JP4576886B2 - Laminated polyester film for folding packaging - Google Patents
Laminated polyester film for folding packaging Download PDFInfo
- Publication number
- JP4576886B2 JP4576886B2 JP2004160186A JP2004160186A JP4576886B2 JP 4576886 B2 JP4576886 B2 JP 4576886B2 JP 2004160186 A JP2004160186 A JP 2004160186A JP 2004160186 A JP2004160186 A JP 2004160186A JP 4576886 B2 JP4576886 B2 JP 4576886B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- temperature
- polyester resin
- polyester film
- crystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004806 packaging method and process Methods 0.000 title claims description 43
- 229920006267 polyester film Polymers 0.000 title claims description 37
- 229920001225 polyester resin Polymers 0.000 claims description 71
- 239000004645 polyester resin Substances 0.000 claims description 70
- 238000002844 melting Methods 0.000 claims description 52
- 230000008018 melting Effects 0.000 claims description 52
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 26
- 230000009477 glass transition Effects 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 24
- 229920005989 resin Polymers 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 14
- 238000005452 bending Methods 0.000 claims description 12
- 229920001577 copolymer Polymers 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229920000728 polyester Polymers 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 96
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 37
- 230000000052 comparative effect Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 8
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229920000298 Cellophane Polymers 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920006127 amorphous resin Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920006038 crystalline resin Polymers 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- MSWMMXSNEVDUKZ-UHFFFAOYSA-N 1,1,3-trimethyl-3-phenyl-2h-indene-4,5-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=C(C(O)=O)C2=C1C(C)(C)CC2(C)C1=CC=CC=C1 MSWMMXSNEVDUKZ-UHFFFAOYSA-N 0.000 description 1
- CWVGVVRNVAMUCO-UHFFFAOYSA-N 3,3,5,5-tetramethyl-4-phenylcyclohexane-1,1-dicarboxylic acid Chemical compound CC1(C)CC(C(O)=O)(C(O)=O)CC(C)(C)C1C1=CC=CC=C1 CWVGVVRNVAMUCO-UHFFFAOYSA-N 0.000 description 1
- BJLUCDZIWWSFIB-UHFFFAOYSA-N 5-tert-butylbenzene-1,3-dicarboxylic acid Chemical compound CC(C)(C)C1=CC(C(O)=O)=CC(C(O)=O)=C1 BJLUCDZIWWSFIB-UHFFFAOYSA-N 0.000 description 1
- 229920008651 Crystalline Polyethylene terephthalate Polymers 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- FYIBGDKNYYMMAG-UHFFFAOYSA-N ethane-1,2-diol;terephthalic acid Chemical compound OCCO.OC(=O)C1=CC=C(C(O)=O)C=C1 FYIBGDKNYYMMAG-UHFFFAOYSA-N 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 125000006839 xylylene group Chemical group 0.000 description 1
Images
Landscapes
- Laminated Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
本発明は折曲げ包装用積層ポリエステル系フィルムに関する。さらに詳しくは、ポリエステル延伸フィルムの優れた特性である強度、耐熱性、保香性、耐水性等を失うことなく実用面の特性を維持し、良好な折曲げ性、ひねり固定性を具備した包装用フィルムとして有用な折曲げ包装用積層ポリエステル系フィルムに関する。 The present invention relates to a laminated polyester film for folding packaging. More specifically, the packaging has excellent bending properties and twist fixability while maintaining the practical properties without losing the strength, heat resistance, fragrance retention, water resistance, etc., which are the excellent properties of the stretched polyester film. The present invention relates to a laminated polyester film for folding packaging that is useful as a film for use in bending.
従来から、ひねり固定性の優れたフィルムとしては、セロファンが知られている。セロファンは、その優れた透明性と易切断性、ひねり固定性等の特性により各種包装材料、粘着テープ用として重用されている。しかし、一方ではセロファンは吸湿性を有するため特性が季節により変動し一定の品質のものを常に供給することは困難であった。また、ポリエチレンテレフタレートをベースフィルムとした包装用袋は、延伸されたポリエチレンテレフタレートフィルムの強靱性、耐熱性、耐水性、透明性などの優れた特性のよさを評価されて用いられているが、これらの優れた特性を有する反面、折曲げ性やひねり固定性がなく、折曲げ包装やひねり包装に用いることができないという欠点があった。 Conventionally, cellophane has been known as a film excellent in twist fixing property. Cellophane is widely used for various packaging materials and adhesive tapes due to its excellent transparency, easy cutting property, twist fixing property, and the like. However, on the other hand, since cellophane has hygroscopicity, its characteristics fluctuate depending on the season, and it is difficult to always supply a product of a certain quality. In addition, packaging bags using polyethylene terephthalate as a base film have been used to evaluate the excellent properties of stretched polyethylene terephthalate film such as toughness, heat resistance, water resistance, and transparency. On the other hand, it has the disadvantage that it cannot be used for folding packaging or twist packaging because it has no excellent folding property and twist fixing property.
上記問題を解決する方法として、応力−ひずみ曲線において降伏点を有し、かつ、該共重合物の未延伸フィルムの平均屈折率をN0、2軸延伸フィルムの平均屈折率をN1としたとき、0.003≦N1−N0≦0.021を満足する易折曲げポリエステルフィルムが提案されている。
しかしながら、応力−ひずみ曲線において降伏点を有し、かつ該共重合物の未延伸フィルムの平均屈折率をN0、2軸延伸フィルムの平均屈折率をN1としたとき、0.003≦N1−N0≦0.021とする方法では、折曲げ性やひねり固定性が不充分なことや、印刷や蒸着等の加工を行ったときに熱による収縮によってシワの発生や幅方向のフィルムの寸法変化が発生し、使用に耐えなかった。 However, when the stress-strain curve has a yield point and the average refractive index of the unstretched film of the copolymer is N 0 and the average refractive index of the biaxially stretched film is N 1 , 0.003 ≦ N In the method of 1− N 0 ≦ 0.021, the bending property and the twist fixing property are insufficient, or the film in the width direction is caused by wrinkles due to shrinkage due to heat when processing such as printing or vapor deposition is performed. Dimensional change occurred and could not be used.
また、上記の問題点である折曲げ性の不足や耐熱性を改良する方法として、ポリエステル樹脂A層の少なくとも一方の面に、ポリエステル樹脂A層の融点よりも10℃以上高い融点を有し、かつ、全体厚みに対し5%以上、60%以下の厚みのポリエステル樹脂B層を積層した未延伸積層フィルムを少なくとも1軸延伸後にポリエステル樹脂A層の融点より10℃低い温度以上、かつ、ポリエステル樹脂B層の融点未満の温度で熱処理する引裂き性とひねり保持性の良好なポリエステルフィルムの製造方法などが提案されている。
しかしながら、ポリエステル樹脂層Aの少なくとも一方の面に、ポリエステル樹脂層Aの融点よりも10℃以上高い融点を有し、かつ全厚みに対し、5%以上、60%以下の厚みのポリエステル樹脂層Bを積層した未延伸積層フィルムを少なくとも1軸延伸後にポリエステル樹脂層Aの融点より10℃低い温度以上、かつポリエステル樹脂層Bの融点未満の温度で熱処理する方法では、融点の高いポリエステル樹脂層Bの影響により充分な易折曲げ性、ひねり固定性が得られないことがあり、易折曲げ性やひねり固定性を得るためにポリエステル樹脂層Bの厚みを薄くするとフィルムが脆くなり、包装の際に破れたりして実用的ではなかった。 However, at least one surface of the polyester resin layer A has a melting point higher by 10 ° C. or more than the melting point of the polyester resin layer A and has a thickness of 5% or more and 60% or less of the total thickness. In the method of heat-treating an unstretched laminated film laminated with at least uniaxially stretching at a temperature of 10 ° C. lower than the melting point of the polyester resin layer A and lower than the melting point of the polyester resin layer B, the polyester resin layer B having a high melting point Sufficient easy bendability and twist fixability may not be obtained due to the influence. If the thickness of the polyester resin layer B is decreased in order to obtain easy bendability and twist fixability, the film becomes brittle, and when packaging It was not practical because it was torn.
