好ましい。但し、あまりにも多くの前記の融解開始温度を低下させる成分が含有されていると、物理的強度を担うエチレンテレフタレートユニットが相対的に少なくなり、フィルム強度、耐熱性等が不充分となる恐れを生じるので、フィルムを構成するポリエステル組成物の全ポリエステルユニットに対し30モル%以下としておくことが好ましく、より好ましくは25モル%以下である。 Specific examples of the monomer that can be an amorphous component include neopentyl glycol, 1,4-cyclohexanedimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,3-propanediol. 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di- Examples thereof include n-butyl-1,3-propanediol and hexanediol. Among these, neopentyl glycol, 1,4-cyclohexanedimethanol and isophthalic acid are preferable. The total of at least one monomer component that can be an amorphous component is 13 mol% or more, preferably 14 mol% or more, more preferably 15 mol% or more, and particularly preferably 16 mol% or more. The upper limit of the total of monomer components that can be amorphous components is not particularly limited, but the upper limit is preferably 30 mol%. In addition, cyclic diols such as 1,4-cyclohexanedimethanol, diols having 3 to 6 carbon atoms (for example, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, hexanediol, etc.), By including a polyester elastomer containing ε-caprolactone, tetramethylene glycol, or the like, the melting start temperature can be lowered. Therefore, it is preferable to use at least one kind. For example, in the case where a polyester elastomer containing 1,3-propanediol, 1,4-butanediol, ε-caprolactone, tetramethylene glycol, or the like is included to lower the melting start temperature, the polyester composition constituting the film is reduced. The content is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, and most preferably 15 mol% or more. However, if too much component that lowers the melting start temperature is contained, the ethylene terephthalate unit responsible for physical strength is relatively reduced, and the film strength, heat resistance, etc. may be insufficient. Since it arises, it is preferable to set it as 30 mol% or less with respect to all the polyester units of the polyester composition which comprises a film, More preferably, it is 25 mol% or less.
 また、本発明のポリエステルフィルムは、80℃の温湯中で10秒間に亘って処理した場合における幅方向、長手方向の温湯熱収縮率がいずれも-10%以上10%以下であることが好ましい。10%を超えると、例えば真夏の車中や温調管理の無い倉庫内といった高温環境下ではフィルムが収縮・変形してしまい好ましくない。温湯熱収縮率の上限は9%以下であるとより好ましく、8%以下であると更に好ましい。一方、温湯熱収縮率が-10%を下回ると、収縮率が高い場合と同様にフィルムが元の形状を維持できづらくなり好ましくない。温湯熱収縮率の下限値は-7%以上であるとより好ましく、-4%以上であると更に好ましい。 Further, the polyester film of the present invention preferably has a hot water heat shrinkage in the width direction and the longitudinal direction of not less than -10% and not more than 10% when treated in hot water at 80 ° C. for 10 seconds. If it exceeds 10%, the film shrinks and deforms in a high temperature environment such as in a midsummer car or in a warehouse without temperature control, which is not preferable. The upper limit of hot water heat shrinkage is more preferably 9% or less, and even more preferably 8% or less. On the other hand, if the hot water heat shrinkage rate is less than -10%, it is difficult to maintain the original shape of the film as in the case where the shrinkage rate is high. The lower limit value of the hot water heat shrinkage is more preferably −7% or more, and further preferably −4% or more.
 温湯熱収縮率を-10%以上10%以下の範囲にするためには、後述するフィルムの製膜工程中の最終熱処理工程において、ポリエステル樹脂の融解開始温度以上240℃以下の温度で熱処理することが好ましい。熱処理温度が融解開始温度以下であると、収縮率が10%を超えて好ましくない。さらに、上記の非晶質成分となり得るモノマーの含有量がフィルムを構成するポリエステル組成物の全ポリエステルユニットに対し30モル%以下としておくことが好ましく、より好ましくは25モル%以下である。30モル%を超えると、融解開始温度以上の熱処理でも収縮率が高くなりすぎてしまい好ましくない。 In order to keep the hot water heat shrinkage in the range of -10% to 10%, heat treatment should be performed at a temperature not lower than the melting start temperature of the polyester resin and not higher than 240 ° C in the final heat treatment step in the film forming step described later. Is preferred. When the heat treatment temperature is not higher than the melting start temperature, the shrinkage rate exceeds 10%, which is not preferable. Further, the content of the monomer that can be an amorphous component is preferably 30 mol% or less, more preferably 25 mol% or less, based on all the polyester units of the polyester composition constituting the film. If it exceeds 30 mol%, the shrinkage rate becomes too high even in a heat treatment at a temperature higher than the melting start temperature.
 また、本発明のポリエステル系フィルムの全光線透過率は、20%以上50%以下でなければならない。全光線透過率が50%以上であると、フィルムの隠蔽性が劣り、包装材として用いたときに被包装物が見えてしまうため好ましくない。フィルムの全光線透過率は20%未満ならば尚良いが、本発明では20%が限界だったので20%を下限とした。 The total light transmittance of the polyester film of the present invention must be 20% or more and 50% or less. If the total light transmittance is 50% or more, the concealability of the film is inferior, and an object to be packaged can be seen when used as a packaging material. The total light transmittance of the film is preferably less than 20%, but in the present invention, 20% was the limit, so 20% was made the lower limit.
 本発明のポリエステルフィルムは、後述する方法(図2)で測定される折畳み保持角度が15度以上45度以下であることが好ましい。50度以下であると、折り紙や包装等で折った際に折り目が開き、きれいな美観を得られ、好ましい。折畳み保持角度はより好ましくは40度以下であり、35度以下が更に好ましい。また折畳み保持角度は小さいほど好ましいが、本発明の範囲は15度が下限であり、20度以上であっても実用上好ましいものと言える。 The polyester film of the present invention preferably has a folding holding angle of 15 degrees or more and 45 degrees or less measured by a method described later (FIG. 2). When it is 50 degrees or less, the crease opens when folded with origami or packaging, and a beautiful aesthetic appearance can be obtained. The folding holding angle is more preferably 40 degrees or less, and further preferably 35 degrees or less. Further, the smaller the folding holding angle, the better. However, the range of the present invention is 15 degrees as a lower limit, and even if it is 20 degrees or more, it can be said that it is practically preferable.
 折り畳み保持角度は、40%伸張時の応力が低いほど低下するため、上述のように非晶質成分となり得る1種以上のモノマー成分の合計が13モル%以上、好ましくは14モル%以上、より好ましくは15モル%以上、特に好ましくは16モル%以上となるようなポリエステル樹脂を用い、かつ、製膜工程中の最終熱処理工程において、ポリエステル樹脂の融解開始温度以上240℃以下の温度で熱処理することが好ましい。これらの条件によって40%伸張時応力を30MPa以上90MPa以下に調整することができ、折り畳み角度を15度以上45度以下に調整することができる。 Since the folding holding angle decreases as the stress at 40% elongation decreases, the total of at least one monomer component that can be an amorphous component as described above is 13 mol% or more, preferably 14 mol% or more. The polyester resin is preferably used in an amount of 15 mol% or more, particularly preferably 16 mol% or more, and in the final heat treatment step during the film forming step, heat treatment is performed at a temperature not lower than the melting start temperature of the polyester resin and not higher than 240 ° C. It is preferable. Under these conditions, the stress at 40% elongation can be adjusted from 30 MPa to 90 MPa, and the folding angle can be adjusted from 15 degrees to 45 degrees.
