JP2002184985A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2002184985A
JP2002184985A JP2000383440A JP2000383440A JP2002184985A JP 2002184985 A JP2002184985 A JP 2002184985A JP 2000383440 A JP2000383440 A JP 2000383440A JP 2000383440 A JP2000383440 A JP 2000383440A JP 2002184985 A JP2002184985 A JP 2002184985A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
type silicon
peripheral portion
super junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000383440A
Other languages
Japanese (ja)
Other versions
JP3899231B2 (en
Inventor
Takashi Suzuki
隆司 鈴木
Tsutomu Uesugi
勉 上杉
Norihito Tokura
規仁 戸倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2000383440A priority Critical patent/JP3899231B2/en
Priority to US10/015,917 priority patent/US6639260B2/en
Publication of JP2002184985A publication Critical patent/JP2002184985A/en
Priority to US10/634,819 priority patent/US6982459B2/en
Application granted granted Critical
Publication of JP3899231B2 publication Critical patent/JP3899231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a high breakdown voltage in a vertical MOS field effect transistor. SOLUTION: The vertical MOS field effect transistor 1 has a super junction structure section 13. In the super junction structure section 13, P-- and N-type silicon single crystal regions 15 and 17 are alternately arranged on the silicon substrate. An electrode section 31 is positioned away from a terminator 13b1 at the super junction structure section 13, and at the same time is electrically connected to the P-type silicon single crystal region 15 (15a) composing a periphery section 13b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スーパージャンク
ション構造部を有する半導体装置に関する。
The present invention relates to a semiconductor device having a super junction structure.

【0002】[0002]

【背景技術】縦型MOS電界効果トランジスタに代表さ
れる縦型半導体装置は、例えば、家庭用電気機器や自動
車のモータの電力変換や電力制御に使われる。縦型半導
体装置のうち、スーパージャンクション構造部を備えた
ものが、例えば、特開平11−233759号公報や特
開平9−266311号公報に開示されている。スーパ
ージャンクション構造部とは、第1導電型の第1半導体
領域と第2導電型の第2半導体領域とが交互に、半導体
基板上に並ぶ構造のことである。この構造部によれば、
シリコンリミットを超える性能を実現できるので、縦型
半導体装置の低オン抵抗化を図るには有効である。
2. Description of the Related Art A vertical semiconductor device typified by a vertical MOS field-effect transistor is used, for example, for power conversion and power control of home electric appliances and motors of automobiles. Among the vertical semiconductor devices, those having a super junction structure are disclosed in, for example, JP-A-11-233759 and JP-A-9-26631. The super junction structure is a structure in which first semiconductor regions of the first conductivity type and second semiconductor regions of the second conductivity type are alternately arranged on the semiconductor substrate. According to this structure,
Since the performance exceeding the silicon limit can be realized, it is effective to reduce the on-resistance of the vertical semiconductor device.

【0003】[0003]

【発明が解決しようとする課題】スーパージャンクショ
ン構造部は、終端にある半導体領域のところで、第1導
電型の半導体領域と第2導電型の半導体領域とが交互に
並ぶ構造が終わる。よって、スーパージャンクション構
造部の終端にある半導体領域をいかにするかが問題とな
る。何ら手段を施さないと、第1導電型の半導体領域と
第2導電型の半導体領域との接合耐圧より、電圧が大き
くなると、スーパージャンクション構造部の終端にある
半導体領域のところで、絶縁破壊が起こる。その結果、
シリコンリミットを超える耐圧を実現できなくなるので
ある。
In the super junction structure, a structure in which semiconductor regions of the first conductivity type and semiconductor regions of the second conductivity type are alternately arranged at the terminal semiconductor region ends. Therefore, there is a problem how to make the semiconductor region at the end of the super junction structure part. If no measures are taken, if the voltage becomes larger than the junction breakdown voltage between the semiconductor region of the first conductivity type and the semiconductor region of the second conductivity type, dielectric breakdown occurs at the semiconductor region at the end of the super junction structure. . as a result,
It is impossible to realize a withstand voltage exceeding the silicon limit.

【0004】本発明の目的は、高耐圧な半導体装置を提
供することである。
An object of the present invention is to provide a semiconductor device having a high breakdown voltage.

【0005】[0005]

【課題を解決するための手段】本発明は、縦型半導体素
子を備えた半導体装置であって、第1導電型の半導体基
板と、電極部と、前記半導体基板と前記電極部との間に
位置し、第1導電型の第1半導体領域と第2導電型の第
2半導体領域とが、前記半導体基板上で交互に並ぶ構造
部と、を備え、前記半導体基板と前記第1半導体領域と
は電気的に導通され、前記構造部は、前記縦型半導体素
子の形成部と、前記形成部の周辺に位置し、前記構造部
の終端を含む周辺部と、を含み、前記電極部は、前記構
造部の終端と距離を設けた位置にあり、かつ、前記周辺
部を構成する前記第2半導体領域と電気的に導通されて
いる。
SUMMARY OF THE INVENTION The present invention relates to a semiconductor device having a vertical semiconductor element, comprising a semiconductor substrate of a first conductivity type, an electrode portion, and a space between the semiconductor substrate and the electrode portion. A first conductive type first semiconductor region and a second conductive type second semiconductor region, wherein the first and second semiconductor regions are alternately arranged on the semiconductor substrate. Is electrically conductive, the structure portion includes a formation portion of the vertical semiconductor element, a peripheral portion located around the formation portion, including a termination of the structure portion, the electrode portion, It is located at a distance from the end of the structure, and is electrically connected to the second semiconductor region forming the peripheral portion.

【0006】第1導電型の第1半導体領域と第2導電型
の第2半導体領域とが、半導体基板上で交互に並ぶ構造
部とは、スーパージャンクション構造部のことである。
本発明は、構造部の終端と距離を設けた位置にあり、か
つ、周辺部を構成する第2半導体領域と電気的に導通さ
れている電極部を備える。このため、構造部の内部にお
いて、構造部の終端に向けて空乏層を広げることが可能
となるほか、構造部のうち、電極部が配置されている側
において、構造部の終端に向けて空乏層を広げることが
可能となる。これにより、構造部のうち、電極部が配置
されている側(つまり、構造部の表面近傍)の電界集中
を緩和できるので、半導体装置の耐圧向上が可能とな
る。この結果、本発明によれば、シリコンリミットを超
える耐圧を得ることが可能となる。
A structure in which first semiconductor regions of the first conductivity type and second semiconductor regions of the second conductivity type are alternately arranged on a semiconductor substrate is a super junction structure.
The present invention includes an electrode portion which is located at a distance from the end of the structural portion and which is electrically connected to the second semiconductor region forming the peripheral portion. Therefore, the depletion layer can be expanded toward the end of the structure inside the structure, and the depletion toward the end of the structure on the side of the structure where the electrode is disposed. It is possible to expand the layer. Thus, the concentration of the electric field on the side of the structure where the electrode portion is arranged (that is, near the surface of the structure) can be reduced, so that the breakdown voltage of the semiconductor device can be improved. As a result, according to the present invention, it is possible to obtain a withstand voltage exceeding the silicon limit.

【0007】本発明は、前記電極部と前記周辺部との間
に位置し、前記周辺部の前記第2半導体領域および前記
電極部と電気的に導通する、第2導電型の第3半導体領
域を備える。
According to the present invention, a third semiconductor region of a second conductivity type is located between the electrode portion and the peripheral portion and is electrically connected to the second semiconductor region and the electrode portion in the peripheral portion. Is provided.

【0008】本発明によれば、スーパージャンクション
により基板内を完全空乏化できること、及び、基板表面
近傍の空乏層を伸ばすことにより電界集中を緩和でき
る。よって、耐圧を、さらに、向上させることが可能と
なる。
According to the present invention, the inside of the substrate can be completely depleted by the super junction, and the electric field concentration can be reduced by extending the depletion layer near the substrate surface. Therefore, the withstand voltage can be further improved.

【0009】本発明は、前記周辺部の内部に位置し、前
記周辺部の前記第1半導体領域同士を導通させる、第1
導電型の第4半導体領域を備える。
According to the present invention, there is provided a semiconductor device according to the first aspect, wherein the first semiconductor regions are located inside the peripheral portion and the first semiconductor regions in the peripheral portion are electrically connected to each other.
A fourth semiconductor region of a conductivity type is provided.

【0010】本発明によれば、半導体装置のOFF時
に、半導体基板および電極部に電圧が印加されると、空
乏層は、垂直電界と水平電界とに分割される。特に、水
平電界により、低電圧時のリーク電流低減に効果があ
る。
According to the present invention, when a voltage is applied to the semiconductor substrate and the electrode portion when the semiconductor device is turned off, the depletion layer is divided into a vertical electric field and a horizontal electric field. In particular, the horizontal electric field is effective in reducing the leak current at a low voltage.