本発明は上記従来技術の有する問題点に鑑み、特に易折曲げ性、ひねり固定性に注目し、紙のように折曲げられるという特性を有し、かつポリエステルフィルムの優れた特性である強度、耐熱性、防湿性、透明性、保香性等を合わせて有する、折曲げ包装用積層ポリエステル系フィルムを得ることを目的としたものである。 In light of the above-mentioned problems of the prior art, the present invention pays particular attention to easy bendability and twist fixability, has the property of being bent like paper, and is an excellent property of a polyester film, An object of the present invention is to obtain a laminated polyester film for folding packaging having heat resistance, moisture resistance, transparency, fragrance retention and the like.
上記目的を達成するため、本発明の折曲げ包装用積層ポリエステル系フィルムは、少なくとも1種類以上のガラス転移温度が60℃以上の結晶性ポリエステル樹脂と、少なくとも1種類以上のガラス転移温度が60℃以上の非晶性共重合ポリエステル樹脂との混合物からなる、少なくとも3層構成を有する2軸延伸ポリエステル系フィルムであって、両外層は、示差走査熱量計(DSC)曲線に現れる融解ピークのうちの最高温度を示すものの融解ピーク温度とベースラインの変曲点温度との差が30℃以上の結晶性を有する樹脂混合物からなる層であり、内層に実質的に結晶性でない樹脂混合物からなる層を有し、ポリエステル系フィルムの長手方向の屈折率Nxと幅方向の屈折率Nyとの差の絶対値(|Nx−Ny|)が0.005以下であることを特徴とする。 In order to achieve the above object, the laminated polyester film for folding packaging of the present invention has at least one kind of crystalline polyester resin having a glass transition temperature of 60 ° C. or more and at least one kind of glass transition temperature of 60 ° C. A biaxially stretched polyester-based film comprising a mixture with the above amorphous copolymerized polyester resin and having at least a three-layer structure, wherein both outer layers are of melting peaks appearing on a differential scanning calorimeter (DSC) curve. Although it shows the maximum temperature, it is a layer made of a resin mixture having a crystallinity of 30 ° C. or higher between the melting peak temperature and the inflection point temperature of the baseline, and an inner layer made of a resin mixture that is not substantially crystalline Yes, and the absolute value of the difference between the refractive index Ny in the longitudinal direction of the refractive index Nx in the width direction of the polyester film (| Nx-Ny |) is 0.005 or less Oh, wherein the Rukoto.
この場合、40℃雰囲気に1週間放置した後の長手方向の引張り破断伸度を50%以上とすることができる。 In this case, the tensile elongation at break in the longitudinal direction after being left in a 40 ° C. atmosphere for one week can be 50% or more.
また、150℃に30分間放置したときのフィルム長手方向の熱収縮率を5.0%以下とすることができる。 Further, the thermal shrinkage in the longitudinal direction of the film when left at 150 ° C. for 30 minutes can be 5.0% or less.
また、前記融解ピーク温度−5℃以下、ベースラインの変曲点温度以上の温度で、2軸延伸後の熱処理をすることができる。 Further, the heat treatment after biaxial stretching can be performed at the melting peak temperature of −5 ° C. or lower and a temperature of the inflection point temperature of the baseline or higher.
また、非晶性ポリエステル樹脂を構成する酸成分の90モル%以上がテレフタル酸からなることができる。 Moreover, 90 mol% or more of the acid component which comprises an amorphous polyester resin can consist of terephthalic acid.
また、両外層の合計厚みと内層の厚みの比率を、両外層/内層=1/4〜4/1とすることができる。 Moreover, the ratio of the total thickness of both outer layers and the thickness of the inner layers can be set to both outer layers / inner layers = 1/4 to 4/1.
本発明のポリエステル系樹脂フィルムによれば、強度、耐熱性、防湿性、透明性、保香性等のポリエステル本来の特性を有しながらも、易折曲げ性、ひねり固定性に優れた積層フィルムであり、チョコレート、キャンディ、ガム等の折曲げ包装やひねり包装に好適に使用できるという利点を有する。 According to the polyester-based resin film of the present invention, the laminated film has excellent properties such as strength, heat resistance, moisture proofness, transparency, and fragrance retention properties, but also has excellent bendability and twist fixability. And has an advantage that it can be suitably used for folding packaging and twist packaging of chocolate, candy, gum and the like.
以下、本発明を詳細に説明する。
本発明の折曲げ包装用積層ポリエステル系フィルムは、両外層及び内層がそれぞれ特定の結晶性樹脂と特定の非晶性樹脂を混合してなる混合物であって、両外層は結晶性を有する樹脂混合物からなる層からなり、内層に実質的に結晶性でない樹脂混合物からなる層が存する。
Hereinafter, the present invention will be described in detail.
The laminated polyester film for folding wrapping of the present invention is a mixture in which both outer layer and inner layer are a mixture of a specific crystalline resin and a specific amorphous resin, and both outer layers are a resin mixture having crystallinity. There is a layer made of a resin mixture that is substantially non-crystalline in the inner layer.
本発明の折曲げ包装用積層ポリエステル系フィルムを製造するのに用いる結晶性ポリエステル樹脂は、ガラス転移温度が60℃以上であり、さらに好ましくはガラス転移温度が67℃以上である。ガラス転移温度が60℃未満の場合、製膜後の加工、あるいは保管の際の熱により脆化が進み、実用的に使用が困難になる。また、製膜直後と後加工又は包装使用時とでフィルム特性が変化するために、品質の保証が困難となり好ましくない。 The crystalline polyester resin used for producing the laminated polyester film for folding packaging of the present invention has a glass transition temperature of 60 ° C. or higher, more preferably 67 ° C. or higher. When the glass transition temperature is less than 60 ° C., embrittlement progresses due to processing after film formation or heat during storage, making practical use difficult. Moreover, since film characteristics change immediately after film formation and when post-processing or packaging is used, it is difficult to guarantee quality, which is not preferable.
本発明の折曲げ包装用積層ポリエステル系フィルムを製造するのに用いる結晶性ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、あるいはそれらの構成成分を主成分とする共重合体等が挙げられ、好ましくはテレフタル酸が95モル%以上、エチレングリコールが95モル%以上からなるポリエステル樹脂を90重量%以上含むことであり、より好ましくはテレフタル酸が98モル%以上、エチレングリコールが97モル%以上からなるポリエステル樹脂を、その結晶性ポリエステル樹脂全体に対し90重量%以上含有することである。 Examples of the crystalline polyester resin used for producing the laminated polyester film for folding packaging of the present invention include polyethylene terephthalate, polyethylene naphthalate, or a copolymer mainly composed of these constituents. Preferably, the polyester resin comprises 95% by weight or more of terephthalic acid and 95% by weight or more of ethylene glycol, more preferably 98% by mole or more of terephthalic acid and 97% by mole or more of ethylene glycol. The polyester resin consisting of 90% by weight or more based on the whole crystalline polyester resin.
テレフタル酸及び/又はエチレングリコールの含有量が95モル%未満の場合、結晶性が低下して、フィルムの剛性を確保することが困難となり、また、非晶性樹脂との混合押出しの際にエステル交換反応により均一樹脂となりやすいため好ましくない。 When the content of terephthalic acid and / or ethylene glycol is less than 95 mol%, the crystallinity is lowered and it is difficult to ensure the rigidity of the film, and the ester is mixed and extruded with the amorphous resin. This is not preferable because it tends to be a uniform resin by an exchange reaction.
本発明の折曲げ包装用積層ポリエステル系フィルムを製造するのに用いる非晶性ポリエステル樹脂は、ガラス転移温度が60℃以上であり、さらに好ましくはガラス転移温度が67℃以上である。ガラス転移温度が60℃未満の場合、製膜後の加工、あるいは保管の際の熱により脆化が進み、実用的に使用できなくなる。また、製膜直後と加工、あるいは包装時のフィルム特性が変化するために、品質の保証が困難となり好ましくない。 The amorphous polyester resin used for producing the laminated polyester film for folding packaging of the present invention has a glass transition temperature of 60 ° C. or higher, more preferably 67 ° C. or higher. When the glass transition temperature is less than 60 ° C., embrittlement progresses due to processing after film formation or heat during storage, making it impossible to use practically. In addition, since film properties at the time of film formation and processing or packaging change, it is difficult to guarantee quality, which is not preferable.