 本発明のポリエステルフィルムは、DSCの昇温プロファイルから得られる融解開始温度が100℃以上220℃以下であることが好ましい。融解開始温度は更に好ましくは210℃以下である。後述するフィルムの熱処理工程において、フィルムを部分的に融解できることが好ましく、この際に融解開始温度が影響する。融解開始温度が220℃以下であると、ポリエステル樹脂の結晶性が高過ぎないため、熱処理時に結晶化が促進されにくく部分的に融解しやすいので好ましい。結晶化が促進されず非晶部の多いポリエステル組成物からなるフィルムは折畳み時の反発が小さく、折畳み保持性が良好に維持されるので好ましい。融解開始温度が100℃以上であると、フィルムを高温環境下に放置した際にも耐熱性が十分であり、好ましい。融解開始温度は120℃以上であることが更に好ましい。なお、融解開始温度は図3に示したDSC測定から得られたプロファイルから求めることができる。融解開始温度は100℃以降の高温側において示される、吸熱曲線の変曲点である。 In the polyester film of the present invention, the melting start temperature obtained from the DSC temperature rise profile is preferably 100 ° C. or higher and 220 ° C. or lower. The melting start temperature is more preferably 210 ° C. or lower. In the film heat treatment step described later, it is preferable that the film can be partially melted, and in this case, the melting start temperature affects. It is preferable that the melting start temperature is 220 ° C. or lower because the crystallinity of the polyester resin is not too high, and crystallization is not easily promoted during heat treatment, so that it partially melts. A film made of a polyester composition that is not accelerated to crystallize and has a large number of amorphous parts is preferable because the rebound upon folding is small and the folding retention is maintained well. It is preferable that the melting start temperature is 100 ° C. or higher because the heat resistance is sufficient even when the film is left in a high temperature environment. The melting start temperature is more preferably 120 ° C. or higher. The melting start temperature can be determined from the profile obtained from the DSC measurement shown in FIG. The melting start temperature is the inflection point of the endothermic curve shown on the high temperature side after 100 ° C.
 本発明のポリエステル系フィルムにおいてフィルムの厚みは3μm以上200μm以下が好ましい。フィルムの厚みが3μmより薄いと印刷等の加工が困難になるおそれがある。またフィルム厚みが200μmより厚い場合、フィルムの折れ性が悪くなり、またフィルムの使用重量が増えコストが高くなるので好ましくない。フィルムの厚みは5μm以上190m以下であるとより好ましく、7μm以上180μm以下であるとさらに好ましい。 In the polyester film of the present invention, the thickness of the film is preferably 3 μm or more and 200 μm or less. If the thickness of the film is less than 3 μm, processing such as printing may become difficult. On the other hand, when the film thickness is greater than 200 μm, the film is not foldable, and the weight of the film used increases and the cost increases, which is not preferable. The thickness of the film is more preferably 5 μm or more and 190 m or less, and further preferably 7 μm or more and 180 μm or less.
 フィルム全体におけるA層の厚み比率は、ポリエステルに非相溶な熱可塑性樹脂や無機粒子の添加量により決まるが、フィルムの強度維持や隠蔽性の点から、フィルム全厚みの20%以上80%以下が好ましく、25%以上75%以下がより好ましく、さらに好ましくは30%以上70%以下である。A層厚みがフィルム全厚みの20%より小さい場合、A層に添加する必要のあるポリエステルに非相溶な熱可塑性樹脂や無機粒子が多量となり、製膜が困難となるので好ましくない。一方、A層の厚みが80%より大きくなった場合、B層の厚みが相対的に減少しフィルム強度が減少するため好ましくない。 The thickness ratio of the A layer in the entire film is determined by the amount of thermoplastic resin and inorganic particles that are incompatible with polyester, but from the viewpoint of maintaining the strength of the film and concealing properties, it is 20% to 80% of the total film thickness. Is preferably 25% or more and 75% or less, and more preferably 30% or more and 70% or less. When the thickness of the A layer is less than 20% of the total thickness of the film, the amount of thermoplastic resin and inorganic particles that are incompatible with the polyester that needs to be added to the A layer becomes large, and film formation becomes difficult. On the other hand, when the thickness of the A layer is larger than 80%, the thickness of the B layer is relatively decreased and the film strength is decreased, which is not preferable.
 上述した本発明のポリエステル系フィルムは、上記したポリエステル原料を押出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す所定の方法により一軸延伸または二軸延伸し、その後さらに熱処理することによって得ることができる。なお、ポリエステルは、前記した好適なジカルボン酸成分とジオール成分とを公知の方法で重縮合させることで得ることができる。また、通常は、チップ状のポリエステルを2種以上混合してフィルムの原料として使用することが好ましく行われる。 The polyester-based film of the present invention described above is obtained by melting and extruding the above-described polyester raw material with an extruder to form an unstretched film, and then stretching the unstretched film uniaxially or biaxially by a predetermined method shown below. Further, it can be obtained by heat treatment. The polyester can be obtained by polycondensing the above-described preferred dicarboxylic acid component and diol component by a known method. In general, it is preferable to use two or more kinds of chip-like polyester as a raw material for the film.
 原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、200~300℃の温度で溶融しフィルム状に押し出す。押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。 When the raw material resin is melt-extruded, the polyester raw material is preferably dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in such a manner, it is melted at a temperature of 200 to 300 ° C. and extruded into a film using an extruder. In extruding, any existing method such as a T-die method or a tubular method can be employed.
 そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。 Then, an unstretched film can be obtained by quenching the extruded sheet-like molten resin. In addition, as a method of rapidly cooling the molten resin, a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and rapidly solidifying it can be suitably employed.
 本発明の目的を達成するには、フィルムの延伸方向はフィルム縦(長手)方向、横(幅)方向のいずれでも構わない。以下では、最初に縦延伸、次に横延伸を実施する縦延伸-横延伸法について説明するが、順番を逆にする横延伸-縦延伸であっても、主配向方向が変わるだけであるので構わない。また、延伸方向が縦方向のみ、もしくは横方向のみでも、本発明の構成要件を逸脱しない範囲であれば構わない。 In order to achieve the object of the present invention, the film stretching direction may be either the film longitudinal (longitudinal) direction or the lateral (width) direction. In the following, the longitudinal stretching-lateral stretching method in which longitudinal stretching is performed first and then lateral stretching will be described. However, even in the case of transverse stretching-longitudinal stretching in which the order is reversed, only the main orientation direction is changed. I do not care. Moreover, even if the extending | stretching direction is only a vertical direction or only a horizontal direction, as long as it does not deviate from the structural requirements of this invention, it does not matter.
 まず、縦方向の延伸を行う。実質的に未配向のフィルムを、Tg以上Tg+30℃以下の温度で3.0倍以上4.5倍以下の倍率となるように縦延伸するのが好ましい。縦方向への延伸倍率が高くなると、縦方向への配向が強化されすぎてしまい、縦方向への延伸、または次工程の横延伸で破断が生じてしまう。縦延伸倍率の好ましい上限は4.5倍以下であり、4.4倍以下だとより好ましい。縦延伸後にフィルムを長手方向へ弛緩(リラックス)して比重をコントロールすることもできる。リラックスは、縦延伸後のフィルムをTg以上Tg+90℃以下の温度で加熱し、ロールの速度差を用いる等の手段を用いることで、長手方向に任意の倍率でフィルムを弛緩することで行うことができる。加熱手段はロール、近赤外線、遠赤外線、熱風ヒータ等のいずれも用いる事ができる。 First, longitudinal stretching is performed. The substantially unoriented film is preferably stretched longitudinally at a temperature of Tg or more and Tg + 30 ° C. or less so as to have a magnification of 3.0 to 4.5 times. When the stretching ratio in the longitudinal direction is increased, the orientation in the longitudinal direction is excessively strengthened, and breakage occurs in stretching in the longitudinal direction or in the lateral stretching in the next step. A preferable upper limit of the longitudinal draw ratio is 4.5 times or less, and more preferably 4.4 times or less. It is also possible to control the specific gravity by relaxing the film in the longitudinal direction after the longitudinal stretching. Relaxing is performed by relaxing the film at an arbitrary magnification in the longitudinal direction by heating the film after longitudinal stretching at a temperature of Tg or more and Tg + 90 ° C or less, and using means such as using a speed difference between rolls. be able to. As the heating means, any of a roll, a near infrared ray, a far infrared ray, a hot air heater and the like can be used.