【0011】[0011]

【発明の実施の形態】[第1実施形態]図1は、本発明
の第1実施形態の断面図である。第1実施形態は、縦型
MOS電界効果トランジスタ1に本発明を適用してい
る。縦型MOS電界効果トランジスタ1の大まかな構造
を説明する。縦型MOS電界効果トランジスタ1は、多
数のセル39(つまり、多数の縦型半導体素子)で構成
される。セル39は、縦型MOS電界効果トランジスタ
1の動作の一単位となる。セル39は、図1の紙面に対
して、左右方向および垂直方向に並んでいる。スーパー
ジャンクション構造部13は、セル39の形成部13a
と、形成部13aの周辺に位置する周辺部13bと、を
含む。第1実施形態は、電極部31と周辺部13bのP
型シリコン単結晶領域15(15a)とを接続すること
により、電極部31とP型シリコン単結晶領域15(1
5a)とを電気的に導通したことを特徴の一つする。
[First Embodiment] FIG. 1 is a sectional view of a first embodiment of the present invention. In the first embodiment, the present invention is applied to a vertical MOS field-effect transistor 1. A rough structure of the vertical MOS field effect transistor 1 will be described. The vertical MOS field-effect transistor 1 includes a large number of cells 39 (that is, a large number of vertical semiconductor elements). The cell 39 is one unit of the operation of the vertical MOS field-effect transistor 1. The cells 39 are arranged in the left-right direction and the vertical direction with respect to the paper surface of FIG. The super junction structure 13 includes a formation portion 13 a of the cell 39.
And a peripheral portion 13b located around the formation portion 13a. In the first embodiment, the electrode portion 31 and the P
The electrode portion 31 is connected to the P-type silicon single crystal region 15 (1a) by connecting the
5a) is electrically conducted.

【0012】次に、縦型MOS電界効果トランジスタ1
の詳細な構造を説明する。縦型MOS電界効果トランジ
スタ1は、N+型ドレイン領域11、スーパージャンク
ション構造部13およびN+型ソース領域21を備えて
いる。N+型ドレイン領域11は、シリコン基板に形成
されている。このシリコン基板下には、例えば、アルミ
ニウムからなる電極部14が取り付けれている。
Next, the vertical MOS field effect transistor 1
Will be described in detail. The vertical MOS field effect transistor 1 includes an N + type drain region 11, a super junction structure portion 13, and an N + type source region 21. The N + type drain region 11 is formed on a silicon substrate. An electrode portion 14 made of, for example, aluminum is attached below the silicon substrate.

【0013】N+型ドレイン領域11上には、スーパー
ジャンクション構造部13が位置している。スーパージ
ャンクション構造部13は、P型シリコン単結晶領域1
5とN型シリコン単結晶領域17とが、N+型ドレイン
領域11(シリコン基板)上で交互に並んでいる。N型
シリコン単結晶領域17は、ドリフト領域であり、電流
はドリフト領域を流れる。スーパージャンクション構造
部13の終端13b1は、周辺部13bに含まれてい
る。
A super junction structure 13 is located on the N + type drain region 11. The super junction structure 13 is a P-type silicon single crystal region 1
5 and N-type silicon single crystal regions 17 are alternately arranged on the N + -type drain region 11 (silicon substrate). N-type silicon single crystal region 17 is a drift region, and current flows through the drift region. The end 13b1 of the super junction structure 13 is included in the peripheral portion 13b.

【0014】スーパージャンクション構造部13の外側
には、N型シリコン単結晶領域12が位置している。N
型シリコン単結晶領域12が縦型MOS電界効果トラン
ジスタ1の側部となる。N型シリコン単結晶領域12
は、N型シリコン単結晶領域17とN型不純物濃度が同
じである。
The N-type silicon single crystal region 12 is located outside the super junction structure 13. N
The silicon single crystal region 12 is a side portion of the vertical MOS field effect transistor 1. N-type silicon single crystal region 12
Has the same N-type impurity concentration as the N-type silicon single crystal region 17.

【0015】形成部13a上には、P型シリコン単結晶
領域19が位置している。P型シリコン単結晶領域19
には、N型シリコン単結晶領域17に到達するトレンチ
23が形成されている。トレンチ23には、例えば、ポ
リシリコン膜からなるトレンチゲート電極25が埋め込
まれている。トレンチ23の底面とトレンチゲート電極
25との間、およびトレンチ23の側面とトレンチゲー
ト電極25との間には、例えば、シリコン酸化膜からな
るゲート絶縁膜27が形成されている。P型シリコン単
結晶領域19のうち、トレンチ23の側面に沿った領域
にチャネルが形成される。N+型ソース領域21は、ト
レンチ23の周囲であって、かつP型シリコン単結晶領
域19の表面に位置している。P型シリコン単結晶領域
19上および周辺部13b上には、例えば、シリコン酸
化膜からなる絶縁膜29が位置している。絶縁膜29に
は、N+型ソース領域21の一部およびP型シリコン単
結晶領域19の一部を露出させるコンタクトホール37
が形成されている。また、絶縁膜29には、P型シリコ
ン単結晶領域15(15a)を露出させるコンタクトホ
ール35が形成されている。P型シリコン単結晶領域1
5(15a)は、スーパージャンクション構造部13の
終端13b1から離れた位置にある。
A P-type silicon single crystal region 19 is located on formation portion 13a. P-type silicon single crystal region 19
A trench 23 reaching the N-type silicon single crystal region 17 is formed. A trench gate electrode 25 made of, for example, a polysilicon film is embedded in the trench 23. A gate insulating film 27 made of, for example, a silicon oxide film is formed between the bottom surface of the trench 23 and the trench gate electrode 25 and between the side surface of the trench 23 and the trench gate electrode 25. In the P-type silicon single crystal region 19, a channel is formed in a region along the side surface of the trench 23. N + type source region 21 is located around trench 23 and on the surface of P type silicon single crystal region 19. An insulating film 29 made of, for example, a silicon oxide film is located on P-type silicon single crystal region 19 and peripheral portion 13b. A contact hole 37 exposing a part of the N + type source region 21 and a part of the P type silicon single crystal region 19 is formed in the insulating film 29.
Is formed. In the insulating film 29, a contact hole 35 exposing the P-type silicon single crystal region 15 (15a) is formed. P-type silicon single crystal region 1
5 (15a) is located away from the terminal end 13b1 of the super junction structure 13.

【0016】絶縁膜29上には、例えば、アルミニウム
からなる電極部31が位置している。電極部31は、コ
ンタクトホール37、39に充填されている。これらを
介して電極部31は、N+型ソース領域21、P型シリ
コン単結晶領域19、P型シリコン単結晶領域15(1
5a)と接続されている。
An electrode portion 31 made of, for example, aluminum is located on the insulating film 29. The electrode portion 31 is filled in the contact holes 37 and 39. Through these, the electrode portion 31 is connected to the N + type source region 21, the P type silicon single crystal region 19, and the P type silicon single crystal region 15 (1
5a).

【0017】次に、第1実施形態の主な効果を説明す
る。電極部31は、スーパージャンクション構造部13
の終端13b1と距離を設けた位置にあり、かつ、周辺
部13bを構成するP型シリコン単結晶領域15(15
a)と電気的に接続されている。このため、スーパージ
ャンクション構造部13の内部において、終端13b1
に向けて空乏層を広げることが可能となるほか、スーパ
ージャンクション構造部13のうち、電極部31が配置
されている側において、終端13b1に向けて空乏層を
広げることが可能となる。これにより、スーパージャン
クション構造部13のうち、電極部13b1が配置され
ている側(つまり、スーパージャンクション構造部13
の表面近傍)の電界集中を緩和できるので、縦型MOS
電界効果トランジスタ1の耐圧向上が可能となる。
Next, main effects of the first embodiment will be described. The electrode section 31 is provided in the super junction structure section 13.
P-type silicon single crystal region 15 (15) which is located at a distance from end 13b1 of
a). For this reason, the termination 13b1
In addition, the depletion layer can be expanded toward the terminal 13b1 on the side of the super junction structure portion 13 where the electrode portion 31 is disposed. Accordingly, the side of the super junction structure 13 where the electrode portion 13b1 is arranged (that is, the super junction structure 13
(In the vicinity of the surface) of the vertical MOS
The breakdown voltage of the field effect transistor 1 can be improved.

【0018】第1実施形態には、以下の変形例がある。The first embodiment has the following modifications.

【0019】(1)N+型ソース領域21、P型シリコ
ン単結晶領域19、P型シリコン単結晶領域15(15
a)は、共通の電極部31であるが、P型シリコン単結
晶領域15(15a)の電極部と、N+型ソース領域2
1、P型シリコン単結晶領域19の電極部とを分離して
もよい。
(1) N + type source region 21, P type silicon single crystal region 19, P type silicon single crystal region 15 (15
a) is a common electrode portion 31, which includes the electrode portion of the P-type silicon single crystal region 15 (15 a) and the N + -type source region 2.
1. The electrode portion of the P-type silicon single crystal region 19 may be separated.

【0020】(2)周辺部13bを構成するP型シリコ
ン単結晶領域15のうち、電極部31と接続するP型シ
リコン単結晶領域15(15a)は、終端13b1と最
も離れた位置にある。しかしながら、電極部31と接続
するP型シリコン単結晶領域15(15a)は、終端1
3b1と離れた位置にあれば、他の位置でもよい。
(2) Among the P-type silicon single crystal regions 15 constituting the peripheral portion 13b, the P-type silicon single crystal region 15 (15a) connected to the electrode portion 31 is located farthest from the terminal end 13b1. However, the P-type silicon single crystal region 15 (15a) connected to the electrode portion 31 has the terminal 1
Any other position may be used as long as the position is distant from 3b1.