本発明の折曲げ包装用積層ポリエステル系フィルムを製造するのに用いる非晶性ポリエステル樹脂としては、酸成分に主としてテレフタル酸、グリコール成分に主としてエチレングリコールを用い、共重合成分として他の酸成分及び/又は他のグリコール成分を共重合成分として含有するポリエステルが好ましい。他の酸成分としては、脂肪族の2塩基酸(例えば、アジピン酸、セバチン酸、アゼライン酸)や芳香族の2塩基酸(例えば、イソフタル酸、ジフェニルジカルボン酸、5−第3ブチルイソフタル酸、2,2,6,6−テトラメチルビフェニル−4,4−ジカルボン酸、2,6−ナフタレンジカルボン酸、1,1,3−トリメチル−3−フェニルインデン−4,5−ジカルボン酸)が用いられる。グリコール成分としては、脂肪族ジオール(例えば、ネオペンチルグリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール)、脂環族ジオール(例えば、1,4−シクロヘキサンジメタノール)又は芳香族ジオール(例えば、キシリレングリコール、ビス(4−β−ヒドロキシフェニル)スルホン、2,2−(4−ヒドロキシフェニル)プロパン誘導体)が用いられる。 As an amorphous polyester resin used for producing the laminated polyester film for folding packaging of the present invention, terephthalic acid is mainly used for the acid component, ethylene glycol is mainly used for the glycol component, and other acid components and Polyesters containing / or other glycol components as copolymerization components are preferred. Other acid components include aliphatic dibasic acids (for example, adipic acid, sebacic acid, azelaic acid) and aromatic dibasic acids (for example, isophthalic acid, diphenyldicarboxylic acid, 5-tert-butylisophthalic acid, 2,2,6,6-tetramethylbiphenyl-4,4-dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,1,3-trimethyl-3-phenylindene-4,5-dicarboxylic acid) . Examples of the glycol component include aliphatic diols (for example, neopentyl glycol, diethylene glycol, propylene glycol, butanediol, hexanediol), alicyclic diols (for example, 1,4-cyclohexanedimethanol), or aromatic diols (for example, xylylene Renglycol, bis (4-β-hydroxyphenyl) sulfone, 2,2- (4-hydroxyphenyl) propane derivative) are used.
本発明において用いるポリエステル樹脂のガラス転移温度を60℃以上とするためには例えば、ベンゼン環を基にする剛直な分子構造を有する酸成分や、環構造を有し、回転し難い単量体成分が多いグリコール成分が好ましい。例えば、メチレン鎖を有する共重合成分を導入すると、ガラス転移温度が下がり好ましくない。 In order to set the glass transition temperature of the polyester resin used in the present invention to 60 ° C. or higher, for example, an acid component having a rigid molecular structure based on a benzene ring, or a monomer component having a ring structure and difficult to rotate. A glycol component with a large amount is preferred. For example, introduction of a copolymer component having a methylene chain is not preferable because the glass transition temperature is lowered.
本発明において用いるポリエステル樹脂において、前記の共重合ポリエステルのうち、特に好ましいのはテレフタル酸−イソフタル酸−エチレングリコール共重合体、テレフタル酸−エチレングリコール−ネオペンチルグリコール共重合体、テレフタル酸−エチレングリコール−シクロヘキサンジメタノール共重合体等であり、さらに好ましくはテレフタル酸−エチレングリコール−ネオペンチルグリコール共重合体、テレフタル酸−エチレングリコール−シクロヘキサンジメタノール共重合体である。これら共重合ポリエステルは、工業的に製造されており、コスト、品質、供給の安定性等からも好適に使用することができる。 In the polyester resin used in the present invention, among the copolymer polyesters, terephthalic acid-isophthalic acid-ethylene glycol copolymer, terephthalic acid-ethylene glycol-neopentyl glycol copolymer, terephthalic acid-ethylene glycol are particularly preferable. -Cyclohexanedimethanol copolymer, etc., more preferably terephthalic acid-ethylene glycol-neopentyl glycol copolymer, terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer. These copolyesters are produced industrially and can be suitably used from the viewpoint of cost, quality, supply stability, and the like.
さらに、本発明において用いる非晶性ポリエステル樹脂は、その酸成分の90モル%以上がテレフタル酸からなることが好ましい。テレフタル酸はその分子構造から非常に剛直であり、ガラス転移温度を高めるのに好ましく、また、非晶性樹脂成分に用いた場合も、フィルムとしたときにフィルム剛性を保つのに役立つ。 Furthermore, it is preferable that 90 mol% or more of the acid component of the amorphous polyester resin used in the present invention is terephthalic acid. Terephthalic acid is very rigid because of its molecular structure, and is preferable for increasing the glass transition temperature. Also, when used as an amorphous resin component, terephthalic acid helps maintain film rigidity when formed into a film.
本発明において、両外層はガラス転移温度が60℃以上である結晶性ポリエステル樹脂とガラス転移温度が60℃以上である非晶性ポリエステル樹脂をフィルムに製膜した状態で結晶性を有する必要があり、好ましくはその融解ピーク温度(以下、融点ということがある。)が220℃以上250℃以下であり、さらに好ましくは225℃以上240℃以下である。 In the present invention, both outer layers must have crystallinity in a state where a crystalline polyester resin having a glass transition temperature of 60 ° C. or higher and an amorphous polyester resin having a glass transition temperature of 60 ° C. or higher are formed on a film. The melting peak temperature (hereinafter sometimes referred to as the melting point) is preferably 220 ° C. or higher and 250 ° C. or lower, more preferably 225 ° C. or higher and 240 ° C. or lower.
本発明において、両外層は、結晶性ポリエステル樹脂/非晶性ポリエステル樹脂=40/60〜80/20重量%の割合で混合したものであるのが好ましく、さらに55/45〜75/35重量%であるのが好ましい。これらの割合で混合することにより、結晶性ポリエステル樹脂、非晶性ポリエステル樹脂を組み合わせてその融点を220℃以上250℃以下とすることにより、さらに良好な折曲げ性を発現させることができる。 In the present invention, both outer layers are preferably mixed in a ratio of crystalline polyester resin / amorphous polyester resin = 40/60 to 80/20 wt%, and more preferably 55/45 to 75/35 wt%. Is preferred. By mixing at these ratios, the crystalline polyester resin and the amorphous polyester resin are combined and the melting point thereof is set to 220 ° C. or higher and 250 ° C. or lower, so that even better bendability can be exhibited.
本発明において、両外層を形成するポリエステル樹脂の融点が220℃未満の場合、その耐熱性が不足することで熱収縮率が悪化したり、印刷、蒸着等の加工時の熱による寸法安定性が悪化したりして好ましくない。また、その融点が250℃を超える場合、両外層の結晶性が高くなりすぎるため、折曲げ性が発現しないことがあり好ましくない。 In the present invention, when the melting point of the polyester resin forming both outer layers is less than 220 ° C., the heat shrinkage rate is deteriorated due to insufficient heat resistance, and dimensional stability due to heat during processing such as printing and vapor deposition is reduced. It is not preferable because it deteriorates. Moreover, when the melting point exceeds 250 ° C., the crystallinity of both outer layers becomes too high, so that the bending property may not be exhibited, which is not preferable.
また、両外層を形成するポリエステル樹脂の融点は、その混合するポリエステル樹脂の種類、混合割合のみでなく、製膜時の混練状態、押出温度、滞留時間等により変化することがあり、融点が220℃以上250℃以下となるようにそれら条件を適宜調整することが好ましく、例えば、混練は極力せん断速度の低いスクリューを用い、押出し温度を低めとし、滞留時間を短くするといった押出し方法が好ましいが、設備の制限によることが多いため、結晶性ポリエステル樹脂と非晶性ポリエステル樹脂の混合比により調整することが好ましい。 The melting point of the polyester resin forming both outer layers may change depending not only on the type and mixing ratio of the polyester resin to be mixed, but also on the kneading state during film formation, the extrusion temperature, the residence time, etc. It is preferable to appropriately adjust these conditions so that the temperature is not lower than 250 ° C. and not higher than, for example, kneading is preferably performed using a screw having a low shear rate, lowering the extrusion temperature, and shortening the residence time. Since it often depends on equipment limitations, it is preferable to adjust the mixing ratio between the crystalline polyester resin and the amorphous polyester resin.