 また、縦延伸倍率が3.0倍よりも低いとフィルム長手方向の厚み斑が悪化してしまいう場合があり、フィルムをロールとして巻き取った際に巻きズレ等の問題が生じるため、好ましくない。最終的な縦方向の延伸倍率を3.0倍以下としたい場合は、縦延伸を3.0倍以上で実施した後にリラックスを実施することでコントロールすることができる。縦延伸倍率の好ましい下限は3.2倍以以上であり、3.4倍以上だとより好ましい。上記したように、横延伸を実施するのであれば、縦延伸を実施しなくても構わない。 Further, if the longitudinal draw ratio is lower than 3.0 times, the thickness unevenness in the longitudinal direction of the film may be deteriorated, which causes a problem such as winding deviation when the film is wound as a roll. When it is desired to make the final longitudinal stretching ratio 3.0 times or less, it can be controlled by performing relaxation after performing longitudinal stretching at 3.0 times or more. The preferable lower limit of the longitudinal draw ratio is 3.2 times or more, and more preferably 3.4 times or more. As described above, if the transverse stretching is performed, the longitudinal stretching may not be performed.
 次に、横方向の延伸を行う。横方向の延伸は、テンター内でフィルム幅方向の両端際をクリップによって把持した状態で、Tg以上Tg+30℃以下の温度で3.5~5.0倍程度、行うことが好ましい。横方向の延伸を行う前には、Tg-10℃以上Tg+50℃以下の温度で予備加熱を行っておくことが好ましい。 Next, stretching in the transverse direction is performed. The stretching in the transverse direction is preferably performed at a temperature of Tg or more and Tg + 30 ° C. or less at a temperature of about 3.5 to 5.0 times in a state where both ends in the film width direction are held by clips in the tenter. Prior to stretching in the transverse direction, preheating is preferably performed at a temperature of Tg-10 ° C. or higher and Tg + 50 ° C. or lower.
 横延伸の後は、フィルムの熱処理を行う。熱処理温度は、原料として用いるポリエステル樹脂のDSC昇温プロファイルから得られる融解開始温度以上とすることが好ましい。熱処理の際には横方向のクリップ間距離を縮めるリラックス処理(前記の長手方向のリラックス処理とは異なる)を任意の倍率で行っても良い。融解開始温度以上で熱処理することにより、延伸によって生じたフィルムの結晶配向を部分的に崩壊させて40%伸張時応力を調節でき、折畳み角度を低下させる作用がある。それと同時に、融解開始温度以上の熱処理によって、延伸で生じたフィルムの非晶配向も崩壊させて収縮性を低下させることができる。熱処理温度が融解開始温度より低いとフィルムが結晶化する領域で熱処理していることになり、フィルムの収縮性は低下するものの、折畳み保持角度が増加して好ましくない。一方、熱処理温度が240℃を超える場合、本発明では非晶性のポリエステル樹脂を用いるため、熱処理時にフィルムの収縮が大きくなる。このことで製膜中のフィルムの厚み斑が悪化し、さらに過熱が進むとフィルムが完全融解して破断してしまうため好ましくない。 After the transverse stretching, heat treatment of the film is performed. The heat treatment temperature is preferably equal to or higher than the melting start temperature obtained from the DSC temperature rise profile of the polyester resin used as a raw material. During the heat treatment, a relaxation process for reducing the distance between the clips in the lateral direction (different from the relaxation process in the longitudinal direction) may be performed at an arbitrary magnification. By heat-treating at or above the melting start temperature, the crystal orientation of the film produced by stretching can be partially collapsed to adjust the stress at 40% elongation, and has the effect of reducing the folding angle. At the same time, the heat treatment at the melting start temperature or higher can also collapse the amorphous orientation of the film produced by stretching, thereby reducing shrinkage. When the heat treatment temperature is lower than the melting start temperature, heat treatment is performed in the region where the film crystallizes, and the shrinkage of the film decreases, but the folding holding angle increases, which is not preferable. On the other hand, when the heat treatment temperature exceeds 240 ° C., the amorphous polyester resin is used in the present invention, so that the shrinkage of the film is increased during the heat treatment. As a result, the thickness unevenness of the film during film formation deteriorates, and further overheating is not preferable because the film completely melts and breaks.
 後は、フィルム両端部を裁断除去しながら巻き取れば、ポリエステル系フィルムロールが得られる。  Then, if it winds up, removing both ends of a film, a polyester-type film roll will be obtained. *
  次に実施例及び比較例を用いて、本発明を具体的に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。 Next, the present invention will be specifically described by way of examples and comparative examples. However, the present invention is not limited to the modes of the examples, and may be appropriately selected without departing from the spirit of the present invention. It is possible to change.
 フィルムの評価方法は下記の通りである。尚、フィルムの面積が小さいなどの理由で、長手方向と幅方向が直ちに特定できない場合は、仮に長手方向と幅方向を定めて測定すればよく、仮に定めた長手方向、幅方向が、真の長手方向、幅方向と90度間違っているからと言って、特に問題を生ずることはない。 The evaluation method of the film is as follows. In addition, when the longitudinal direction and the width direction cannot be specified immediately because the film area is small, the longitudinal direction and the width direction may be determined. Even if the longitudinal direction and the width direction are wrong by 90 degrees, there is no particular problem.
[40%伸張時の応力]
 測定方向をフィルム幅方向とすると、幅方向に140mm、測定方向と直交する方向(フィルム長手方向)に20mmの短冊状の試験片を作製した。万能引張試験機「DSS-100」(島津製作所製)を用いて、試験片の両端からチャックで各々20mmずつ把持(チャック間距離100mm)して、雰囲気温度23℃、引張速度200mm/min.の条件にて引張試験を行った。得られた応力-ひずみ曲線より、ひずみ40%時の応力を40%伸張時の応力とした。長手方向の測定は、前記幅方向の測定と試料片の作成方向を90度変更して実施した。尚、ひずみが40%に到達する前にフィルムが破断した場合は、応力を0MPaとした。最終的には幅方向と長手方向、それぞれから得られた応力の平均値をひずみ40%時の応力として用いた。
[Stress at 40% elongation]
When the measurement direction is the film width direction, a strip-shaped test piece of 140 mm in the width direction and 20 mm in the direction orthogonal to the measurement direction (film longitudinal direction) was produced. Using a universal tensile tester “DSS-100” (manufactured by Shimadzu Corporation), grip 20mm each from both ends of the test piece (distance between chucks: 100mm), with an ambient temperature of 23 ° C and a tensile speed of 200mm / min. A tensile test was performed under the conditions. From the obtained stress-strain curve, the stress at 40% strain was defined as the stress at 40% elongation. The measurement in the longitudinal direction was carried out by changing the measurement in the width direction and the preparation direction of the sample piece by 90 degrees. In addition, when the film broke before the strain reached 40%, the stress was set to 0 MPa. Finally, the average value of stress obtained from each of the width direction and the longitudinal direction was used as the stress at 40% strain.
[折畳み保持角度]
 28℃50%RH環境の恒温室でフィルムを24時間放置する。その後直ちに、各々のフィルムを20℃65%RH環境で10cm×10cmの正方形に裁断し、4つ折にした(2.5cm×2.5cmの正方形)。フィルムを折りたたむ際、最初の2つ折りで出来た長方形の短辺が縦方向になるようにした。その後 底面の大きさが3cm×3cmの5kgの錘を20秒間、4つ折りのフィルムに乗せた。錘を外した後、4つ折りのフィルムを30分間放置した。その後、折られたフィルムが開いた角度(完全に折畳まれた状態を0度とした)を測定して求めた。また、フィルムを折りたたむときの縦方向、横方向の両方の折畳み保持角度を測定し、角度が大きい方の値を折畳み保持角度とした。
[Folding holding angle]