【0021】(3)トレンチゲート電極25をゲート電
極としてるが、平面ゲート電極をゲート電極としてもよ
い。
(3) Although the trench gate electrode 25 is used as the gate electrode, a planar gate electrode may be used as the gate electrode.

【0022】(4)縦型MOS電界効果トランジスタ1
に本発明を適用しているが、他の縦型半導体装置に本発
明を適用することもできる。
(4) Vertical MOS field effect transistor 1
Although the present invention is applied to the above, the present invention can also be applied to other vertical semiconductor devices.

【0023】(5)縦型MOS電界効果トランジスタ1
は、N型であるが、P型でもよい。
(5) Vertical MOS field effect transistor 1
Is N-type, but may be P-type.

【0024】なお、これらの変形例は、次に説明する第
2、3実施形態にも当てはまる。
Note that these modifications also apply to the second and third embodiments described below.

【0025】[第2実施形態]図2は、本発明の第2実
施形態の断面図である。第2実施形態は、縦型MOS電
界効果トランジスタ3に本発明を適用している。図1に
示す縦型MOS電界効果トランジスタ1と同等の機能を
有する部分には、同一符号を付している。縦型MOS電
界効果トランジスタ3が縦型MOS電界効果トランジス
タ1と相違する部分を説明し、同じ部分については説明
を省略する。
[Second Embodiment] FIG. 2 is a sectional view of a second embodiment of the present invention. In the second embodiment, the present invention is applied to the vertical MOS field effect transistor 3. Portions having functions equivalent to those of the vertical MOS field-effect transistor 1 shown in FIG. 1 are denoted by the same reference numerals. The portions of the vertical MOS field effect transistor 3 that differ from the vertical MOS field effect transistor 1 will be described, and descriptions of the same portions will be omitted.

【0026】周辺部13b上には、P型シリコン単結晶
領域41が形成されている。P型シリコン単結晶領域4
1は、周辺部13bを構成するP型シリコン単結晶領域
15と接続されている。P型シリコン単結晶領域41の
P型不純物濃度は、P型シリコン単結晶領域15のそれ
と同じでもよいし、異なっていてもよい。電極部31
は、コンタクトホール35を介してP型シリコン単結晶
領域41と接続されている。第2実施形態によれば、後
のシミュレーションで説明するように、第1実施形態よ
りも高耐圧化が可能となる。
On the peripheral portion 13b, a P-type silicon single crystal region 41 is formed. P-type silicon single crystal region 4
Numeral 1 is connected to a P-type silicon single crystal region 15 forming the peripheral portion 13b. The P-type impurity concentration of the P-type silicon single crystal region 41 may be the same as or different from that of the P-type silicon single crystal region 15. Electrode part 31
Are connected to a P-type silicon single crystal region 41 via a contact hole 35. According to the second embodiment, a higher breakdown voltage can be achieved than in the first embodiment, as described in a later simulation.

【0027】[第3実施形態]図3は、本発明の第3実
施形態の断面図である。第3実施形態は、縦型MOS電
界効果トランジスタ5に本発明を適用している。縦型M
OS電界効果トランジスタ1、3と同等の機能を有する
部分には、同一符号を付している。縦型MOS電界効果
トランジスタ5が縦型MOS電界効果トランジスタ1、
3と相違する部分を説明し、同じ部分については説明を
省略する。
[Third Embodiment] FIG. 3 is a sectional view of a third embodiment of the present invention. In the third embodiment, the present invention is applied to a vertical MOS field-effect transistor 5. Vertical M
Portions having functions equivalent to those of the OS field effect transistors 1 and 3 are denoted by the same reference numerals. The vertical MOS field-effect transistor 5 is the vertical MOS field-effect transistor 1,
3 will be described, and description of the same portions will be omitted.

【0028】周辺部13bを構成するP型シリコン単結
晶領域15は、それぞれ、N型シリコン単結晶領域43
により、上下に分離されている。N型シリコン単結晶領
域43を介して、N型シリコン単結晶領域17同士が電
気的に導通される。N型シリコン単結晶領域43のN型
不純物濃度は、N型シリコン単結晶領域17のそれと同
じでもよいし、異なっていてもよい。N型シリコン単結
晶領域43の形成方法は、例えば、以下のとおりであ
る。スーパージャンクション構造部13は、エピタキシ
ャル成長層形成、エピタキシャル成長層にN型、P型イ
オンを選択的に注入、を繰り返すことにより形成され
る。N型シリコン単結晶領域43は、これらの繰り返し
工程の中で形成される。つまり、N型シリコン単結晶領
域43が形成されるべきエピタキシャル成長層形成工程
後、周辺部13bの全面にN型不純物をイオン注入する
と、N型シリコン単結晶領域17の一部と共に、N型シ
リコン単結晶領域43が形成される。
The P-type silicon single-crystal regions 15 forming the peripheral portion 13b are respectively N-type silicon single-crystal regions 43.
Are separated vertically. The N-type silicon single crystal regions 17 are electrically connected to each other via the N-type silicon single crystal region 43. The N-type impurity concentration of the N-type silicon single crystal region 43 may be the same as or different from that of the N-type silicon single crystal region 17. The method for forming the N-type silicon single crystal region 43 is, for example, as follows. The super junction structure 13 is formed by repeatedly forming an epitaxial growth layer and selectively implanting N-type and P-type ions into the epitaxial growth layer. N-type silicon single crystal region 43 is formed during these repetitive steps. That is, after the step of forming an epitaxial growth layer in which the N-type silicon single crystal region 43 is to be formed, when N-type impurities are ion-implanted into the entire surface of the peripheral portion 13b, the N-type silicon Crystal region 43 is formed.

【0029】第3実施形態によれば、縦型MOS電界効
果トランジスタ5のOFF時に、空乏層は、垂直電界と
水平電界とに分割される。特に、水平電界により、低電
圧時のリーク電流低減に効果がある。また、シミュレー
ションによれば、電圧50V以下において通常よりもリ
ーク電流を約1/3に低減できた。
According to the third embodiment, when the vertical MOS field effect transistor 5 is turned off, the depletion layer is divided into a vertical electric field and a horizontal electric field. In particular, the horizontal electric field is effective in reducing the leak current at a low voltage. Further, according to the simulation, the leakage current was reduced to about 1/3 of that at a voltage of 50 V or less than usual.

【0030】[シミュレーション]図4〜図12のそれ
ぞれ(A)に示すスーパージャンクション構造部の周辺
部についてシミュレーションを行った。図4の(A)に
示す周辺部(例1)は、第1実施形態の縦型MOS電界
効果トランジスタ1と対応する。図5の(A)に示す周
辺部(例2)、図6の(A)に示す周辺部(例3)、図
7の(A)に示す周辺部(例4)は、第2実施形態の縦
型MOS電界効果トランジスタ3と対応する。図8の
(A)に示す周辺部(例5)、図9の(A)に示す周辺
部(例6)、図10の(A)に示す周辺部(例7)は、
第3実施形態の縦型MOS電界効果トランジスタ5と対
応する。図11の(A)に示す周辺部(例8)は、比較
例である。図12の(A)に示す周辺部(例9)は、従
来例である。
[Simulation] A simulation was performed on the periphery of the super junction structure shown in FIG. 4A to FIG. The peripheral portion (Example 1) shown in FIG. 4A corresponds to the vertical MOS field-effect transistor 1 of the first embodiment. A peripheral portion (Example 2) shown in FIG. 5A, a peripheral portion (Example 3) shown in FIG. 6A, and a peripheral portion (Example 4) shown in FIG. Corresponding to the vertical MOS field-effect transistor 3. The peripheral portion (Example 5) shown in FIG. 8A, the peripheral portion (Example 6) shown in FIG. 9A, and the peripheral portion (Example 7) shown in FIG.
This corresponds to the vertical MOS field effect transistor 5 of the third embodiment. A peripheral portion (Example 8) shown in FIG. 11A is a comparative example. The peripheral portion (Example 9) shown in FIG. 12A is a conventional example.