さらに、両外層を形成するポリエステル樹脂は、未延伸積層シートを2軸延伸後、両外層を構成するポリエステル樹脂の示差走査熱量計(DSC)曲線に現れる融解ピークのうちの最高温度を示すものの融解ピーク温度とベースラインの変曲点温度との差が30℃以上であることが好ましく、35℃以上あることがさらに好ましい。 Furthermore, the polyester resin that forms both outer layers is melted although it exhibits the highest temperature among melting peaks appearing on the differential scanning calorimeter (DSC) curve of the polyester resin that constitutes both outer layers after biaxially stretching the unstretched laminated sheet. The difference between the peak temperature and the inflection point temperature of the baseline is preferably 30 ° C. or higher, and more preferably 35 ° C. or higher.
本発明においては、未延伸積層シートを2軸延伸後に、両外層を構成するポリエステル樹脂の示差走査熱量計(DSC)曲線で、最高温度に現れる融解ピークについてのベースラインの変曲点温度(Tm1)から融解ピーク温度(TmP)−5℃までの温度で、2軸延伸後の熱処理をすることで目的とする易折曲げ性、ひねり固定性が発現する。また、易折曲げ性、ひねり固定性をよりよく発現させるためには、変曲点温度(Tm1)+5℃以上、融解ピーク温度(TmP)−10℃以下の温度で熱処理することが好ましい。 In the present invention, the base inflection point temperature (Tm1) of the melting peak appearing at the maximum temperature in the differential scanning calorimeter (DSC) curve of the polyester resin constituting both outer layers after biaxially stretching the unstretched laminated sheet. ) To the melting peak temperature (TmP) −5 ° C., the desired easy bendability and twist fixability are exhibited by heat treatment after biaxial stretching. Further, in order to better express the bendability and the twist fixing property, it is preferable to perform heat treatment at a temperature of the inflection point temperature (Tm1) + 5 ° C. or higher and the melting peak temperature (TmP) −10 ° C. or lower.
本発明において、変曲点温度(Tm1)から融解ピーク温度(TmP)までの温度差(TmP−Tm1)(以下「△Tm」と記すことがある。)が30℃未満の場合、易折曲げ性が得られないばかりか、折曲げ性の発現から溶融破断までの範囲が狭くなって調整が難しくなり、折曲げ加工の生産性を悪化させることになり好ましくない。 In the present invention, when the temperature difference (TmP−Tm1) (hereinafter sometimes referred to as “ΔTm”) from the inflection point temperature (Tm1) to the melting peak temperature (TmP) is less than 30 ° C., easy bending This is not preferable because the range from the expression of the folding property to the melt fracture is narrowed and the adjustment becomes difficult and the productivity of the bending process is deteriorated.
本発明では、両外層に用いられる結晶性ポリエステル樹脂と非晶性ポリエステル樹脂の混合物が押出し工程において部分的にエステル交換反応により共重合化することがあることを想定している。この場合、この工程を経た後の混合物のDSC曲線は、結晶性ポリエステル樹脂と非晶性ポリエステル樹脂をチップあるいはパウダー混合しただけのもののDSC曲線、あるいは、混合物の組成となるように共重合した共重合物のDSC曲線に対して融解ピーク値が異なった値を示し、また、ショルダー部分がブロードなものとなる。 In the present invention, it is assumed that a mixture of a crystalline polyester resin and an amorphous polyester resin used for both outer layers may be partially copolymerized by an ester exchange reaction in an extrusion process. In this case, the DSC curve of the mixture after this step is a DSC curve of a mixture of a crystalline polyester resin and an amorphous polyester resin that is simply a chip or powder mixed, or a copolymer that is copolymerized so as to have a composition of the mixture. The melting peak value is different from the DSC curve of the polymer, and the shoulder portion is broad.
すなわち、本発明の2軸延伸ポリエステル系フィルムの両外層を形成するのに用いられる樹脂組成物は、結晶性ポリエステル樹脂と非晶性ポリエステル樹脂の組成比が結晶性ポリエステル樹脂濃度が高い部分と非晶性ポリエステル樹脂濃度が高い部分とが存在しており、非晶性ポリエステル樹脂濃度が高い部分が示す融解ピークであるピークのショルダー部分がなだらかになり、かつその部分を融解させることで優れた折曲げ性が得られるものである。 That is, the resin composition used to form both outer layers of the biaxially stretched polyester film of the present invention has a composition ratio of the crystalline polyester resin and the amorphous polyester resin that is higher than the portion where the crystalline polyester resin concentration is high. There is a portion where the crystalline polyester resin concentration is high, the shoulder portion of the peak, which is the melting peak exhibited by the portion where the amorphous polyester resin concentration is high, becomes gentle, and excellent melting is achieved by melting that portion. Flexibility is obtained.
このとき、DSC曲線の形状は、樹脂の組成比、押出し温度、滞留時間等の諸条件により変化するが、変曲点温度(Tm1)と融解ピーク温度(TmP)との差を30℃以上とすることで安定した折曲げ性が得られる。 At this time, the shape of the DSC curve changes depending on various conditions such as the resin composition ratio, extrusion temperature, residence time, etc., but the difference between the inflection point temperature (Tm1) and the melting peak temperature (TmP) is 30 ° C. or more. By doing so, stable bendability is obtained.
本発明において内層は、ガラス転移温度が60℃以上である結晶性ポリエステル樹脂とガラス転移温度が60℃以上である非晶性ポリエステル樹脂を、実質的に結晶性でない樹脂混合物となる割合で混合した樹脂混合物からなり、好ましくは結晶性ポリエステル樹脂/非晶性ポリエステル樹脂=3/97〜30/70重量%の割合で混合されており、さらに好ましくは5/95〜20/80重量%の割合で混合されている。なお、内層が2層以上あるときは、少なくとも1層が結晶性ポリエステル樹脂/非晶性ポリエステル樹脂=3/97〜30/70重量%の割合で混合したものであれば、他の内層は、本発明の特性を害さない限りかかる組み合わせに限定されない。 In the present invention, the inner layer is a mixture of a crystalline polyester resin having a glass transition temperature of 60 ° C. or higher and an amorphous polyester resin having a glass transition temperature of 60 ° C. or higher in a ratio that makes a resin mixture that is not substantially crystalline. It is composed of a resin mixture, preferably mixed in a ratio of crystalline polyester resin / amorphous polyester resin = 3/97 to 30/70% by weight, more preferably in a ratio of 5/95 to 20/80% by weight. Have been mixed. In addition, when there are two or more inner layers, if at least one layer is a mixture of crystalline polyester resin / amorphous polyester resin = 3/97 to 30/70 wt%, the other inner layers are The combination is not limited as long as the characteristics of the present invention are not impaired.
内層の結晶性ポリエステル樹脂の割合が3重量%未満の場合、内層の剛性が著しく低くなり、フィルム全体の剛性が不充分なものとなる。また、30重量%を超える場合、非晶性ポリエステル樹脂と混合した後に結晶性を示すことがあり、本発明の特徴である優れた易折曲げ性が得られなくなり好ましくない。 When the ratio of the crystalline polyester resin in the inner layer is less than 3% by weight, the rigidity of the inner layer is remarkably lowered, and the rigidity of the entire film becomes insufficient. On the other hand, if it exceeds 30% by weight, it may show crystallinity after being mixed with an amorphous polyester resin, and the excellent easy bendability characteristic of the present invention cannot be obtained, which is not preferable.
本発明の折曲げ包装用積層ポリエステル系フィルムは、150℃、30分間放置したときの熱収縮率が5.0%以下であるのが好ましく、3%以下であるのがさらに好ましい。熱収縮率が5%を超えると、印刷加工、蒸着加工のような乾燥工程、加熱工程を有する加工において寸法が変化し、ピッチズレが生じたり、シワやタルミの原因となり好ましくない。 The laminated polyester film for folding packaging according to the present invention preferably has a heat shrinkage of 5.0% or less, more preferably 3% or less when left at 150 ° C. for 30 minutes. When the thermal shrinkage rate exceeds 5%, the dimensions change in a process having a drying process such as a printing process or a vapor deposition process, or a process having a heating process, which causes a pitch shift or causes wrinkles or talmi.
本発明の折曲げ包装用積層ポリエステル系フィルムにおいて、前記熱収縮率を5%以下とするためには、2軸延伸後の熱処理においてフィルムの両外層の結晶性樹脂成分を結晶化させることや、熱処理の際に延伸を緩和させる弛緩処理が好ましい。 In the folded polyester laminated film of the present invention, in order to reduce the heat shrinkage rate to 5% or less, crystallizing the crystalline resin component of both outer layers of the film in the heat treatment after biaxial stretching, A relaxation treatment that relaxes stretching during the heat treatment is preferred.