The film is left for 24 hours in a constant temperature room at 28 ° C and 50% RH. Immediately thereafter, each film was cut into a 10 cm × 10 cm square in an environment of 20 ° C. and 65% RH and folded into four (2.5 cm × 2.5 cm square). When folding the film, the short side of the rectangle made by the first two folds was vertical. After that, a 5 kg weight with a bottom size of 3 cm x 3 cm was placed on a four-fold film for 20 seconds. After removing the weight, the four-fold film was left for 30 minutes. Thereafter, the angle at which the folded film was opened (the completely folded state was defined as 0 degree) was obtained by measurement. Further, the folding holding angle in both the vertical direction and the horizontal direction when the film was folded was measured, and the value with the larger angle was defined as the folding holding angle.
  [温湯熱収縮率]
 フィルムを10cm×10cmの正方形に裁断し、80±0.5℃の温水中に無荷重状態で10秒間浸漬して熱収縮させた後、25℃±0.5℃の水中に10秒間浸漬し、水中から引き出してフィルムの縦および横方向の寸法を測定し、下記式1にしたがって、それぞれ収縮率を求めた。
 収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%) 式1
[Hot water heat shrinkage]
The film is cut into a 10cm x 10cm square, immersed in 80 ± 0.5 ° C warm water for 10 seconds under no load and heat-shrinked, then immersed in 25 ° C ± 0.5 ° C water for 10 seconds and pulled out of the water. Then, the vertical and horizontal dimensions of the film were measured, and the shrinkage rate was determined according to the following formula 1.
Shrinkage rate = {(length before shrinkage−length after shrinkage) / length before shrinkage} × 100 (%) Formula 1
 [全光線透過率]
 JIS-K-7136に準拠し、ヘイズメータ(日本電色工業株式会社製、300A)を用いて測定した。なお、測定は2回行い、その平均値を求めた。
[Total light transmittance]
Based on JIS-K-7136, it measured using a haze meter (Nippon Denshoku Industries Co., Ltd., 300A). The measurement was performed twice and the average value was obtained.
[ガラス転移点(Tg)]
 セイコー電子工業株式会社製の示差走査熱量計(型式:DSC220)を用いて、JIS K7121に従って求めた。未延伸フィルム10mgを、-20℃から120℃まで、昇温速度10℃/分で昇温し、昇温プロファイルを得た。ガラス転移温度以下のベースラインの延長線と遷移部における最大傾斜を示す接線との交点の温度をガラス転移温度とした。
[Glass transition point (Tg)]
It calculated | required according to JISK7121 using the differential scanning calorimeter (model | form: DSC220) by Seiko Denshi Kogyo Co., Ltd. 10 mg of unstretched film was heated from −20 ° C. to 120 ° C. at a heating rate of 10 ° C./min to obtain a temperature rising profile. The temperature at the intersection of the base line extension below the glass transition temperature and the tangent indicating the maximum slope at the transition was taken as the glass transition temperature.
[融解開始温度]
 セイコー電子工業株式会社製の示差走査熱量計(型式:DSC220)を用いて、JIS K7121に従って低温側の補外融解開始温度を求めた。まずフィルム10mgを20℃から300℃まで昇温速度10℃/分で昇温し、昇温プロファイルを得た。昇温プロファイルにおいて、低温側のベースラインを高温側に延長した直線と融解ピークの低温側の曲線に勾配が最大になる点で引いた接線の交点の温度を融解開始温度として読み取った。
[Melting start temperature]
Using a differential scanning calorimeter (model: DSC220) manufactured by Seiko Denshi Kogyo Co., Ltd., the extrapolated melting start temperature on the low temperature side was determined according to JIS K7121. First, 10 mg of a film was heated from 20 ° C. to 300 ° C. at a temperature rising rate of 10 ° C./min to obtain a temperature rising profile. In the temperature rise profile, the temperature at the intersection of the tangent line drawn at the point where the gradient is maximum on the low temperature side curve of the melting peak and the low temperature side baseline was read as the melting start temperature.
[長手方向厚み斑]
 フィルムを長さ12m×幅40mmの長尺なロール状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、測定速度5m/分でフィルムの長手方向に沿って連続的に厚みを測定した(測定長さは10m)。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下式2からフィルムの長手方向の厚み斑を算出した。
 厚み斑={(Tmax.-Tmin.)/Tave.}×100 (%)  ・・式2
[Longitudinal thickness unevenness]
The film is sampled into a long roll with a length of 12m and a width of 40mm, and continuously along the longitudinal direction of the film at a measurement speed of 5m / min using a continuous contact thickness gauge manufactured by Micron Measuring Instruments Co., Ltd. The thickness was measured (measurement length was 10 m). The maximum thickness at the time of measurement was Tmax., The minimum thickness was Tmin., The average thickness was Tave.
Thickness unevenness = {(Tmax.−Tmin.) / Tave.} × 100 (%) ・ ・ Formula 2
[幅方向厚み斑]
 フィルムを長さ40mm×幅1.2mの幅広な帯状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、測定速度5m/分でフィルム試料の幅方向に沿って連続的に厚みを測定した(測定長さは500mm)。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、上式2からフィルムの幅方向の厚み斑を算出した。
[Thickness unevenness in the width direction]
The film was sampled into a wide strip of 40mm length x 1.2m width, and continuously along the width direction of the film sample at a measurement speed of 5m / min using a continuous contact thickness gauge manufactured by Micron Measuring Instruments Co., Ltd. The thickness was measured (measurement length was 500 mm). The maximum thickness at the time of measurement was Tmax., The minimum thickness was Tmin., The average thickness was Tave.
<ポリエステル原料の調製>
 合成例1
 撹拌機、温度計および部分環流式冷却器を備えたステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)100モル%と、多価アルコール成分としてエチレングリコール(EG)100モル%とを、エチレングリコールがモル比でジメチルテレフタレートの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)、重縮合触媒として三酸化アンチモン0.225モル%(酸成分に対して)を添加し、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、280℃で26.7Paの減圧条件のもとで重縮合反応を行い、固有粘度0.75 dL/gのポリエステル1を得た。尚、ポリエステル1には副生成物のジエチレングリコール(DEG)が1%含まれている。組成を表1に示す。
<Preparation of polyester raw material>
Synthesis example 1
In a stainless steel autoclave equipped with a stirrer, a thermometer and a partial reflux condenser, 100 mol% of dimethyl terephthalate (DMT) as a dicarboxylic acid component and 100 mol% of ethylene glycol (EG) as a polyhydric alcohol component, Charge ethylene glycol to a molar ratio 2.2 times that of dimethyl terephthalate, 0.05 mol% of zinc acetate (based on the acid component) as a transesterification catalyst, 0.225 mol of antimony trioxide as a polycondensation catalyst % (Based on the acid component) was added, and the ester exchange reaction was carried out while distilling off the produced methanol out of the system. Thereafter, a polycondensation reaction was performed at 280 ° C. under a reduced pressure of 26.7 Pa to obtain polyester 1 having an intrinsic viscosity of 0.75 dL / g. Polyester 1 contains 1% by-product diethylene glycol (DEG). The composition is shown in Table 1.
 合成例2~5
 合成例1と同様の方法により、表1に示すポリエステル2~5を得た。なお、表中、TPAはテレフタル酸、IPAはイソフタル酸、EGはエチレングリコール、BDは1,4-ブタンジオール、NPGはネオペンチルグリコール、ε-CLはε-カプロラクトンである。各ポリエステルの固有粘度は、それぞれ、ポリエステル2:0.73 dL/g、ポリエステル3:0.80 dL/g、ポリエステル4:1.20dL/g、ポリエステル5:0.78dL/gであった。なお、各ポリエステルは、適宜チップ状にした。
Synthesis examples 2-5
In the same manner as in Synthesis Example 1, polyesters 2 to 5 shown in Table 1 were obtained. In the table, TPA is terephthalic acid, IPA is isophthalic acid, EG is ethylene glycol, BD is 1,4-butanediol, NPG is neopentyl glycol, and ε-CL is ε-caprolactone. The intrinsic viscosities of the respective polyesters were as follows: Polyester 2: 0.73 dL / g, Polyester 3: 0.80 dL / g, Polyester 4: 1.20 dL / g, Polyester 5: 0.78 dL / g. Each polyester was appropriately formed into a chip shape.
 [表1]
Figure JPOXMLDOC01-appb-I000001
 