【0031】{周辺部の条件} (例1の周辺部の条件) N+型ドレイン領域11のn型不純物濃度:1×1019
/cm3 N型シリコン単結晶領域12、17のn型不純物濃度:
1×1016/cm3 P型シリコン単結晶領域15、15(15a)のp型不
純物濃度:1×10 16/cm3 N型シリコン単結晶領域17の幅:0.5μm N型シリコン単結晶領域17の深さ:15μm P型シリコン単結晶領域15、15(15a)の幅:
0.5μm P型シリコン単結晶領域15、15(15a)の深さ:
15μm (例2〜例4の周辺部の条件) N+型ドレイン領域11のn型不純物濃度:1×1019
/cm3 N型シリコン単結晶領域12、17のn型不純物濃度:
1×1016/cm3 P型シリコン単結晶領域15、15(15a)のp型不
純物濃度:1×10 16/cm3 N型シリコン単結晶領域17の幅:0.5μm N型シリコン単結晶領域17の深さ:14.5μm、1
5μm P型シリコン単結晶領域15、15(15a)の幅:
0.5μm P型シリコン単結晶領域15、15(15a)の深さ:
14.5μm、15μm P型シリコン単結晶領域41の深さ:0.5μm 図5のP型シリコン単結晶領域41の横方向の長さ:
5.0μm 図6のP型シリコン単結晶領域41の横方向の長さ:1
5μm 図7のP型シリコン単結晶領域41の横方向の長さ:2
5μm (例5〜例7の周辺部の条件) N+型ドレイン領域11のn型不純物濃度:1×1019
/cm3 N型シリコン単結晶領域12、17のn型不純物濃度:
1×1016/cm3 P型シリコン単結晶領域15のp型不純物濃度:1×1
16/cm3 N型シリコン単結晶領域17の幅:1.0μm N型シリコン単結晶領域17の深さ:14μm P型シリコン単結晶領域15の幅:1.0μm P型シリコン単結晶領域15の深さ:14μm P型シリコン単結晶領域41の深さ:1.0μm 図8〜図10のP型シリコン単結晶領域41の横方向の
長さ:25μm 図8〜図10のN型シリコン単結晶領域43の幅:1.
0μm 図8〜図10のN型シリコン単結晶領域43の深さ:
1.0μm (例8の周辺部の条件) N+型ドレイン領域11のn型不純物濃度:1×1019
/cm3 N型シリコン単結晶領域12、17のn型不純物濃度:
1×1016/cm3 P型シリコン単結晶領域15のp型不純物濃度:1×1
16/cm3 N型シリコン単結晶領域17の幅:0.5μm N型シリコン単結晶領域17の深さ:14.5μm P型シリコン単結晶領域15の幅:0.5μm P型シリコン単結晶領域15の深さ:14.5μm P型シリコン単結晶領域41の深さ:0.5μm P型シリコン単結晶領域41の横方向の長さ:25μm (例9の周辺部の条件) N+型ドレイン領域11のn型不純物濃度:1×1019
/cm3 N型シリコン単結晶領域12、17のn型不純物濃度:
1×1016/cm3 P型シリコン単結晶領域15のp型不純物濃度:1×1
16/cm3 N型シリコン単結晶領域17の幅:0.5μm N型シリコン単結晶領域17の深さ:14.5μm P型シリコン単結晶領域15の幅:0.5μm P型シリコン単結晶領域15の深さ:14.5μm {耐圧特性}上記スーパージャンクション構造部の周辺
部の耐圧特性(ドレイン電圧Vdとドレイン電流Id)の
シミュレーションをした。その結果を図4〜図12の
(B)のグラフに示す。なお、条件は、次のとおりであ
る。
{Conditions of Peripheral Part} (Conditions of Peripheral Part of Example 1) N+-Type impurity concentration of the drain region 11 of 1 × 1019
/ CmThree N-type impurity concentration of N-type silicon single crystal regions 12 and 17:
1 × 1016/ CmThree P-type silicon single crystal regions 15, 15 (15a)
Pure substance concentration: 1 × 10 16/ CmThree Width of N-type silicon single crystal region 17: 0.5 μm Depth of N-type silicon single crystal region 17: 15 μm Width of P-type silicon single crystal regions 15, 15 (15a):
0.5 μm Depth of P-type silicon single crystal regions 15, 15 (15a):
15 μm (Conditions of peripheral part of Examples 2 to 4) N+-Type impurity concentration of the drain region 11 of 1 × 1019
/ CmThree N-type impurity concentration of N-type silicon single crystal regions 12 and 17:
1 × 1016/ CmThree P-type silicon single crystal regions 15, 15 (15a)
Pure substance concentration: 1 × 10 16/ CmThree Width of N-type silicon single crystal region 17: 0.5 μm Depth of N-type silicon single crystal region 17: 14.5 μm, 1
5 μm width of P-type silicon single crystal regions 15, 15 (15a):
0.5 μm Depth of P-type silicon single crystal regions 15, 15 (15a):
14.5 μm, 15 μm Depth of P-type silicon single crystal region 41: 0.5 μm Lateral length of P-type silicon single crystal region 41 in FIG. 5:
5.0 μm Lateral length of P-type silicon single crystal region 41 in FIG. 6: 1
5 μm Length of P-type silicon single crystal region 41 in FIG. 7 in the horizontal direction: 2
5 μm (Conditions of peripheral parts of Examples 5 to 7) N+-Type impurity concentration of the drain region 11 of 1 × 1019
/ CmThree N-type impurity concentration of N-type silicon single crystal regions 12 and 17:
1 × 1016/ CmThree P-type impurity concentration of P-type silicon single crystal region 15: 1 × 1
016/ CmThree Width of N-type silicon single crystal region 17: 1.0 μm Depth of N-type silicon single crystal region 17: 14 μm Width of P-type silicon single crystal region 15: 1.0 μm Depth of P-type silicon single crystal region 15: 14 μm Depth of P-type silicon single crystal region 41: 1.0 μm In the lateral direction of P-type silicon single crystal region 41 in FIGS.
Length: 25 μm Width of N-type silicon single crystal region 43 in FIGS.
0 μm Depth of N-type silicon single crystal region 43 in FIGS. 8 to 10:
1.0 μm (Conditions of peripheral portion of Example 8) N+-Type impurity concentration of the drain region 11 of 1 × 1019
/ CmThree N-type impurity concentration of N-type silicon single crystal regions 12 and 17:
1 × 1016/ CmThree P-type impurity concentration of P-type silicon single crystal region 15: 1 × 1
016/ CmThree Width of N-type silicon single crystal region 17: 0.5 μm Depth of N-type silicon single crystal region 17: 14.5 μm Width of P-type silicon single crystal region 15: 0.5 μm Depth of P-type silicon single crystal region 15 : 14.5 μm Depth of P-type silicon single crystal region 41: 0.5 μm Horizontal length of P-type silicon single crystal region 41: 25 μm (Conditions of peripheral portion of Example 9) N+-Type impurity concentration of the drain region 11 of 1 × 1019
/ CmThree N-type impurity concentration of N-type silicon single crystal regions 12 and 17:
1 × 1016/ CmThree P-type impurity concentration of P-type silicon single crystal region 15: 1 × 1
016/ CmThree Width of N-type silicon single crystal region 17: 0.5 μm Depth of N-type silicon single crystal region 17: 14.5 μm Width of P-type silicon single crystal region 15: 0.5 μm Depth of P-type silicon single crystal region 15 : 14.5 μm {Withstand voltage characteristics 周 辺 Around the super junction structure
Withstand voltage characteristics (drain voltage VdAnd drain current Id)of
I did a simulation. The results are shown in FIGS.
It is shown in the graph of (B). The conditions are as follows:
You.

【0032】ゲート電圧:0V ドレイン電圧:0〜300Vの範囲において、0.5V
づつ電圧を上昇 ソース電圧:0V ボディ電圧:0V 図4の(B)は、例1のスーパージャンクション構造部
の周辺部の耐圧特性を示している。図4の(B)のグラ
フから分かるように、ドレイン電圧が195Vで、この
構造は、絶縁破壊している。よって、上記条件におい
て、この周辺部の耐圧は、195Vであることが分か
る。なお、図4の(A)の45は等電位線であり、例1
のスーパージャンクション構造部の周辺部を含む縦型M
OS電界効果トランジスタのOFF時において、ドレイ
ン電圧が190Vにおける電位分布を示している。等電
位は、10Vステップで分布している。図4の(A)か
ら分かるように、スーパージャンクション構造部の周辺
部の全体に、等電位線45が分布している。これは、ス
ーパージャンクション構造部の周辺部が完全空乏化して
いることを意味している。このように、ドレイン電圧が
190Vにおいて、スーパージャンクション構造部の周
辺部には空乏層があるので、絶縁破壊していないことが
分かる。
Gate voltage: 0 V Drain voltage: 0.5 V in the range of 0 to 300 V
Source voltage: 0 V Body voltage: 0 V FIG. 4B shows withstand voltage characteristics of the peripheral portion of the super junction structure of Example 1. As can be seen from the graph of FIG. 4B, when the drain voltage is 195 V, the structure has dielectric breakdown. Therefore, it is understood that the breakdown voltage of this peripheral portion is 195 V under the above conditions. Note that 45 in FIG. 4A is an equipotential line, and Example 1
Vertical M including the periphery of the super junction structure
The potential distribution at a drain voltage of 190 V when the OS field-effect transistor is off is shown. Equipotentials are distributed in 10 V steps. As can be seen from FIG. 4A, equipotential lines 45 are distributed over the entire periphery of the super junction structure. This means that the periphery of the super junction structure is completely depleted. As described above, when the drain voltage is 190 V, the dielectric breakdown does not occur because the depletion layer exists around the super junction structure.

【0033】図5の(B)は、例2のスーパージャンク
ション構造部の周辺部の耐圧特性を示している。この周
辺部の耐圧は、240Vであることが分かる。なお、図
5の(A)の45は等電位線であり、例2のスーパージ
ャンクション構造部の周辺部を含む縦型MOS電界効果
トランジスタのOFF時において、ドレイン電圧が23
0Vにおける電位分布を示している。このように、ドレ
イン電圧が230Vにおいて、スーパージャンクション
構造部の周辺部には空乏層があるので、絶縁破壊してい
ないことが分かる。
FIG. 5B shows the breakdown voltage characteristics of the peripheral portion of the super junction structure of Example 2. It can be seen that the withstand voltage of this peripheral portion is 240V. In FIG. 5A, reference numeral 45 denotes an equipotential line, and when the vertical MOS field effect transistor including the peripheral portion of the super junction structure in Example 2 is turned off, the drain voltage is 23.
The potential distribution at 0 V is shown. As described above, when the drain voltage is 230 V, since the depletion layer exists in the peripheral portion of the super junction structure, it can be seen that the dielectric breakdown has not occurred.

【0034】図6の(B)は、例3のスーパージャンク
ション構造部の周辺部の耐圧特性を示している。この周
辺部の耐圧は、275Vであることが分かる。なお、図
6の(A)の45は等電位線であり、例3の(A)に示
すスーパージャンクション構造部の周辺部を含む縦型M
OS電界効果トランジスタのOFF時において、ドレイ
ン電圧が270Vにおける電位分布を示している。この
ように、ドレイン電圧が270Vにおいて、スーパージ
ャンクション構造部の周辺部には空乏層があるので、絶
縁破壊していないことが分かる。
FIG. 6B shows the breakdown voltage characteristics of the peripheral portion of the super junction structure of Example 3. It can be seen that the withstand voltage of this peripheral portion is 275V. Note that 45 in FIG. 6A is an equipotential line, and the vertical M including the peripheral portion of the super junction structure shown in FIG.
The potential distribution at a drain voltage of 270 V when the OS field-effect transistor is off is shown. As described above, when the drain voltage is 270 V, there is a depletion layer in the peripheral portion of the super junction structure portion, and thus it can be seen that the dielectric breakdown has not occurred.

【0035】図7の(B)は、例4のスーパージャンク
ション構造部の周辺部の耐圧特性を示している。この周
辺部の耐圧は、275Vであることが分かる。なお、図
7の(A)の45は等電位線であり、例4のスーパージ
ャンクション構造部の周辺部を含む縦型MOS電界効果
トランジスタのOFF時において、ドレイン電圧が27
0Vにおける電位分布を示している。このように、ドレ
イン電圧が270Vにおいて、スーパージャンクション
構造部の周辺部には空乏層があるので、絶縁破壊してい
ないことが分かる。
FIG. 7B shows the breakdown voltage characteristics of the peripheral portion of the super junction structure of Example 4. It can be seen that the withstand voltage of this peripheral portion is 275V. Note that 45 in FIG. 7A is an equipotential line, and when the vertical MOS field-effect transistor including the peripheral portion of the super junction structure in Example 4 is turned off, the drain voltage is 27.
The potential distribution at 0 V is shown. As described above, when the drain voltage is 270 V, there is a depletion layer in the peripheral portion of the super junction structure portion, and thus it can be seen that the dielectric breakdown has not occurred.

【0036】図8の(B)は、例5のスーパージャンク
ション構造部の周辺部の耐圧特性を示している。この周
辺部の耐圧は、250Vであることが分かる。なお、図
8の(A)の45は等電位線であり、例5のスーパージ
ャンクション構造部の周辺部を含む縦型MOS電界効果
トランジスタのOFF時において、ドレイン電圧が24
0Vにおける電位分布を示している。このように、ドレ
イン電圧が240Vにおいて、スーパージャンクション
構造部の周辺部には空乏層があるので、絶縁破壊してい
ないことが分かる。
FIG. 8B shows the breakdown voltage characteristics of the peripheral portion of the super junction structure of Example 5. It can be seen that the withstand voltage of this peripheral portion is 250V. Note that 45 in FIG. 8A is an equipotential line, and when the vertical MOS field-effect transistor including the peripheral portion of the super junction structure in Example 5 is turned off, the drain voltage becomes 24.
The potential distribution at 0 V is shown. As described above, when the drain voltage is 240 V, there is a depletion layer in the peripheral portion of the super junction structure portion, and thus it can be seen that there is no dielectric breakdown.

【0037】図9の(B)は、例6のスーパージャンク
ション構造部の周辺部の耐圧特性を示している。この周
辺部の耐圧は、245Vであることが分かる。なお、図
9の(A)の45は等電位線であり、例6のスーパージ
ャンクション構造部の周辺部を含む縦型MOS電界効果
トランジスタのOFF時において、ドレイン電圧が24
0Vにおける電位分布を示している。このように、ドレ
イン電圧が240Vにおいて、スーパージャンクション
構造部の周辺部には空乏層があるので、絶縁破壊してい
ないことが分かる。
FIG. 9B shows the breakdown voltage characteristics of the peripheral portion of the super junction structure of Example 6. It can be seen that the withstand voltage of this peripheral portion is 245V. Note that 45 in FIG. 9A is an equipotential line, and when the vertical MOS field effect transistor including the peripheral portion of the super junction structure in Example 6 is turned off, the drain voltage becomes 24.
The potential distribution at 0 V is shown. As described above, when the drain voltage is 240 V, there is a depletion layer in the peripheral portion of the super junction structure portion, and thus it can be seen that there is no dielectric breakdown.

【0038】図10の(B)は、例7のスーパージャン
クション構造部の周辺部の耐圧特性を示している。この
周辺部の耐圧は、245Vであることが分かる。なお、
図10の(A)の45は等電位線であり、例7のスーパ
ージャンクション構造部の周辺部を含む縦型MOS電界
効果トランジスタのOFF時において、ドレイン電圧が
240Vにおける電位分布を示している。このように、
ドレイン電圧が240Vにおいて、スーパージャンクシ
ョン構造部の周辺部には空乏層があるので、絶縁破壊し
ていないことが分かる。
FIG. 10B shows the breakdown voltage characteristics of the peripheral portion of the super junction structure of Example 7. It can be seen that the withstand voltage of this peripheral portion is 245V. In addition,
Reference numeral 45 in FIG. 10A indicates an equipotential line, and shows a potential distribution at a drain voltage of 240 V when the vertical MOS field effect transistor including the periphery of the super junction structure in Example 7 is OFF. in this way,
At a drain voltage of 240 V, there is a depletion layer in the periphery of the super junction structure, and it can be seen that there is no dielectric breakdown.

【0039】図11の(B)は、例8のスーパージャン
クション構造部の周辺部の耐圧特性を示している。この
周辺部の耐圧は、40Vであることが分かる。なお、図
11の(A)の45は等電位線であり、例8のスーパー
ジャンクション構造部の周辺部を含む縦型MOS電界効
果トランジスタのOFF時において、ドレイン電圧が約
35Vにおける電位分布を示している。このように、ド
レイン電圧が約35Vにおいて、スーパージャンクショ
ン構造部の周辺部には空乏層があるので、絶縁破壊して
いないことが分かる。但し、例8では、完全空乏化して
いなので、耐圧が低くなる。
FIG. 11B shows the breakdown voltage characteristics of the peripheral portion of the super junction structure of Example 8. It can be seen that the withstand voltage of this peripheral portion is 40V. Note that 45 in FIG. 11A is an equipotential line, and shows a potential distribution at a drain voltage of about 35 V when the vertical MOS field-effect transistor including the periphery of the super junction structure in Example 8 is OFF. ing. As described above, when the drain voltage is about 35 V, since the depletion layer exists in the peripheral portion of the super junction structure portion, it can be seen that the dielectric breakdown has not occurred. However, in Example 8, the withstand voltage is low because it is completely depleted.

【0040】図12の(B)は、例9のスーパージャン
クション構造部の周辺部の耐圧特性を示している。この
周辺部の耐圧は、100Vであることが分かる。なお、
図12の(A)の45は等電位線であり、例9のスーパ
ージャンクション構造部の周辺部を含む縦型MOS電界
効果トランジスタのOFF時において、ドレイン電圧が
約95Vにおける電位分布を示している。このように、
ドレイン電圧が約95Vにおいて、スーパージャンクシ
ョン構造部の周辺部には空乏層があるので、絶縁破壊し
ていないことが分かる。
FIG. 12B shows the breakdown voltage characteristics of the peripheral portion of the super junction structure of Example 9. It can be seen that the withstand voltage of this peripheral portion is 100V. In addition,
Numeral 45 in FIG. 12A indicates an equipotential line, and shows a potential distribution at a drain voltage of about 95 V when the vertical MOS field effect transistor including the periphery of the super junction structure in Example 9 is OFF. . in this way,
At a drain voltage of about 95 V, there is a depletion layer in the periphery of the super junction structure, and it can be seen that dielectric breakdown has not occurred.

【0041】これらの耐圧をグラフに表すと図13のよ
うになる。横軸は、P型シリコン単結晶領域41の横方
向の長さを示している。但し、例1(図4)は、P型シ
リコン単結晶領域41を有しないが、表面部にP型シリ
コン単結晶領域15(15a)があるので、P型シリコ
ン単結晶領域15(15a)の幅をP型シリコン単結晶
領域41の幅と見なしている。
FIG. 13 is a graph showing these breakdown voltages. The horizontal axis indicates the length of the P-type silicon single crystal region 41 in the horizontal direction. However, Example 1 (FIG. 4) does not have the P-type silicon single-crystal region 41, but has the P-type silicon single-crystal region 15 (15a) on the surface, so that the P-type silicon single-crystal region 15 (15a) The width is regarded as the width of the P-type silicon single crystal region 41.

【0042】例10は、従来の通常の場合(片面階段接
合)の耐圧を示している。片面階段接合の耐圧は、基板
のうち、空乏層を広げる側の領域の不純物濃度で決定さ
れる。今回の基板のn型不純物濃度は、1×1016/c
3であるから、Physics ofSemiconductor Devices,S.
M.Szeの第105頁によれば、理論上の最大耐圧は約6
0V程度である。実際の耐圧は、不純物濃度分布、すな
わち、拡散層の曲率形状やエピ厚みに依存して耐圧が6
0V以下(約40V)となる。
Example 10 shows the withstand voltage in the conventional ordinary case (single-sided step junction). The withstand voltage of the single-sided step junction is determined by the impurity concentration in the region of the substrate on which the depletion layer is expanded. The n-type impurity concentration of the substrate this time is 1 × 10 16 / c
because it is m 3, Physics ofSemiconductor Devices, S .
According to page 105 of M. Sze, the theoretical maximum withstand voltage is about 6
It is about 0V. The actual breakdown voltage is 6 depending on the impurity concentration distribution, that is, the curvature shape and the epi thickness of the diffusion layer.
0 V or less (about 40 V).

【0043】図13を見れば分かるように、例1〜例7
(本発明)によれば、例8(比較例)、例9(従来
例)、例10(従来の片面階段接合の例)と比べて、優
れた耐圧になる。また、例2〜例7のように、P型シリ
コン単結晶領域41を設ければ、例1のようにP型シリ
コン単結晶領域41を設けない場合に比べて、耐圧を高
くすることができる。
As can be seen from FIG.
According to (the present invention), the withstand voltage is excellent as compared with Example 8 (Comparative Example), Example 9 (Conventional Example), and Example 10 (Example of the conventional single-sided stepwise junction). Further, when the P-type silicon single crystal region 41 is provided as in Examples 2 to 7, the breakdown voltage can be increased as compared with the case where the P-type silicon single crystal region 41 is not provided as in Example 1. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の断面図である。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の第2実施形態の断面図である。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の第3実施形態の断面図である。FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本実施形態に係るスーパージャンクション構造
部の周辺部のシミュレーションの結果を示す図である。
FIG. 4 is a diagram showing a simulation result of a peripheral portion of a super junction structure according to the embodiment.

【図5】本実施形態に係るスーパージャンクション構造
部の周辺部のシミュレーションの結果を示す図である。
FIG. 5 is a diagram showing a result of a simulation of a peripheral portion of a super junction structure according to the embodiment.

【図6】本実施形態に係るスーパージャンクション構造
部の周辺部のシミュレーションの結果を示す図である。
FIG. 6 is a diagram showing a result of a simulation of a peripheral portion of a super junction structure according to the embodiment.

【図7】本実施形態に係るスーパージャンクション構造
部の周辺部のシミュレーションの結果を示す図である。
FIG. 7 is a diagram showing a simulation result of a peripheral portion of a super junction structure according to the embodiment.

【図8】本実施形態に係るスーパージャンクション構造
部の周辺部のシミュレーションの結果を示す図である。
FIG. 8 is a diagram showing a result of a simulation of a peripheral portion of a super junction structure according to the embodiment.

【図9】本実施形態に係るスーパージャンクション構造
部の周辺部のシミュレーションの結果を示す図である。
FIG. 9 is a diagram showing a result of a simulation of a peripheral portion of a super junction structure according to the embodiment.

【図10】本実施形態に係るスーパージャンクション構
造部の周辺部のシミュレーションの結果を示す図であ
る。
FIG. 10 is a diagram showing a result of a simulation of a peripheral portion of a super junction structure according to the embodiment.

【図11】比較例に係るスーパージャンクション構造部
の周辺部のシミュレーションの結果を示す図である。
FIG. 11 is a diagram illustrating a result of a simulation of a peripheral portion of a super junction structure according to a comparative example.

【図12】従来例に係るスーパージャンクション構造部
の周辺部のシミュレーションの結果を示す図である。
FIG. 12 is a diagram showing a result of a simulation of a peripheral portion of a super junction structure according to a conventional example.

【図13】各スーパージャンクション構造部の周辺部に
おける耐圧を示すグラフである。
FIG. 13 is a graph showing a breakdown voltage in a peripheral portion of each super junction structure.

【符号の説明】 1、3、5 縦型MOS電界効果トランジスタ 11 N+型ドレイン領域 12 N型シリコン単結晶領域 13 スーパージャンクション構造部 13a 形成部 13b 周辺部 13b1 終端 14 電極部 15(15a) P-型シリコン単結晶領域 17 N型シリコン単結晶領域 19、19a P型シリコン単結晶領域 21 N+型ソース領域 23 トレンチ 25 トレンチゲート電極 27 ゲート絶縁膜 29 絶縁膜 31 電極部 35 コンタクトホール 37 コンタクトホール 39 セル 41 P型シリコン単結晶領域 43 N型シリコン単結晶領域 45 等電位線[Description of Signs] 1, 3, 5 Vertical MOS field-effect transistor 11 N + -type drain region 12 N-type silicon single crystal region 13 Super junction structure 13a Forming part 13b Peripheral part 13b1 Termination 14 Electrode part 15 (15a) P - -type silicon single crystal region 17 N-type silicon single crystal region 19, 19a P-type silicon single crystal region 21 N + -type source region 23 trenches 25 the trench gate electrode 27 a gate insulating film 29 insulating film 31 electrode portion 35 contact hole 37 the contact hole 39 cell 41 P-type silicon single crystal region 43 N-type silicon single crystal region 45 Equipotential line

フロントページの続き (72)発明者 上杉 勉 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 戸倉 規仁 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内Continuing from the front page (72) Inventor Tsutomu Uesugi 41-41, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside of Toyota Central Research Institute, Inc. (72) Inventor Norihito Tokura 1-1-1, Showa-cho, Kariya-shi, Aichi Stock Inside the company DENSO

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 縦型半導体素子を備えた半導体装置であ
って、 第1導電型の半導体基板と、 電極部と、 前記半導体基板と前記電極部との間に位置し、第1導電
型の第1半導体領域と第2導電型の第2半導体領域と
が、前記半導体基板上で交互に並ぶ構造部と、 を備え、 前記半導体基板と前記第1半導体領域とは電気的に導通
され、 前記構造部は、前記縦型半導体素子の形成部と、前記形
成部の周辺に位置し、前記構造部の終端を含む周辺部
と、を含み、 前記電極部は、前記構造部の終端と距離を設けた位置に
あり、かつ、前記周辺部を構成する前記第2半導体領域
と電気的に導通されている、半導体装置。
1. A semiconductor device comprising a vertical semiconductor element, comprising: a first conductivity type semiconductor substrate; an electrode portion; and a first conductivity type semiconductor substrate located between the semiconductor substrate and the electrode portion. A structure in which a first semiconductor region and a second conductivity type second semiconductor region are alternately arranged on the semiconductor substrate, wherein the semiconductor substrate and the first semiconductor region are electrically connected to each other; The structure portion includes a formation portion of the vertical semiconductor element, and a peripheral portion located around the formation portion and including an end of the structure portion. The electrode portion has a distance from the end of the structure portion. A semiconductor device which is located at the provided position and is electrically connected to the second semiconductor region forming the peripheral portion;
【請求項2】 請求項1において、 前記電極部と前記周辺部との間に位置し、前記周辺部の
前記第2半導体領域および前記電極部と電気的に導通す
る、第2導電型の第3半導体領域を備える、半導体装
置。
2. The second conductive type of the first conductive type according to claim 1, wherein the second conductive type is located between the electrode portion and the peripheral portion and is electrically connected to the second semiconductor region and the electrode portion in the peripheral portion. A semiconductor device comprising three semiconductor regions.
【請求項3】 請求項1または2において、 前記周辺部の内部に位置し、前記周辺部の前記第1半導
体領域同士を導通させる、第1導電型の第4半導体領域
を備える、半導体装置。
3. The semiconductor device according to claim 1, further comprising: a first conductivity type fourth semiconductor region located inside the peripheral portion and electrically connecting the first semiconductor regions in the peripheral portion.
JP2000383440A 2000-12-18 2000-12-18 Semiconductor device Expired - Lifetime JP3899231B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000383440A JP3899231B2 (en) 2000-12-18 2000-12-18 Semiconductor device
US10/015,917 US6639260B2 (en) 2000-12-18 2001-12-17 Semiconductor device having a vertical semiconductor element
US10/634,819 US6982459B2 (en) 2000-12-18 2003-08-06 Semiconductor device having a vertical type semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000383440A JP3899231B2 (en) 2000-12-18 2000-12-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2002184985A true JP2002184985A (en) 2002-06-28
JP3899231B2 JP3899231B2 (en) 2007-03-28