本発明の折曲げ包装用積層ポリエステル系フィルムにおいて、内層は実質的に結晶性でない樹脂混合物からなる層のため、熱処理工程では溶融状態にあり、結晶化や応力の緩和は生じないが、両外層は結晶性を有するため結晶化や応力の緩和が生じる。 In the laminated polyester film for folding packaging according to the present invention, the inner layer is a layer made of a resin mixture that is not substantially crystalline, so that it is in a molten state in the heat treatment process, and neither crystallization nor stress relaxation occurs. Since it has crystallinity, crystallization and stress relaxation occur.
本発明の折曲げ包装用積層ポリエステル系フィルムにおいて、両外層の融点を220℃以上とすることは、熱収縮率の改善においても必要な条件であり、この融点が220℃未満の場合、熱処理温度はフィルムの溶融破断防止のためにおおよそ200℃以下となり、熱収縮率が悪化する原因となる。 In the laminated polyester film for folding packaging according to the present invention, the melting point of both outer layers should be 220 ° C. or higher, which is a necessary condition for improving the heat shrinkage rate. Is about 200 ° C. or less for preventing melt fracture of the film, which causes a deterioration of the heat shrinkage rate.
本発明の折曲げ包装用積層ポリエステル系フィルムにおいて、両外層は、フィルムの強度、剛性を保持させながら、易折曲げ性を有する層であり、内層は優れた易折曲げ性を有する層であるという役割を担っている。そのため、両外層の合計厚みと内層の厚みの比率が、両外層/内層=1/4〜4/1であることが好ましく、この範囲を外れた場合、折曲げ性は優れているがフィルム強度に劣ったり、反対に折曲げ性が不充分なフィルムとなったりして好ましくない。 In the laminated polyester film for folding packaging according to the present invention, both outer layers are layers having easy bendability while maintaining the strength and rigidity of the film, and the inner layer is a layer having excellent bendability. Is playing a role. Therefore, the ratio of the total thickness of both outer layers to the thickness of the inner layer is preferably both outer layers / inner layers = 1/4 to 4/1. If this range is exceeded, the bendability is excellent, but the film strength Or, on the contrary, a film having insufficient bending property is not preferable.
なお、本発明の折曲げ包装用積層ポリエステル系フィルムに用いることができるポリエステル樹脂の極限粘度は、好ましくは0.55〜1.3dL/gであり、さらに好ましくは0.62〜0.78dL/gである。 The intrinsic viscosity of the polyester resin that can be used for the laminated polyester film for folding packaging of the present invention is preferably 0.55 to 1.3 dL / g, more preferably 0.62 to 0.78 dL / g. g.
また、好ましくは混合後の外層、内層の極限粘度差を±0.3以内にすることである。各層の樹脂の極限粘度が著しく異なる場合、本発明ではこれらの範囲内の極限粘度より選ばれた2種類以上のポリエステル樹脂からなる層が積層されてなるが、積層する工程でマルチマニホールド方式やフィードブロック方式を用いる際、極限粘度が著しく異なった場合、樹脂の流れが不均一なものとなり、幅方向において均一な特性が得られなくなり好ましくない。 Moreover, it is preferable to make the difference in intrinsic viscosity between the outer layer and the inner layer after mixing within ± 0.3. When the intrinsic viscosities of the resins of the respective layers are remarkably different, in the present invention, layers of two or more kinds of polyester resins selected from the intrinsic viscosities within these ranges are laminated. When the block method is used, if the intrinsic viscosities are remarkably different, the resin flow becomes non-uniform, and it is not preferable because uniform characteristics cannot be obtained in the width direction.
本発明の折曲げ包装用積層ポリエステル系フィルムの厚みは本発明の目的とする用途である折曲げ包装、ひねり包装用などで使用される場合、フィルム厚みは12μから30μであるが、特に限定されるものではなく、その内容物の大きさや重さ、形状あるいは包装形態により任意に選択することができる。 The thickness of the laminated polyester film for folding packaging according to the present invention is 12 μ to 30 μm when used for folding packaging, twist packaging, etc., which are the intended purposes of the present invention, but is particularly limited. It can be arbitrarily selected depending on the size, weight, shape or packaging form of the contents.
本発明の折曲げ包装用積層ポリエステル系フィルムは、その長手方向の屈折率Nxと幅方向の屈折率Nyとの差の絶対値|Nx−Ny|が0.005以下であることが分子配向のない層の消失度合いが一定になっていることから好ましい。ここで、より好ましいのは0.002以下である。 The laminated polyester film for folding packaging according to the present invention has a molecular orientation that the absolute value | Nx−Ny | of the difference between the refractive index Nx in the longitudinal direction and the refractive index Ny in the width direction is 0.005 or less. This is preferable because the degree of disappearance of the non-existing layer is constant. Here, it is more preferably 0.002 or less.
長手方向の屈折率Nxと幅方向の屈折率Nyとの差の絶対値が0.005を超えた場合、内層に用いられている結晶性を有しないポリエステル樹脂層が配向した状態になっており、本発明の意図である優れた折曲げ性、ひねり固定性を得ることが困難となる。 When the absolute value of the difference between the refractive index Nx in the longitudinal direction and the refractive index Ny in the width direction exceeds 0.005, the polyester resin layer having no crystallinity used for the inner layer is oriented. Therefore, it is difficult to obtain excellent bendability and twist fixability, which are the intent of the present invention.
本発明の折曲げ包装用積層ポリエステル系フィルムは、本発明の効果を阻害しない範囲で、公知の各種添加材、例えば、滑剤、顔料、酸化防止剤、帯電防止剤等が添加されていてもよい。 The laminated polyester film for folding packaging of the present invention may be added with various known additives such as lubricants, pigments, antioxidants, antistatic agents, etc., as long as the effects of the present invention are not impaired. .
次に、本発明の折曲げ包装用積層ポリエステル系フィルムの製造方法の一例を説明する。 Next, an example of a method for producing a laminated polyester film for folding packaging according to the present invention will be described.
真空乾燥した結晶性ポリエステル樹脂と非晶性ポリエステル樹脂を用い、外層用混合原料、内層用混合原料をそれぞれ混合して、それぞれ別の2台の押出機に供給し、結晶性ポリエステル樹脂の融点以上の温度で溶融し、マルチマニホールドダイ方式により積層し、2種3層として押出しし、冷却固化させて未延伸積層フィルムを成形する。 Using vacuum-dried crystalline polyester resin and amorphous polyester resin, mix the mixed raw material for outer layer and mixed raw material for inner layer, respectively, and supply them to two different extruders, respectively, exceeding the melting point of crystalline polyester resin Are melted at the same temperature, laminated by a multi-manifold die system, extruded as two types and three layers, cooled and solidified to form an unstretched laminated film.
このようにして得られた未延伸積層フィルムを結晶性ポリエステル樹脂のガラス転移温度以上、ガラス転移温度+40℃以下の温度で縦方向に2〜4倍延伸し、すぐに20〜40℃に冷却する。 The unstretched laminated film thus obtained is stretched 2 to 4 times in the machine direction at a temperature not lower than the glass transition temperature of the crystalline polyester resin and not higher than the glass transition temperature + 40 ° C., and immediately cooled to 20-40 ° C. .
次いで、縦方向の延伸温度+10℃以上、結晶性ポリエステル樹脂の結晶化温度未満の温度で横方向に3〜4.5倍延伸する。 Next, the film is stretched 3 to 4.5 times in the transverse direction at a temperature equal to or higher than the longitudinal stretching temperature + 10 ° C. and lower than the crystallization temperature of the crystalline polyester resin.
2軸延伸後のフィルムをDSCにてフィルム融点を測定した際のベースラインからの変曲点温度以上、融解ピーク温度−5℃未満の温度で熱処理を行う。この熱処理では、必要に応じて弛緩処理を行ってもよい。 The biaxially stretched film is heat-treated at a temperature not lower than the inflection point temperature from the baseline when the film melting point is measured by DSC and lower than the melting peak temperature of −5 ° C. In this heat treatment, a relaxation treatment may be performed as necessary.
以上の工程により、両外層は、フィルムの強度、剛性を保持させながら、易折曲げ性を有する層となり、内層は優れた易折曲げ性を有しつつ、剛性を有する層であるという、易折曲げ性に優れた2軸延伸ポリエステル系フィルムが得られる。 Through the above steps, both outer layers are easily foldable while maintaining the strength and rigidity of the film, and the inner layer is a layer having rigidity while having excellent foldability. A biaxially stretched polyester film excellent in bendability is obtained.