[Table 1]
Figure JPOXMLDOC01-appb-I000001
〔実施例1〕
 上記のポリエステル1とポリエステル2とポリエステル3を重量比10:80:10で混合し、滑剤としてSiO2(富士シリシア社製サイリシア266)を該ポリエステル混合物に対して50ppmとなるように添加してB層の原料とした。A層の原料は、ポリエステル1とポリエステル2とポリエステル3を重量比10:80:10で混合するに際し、更にポリスチレン樹脂(G797N 日本ポリスチレン製)10重量%及び二酸化チタン(TA-300 富士チタン製)10重量%を加えて混合した。A層及びB層の原料をそれぞれ別々の2軸スクリュー押出機に投入、混合、溶融したものをフィードブロックで接合したものをT-ダイスより280℃で溶融押出しし、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さ240μmでB/A/Bの積層構造を持つ未延伸フィルムを得た(層比率 B/A/B=1/2/1)。そして、上記の如く得られた厚み240μmの未延伸フィルムを、複数のロール群を連続的に配置した縦延伸機へ導き、ロールの回転速度差を利用して、縦方向に延伸した。すなわち、未延伸フィルムを、予熱ロール上でフィルム温度が85℃になるまで予備加熱した後に、表面温度85℃に設定された低速回転ロールと表面温度30℃に設定された高速回転ロールとの間で回転速度差を利用して3.5倍に縦延伸した。
[Example 1]
Polyester 1, Polyester 2, and Polyester 3 are mixed at a weight ratio of 10:80:10, and SiO 2 (Silicia 266 manufactured by Fuji Silysia) is added as a lubricant to a concentration of 50 ppm with respect to the polyester mixture. Layer raw material. The raw material for layer A is polyester 1, polyester 2 and polyester 3 mixed at a weight ratio of 10:80:10, and polystyrene resin (G797N manufactured by Nippon Polystyrene) 10% by weight and titanium dioxide (TA-300 manufactured by Fuji Titanium) 10 wt% was added and mixed. The raw materials of layer A and layer B are put into separate twin screw extruders, mixed, melted, and joined by a feed block, melt extruded at 280 ° C from a T-die, and cooled to a surface temperature of 30 ° C. The film was wound around a rotating metal roll and quenched to obtain an unstretched film having a thickness of 240 μm and a B / A / B laminated structure (layer ratio B / A / B = 1/2/1). Then, the 240 μm-thick unstretched film obtained as described above was guided to a longitudinal stretching machine in which a plurality of roll groups were continuously arranged, and stretched in the longitudinal direction using the difference in the rotational speed of the rolls. That is, after pre-heating an unstretched film on a preheating roll until the film temperature reaches 85 ° C., between a low-speed rotating roll set to a surface temperature of 85 ° C. and a high-speed rotating roll set to a surface temperature of 30 ° C. The machine was stretched longitudinally 3.5 times using the difference in rotational speed.
 しかる後、縦延伸後のフィルムを、テンター内で幅方向の両端際をクリップによって把持した状態で、まずフィルムの表面温度が100℃になるまで予備加熱を行い、その後、90℃で横方向に4.0倍に延伸した。横延伸後のフィルムは、幅方向の両端際をクリップによって把持した状態でテンター内の熱処理ゾーンに導き、当該熱処理ゾーンにおいて、200℃の温度で10秒間に亘って熱処理を施した後に冷却した。しかる後、両縁部を裁断除去して幅400mmでロール状に巻き取ることによって、約20μmの二軸延伸フィルムを所定の長さに亘って連続的に製造した(最終的に得たフィルムは内部に空洞を含有しているため、未延伸フィルムの厚みを延伸倍率で割り返した値と同じにはならない)。
得られたフィルムの特性は、上記した方法によって評価した。評価結果を表2に示す。
得られた二軸延伸フィルムは、折り畳み角度、温湯収縮率、全光線透過率の低いフィルムとなり、総合的に大変好ましいものであった。
Thereafter, the film after longitudinal stretching is preheated until the surface temperature of the film reaches 100 ° C. with the clips held at both ends in the width direction in the tenter, and then in the transverse direction at 90 ° C. Stretched 4.0 times. The laterally stretched film was guided to a heat treatment zone in the tenter with both ends in the width direction held by clips, and cooled in the heat treatment zone at a temperature of 200 ° C. for 10 seconds. After that, by cutting and removing both edges and winding up into a roll with a width of 400 mm, a biaxially stretched film of about 20 μm was continuously produced over a predetermined length (the film finally obtained was Since it contains voids inside, it does not equal the value obtained by dividing the thickness of the unstretched film by the stretch ratio).
The properties of the obtained film were evaluated by the method described above. The evaluation results are shown in Table 2.
The obtained biaxially stretched film was a film having a low folding angle, hot water shrinkage, and total light transmittance, and was very preferable overall.
〔実施例2〕
実施例1と同じポリエステル原料を、未延伸シートの厚みが280μm(層比率 B/A/B=1/2/1)となるように実施例1と同様に溶融押し出しし、延伸倍率を4.0とした以外は実施例1と同様の方法で縦方向の延伸を行い、その後、実施例1と同様の条件で製膜することによって、約20μmの二軸延伸フィルムを所定の長さに亘って連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表2に示す。実施例1と同様、良好なフィルムを得た。
[Example 2]
The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1 so that the thickness of the unstretched sheet was 280 μm (layer ratio B / A / B = 1/2/1), and the draw ratio was 4.0. Except for the above, the film was stretched in the machine direction in the same manner as in Example 1, and then a biaxially stretched film of about 20 μm was continuously formed over a predetermined length by forming a film under the same conditions as in Example 1. Manufactured. And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 2. A good film was obtained as in Example 1.
〔実施例3〕
 実施例1と同じポリエステル原料を、実施例1と同様に溶融押し出しし、実施例1と同様の方法で縦延伸と横延伸を行った。横延伸後のフィルムを180℃で熱処理した以外は実施例1と同様の条件で製膜することによって、約20μmの二軸延伸フィルムを所定の長さに亘って連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表2に示す。実施例1と同様、良好なフィルムを得た。
Example 3
The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinal stretching and lateral stretching were performed in the same manner as in Example 1. A biaxially stretched film having a thickness of about 20 μm was continuously produced over a predetermined length by forming a film under the same conditions as in Example 1 except that the film after transverse stretching was heat-treated at 180 ° C. And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 2. A good film was obtained as in Example 1.
〔実施例4〕
 実施例1において、A層の原料に添加したポリスチレン樹脂10重量%に代えて結晶性ポリプロピレン樹脂(FO-50F グランドポリマー製)10重量%に変更した以外は実施例1と同様の方法によって熱収縮性フィルムを連続的に製造した。そして、得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。
実施例1と同様、良好なフィルムを得た。
Example 4
In Example 1, heat shrinkage was carried out in the same manner as in Example 1 except that 10% by weight of the polystyrene resin added to the raw material of the A layer was changed to 10% by weight of crystalline polypropylene resin (FO-50F ground polymer). Film was continuously produced. And the characteristic of the obtained film was evaluated by the same method as Example 1. The evaluation results are shown in Table 2.
A good film was obtained as in Example 1.
〔実施例5〕
 実施例1において押出機に投入するA層及びB層の原料ポリエステル3をポリエステル4に代え、重量比は実施例1と同じとした以外は実施例1と同様の方法によって熱収縮性フィルムを連続的に製造した。そして、得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。
実施例1と同様、良好なフィルムを得た。
Example 5
In Example 1, the heat-shrinkable film was continuously formed in the same manner as in Example 1 except that the polyester 3 was used as the raw material polyester 3 for the A layer and B layer to be fed into the extruder and the weight ratio was the same as in Example 1. Manufactured. And the characteristic of the obtained film was evaluated by the same method as Example 1. The evaluation results are shown in Table 2.
A good film was obtained as in Example 1.
〔実施例6〕
 上記のポリエステル1とポリエステル2とポリエステル3とポリエステル5を重量比20:50:10:20で混合し、滑剤としてSiO2(富士シリシア社製サイリシア266)を該ポリエステル混合物に対して50ppmとなるように添加してB層の原料とした。A層の原料樹脂はポリエステル1とポリエステル2とポリエステル3とポリエステル5を重量比20:50:10:20で混合するに際し、更にポリスチレン樹脂(G797N 日本ポリスチレン製)10重量%及び二酸化チタン(TA-300 富士チタン製)10重量%を加えて混合した。その後は実施例1と同様の方法によってフィルムを連続的に製造した。そして、得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。実施例1と同様、良好なフィルムを得た。
Example 6