Family

ID=18851093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000383440A Expired - Lifetime JP3899231B2 (en) 2000-12-18 2000-12-18 Semiconductor device

Country Status (2)

Country Link
US (2) US6639260B2 (en)
JP (1) JP3899231B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020275A2 (en) * 2003-08-20 2005-03-03 Denso Corporation Vertical semiconductor device
JP2005101560A (en) * 2003-08-20 2005-04-14 Denso Corp Vertical semiconductor device
JP2006165441A (en) * 2004-12-10 2006-06-22 Nec Electronics Corp Semiconductor device and manufacturing method therefor
JP2006173202A (en) * 2004-12-13 2006-06-29 Toyota Central Res & Dev Lab Inc Semiconductor device and its manufacturing method
US7112519B2 (en) * 2001-10-16 2006-09-26 Denso Corporation Semiconductor device manufacturing method
JP2006261149A (en) * 2005-03-15 2006-09-28 Toyota Central Res & Dev Lab Inc Semiconductor device and manufacturing method thereof
US7235841B2 (en) 2003-10-29 2007-06-26 Fuji Electric Device Technology Co., Ltd. Semiconductor device
JP2010239160A (en) * 2003-01-16 2010-10-21 Fuji Electric Systems Co Ltd Semiconductor device
US7943991B2 (en) 2005-12-22 2011-05-17 Fuji Electric Systems Co., Ltd. Semiconductor device
US8080846B2 (en) 2006-06-15 2011-12-20 Fuji Electric Co., Ltd. Semiconductor device having improved breakdown voltage and method of manufacturing the same
JP2013048279A (en) * 2005-11-28 2013-03-07 Fuji Electric Co Ltd Semiconductor device
JP2016127245A (en) * 2015-01-08 2016-07-11 ルネサスエレクトロニクス株式会社 Semiconductor device and semiconductor device manufacturing method

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899231B2 (en) * 2000-12-18 2007-03-28 株式会社豊田中央研究所 Semiconductor device
JP2004047967A (en) * 2002-05-22 2004-02-12 Denso Corp Semiconductor device and method for manufacturing same
JP3971670B2 (en) * 2002-06-28 2007-09-05 新電元工業株式会社 Semiconductor device
KR100958561B1 (en) * 2002-10-04 2010-05-17 신덴겐코교 가부시키가이샤 Semiconductor device and process for fabricating the same
JP3966151B2 (en) * 2002-10-10 2007-08-29 富士電機デバイステクノロジー株式会社 Semiconductor element
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP4253558B2 (en) * 2003-10-10 2009-04-15 株式会社豊田中央研究所 Semiconductor device
JP4536366B2 (en) * 2003-12-22 2010-09-01 株式会社豊田中央研究所 Semiconductor device and its design support program
JP2006012967A (en) * 2004-06-23 2006-01-12 Toshiba Corp Semiconductor device
JP4860929B2 (en) * 2005-01-11 2012-01-25 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP4825424B2 (en) * 2005-01-18 2011-11-30 株式会社東芝 Power semiconductor device
JP4939760B2 (en) * 2005-03-01 2012-05-30 株式会社東芝 Semiconductor device
JP2006269720A (en) * 2005-03-24 2006-10-05 Toshiba Corp Semiconductor device and its fabrication process
US7462909B2 (en) * 2005-06-20 2008-12-09 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same
JP4865260B2 (en) * 2005-06-23 2012-02-01 株式会社豊田中央研究所 Semiconductor device
JP4744958B2 (en) * 2005-07-13 2011-08-10 株式会社東芝 Semiconductor device and manufacturing method thereof
KR20070015309A (en) * 2005-07-30 2007-02-02 페어차일드코리아반도체 주식회사 High voltage semiconductor device
JP4955958B2 (en) * 2005-08-04 2012-06-20 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2007221024A (en) * 2006-02-20 2007-08-30 Toshiba Corp Semiconductor device
US7595542B2 (en) * 2006-03-13 2009-09-29 Fairchild Semiconductor Corporation Periphery design for charge balance power devices
US7592668B2 (en) * 2006-03-30 2009-09-22 Fairchild Semiconductor Corporation Charge balance techniques for power devices
JP4189415B2 (en) * 2006-06-30 2008-12-03 株式会社東芝 Semiconductor device
DE102006030631B4 (en) * 2006-07-03 2011-01-05 Infineon Technologies Austria Ag Semiconductor device arrangement with a power component and a logic device
US7436025B2 (en) * 2006-09-29 2008-10-14 Freescale Semiconductor, Inc. Termination structures for super junction devices
KR101279574B1 (en) * 2006-11-15 2013-06-27 페어차일드코리아반도체 주식회사 High voltage semiconductor device and method of fabricating the same
US7923771B2 (en) * 2006-12-07 2011-04-12 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method for manufacturing the same
JP2008177328A (en) * 2007-01-18 2008-07-31 Denso Corp Semiconductor device and manufacturing method thereof
CN101868856B (en) 2007-09-21 2014-03-12 飞兆半导体公司 Superjunction structures for power devices and methods of manufacture
JP2010056215A (en) * 2008-08-27 2010-03-11 Nec Electronics Corp Semiconductor device having vertical field effect transistor, and manufacturing method thereof
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
US8304829B2 (en) * 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8174067B2 (en) 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US9508805B2 (en) * 2008-12-31 2016-11-29 Alpha And Omega Semiconductor Incorporated Termination design for nanotube MOSFET
US7943989B2 (en) * 2008-12-31 2011-05-17 Alpha And Omega Semiconductor Incorporated Nano-tube MOSFET technology and devices
US10121857B2 (en) * 2008-12-31 2018-11-06 Alpha And Omega Semiconductor Incorporated Nano-tube MOSFET technology and devices
US8227855B2 (en) * 2009-02-09 2012-07-24 Fairchild Semiconductor Corporation Semiconductor devices with stable and controlled avalanche characteristics and methods of fabricating the same
US8148749B2 (en) * 2009-02-19 2012-04-03 Fairchild Semiconductor Corporation Trench-shielded semiconductor device
US8299494B2 (en) * 2009-06-12 2012-10-30 Alpha & Omega Semiconductor, Inc. Nanotube semiconductor devices
US8049276B2 (en) 2009-06-12 2011-11-01 Fairchild Semiconductor Corporation Reduced process sensitivity of electrode-semiconductor rectifiers
US7910486B2 (en) * 2009-06-12 2011-03-22 Alpha & Omega Semiconductor, Inc. Method for forming nanotube semiconductor devices
JP5543758B2 (en) 2009-11-19 2014-07-09 ルネサスエレクトロニクス株式会社 Semiconductor device
US8421196B2 (en) * 2009-11-25 2013-04-16 Infineon Technologies Austria Ag Semiconductor device and manufacturing method
US7892924B1 (en) * 2009-12-02 2011-02-22 Alpha And Omega Semiconductor, Inc. Method for making a charge balanced multi-nano shell drift region for superjunction semiconductor device
JP2011151350A (en) * 2009-12-22 2011-08-04 Renesas Electronics Corp Semiconductor device manufacturing method and the semiconductor device
US8067800B2 (en) * 2009-12-28 2011-11-29 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with resurf step oxide and the method to make the same
CN102208414B (en) * 2010-03-31 2013-05-22 力士科技股份有限公司 Super-junction channel metal oxide semiconductor field effect transistor and manufacturing method thereof
JP5659558B2 (en) * 2010-05-20 2015-01-28 富士電機株式会社 Manufacturing method of super junction semiconductor device
JP2012074441A (en) * 2010-09-28 2012-04-12 Toshiba Corp Semiconductor device for power
TWI407568B (en) 2010-11-22 2013-09-01 Sinopower Semiconductor Inc Semiconductor device
JP5719167B2 (en) 2010-12-28 2015-05-13 ルネサスエレクトロニクス株式会社 Semiconductor device
US9490372B2 (en) 2011-01-21 2016-11-08 Semiconductor Components Industries, Llc Method of forming a semiconductor device termination and structure therefor
JP2012204811A (en) * 2011-03-28 2012-10-22 Sony Corp Semiconductor device
US8829640B2 (en) * 2011-03-29 2014-09-09 Alpha And Omega Semiconductor Incorporated Configuration and method to generate saddle junction electric field in edge termination
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
JP5720788B2 (en) * 2011-07-22 2015-05-20 富士電機株式会社 Super junction semiconductor device
US8872278B2 (en) 2011-10-25 2014-10-28 Fairchild Semiconductor Corporation Integrated gate runner and field implant termination for trench devices
US9112026B2 (en) 2012-10-17 2015-08-18 Semiconductor Components Industries, Llc Semiconductor devices and method of making the same
CN104838500B (en) * 2012-12-04 2017-08-15 株式会社电装 Semiconductor device and its manufacture method
JP5983415B2 (en) * 2013-01-15 2016-08-31 住友電気工業株式会社 Silicon carbide semiconductor device
TW201430957A (en) * 2013-01-25 2014-08-01 Anpec Electronics Corp Method for fabricating semiconductor power device
JP6077380B2 (en) * 2013-04-24 2017-02-08 トヨタ自動車株式会社 Semiconductor device
CN105122458B (en) * 2013-09-18 2018-02-02 富士电机株式会社 Semiconductor device and its manufacture method
US9306034B2 (en) * 2014-02-24 2016-04-05 Vanguard International Semiconductor Corporation Method and apparatus for power device with multiple doped regions
US9324784B2 (en) 2014-04-10 2016-04-26 Semiconductor Components Industries, Llc Electronic device having a termination region including an insulating region
US9343528B2 (en) 2014-04-10 2016-05-17 Semiconductor Components Industries, Llc Process of forming an electronic device having a termination region including an insulating region
US9245754B2 (en) 2014-05-28 2016-01-26 Mark E. Granahan Simplified charge balance in a semiconductor device
US9590092B2 (en) 2014-11-13 2017-03-07 Ixys Corporation Super junction field effect transistor with internal floating ring
DE102015116040A1 (en) 2015-09-23 2017-03-23 Infineon Technologies Austria Ag Semiconductor devices and a method of forming semiconductor devices
CN111048587B (en) * 2018-10-15 2021-07-02 无锡华润上华科技有限公司 Groove gate depletion type VDMOS device and manufacturing method thereof
CN113539830A (en) * 2020-04-13 2021-10-22 富士电机株式会社 Super-junction semiconductor device and method for manufacturing super-junction semiconductor device

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2089119A (en) * 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
JPH03155167A (en) 1989-11-13 1991-07-03 Sanyo Electric Co Ltd Vertical mosfet
MY107475A (en) * 1990-05-31 1995-12-30 Canon Kk Semiconductor device and method for producing the same.
CN1019720B (en) * 1991-03-19 1992-12-30 电子科技大学 Power semiconductor device
US5348215A (en) * 1992-11-04 1994-09-20 Kevin Rafferty Method of bonding hard metal objects
DE4309764C2 (en) * 1993-03-25 1997-01-30 Siemens Ag Power MOSFET
JPH07130871A (en) * 1993-06-28 1995-05-19 Toshiba Corp Semiconductor memory device
JP3291957B2 (en) 1995-02-17 2002-06-17 富士電機株式会社 Vertical trench MISFET and method of manufacturing the same
JP3447884B2 (en) 1995-03-15 2003-09-16 株式会社東芝 High voltage semiconductor device
JP3158973B2 (en) 1995-07-20 2001-04-23 富士電機株式会社 Silicon carbide vertical FET
JPH09266311A (en) 1996-01-22 1997-10-07 Fuji Electric Co Ltd Semiconductor device and its manufacture
SE9601179D0 (en) 1996-03-27 1996-03-27 Abb Research Ltd A field controlled semiconductor device of SiC and a method of production thereof
JP3938964B2 (en) * 1997-02-10 2007-06-27 三菱電機株式会社 High voltage semiconductor device and manufacturing method thereof
DE19730759C1 (en) * 1997-07-17 1998-09-03 Siemens Ag Vertical power MOSFET
US6081009A (en) 1997-11-10 2000-06-27 Intersil Corporation High voltage mosfet structure
JP3940518B2 (en) 1999-03-10 2007-07-04 株式会社東芝 High voltage semiconductor element
JP2000269518A (en) 1999-03-18 2000-09-29 Toshiba Corp Powering semiconductor device and method for forming semiconductor layer
JP3751463B2 (en) 1999-03-23 2006-03-01 株式会社東芝 High voltage semiconductor element
JP2006210368A (en) * 1999-07-02 2006-08-10 Toyota Central Res & Dev Lab Inc Vertical semiconductor device and its fabrication process
JP4924781B2 (en) 1999-10-13 2012-04-25 株式会社豊田中央研究所 Vertical semiconductor device
JP4450122B2 (en) * 1999-11-17 2010-04-14 株式会社デンソー Silicon carbide semiconductor device
JP4765012B2 (en) * 2000-02-09 2011-09-07 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP2001244461A (en) 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc Vertical semiconductor device
JP4240752B2 (en) * 2000-05-01 2009-03-18 富士電機デバイステクノロジー株式会社 Semiconductor device
JP2001332726A (en) 2000-05-22 2001-11-30 Hitachi Ltd Vertical field effect semiconductor device and its manufacturing method
JP4764987B2 (en) * 2000-09-05 2011-09-07 富士電機株式会社 Super junction semiconductor device
JP4285899B2 (en) * 2000-10-10 2009-06-24 三菱電機株式会社 Semiconductor device having groove
JP4843843B2 (en) * 2000-10-20 2011-12-21 富士電機株式会社 Super junction semiconductor device
JP3899231B2 (en) * 2000-12-18 2007-03-28 株式会社豊田中央研究所 Semiconductor device
JP3973395B2 (en) * 2001-10-16 2007-09-12 株式会社豊田中央研究所 Semiconductor device and manufacturing method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112519B2 (en) * 2001-10-16 2006-09-26 Denso Corporation Semiconductor device manufacturing method
JP2013102213A (en) * 2003-01-16 2013-05-23 Fuji Electric Co Ltd Semiconductor element
JP2010239160A (en) * 2003-01-16 2010-10-21 Fuji Electric Systems Co Ltd Semiconductor device
JP2005101560A (en) * 2003-08-20 2005-04-14 Denso Corp Vertical semiconductor device
WO2005020275A3 (en) * 2003-08-20 2005-04-14 Denso Corp Vertical semiconductor device
WO2005020275A2 (en) * 2003-08-20 2005-03-03 Denso Corporation Vertical semiconductor device
KR100726383B1 (en) * 2003-08-20 2007-06-08 가부시키가이샤 덴소 Vertical type semiconductor device
US7235841B2 (en) 2003-10-29 2007-06-26 Fuji Electric Device Technology Co., Ltd. Semiconductor device
US7919374B2 (en) 2004-12-10 2011-04-05 Renesas Electronics Corporation Method for manufacturing a semiconductor device
JP2006165441A (en) * 2004-12-10 2006-06-22 Nec Electronics Corp Semiconductor device and manufacturing method therefor
JP2006173202A (en) * 2004-12-13 2006-06-29 Toyota Central Res & Dev Lab Inc Semiconductor device and its manufacturing method
JP2006261149A (en) * 2005-03-15 2006-09-28 Toyota Central Res & Dev Lab Inc Semiconductor device and manufacturing method thereof
JP2013048279A (en) * 2005-11-28 2013-03-07 Fuji Electric Co Ltd Semiconductor device
US7943991B2 (en) 2005-12-22 2011-05-17 Fuji Electric Systems Co., Ltd. Semiconductor device
US8125027B2 (en) 2005-12-22 2012-02-28 Fuji Electric Co., Ltd. Semiconductor device having trenches extending through channel regions
US8080846B2 (en) 2006-06-15 2011-12-20 Fuji Electric Co., Ltd. Semiconductor device having improved breakdown voltage and method of manufacturing the same
JP2016127245A (en) * 2015-01-08 2016-07-11 ルネサスエレクトロニクス株式会社 Semiconductor device and semiconductor device manufacturing method

Also Published As

Publication number Publication date
US20040026735A1 (en) 2004-02-12
JP3899231B2 (en) 2007-03-28
US6639260B2 (en) 2003-10-28
US6982459B2 (en) 2006-01-03
US20020074596A1 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
JP3899231B2 (en) Semiconductor device
TWI374474B (en) High voltage lateral fet structure with improved on resistance performance
JP2001244461A (en) Vertical semiconductor device
TWI431672B (en) Semiconductor structure with improved on resistance and breakdown voltage
JP3721172B2 (en) Semiconductor device
JP4924781B2 (en) Vertical semiconductor device
US20140151798A1 (en) Semiconductor Device and Method of Manufacturing a Semiconductor Device
US20060091456A1 (en) Trench MOSFET with deposited oxide
JPH06224437A (en) Field-effect transistor and manufacture thereof
KR20060111859A (en) Semiconductor device having screening electrode and method
US8159024B2 (en) High voltage (>100V) lateral trench power MOSFET with low specific-on-resistance
JP2003523088A (en) Insulated gate field effect device
JP2006526286A (en) Semiconductor device having termination structure and method of manufacturing the same
JP2002270840A (en) Power mosfet
JP2018056463A (en) Semiconductor device and manufacturing method of the same
JP2008504697A (en) Power semiconductor device provided with a MOS gate having a source field electrode
JP2001077354A (en) Vertical insulating gate semiconductor device
JP2006108208A (en) Semiconductor device containing ldmos transistor
US6559502B2 (en) Semiconductor device
JP2001127285A (en) Vertical field-effect transistor
CN107681002B (en) Transistor arrangement with a field electrode comprising two layers
KR19990029884A (en) Semiconductor devices
CN108470772B (en) SOI semiconductor device and forming method thereof
CN104600067B (en) The method of integrated circuit and manufacture integrated circuit
KR100518506B1 (en) Trench gate power mos device and fabricating method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Ref document number: 3899231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term