次に実施例、及び比較例を用いて本発明を具体的に説明する。本明細書中における評価の方法については下記の方法で行った。 Next, the present invention will be specifically described with reference to examples and comparative examples. About the evaluation method in this specification, it performed by the following method.
(a)ガラス転移温度、変曲点温度、融解ピーク温度(融点)
島津製作所社製DSC−60型示差走査熱量計(DSC)を用い、フィルム約5.0mgを、30℃〜280℃の範囲を20℃/minの昇温速度で測定した。得られたDSC曲線の変位の接線交点をガラス転移温度(Tg)とした。また、得られたDSC曲線の融解ピークについて、ベースラインからの変曲点温度(Tm1)と融解ピーク温度(TmP)を求めた。また、Tm1からTmPまでの温度差(TmP−Tm1)を△Tmとした。
(A) Glass transition temperature, inflection point temperature, melting peak temperature (melting point)
Using a DSC-60 type differential scanning calorimeter (DSC) manufactured by Shimadzu Corporation, about 5.0 mg of the film was measured in the range of 30 ° C. to 280 ° C. at a temperature rising rate of 20 ° C./min. The tangential intersection of the obtained DSC curve displacement was defined as the glass transition temperature (Tg). Further, for the melting peak of the obtained DSC curve, the inflection point temperature (Tm1) and the melting peak temperature (TmP) from the baseline were determined. Further, a temperature difference (TmP−Tm1) from Tm1 to TmP was set to ΔTm.
本発明において内層は非晶性を呈しているため、内層は融解ピークを持たないことから、本発明ではフィルムを測定することで、両外層の融解ピークを観察することができる。あるいは、フィルム又は未延伸フィルムの表層のみを測定することで両外層の融解ピークを観察することができる。 In the present invention, since the inner layer is amorphous, the inner layer does not have a melting peak. Therefore, in the present invention, the melting peak of both outer layers can be observed by measuring the film. Alternatively, the melting peaks of both outer layers can be observed by measuring only the surface layer of the film or unstretched film.
(b)折曲げ性
サンプル全幅を3等分した後、それぞれの位置の中央部分からn=2ずつ、フィルムの長手方向に対して、長さ60mm、幅10mmの測定用サンプルを採取し、ガラス板の上にシリコンシートを敷いた上で、端から20mmのところで180度折曲げ、折曲げた部分に0.5Kg/cm2となるように10秒間荷重をかけ、取り除いて30秒後の回復角度を読み取った。この角度が小さいほど折曲げ性に優れており、紙の測定値は20度であった。
◎:回復角度 30度未満
○:回復角度 30度以上、50度未満
△:回復角度 50度以上、70度未満
×:回復角度 70度以上
(B) Bending property After dividing the entire width of the sample into three equal parts, n = 2 from the central portion of each position, and a sample for measurement having a length of 60 mm and a width of 10 mm is taken with respect to the longitudinal direction of the film, and glass A sheet of silicon was laid on the plate, bent 180 degrees at 20 mm from the edge, applied to the bent part for 10 seconds to remove 0.5 kg / cm 2 , removed, and recovered 30 seconds later I read the angle. The smaller this angle, the better the bendability, and the measured value of the paper was 20 degrees.
◎: Recovery angle less than 30 degrees ○: Recovery angle 30 degrees or more and less than 50 degrees △: Recovery angle 50 degrees or more and less than 70 degrees ×: Recovery angle 70 degrees or more
(c)経時後破断伸度
フィルムを40℃雰囲気で7日間放置した後、長手方向の引張り破断伸度を測定した。測定は、島津製作所社製オートグラフを用い、サンプル全幅を5等分した後、それぞれの位置の中央部分から長手方向200mm、幅方向15mmのサンプルをそれぞれ2本ずつ切出し、引張り間隔100mmにて把持し、引張り速度200mm/minにて10本測定し、最低値を求めた。
◎:破断伸度 70%以上
○:破断伸度 50%以上
△:破断伸度 30%以上
×:破断伸度 30%未満
(C) Elongation at break after aging The film was allowed to stand in an atmosphere of 40 ° C. for 7 days, and then the tensile elongation at break in the longitudinal direction was measured. For the measurement, an autograph made by Shimadzu Corporation was used, and after dividing the entire sample width into 5 equal parts, two samples each having a longitudinal direction of 200 mm and a width direction of 15 mm were cut out from the central portion of each position and held at a tensile interval of 100 mm. Then, 10 pieces were measured at a pulling speed of 200 mm / min to obtain the minimum value.
◎: Breaking elongation 70% or more ○: Breaking elongation 50% or more △: Breaking elongation 30% or more ×: Breaking elongation less than 30%
(d)熱収縮率
サンプル全幅を3等分した後、それぞれの位置の中央部分からフィルムの長手方向に、幅10mm、長さ250mmのサンプルを切出し、200mm間隔で印をつけ、5gの一定張力で間隔Aを測った。続いて、150℃の雰囲気中のオーブンに無荷重で30分間放置した。オーブンから取り出し室温まで冷却後に、5gの一定張力で間隔Bを求め、以下の式により熱収縮率を算出し、その平均値を求めた。
熱収縮率=(A−B)/A×100(%)
◎:熱収縮率 3%以下
○:熱収縮率 3%を超えて、5%以下
△:熱収縮率 5%を超えて、7%以下
×:熱収縮率 7%を超える
(D) Thermal shrinkage rate After dividing the entire sample width into three equal parts, samples with a width of 10 mm and a length of 250 mm were cut out from the central part of each position in the longitudinal direction of the film, marked at intervals of 200 mm, and a constant tension of 5 g. Interval A was measured. Subsequently, it was left in an oven in an atmosphere at 150 ° C. for 30 minutes with no load. After taking out from the oven and cooling to room temperature, the interval B was obtained with a constant tension of 5 g, the heat shrinkage rate was calculated by the following formula, and the average value was obtained.
Thermal contraction rate = (A−B) / A × 100 (%)
◎: Thermal shrinkage rate 3% or less ○: Thermal shrinkage rate 3% to 5% or less △: Thermal shrinkage rate 5% to 7% or less ×: Thermal shrinkage rate 7% or more
(e)結晶性
島津製作所社製DSC−60型示差走査熱量計(DSC)を用い、フィルム約5.0mgを、30℃〜280℃の範囲を20℃/minの昇温速度で測定した。試料10mgをアルミニウムパンに調整後、DSC装置にセットし(リファレンス:試料を入れていない同タイプのアルミニウムパン)、この試料を10℃/分の速度で昇温し、285℃の温度で15分間加熱した後、液体窒素を用いて急冷処理した。この試料を10℃/分の速度で昇温し、そのDSCチャートから結晶化発熱ピーク及び溶融吸熱ピークを測定した。結晶化発熱ピーク及び溶融吸熱ピークを有しない樹脂を実質的に結晶性でない(非晶性)ポリエステル樹脂とした。
(E) Crystallinity Using a DSC-60 type differential scanning calorimeter (DSC) manufactured by Shimadzu Corporation, about 5.0 mg of the film was measured in the range of 30 ° C. to 280 ° C. at a temperature rising rate of 20 ° C./min. After adjusting 10 mg of the sample to an aluminum pan, it is set in a DSC apparatus (reference: aluminum pan of the same type without a sample), the sample is heated at a rate of 10 ° C./min, and the temperature is 285 ° C. for 15 minutes. After heating, it was quenched with liquid nitrogen. The sample was heated at a rate of 10 ° C./min, and the crystallization exothermic peak and the melt endothermic peak were measured from the DSC chart. The resin having no crystallization exothermic peak and no melt endothermic peak was defined as a substantially non-crystalline (amorphous) polyester resin.
(f)屈折率
アッベ屈折率計により、NaD線光で屈折率を測定した。マウント液はヨウ化メチレンを用い、25℃とし、長手方向の屈折率(Nx)、幅方向の屈折率(Ny)及び厚み方向の屈折率(Nz)を測定した。
(F) Refractive index The refractive index was measured with NaD light by an Abbe refractometer. The mount liquid was methylene iodide, and the temperature was 25 ° C. The refractive index (Nx) in the longitudinal direction, the refractive index (Ny) in the width direction, and the refractive index (Nz) in the thickness direction were measured.