Polyester 1, Polyester 2, Polyester 3, and Polyester 5 are mixed at a weight ratio of 20: 50: 10: 20, and SiO 2 (Silicia 266 manufactured by Fuji Silysia) as a lubricant is 50 ppm with respect to the polyester mixture. To make a raw material for the B layer. The raw material resin for layer A is polyester 1, polyester 2, polyester 3, and polyester 5 mixed at a weight ratio of 20: 50: 10: 20, 10% by weight of polystyrene resin (G797N made by Nippon Polystyrene) and titanium dioxide (TA- (300 Fuji Titanium) 10% by weight was added and mixed. Thereafter, a film was continuously produced by the same method as in Example 1. And the characteristic of the obtained film was evaluated by the same method as Example 1. The evaluation results are shown in Table 2. A good film was obtained as in Example 1.
〔実施例7〕
 上記のポリエステル1とポリエステル2とポリエステル3を重量比30:60:10で混合し、滑剤としてSiO2(富士シリシア社製サイリシア266)を該ポリエステル混合物に対して50ppmとなるように添加してB層の原料とした。A層の原料樹脂はポリエステル1とポリエステル2とポリエステル3を重量比30:60:10で混合するに際し、更にポリスチレン樹脂(G797N 日本ポリスチレン製)10重量%及び二酸化チタン(TA-300 富士チタン製)10重量%を加えて混合した。その後は実施例1と同様の方法によってフィルムを連続的に製造した。そして、得られたフィルムの特性を実施例1と同様の方法によって評価した。評価結果を表2に示す。実施例1と同様、良好なフィルムを得た。
Example 7
The above polyester 1, polyester 2, and polyester 3 are mixed at a weight ratio of 30:60:10, and SiO2 (Silicia 266 manufactured by Fuji Silysia) as a lubricant is added so as to be 50 ppm with respect to the polyester mixture. As a raw material. The raw material resin for layer A is polyester 1, polyester 2 and polyester 3 mixed at a weight ratio of 30:60:10. Polystyrene resin (G797N made by Nippon Polystyrene) 10% by weight and titanium dioxide (TA-300 made by Fuji Titanium) 10 wt% was added and mixed. Thereafter, a film was continuously produced by the same method as in Example 1. And the characteristic of the obtained film was evaluated by the same method as Example 1. The evaluation results are shown in Table 2. A good film was obtained as in Example 1.
〔比較例1〕
 層A、Bともに、上記したポリエステル1のみを原料として用い、B層には滑剤としてSiO2(富士シリシア社製サイリシア266)を該ポリエステルに対して50ppmとなるように添加した。A層及びB層の原料は、実施例1と同様の方法で押し出し後に急冷することにより、厚さ180μmでB/A/Bの積層構造を持つ未延伸フィルムを得た(層比率 B/A/B=1/2/1)。そして、上記の如く得られた厚み180μmの未延伸フィルムを、延伸温度を94℃、延伸倍率を3.0倍とした以外は実施例1と同様の方法で縦延伸した。
 しかる後、予備加熱温度と延伸温度を100℃、延伸倍率を3.0倍とした以外は実施例1と同様の方法で横延伸した。その後の熱処理ゾーンの温度は室温に設定し、熱処理を施さないままゾーンを通過させた。しかる後、両縁部を裁断除去して幅400mmでロール状に巻き取ることによって、約20μmの二軸延伸フィルムを所定の長さに亘って連続的に製造した。得られたフィルムの特性は、上記した方法によって評価した。評価結果を表2に示す。
得られた二軸延伸フィルムは、温湯収縮率、全光線透過率が高く、本発明としては好ましくないフィルムが得られた。
[Comparative Example 1]
In both layers A and B, only the above-mentioned polyester 1 was used as a raw material, and SiO2 (Silicia 266 manufactured by Fuji Silysia) was added as a lubricant to layer B so as to be 50 ppm with respect to the polyester. The raw materials of the A layer and the B layer were extruded in the same manner as in Example 1 and then rapidly cooled to obtain an unstretched film having a thickness of 180 μm and a B / A / B laminated structure (layer ratio B / A / B = 1/2/1). The unstretched film having a thickness of 180 μm obtained as described above was longitudinally stretched in the same manner as in Example 1 except that the stretching temperature was 94 ° C. and the stretching ratio was 3.0 times.
Thereafter, transverse stretching was performed in the same manner as in Example 1 except that the preheating temperature and the stretching temperature were 100 ° C. and the stretching ratio was 3.0 times. The temperature of the subsequent heat treatment zone was set to room temperature, and the zone was passed through without being subjected to the heat treatment. Thereafter, both edges were cut and removed and wound into a roll having a width of 400 mm, whereby a biaxially stretched film of about 20 μm was continuously produced over a predetermined length. The properties of the obtained film were evaluated by the method described above. The evaluation results are shown in Table 2.
The obtained biaxially stretched film had high hot water shrinkage and total light transmittance, and an unfavorable film for the present invention was obtained.
〔比較例2〕
 上記のポリエステル1に滑剤としてSiO2(富士シリシア社製サイリシア266)を該ポリエステル混合物に対して50ppmとなるように添加してB層の原料とした。A層の原料はポリエステル1に、ポリスチレン樹脂(G797N 日本ポリスチレン製)20重量%及び二酸化チタン(TA-300 富士チタン製)20重量%を加えて混合した。A層及びB層の原料は、実施例1と同様の方法で押し出し後に急冷することにより、厚さ180μmでB/A/Bの積層構造を持つ未延伸フィルムを得た(層比率 B/A/B=1/2/1)。そして、上記の如く得られた厚み190μmの未延伸フィルムを、延伸温度を90℃とした以外は実施例1と同様の方法で縦延伸した。
[Comparative Example 2]
SiO 2 (Silicia 266 manufactured by Fuji Silysia) as a lubricant was added to the above polyester 1 so as to be 50 ppm with respect to the polyester mixture, and used as a raw material for the B layer. The raw material for layer A was polyester 1 and 20% by weight of polystyrene resin (G797N manufactured by Nippon Polystyrene) and 20% by weight of titanium dioxide (TA-300 manufactured by Fuji Titanium). The raw materials of the A layer and the B layer were extruded in the same manner as in Example 1 and then rapidly cooled to obtain an unstretched film having a thickness of 180 μm and a B / A / B laminated structure (layer ratio B / A / B = 1/2/1). The unstretched film having a thickness of 190 μm obtained as described above was stretched in the same manner as in Example 1 except that the stretching temperature was 90 ° C.
 しかる後、縦延伸後のフィルムを、しかる後、予備加熱温度と延伸温度を135℃、延伸倍率を3.5倍とした以外は実施例1と同様の方法で横延伸した。横延伸後のフィルムは、熱処理温度を220℃とした以外は実施例1と同様の方法で熱処理と冷却を施した。しかる後、両縁部を裁断除去して幅400mmでロール状に巻き取ることによって、約20μmの二軸延伸フィルムを所定の長さに亘って連続的に製造した。
得られたフィルムの特性は、上記した方法によって評価した。評価結果を表2に示す。
得られた二軸延伸フィルムは、折り畳み角度を評価する際にフィルムが割れてしまって測定できなかったため、本発明としては好ましくないフィルムが得られた。
Thereafter, the film after longitudinal stretching was stretched in the same manner as in Example 1 except that the preheating temperature and stretching temperature were 135 ° C. and the stretching ratio was 3.5 times. The film after transverse stretching was subjected to heat treatment and cooling in the same manner as in Example 1 except that the heat treatment temperature was 220 ° C. Thereafter, both edges were cut and removed and wound into a roll having a width of 400 mm, whereby a biaxially stretched film of about 20 μm was continuously produced over a predetermined length.
The properties of the obtained film were evaluated by the method described above. The evaluation results are shown in Table 2.
Since the obtained biaxially stretched film could not be measured because the film was cracked when evaluating the folding angle, an unfavorable film was obtained as the present invention.
〔比較例3〕
実施例1と同じポリエステル原料を、実施例1と同様に溶融押し出しし、実施例1と同様の方法で縦延伸と横延伸を行った。横延伸後のフィルムを120℃で熱処理した以外は実施例1と同様の条件で製膜することによって、約20μmの二軸延伸フィルムを所定の長さに亘って連続的に製造した。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表2に示す。得られたフィルムは温湯収縮率が高く、本発明としては好ましくないフィルムが得られた。
[Comparative Example 3]
The same polyester raw material as in Example 1 was melt extruded in the same manner as in Example 1, and longitudinal stretching and lateral stretching were performed in the same manner as in Example 1. A biaxially stretched film of about 20 μm was continuously produced over a predetermined length by forming a film under the same conditions as in Example 1 except that the film after transverse stretching was heat-treated at 120 ° C. And the characteristic of the obtained film was evaluated by the above-mentioned method. The evaluation results are shown in Table 2. The obtained film had a high hot water shrinkage rate, and an unfavorable film was obtained in the present invention.
 [表2]
Figure JPOXMLDOC01-appb-I000002
 
[Table 2]
Figure JPOXMLDOC01-appb-I000002
 本発明のポリエステル系フィルムは、優れた折り畳み保持性を有しているうえ、高温環境下での熱収縮性が小さく、中身の隠蔽性に優れ、さらに耐水性、透明性、印刷適性にも優れているため、折り紙、手提げ袋、本のカバー、包装紙等の紙代替用途に好適に使用することが可能である。 The polyester film of the present invention has excellent folding retention properties, low heat shrinkability under high temperature environment, excellent concealment of contents, and excellent water resistance, transparency and printability. Therefore, it can be suitably used for paper replacement applications such as origami, handbags, book covers, and wrapping paper.
1・・・折り畳み保持角度
2・・・融点開始温度
1 ... folding holding angle 2 ... melting point start temperature

Claims (4)

  1.  エチレンテレフタレートユニットを含む非晶性ポリエステルからなり、下記要件(1)から(3)を満たすことを特徴とするポリエステルフィルム。
    (1)フィルムの長手方向と幅方向の各々の引張り試験による40%伸張時応力について、長手方向の40%伸張時応力と幅方向の40%伸張時応力の平均値が30MPa以上90MPa以下
    (2)80℃の温湯中で10秒間に亘って処理した場合における長手方向及び幅方向の温湯熱収縮率がいずれも-10%以上10%以下
    (3)全光線透過率が20%以上50%以下
    A polyester film comprising an amorphous polyester containing an ethylene terephthalate unit and satisfying the following requirements (1) to (3).
    (1) About 40% elongation stress in the longitudinal and width directions of the film, the average value of the 40% elongation stress in the longitudinal direction and the 40% elongation stress in the width direction is 30 MPa or more and 90 MPa or less (2 ) When heated for 10 seconds in hot water at 80 ° C, the hot shrinkage in the longitudinal and width directions is -10% to 10%. (3) Total light transmittance is 20% to 50%.
  2.  折畳み保持角度が15度以上45度以下であることを特徴とする請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the folding holding angle is 15 degrees or more and 45 degrees or less.
  3.  DSC昇温プロファイルにおける融解開始温度が100℃以上220℃以下であることを特徴とする請求項1又は2に記載のポリエステルフィルム。 The polyester film according to claim 1 or 2, wherein the melting start temperature in the DSC temperature rising profile is 100 ° C or higher and 220 ° C or lower.
  4.  請求項1から3いずれかのポリエステルフィルムを連続的に製造する方法であって、溶融押出され、冷却固化された未延伸シートを長手方向及び/又は幅方向に延伸後、ポリエステルの融解開始温度以上240℃以下の温度で熱処理することを特徴とするポリエステルフィルムの製造方法。 A method for continuously producing a polyester film according to any one of claims 1 to 3, wherein an unstretched sheet that has been melt-extruded and cooled and solidified is stretched in the longitudinal direction and / or the width direction, and then the melting start temperature of the polyester or higher. A method for producing a polyester film, wherein the heat treatment is performed at a temperature of 240 ° C. or lower.
PCT/JP2015/067175 2014-07-04 2015-06-15 Polyester film with fold retention, low shrinkage and excellent concealment properties WO2016002488A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534700A JP6641999B2 (en) 2014-07-04 2015-06-15 Polyester film with excellent folding retention, low shrinkage and concealment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014138701 2014-07-04
JP2014-138701 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002488A1 true WO2016002488A1 (en) 2016-01-07

Family

ID=55019035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067175 WO2016002488A1 (en) 2014-07-04 2015-06-15 Polyester film with fold retention, low shrinkage and excellent concealment properties

Country Status (2)

Country Link
JP (1) JP6641999B2 (en)
WO (1) WO2016002488A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003598A1 (en) * 2016-06-30 2018-01-04 東洋紡株式会社 Polyester-based film, laminated article, and packaging bag

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035594A (en) * 2002-06-28 2004-02-05 Toyobo Co Ltd Biaxially stretched polyester film
JP2007106462A (en) * 2005-10-14 2007-04-26 Mitsubishi Polyester Film Copp Lid material for cup-type food package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035594A (en) * 2002-06-28 2004-02-05 Toyobo Co Ltd Biaxially stretched polyester film
JP2007106462A (en) * 2005-10-14 2007-04-26 Mitsubishi Polyester Film Copp Lid material for cup-type food package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003598A1 (en) * 2016-06-30 2018-01-04 東洋紡株式会社 Polyester-based film, laminated article, and packaging bag
JP2018001533A (en) * 2016-06-30 2018-01-11 東洋紡株式会社 Polyester film, laminate, and packaging bag

Also Published As

Publication number Publication date
JPWO2016002488A1 (en) 2017-04-27
JP6641999B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP2020097745A (en) Copolyester raw material for amorphous film, heat-shrinkable polyester film, heat-shrinkable label, and package
JP6572907B2 (en) Heat-shrinkable polyester film, method for producing the same, and package
KR102023237B1 (en) Heat-shrinkable polyester film and package
TWI793292B (en) heat shrinkable polyester film
JPWO2019188922A1 (en) Heat-shrinkable polyester film
US8722161B2 (en) Heat shrinkable polyester film, method for producing same, and packaged body
KR102463003B1 (en) Heat-shrinkable polyester film and packaging material
JP2019147954A (en) Heat-shrinkable polyester-based film, and package
JP2023178331A (en) Heat-shrinkable polyester film, heat-shrinkable label, and package
JP6107321B2 (en) Polyester film with excellent folding retention that can be used in place of paper, and film-made articles for paper replacement
JP6217202B2 (en) Polyester film with excellent folding retention that can be used in place of paper, and film-made articles for paper replacement
JP2019178263A (en) Heat-shrinkable polyester-based film
JP7056322B2 (en) Heat shrinkable polyester film
JP6693586B2 (en) Polyester film roll with excellent foldability, low shrinkage and transparency
WO2016002488A1 (en) Polyester film with fold retention, low shrinkage and excellent concealment properties
KR102286584B1 (en) Polyester-based film, laminated article, and packaging bag
JP7302694B2 (en) Heat-shrinkable polyester film
JP6673453B2 (en) Heat-shrinkable polyester film and package
JP6337981B2 (en) Polyester film roll
WO2021230207A1 (en) Copolyester raw material for films, heat-shrinkable polyester films, heat-shrinkable labels, and packages
JP2006181899A (en) Multilayer heat shrinkable polyester film and label
JP2007253461A (en) Multilayered heat-shrinkable polyester film and label
JP2006095711A (en) Multilayered heat-shrinkable polyester film and label
JP2006168317A (en) Multi-layered heat shrinkable polyester-based film and label
JP2005254801A (en) Multilayer heat-shrinkable polyester film and label

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015534700

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814571

Country of ref document: EP

Kind code of ref document: A1