(g)ひねり固定性
テンチ社製ひねり包装機TA200型を用い、毎分200個の速度で両ひねり包装を行った。フィルムは1.5回転(540度)ひねられて個包装となるが、ひねられた後、ある程度の角度は戻るため、ひねられた状態で保持している角度を30個のサンプルについて左右それぞれを測定し、n=60の平均値(保持角度という)を求めた。
この角度が大きいほどひねり固定性に優れており、現在使用されているセロファンを測定した際の平均値は250度、最小値は200度であった。
○:ひねり保持角度 240度以上
△:ひねり保持角度 180度以上、240度未満
×:ひねり保持角度 180度未満
(G) Twist Fixability Double twist packaging was performed at a rate of 200 pieces per minute using a twist packaging machine TA200 type manufactured by Tenchi. The film is twisted 1.5 turns (540 degrees) into individual wrapping, but after twisting, the angle returns to some extent, so the angle that is held in the twisted state is adjusted for each of the 30 samples. The average value of n = 60 (referred to as holding angle) was determined.
The larger the angle is, the better the twist fixing property is. The average value when measuring currently used cellophane is 250 degrees, and the minimum value is 200 degrees.
○: Twist holding angle 240 degrees or more Δ: Twist holding angle 180 degrees or more and less than 240 degrees ×: Twist holding angle less than 180 degrees
実施例、比較例に用いたポリエステル樹脂は以下のとおりである。 The polyester resins used in Examples and Comparative Examples are as follows.
PES−A:酸成分としてテレフタル酸、グリコール成分としてエチレングリコールからなる結晶性ポリエチレンテレフタレート樹脂。ガラス転移温度75℃、融点255℃、極限粘度0.75dL/g。 PES-A: A crystalline polyethylene terephthalate resin composed of terephthalic acid as an acid component and ethylene glycol as a glycol component. Glass transition temperature 75 ° C., melting point 255 ° C., intrinsic viscosity 0.75 dL / g.
PES−B:酸成分としてテレフタル酸、グリコール成分として1,4−ブタンジオールからなる結晶性ポリブチレンテレフタレート樹脂。ガラス転移温度30℃、融点224℃、極限粘度0.84dL/g。 PES-B: A crystalline polybutylene terephthalate resin comprising terephthalic acid as an acid component and 1,4-butanediol as a glycol component. Glass transition temperature 30 ° C., melting point 224 ° C., intrinsic viscosity 0.84 dL / g.
PES−C:酸成分としてテレフタル酸、グリコール成分としてエチレングリコール70モル%、ネオペンチルグリコール30モル%を共重合した共重合ポリエステル樹脂。ガラス転移温度72℃、極限粘度0.74dL/gであり、結晶化温度、融点は示さなかった。 PES-C: a copolymerized polyester resin obtained by copolymerizing terephthalic acid as an acid component, 70 mol% of ethylene glycol and 30 mol% of neopentyl glycol as a glycol component. The glass transition temperature was 72 ° C., the intrinsic viscosity was 0.74 dL / g, and the crystallization temperature and melting point were not shown.
PES−D:酸成分としてテレフタル酸、グリコール成分としてエチレングリコール70モル%、シクロヘキサンジメタノール30モル%からなる共重合ポリエステル樹脂。ガラス転移温度77℃、極限粘度0.80dL/gであり、結晶化温度、融点は示さなかった。 PES-D: a copolyester resin comprising terephthalic acid as an acid component, 70 mol% of ethylene glycol as a glycol component, and 30 mol% of cyclohexanedimethanol. The glass transition temperature was 77 ° C., the intrinsic viscosity was 0.80 dL / g, and the crystallization temperature and melting point were not shown.
(実施例1)
両外層に結晶性PES−A55重量%、非晶性PES−C45重量%を混合し用いた。内層として結晶性PES−A5重量%、非晶性PES−C95重量%を混合し用いた。おのおの285℃の温度で別々の押出機により溶融し、滞留時間約3分にてこの溶融体をマルチマニホールドダイで合流させた後にTダイより押出しし、30℃に調温した冷却ドラムで急冷して、外層/内層/外層構成の3層の未延伸積層フィルムを得た。
Example 1
Both outer layers were mixed with 55% by weight of crystalline PES-A and 45% by weight of amorphous PES-C. As the inner layer, 5% by weight of crystalline PES-A and 95% by weight of amorphous PES-C were mixed and used. Each melt was melted by a separate extruder at a temperature of 285 ° C., the melt was joined by a multi-manifold die with a residence time of about 3 minutes, extruded from a T die, and rapidly cooled by a cooling drum adjusted to 30 ° C. Thus, a three-layer unstretched laminated film having an outer layer / inner layer / outer layer structure was obtained.
該未延伸積層フィルムを縦方向に105℃で3.7倍、次いで横方向に110℃で4.0倍に延伸した後、3%の弛緩を行いつつ228℃の温度で熱処理を行い、層比率が1/2/1である18μmのフィルムを得た。得られたフィルムの特性を表2に示す。 The unstretched laminated film was stretched 3.7 times in the machine direction at 105 ° C. and then 4.0 times in the transverse direction at 110 ° C., and then heat treated at a temperature of 228 ° C. while relaxing 3%. An 18 μm film having a ratio of 1/2/1 was obtained. The properties of the obtained film are shown in Table 2.
(実施例2)
両外層として結晶性PES−A45重量%、非晶性PES−C55重量%を混合し、内層として結晶性PES−A25重量%、非晶性PES−C75重量%を混合し、用いた以外は実施例1と同様にして厚さ18μmのフィルムを得た。得られたフィルムの特性を表2に示す。
(Example 2)
Both the outer layer was mixed with 45% by weight of crystalline PES-A and 55% by weight of amorphous PES-C, and the inner layer was mixed with 25% by weight of crystalline PES-A and 75% by weight of amorphous PES-C. A film having a thickness of 18 μm was obtained in the same manner as in Example 1. The properties of the obtained film are shown in Table 2.
(実施例3)
両外層として結晶性PES−A75重量%、非晶性PES−C25重量%を混合し、用いた以外は実施例1と同様にして厚さ18μmのフィルムを得た。得られたフィルムの特性を表2に示す。
(Example 3)
A film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that 75% by weight of crystalline PES-A and 25% by weight of amorphous PES-C were mixed as both outer layers. The properties of the obtained film are shown in Table 2.
(実施例4)
非晶性PES−Cの代りに非晶性PES−Dを用いた以外は実施例1と同様にして厚み18μmのフィルムを得た。得られたフィルムの特性を表2に示す。
Example 4
A film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that amorphous PES-D was used instead of amorphous PES-C. The properties of the obtained film are shown in Table 2.
(比較例1)
両外層として結晶性PES−A90重量%、非晶性PES−C5重量%を混合し、用いた以外は実施例1と同様にして厚さ18μmのフィルムを得た。得られたフィルムの特性を表3に示す。
(Comparative Example 1)
A film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that 90% by weight of crystalline PES-A and 5% by weight of amorphous PES-C were mixed as both outer layers. The properties of the obtained film are shown in Table 3.
(比較例2)
両外層、内層ともに結晶性PES−A5重量%、非晶性PES−C95重量%を混合し用いて製膜したところ、得られたフィルムに融点はなかった。製膜の際に、フィルムが溶融破断する手前の温度まで熱処理温度を下げたところ、熱収縮率に著しく劣り、折曲げ性も良くなかった。得られたフィルムの特性を表3に示す。
(Comparative Example 2)
Both the outer layer and the inner layer were formed by mixing 5% by weight of crystalline PES-A and 95% by weight of amorphous PES-C, and the resulting film had no melting point. During film formation, when the heat treatment temperature was lowered to a temperature just before the film melted and fractured, the heat shrinkage rate was remarkably inferior and the bendability was not good. The properties of the obtained film are shown in Table 3.
(比較例3)
内層にPES−A45重量%、PES−B55重量%を混合し用いた以外は実施例1と同様にして厚さ18μmのフィルムを得た。得られたフィルムのDSC曲線は融解ピークを2つ有しており、確認のため未延伸シートから内層のみを測定したところ、融解ピークを有していた。得られたフィルムの特性を表3に示す。
(Comparative Example 3)
A film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that 45% by weight of PES-A and 55% by weight of PES-B were mixed and used for the inner layer. The DSC curve of the obtained film had two melting peaks. When only the inner layer was measured from the unstretched sheet for confirmation, it had a melting peak. The properties of the obtained film are shown in Table 3.
(比較例4)
内層に結晶性PES−Aのみを用いた以外は実施例1と同様にして厚さ18μmのフィルムを得た。得られたフィルムは外層、内層それぞれの融点を示していた。得られたフィルムの特性を表3に示す。
(Comparative Example 4)
A film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that only crystalline PES-A was used for the inner layer. The obtained film showed melting | fusing point of each outer layer and inner layer. The properties of the obtained film are shown in Table 3.
(比較例5)
両外層に結晶性PES−A45重量%、結晶性PES−B10重量%、非晶性PES−C45重量%を混合し用いた以外は実施例1と同様にして厚さ18μmのフィルムを得た。得られたフィルムは経時変化にて特性変化が生じていた。特性を表3に示す。
(Comparative Example 5)
A film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that both outer layers were mixed with 45% by weight of crystalline PES-A, 10% by weight of crystalline PES-B, and 45% by weight of amorphous PES-C. The obtained film had characteristic changes with time. The characteristics are shown in Table 3.
(比較例6)
両外層として、PES−Aのみを用い、内層としてPES−Dを用いた以外は実施例1と同様にして厚さ18μmのフィルムを得た。得られたフィルムの特性を表4に示す。
(Comparative Example 6)
A film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that only PES-A was used as both outer layers and PES-D was used as the inner layer. Table 4 shows the properties of the obtained film.
(比較例7)
比較例6の層比率を1/8/1とした以外は同様にして、厚さ18μmのフィルムを得た。得られたフィルムは、折曲げ性は優れていたが、フィルム強度が低く、ひねり固定性評価の際にフィルムがちぎれた。特性を表4に示す。
(Comparative Example 7)
A film having a thickness of 18 μm was obtained in the same manner except that the layer ratio of Comparative Example 6 was set to 1/8/1. The obtained film had excellent bendability, but the film strength was low, and the film was torn off during the twist fixing evaluation. The characteristics are shown in Table 4.
実施例、比較例に用いたポリエステル樹脂、及び実施例1〜4、比較例1〜7で得られたフィルムの評価結果を表1〜4に示す。 Tables 1 to 4 show the evaluation results of the polyester resins used in Examples and Comparative Examples, and the films obtained in Examples 1 to 4 and Comparative Examples 1 to 7, respectively.
実施例1〜4、比較例1〜7より明らかなように、少なくとも3層構成を有する2軸延伸ポリエステル系フィルムにおいて、それぞれの層が、少なくとも1種類以上のガラス転移温度が60℃以上の結晶性ポリエステル樹脂と少なくとも1種類以上のガラス転移温度が60℃以上の非晶性ポリエステル樹脂との混合物からなり、両外層は結晶性を有する樹脂混合物からなる層であって、内層は実質的に結晶性でない樹脂混合物からなる層であって、かける折曲げ包装用積層ポリエステル系フィルムは、優れた易折曲げ性を有し、耐熱性に優れ、経時変化においても特性変化がないことが解る。 As is clear from Examples 1 to 4 and Comparative Examples 1 to 7, in the biaxially stretched polyester film having at least three layers, each layer is a crystal having at least one kind of glass transition temperature of 60 ° C. or more. The outer layer is a layer made of a resin mixture having crystallinity, and the inner layer is substantially crystalline. It is understood that the laminated polyester film for folding packaging, which is a layer composed of a resin mixture that is not curable, has excellent easy bendability, excellent heat resistance, and no change in properties over time.
以上、本発明の折曲げ包装用積層ポリエステル系フィルムについて、複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、各実施例に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。 As described above, the laminated polyester film for folding packaging according to the present invention has been described based on a plurality of examples, but the present invention is not limited to the configuration described in the above examples, but is described in each example. The configuration can be changed as appropriate within a range not departing from the gist, such as appropriately combining the configurations.
本発明の2軸延伸ポリエステル系フィルムは、優れた折曲げ性、ひねり固定性を有し、かつ耐熱性に優れ、また加工や保管によっても特性変化が生じないという特性を有していることから、固包装や折曲げ包装、あるいはひねり包装用フィルムとして幅広い用途分野に利用することができる。 The biaxially stretched polyester film of the present invention has excellent bendability, twist fixability, excellent heat resistance, and properties that do not change even when processed or stored. It can be used in a wide range of applications as a film for solid packaging, folding packaging, or twist packaging.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004160186A JP4576886B2 (en) | 2004-05-28 | 2004-05-28 | Laminated polyester film for folding packaging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004160186A JP4576886B2 (en) | 2004-05-28 | 2004-05-28 | Laminated polyester film for folding packaging |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005335310A JP2005335310A (en) | 2005-12-08 |
JP4576886B2 true JP4576886B2 (en) | 2010-11-10 |
Family
ID=35489383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004160186A Expired - Fee Related JP4576886B2 (en) | 2004-05-28 | 2004-05-28 | Laminated polyester film for folding packaging |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4576886B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4946165B2 (en) * | 2006-05-11 | 2012-06-06 | 東洋紡績株式会社 | Biaxially stretched polyethylene terephthalate resin film and package |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003205967A (en) * | 2002-01-17 | 2003-07-22 | Unitika Ltd | Upward wrapping packaged item |
JP2003311906A (en) * | 2002-04-24 | 2003-11-06 | Toyobo Co Ltd | Stretched polyester film |
JP2004035594A (en) * | 2002-06-28 | 2004-02-05 | Toyobo Co Ltd | Biaxially stretched polyester film |
-
2004
- 2004-05-28 JP JP2004160186A patent/JP4576886B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003205967A (en) * | 2002-01-17 | 2003-07-22 | Unitika Ltd | Upward wrapping packaged item |
JP2003311906A (en) * | 2002-04-24 | 2003-11-06 | Toyobo Co Ltd | Stretched polyester film |
JP2004035594A (en) * | 2002-06-28 | 2004-02-05 | Toyobo Co Ltd | Biaxially stretched polyester film |
Also Published As
Publication number | Publication date |
---|---|
JP2005335310A (en) | 2005-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3767511B2 (en) | Heat-shrinkable polyester film roll | |
WO2018147249A1 (en) | Raw copolyester material for amorphous film, heat-shrinkable polyester-based film, heat-shrinkable label, and package | |
JP2007100102A (en) | Biaxially oriented polyester film | |
KR20120026039A (en) | Polylactic acid resin composition and film | |
KR101386672B1 (en) | White film and A method of manufacturing Opaque White film | |
JP7151855B2 (en) | METHOD FOR MANUFACTURING HEAT-SHRINKABLE POLYESTER-BASED LABEL | |
WO2019059322A1 (en) | Copolyester film | |
TW201938634A (en) | Biaxially oriented film | |
TW202140643A (en) | Biaxially stretched film | |
JP2006233092A (en) | Polyester-based resin composition, and thermally shrinkable film using the composition, thermally shrinkable label, and container having the label attached thereto | |
KR101242341B1 (en) | Polyester Resin Film and Process for Producing the Same | |
KR101705243B1 (en) | White heat-shrinkable laminated film and label comprising same | |
JP4502118B2 (en) | Easy-bending biaxially stretched polyester film | |
JP4576886B2 (en) | Laminated polyester film for folding packaging | |
TWI743684B (en) | Heat-shrinkable polyester film and its manufacturing method | |
JP7501048B2 (en) | Biaxially oriented film | |
JP2006233091A (en) | Polyester-based resin composition, polyester-based thermally shrinkable film, thermally shrinkable label, and container having the label attached thereto | |
WO2021230207A1 (en) | Copolyester raw material for films, heat-shrinkable polyester films, heat-shrinkable labels, and packages | |
JP2006028210A (en) | Polyester resin composition, and heat-shrinkable polyester film, molded article and container composed of the resin composition | |
WO2016002488A1 (en) | Polyester film with fold retention, low shrinkage and excellent concealment properties | |
JP2004181653A (en) | Stretched polyester film with excellent torsional properties | |
JP4623265B2 (en) | Biaxially stretched polyester film | |
JP2005335309A (en) | Metal vapor deposition biaxially oriented polyester film | |
JP4967504B2 (en) | Biaxially stretched polyester film laminate | |
KR101750925B1 (en) | White heat-shrinkable laminated film and label comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100727 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100809 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4576886 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |