JPH03155167A - Vertical mosfet - Google Patents

Vertical mosfet

Info

Publication number
JPH03155167A
JPH03155167A JP1294702A JP29470289A JPH03155167A JP H03155167 A JPH03155167 A JP H03155167A JP 1294702 A JP1294702 A JP 1294702A JP 29470289 A JP29470289 A JP 29470289A JP H03155167 A JPH03155167 A JP H03155167A
Authority
JP
Japan
Prior art keywords
region
diffusion region
outermost
source
type diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1294702A
Other languages
Japanese (ja)
Inventor
Norihiro Shigeta
重田 典博
Shigemi Okada
岡田 茂実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1294702A priority Critical patent/JPH03155167A/en
Publication of JPH03155167A publication Critical patent/JPH03155167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To increase avalanche breakdown strength by separating the outermost peripheral region of a lattice-like diffused layer from an inner diffused region, forming the outermost region in a floating state without providing a source region, and bringing a source electrode into contact with the surface of the outermost region. CONSTITUTION:A P-type diffused region 24 is continuously formed in a lattice state on a N<-> type semiconductor layer 23, an outermost peripheral P-type diffused region 25 is separated from an inner P-type diffused region 26 to be so diffused as to surround the region 26, and a source region 30 is not provided in the region 25. Thus, the region 25 is formed in a floating state not to be operated as a MOS cell. Since a source electrode 35 in contact with both the region 24 and the source electrode 30 is formed in a pectinated state on the region 25 and an avalanche breakdown occurs in the region 25 in which the elongation of a depleted layer is unstable, a breakdown current flows to the region 25 and to the electrode 35 without flowing to the cell.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアバランシェ降伏による破壊耐量を増大した縦
型MOSFETに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a vertical MOSFET with increased breakdown resistance due to avalanche breakdown.

(ロ)従来の技術 縦型MO5FETは、第5図に示すように、底部に高濃
度N0型層(1)を有するN−型シリコン基板(2)を
ドレインとして、その表面上に所定の間隔でゲート電極
(ポリSiゲート> (3)が配置され、このゲート電
極(3)の下にチャンネル部を作るように基体(2)表
面にP型拡散領域〈4)とN+型ソース領域(5)を形
成したもので、ゲートへの電圧印加によってゲート下の
P型拡散領域(4)(チャンネル部)を通るドレイン電
流I0を制御するようにMOSFETを動作させるもの
である(例えば、特開昭63−260176号公報)。
(b) Conventional technology As shown in FIG. 5, a vertical MO5FET uses an N- type silicon substrate (2) having a high concentration N0 type layer (1) at the bottom as a drain, and a predetermined interval on its surface. A gate electrode (poly-Si gate (3)) is placed on the surface of the substrate (2) to form a channel section under this gate electrode (3). ), and the MOSFET is operated so as to control the drain current I0 passing through the P-type diffusion region (4) (channel part) under the gate by applying a voltage to the gate (for example, 63-260176).

(6〉はAN電極、(7)はガードリングである。(6> is an AN electrode, and (7) is a guard ring.

また、縦型MO3FETのパターン形状には、P型拡散
領域(4)が点在するメツシュゲート型と、P型拡散領
域(4)が格子状に連続するマルチゲート型との2種類
がある。マルチゲート型のパターンは、第6図に示すと
おり基板(2)表面にP型拡散領域(4)を格子状に形
成し、格子状パターンの網目部分にゲート電極(3)を
点在させたもので、耐圧的に有利なことから特に高耐圧
型(例えば、400v以上)に利用される。
Furthermore, there are two types of pattern shapes for vertical MO3FETs: a mesh gate type in which P-type diffusion regions (4) are scattered, and a multi-gate type in which P-type diffusion regions (4) are continuous in a lattice shape. As shown in Fig. 6, the multi-gate pattern has P-type diffusion regions (4) formed in a lattice pattern on the surface of the substrate (2), and gate electrodes (3) are dotted in the mesh portion of the lattice pattern. Since it is advantageous in terms of voltage resistance, it is particularly used for high voltage resistance types (for example, 400V or higher).

斯る縦型MO5FETは、大電流高速スイッチングが可
能なので、モータ制御、スイッチングレギュレータ、C
RT偏向用として多用されている。
Such a vertical MO5FET is capable of high-speed switching of large currents, so it can be used in motor control, switching regulators, and C
It is widely used for RT deflection.

(八)発明が解決しようとする課題 しかしながら、第7図のようにコイル負荷(7)をMO
8)ランジスタ(8)でスイッチングする場合、リアク
トル負荷(7)を遮断した瞬間に高い電流変化率d i
 / d tで大きなサージ電圧(9)が発生し、この
ようなサージ電圧がMOSトランジスタ(8)のソース
・ドレイン間に印加きれることによりMOSトランジス
タ(8)は容易にアバランシェ領域まで印加される。
(8) Problems to be solved by the invention However, as shown in Fig. 7, the coil load (7) is
8) When switching with a transistor (8), the moment the reactor load (7) is cut off, a high current change rate di
A large surge voltage (9) is generated at /dt, and as such a surge voltage can be applied between the source and drain of the MOS transistor (8), the voltage is easily applied to the MOS transistor (8) up to the avalanche region.

アバランシェ領域まで印加されたMOSトランジスタ(
8)は、第8図に示すように主にP型拡散領域(4)と
N−型基板(2)とが形成する接合ダイオード(10)
がなだれ降伏することにより電流を吸収しようとする。
MOS transistor applied up to the avalanche region (
8) is a junction diode (10) mainly formed by a P-type diffusion region (4) and an N-type substrate (2), as shown in FIG.
tries to absorb the current by avalanche breakdown.

ところが、MOSトランジスタ(8)はN+ソース領域
(5)をエミッタ、P型拡散領域(4)をベース、N−
型基体(2)をコレクタとする寄生トランジスタ(11
)が不可避的に形成きれてしまい、また、Nゝソース領
域(5)の底部はピンチ構造となるため、ソース領域(
5)とP型拡散領域(4)とのPN接合はピンチ抵抗(
12)により順バイアスきれる電位差に容易に達して寄
生トランジスタ(11)が導通してしまう。−旦寄生ト
ランジスタ(11)が導通すると、MOS)ランジスタ
の阻止耐圧は寄生トランジスタ(11)のvcg。まで
低下するので、アバランシェ電流が制御がきかない状態
で能動化したセルを流れ、結果的に素子が破壊されてし
まう現象がある。
However, the MOS transistor (8) uses the N+ source region (5) as the emitter, the P-type diffusion region (4) as the base, and the N-
A parasitic transistor (11) whose collector is the type substrate (2)
) will inevitably be completely formed, and the bottom of the N source region (5) will have a pinch structure, so the source region (
5) and the P-type diffusion region (4) has a pinch resistance (
12), the potential difference that can break the forward bias is easily reached and the parasitic transistor (11) becomes conductive. - Once the parasitic transistor (11) becomes conductive, the blocking voltage of the MOS transistor is vcg of the parasitic transistor (11). As a result, avalanche current flows uncontrollably through the activated cell, resulting in destruction of the device.

そして、上記アバランシェ降伏は、空乏層(13〉の内
部電界の差により基板(2)周囲のガードリング(7)
部分に近いP型拡散領域(4′)で生じ易い。
The avalanche breakdown occurs when the guard ring (7) around the substrate (2) is caused by the difference in the internal electric field of the depletion layer (13).
This tends to occur in the P-type diffusion region (4') near the part.

ところが、マルチゲート型タイプは、P型拡散領域(4
)が連続するので、ガードリング(7)部分に近い領域
で生じた降伏電流(第5図i)がセルのどこで寄生トラ
ンジスタ(11)を導通きせるかはわからない。そのた
め、従来のマルチゲート型MOSトランジスタはアバラ
ンシェ降伏に対して無防備であり、破壊に至り易い欠点
があった。
However, the multi-gate type has a P-type diffusion region (4
) are continuous, so it is not known where in the cell the breakdown current (FIG. 5i) generated in the region near the guard ring (7) will cause the parasitic transistor (11) to conduct. Therefore, conventional multi-gate MOS transistors are vulnerable to avalanche breakdown and have the disadvantage of being easily destroyed.

(ニ)課題を解決するための手段 本発明は上記従来の欠点に鑑み成されたもので、格子状
の拡散領域(24)の最外周領域(25)を内側の拡散
領域(26)と分離し、前記最外周領域(25)にはソ
ース領域(30)を設けずにフローティング状態にする
と共に、最外周領域(25)表面にソース電極(35)
をコンタクトきせることにより、アバランシェ耐量を増
大した縦型MO8FETを提供するものである。
(d) Means for Solving the Problems The present invention has been made in view of the above-mentioned conventional drawbacks, and the outermost peripheral region (25) of the lattice-shaped diffusion region (24) is separated from the inner diffusion region (26). The outermost region (25) is not provided with a source region (30) and is left in a floating state, and a source electrode (35) is provided on the surface of the outermost region (25).
The purpose of the present invention is to provide a vertical MO8FET with increased avalanche resistance by contacting.

(*)作用 本発明によれば、アバランシェ降伏は先ず空乏層の伸び
が不安定な最外周のP型拡散領域(25)で生じるので
、降伏電流は最外周領域(25)に流れ込み、内側のP
型拡散領域(26)と外側のP型拡散領域(25)とは
分離されているので、前記降伏電流はセル内に流れ込む
こと無くソース電極(35)に流れる。従って、内部セ
ルに降伏電流を流さずに済む。
(*) Effect According to the present invention, avalanche breakdown first occurs in the outermost P-type diffusion region (25) where the extension of the depletion layer is unstable, so the breakdown current flows into the outermost region (25) and P
Since the type diffusion region (26) and the outer P type diffusion region (25) are separated, the breakdown current flows to the source electrode (35) without flowing into the cell. Therefore, no breakdown current needs to flow through the internal cells.

(へ)実施例 以下に本発明の一実施例を図面を参照しながら詳細に説
明する。
(F) Example An example of the present invention will be described below in detail with reference to the drawings.

第1図は本発明の縦型MO8FETを示す平面図、第2
図と第3図は夫々第1rsJの拡大平面図とAA線拡大
断面図である。
Figure 1 is a plan view showing the vertical MO8FET of the present invention, Figure 2 is a plan view showing the vertical MO8FET of the present invention.
The figure and FIG. 3 are an enlarged plan view and an enlarged sectional view taken along the line AA of the first rsJ, respectively.

共通ドレインとなるシリコン半導体基体(21)は、裏
面電極形成用のN0型半導体層(22)と、N−型半導
体層(23)との2層構造から成る。N−型半導体層(
23)の表面には、P型拡散領域(24)が格子状に連
続的に形成され、且つ最外周のP型拡散領域(25)は
、内側のP型拡散領域(26)とは分離されて内側のP
型拡散領域(26)を取り囲むように拡散形成される。
The silicon semiconductor substrate (21) serving as the common drain has a two-layer structure including an N0 type semiconductor layer (22) for forming a back electrode and an N- type semiconductor layer (23). N-type semiconductor layer (
23), P-type diffusion regions (24) are continuously formed in a grid pattern, and the outermost P-type diffusion region (25) is separated from the inner P-type diffusion region (26). inside P
It is formed by diffusion so as to surround the mold diffusion region (26).

P型拡散領域(24)の周囲には、これをさらに取り囲
むようにP型のガードリング(27)が幾重にも形成さ
れる。(28)はN0型チヤンネルストツパ、(29)
はフィールド電極である。
P-type guard rings (27) are formed in multiple layers around the P-type diffusion region (24) so as to further surround it. (28) is the N0 type channel stopper, (29)
is the field electrode.

内側のP型拡散領域(26)の表面には、N+型ソース
領域(30)が形成され、ソース領域(30)と基体(
23)表面で挾まれたP型拡散領域(24)の表面をチ
ャンネル部とする。チャンネル部(31)上には、シリ
コン酸化膜から成るゲート絶縁膜(32)を介してポリ
シリコンのゲート電極(33)が格子状パターンの各網
目の上を覆うようにして配置きれている。内側のP型拡
散領域(26)とは分離された最外周のP型拡散領域(
25)にはソース領域(30)を設けない。これで、最
外周のP型拡散領域(25)はMOSセルとして動作で
きないブローティングの状態となる0個々に独立したゲ
ート電極(33)は、櫛歯状のアルミ電極(34)によ
って共通接続され外部接続用の図示せぬポンディングパ
ッドに接続されている。P型拡散領域(24)の表面に
は、P型拡散領域(24)とソース領域(30)の両方
にコンタクトするソース電極〈35)が櫛歯状に形成さ
れて図示せぬソースポンディングパッドに接続されてい
る。
An N+ type source region (30) is formed on the surface of the inner P type diffusion region (26), and the source region (30) and the substrate (
23) The surfaces of the P-type diffusion regions (24) sandwiched between the surfaces are used as channel portions. A polysilicon gate electrode (33) is disposed on the channel portion (31) via a gate insulating film (32) made of a silicon oxide film so as to cover each mesh of the grid pattern. The outermost P-type diffusion region (26) is separated from the inner P-type diffusion region (26).
25), no source region (30) is provided. Now, the outermost P-type diffusion region (25) is in a bloating state where it cannot operate as a MOS cell.The individual gate electrodes (33) are commonly connected by the comb-shaped aluminum electrode (34). It is connected to a bonding pad (not shown) for external connection. On the surface of the P-type diffusion region (24), a comb-shaped source electrode (35) that contacts both the P-type diffusion region (24) and the source region (30) is formed to form a source bonding pad (not shown). It is connected to the.

斯る構成の縦型MO3FETにおいて、ソース・ドレイ
ン間にリアクトル負荷の逆起電圧によってアバランシェ
領域を超える逆方向電圧が印加された場合、その降伏電
流iは、空乏層(36)の内部電界が高い部分つまりガ
ードリング(27)に近い部分で特に生じ易く、従って
最外周のP型拡散領域(25)に流入してソース電極(
35)へと流れる。最外周のP型拡散領域(25)はN
+型ソース領域〈30)が存在しないので寄生トランジ
スタは形成されない。また、最外周のP型拡散領域(2
5)と内側P型拡散領域(26)とは分離されているか
ら、降伏電流iがP型拡散領域(24)を伝ってMOS
セル部分に流れ込むことも無い。従って、MOSセル部
分において寄生トランジスタが導通してしまうことを防
止できる。
In a vertical MO3FET with such a configuration, when a reverse voltage exceeding the avalanche region is applied between the source and drain due to the back electromotive force of the reactor load, the breakdown current i is caused by the high internal electric field of the depletion layer (36). It is particularly likely to occur in the part near the guard ring (27), and therefore flows into the outermost P-type diffusion region (25) and forms the source electrode (
35). The outermost P-type diffusion region (25) is N
Since there is no +-type source region <30), no parasitic transistor is formed. In addition, the outermost P-type diffusion region (2
5) and the inner P-type diffusion region (26) are separated, the breakdown current i is transmitted through the P-type diffusion region (24) and the MOS
It does not flow into the cell part. Therefore, it is possible to prevent the parasitic transistor from becoming conductive in the MOS cell portion.

上記P型拡散領域(24)の分離は、以下の手法で行う
のが最も簡便である。先ず第4図Aに示すようにN−型
半導体層(23)の表面にP型拡散領域(24)とP型
ガードリング領域(27)とを選択拡散し、その時に形
成した表面の厚い熱酸化膜(37)をホトエツチングし
てMOSセル部分表面を開孔する。
The P-type diffusion region (24) is most easily separated by the following method. First, as shown in FIG. 4A, a P-type diffusion region (24) and a P-type guard ring region (27) are selectively diffused on the surface of the N-type semiconductor layer (23), and the thick heat of the surface formed at that time is The oxide film (37) is photoetched to open a hole on the surface of the MOS cell portion.

P型拡散領域(24)は内側(26)と最外周(25)
とを分離したホトマスクで形成される。また、MOSセ
ル部の開口用水トマスクは、第2図のライン(38)で
示すように最も外側のゲート電極(33)が厚い酸化膜
(37〉に半分掛かるようなホトマスクに変更される。
P-type diffusion region (24) is inside (26) and outermost periphery (25)
It is formed using a separate photomask. Further, the water mask for opening the MOS cell portion is changed to a photomask in which the outermost gate electrode (33) covers half of the thick oxide film (37), as shown by line (38) in FIG.

次に第4図Bに示すようにゲート酸化膜(32)を形成
した後ポリシリコン層の堆積とホトエツチングによりゲ
ート電極(33)を形成する。先の工程で厚い酸化膜(
37)の端部が従来より内側にきているので、最も外側
のゲート電極(33)はその約半分が厚い酸化膜(37
)上を延在する。
Next, as shown in FIG. 4B, after forming a gate oxide film (32), a gate electrode (33) is formed by depositing a polysilicon layer and photo-etching. A thick oxide film (
Since the end of the gate electrode (37) is on the inside than before, about half of the outermost gate electrode (33) is covered with a thick oxide film (37).
) extends above.

そして第4図Cに示すように、ゲート電極り33)をマ
スクとしてP型拡散領域(24)と重なるようにボロン
をチャンネルインプラする。最外周のP型拡散領域(2
5〉へは、厚い酸化膜(37〉が選択マスクとなるので
チャンネルインプラされない、また、厚い酸化膜〈37
)が選択マスクとなることにより、最外周のP型拡散領
域(25)と内側のP型拡散領域(26)とがチャンネ
ルインプラによって導入された不純物によって第2図図
示Aの部分で連結されることもない。その後、チャンネ
ル拡散をしてP型拡散領域(24)を所望深さまで拡散
し、リンをインプラしてソース領域(30)を形成する
。ソース領域(30)もまた、厚い酸化膜(27)で遮
られることによって、N−型半導体層<23)との短絡
が防止される。
Then, as shown in FIG. 4C, boron is channel-implanted using the gate electrode layer 33) as a mask so as to overlap the P-type diffusion region (24). The outermost P-type diffusion region (2
5>, the thick oxide film (37>) serves as a selection mask, so channel implantation is not performed.
) serves as a selection mask, so that the outermost P-type diffusion region (25) and the inner P-type diffusion region (26) are connected at the part A in FIG. 2 by the impurity introduced by channel implantation. Not at all. Thereafter, channel diffusion is performed to diffuse the P type diffusion region (24) to a desired depth, and phosphorus is implanted to form the source region (30). The source region (30) is also shielded by a thick oxide film (27) to prevent short circuits with the N-type semiconductor layer <23).

斯上した製造方法によれば、最外周のP型拡散領域(2
5)と内側のP型拡散領域(26)とを分離するために
、従来のものに比べ、第4図A工程のP型拡散領域(2
4)形成用のホトマスクと、厚い酸化膜〈27)をエツ
チング除去するためのホトマスクの2枚を設計変更する
ものの、残りのホトマスクは厚い酸化膜(27)をマス
クとして活用できるので変更せずに済み、変更マスクの
枚数を最少限にできる。
According to the above manufacturing method, the outermost P-type diffusion region (2
5) and the inner P-type diffusion region (26), the P-type diffusion region (26) in the step A in FIG.
4) Although the design of two photomasks will be changed: the photomask for formation and the photomask for etching away the thick oxide film (27), the remaining photomasks will remain unchanged as the thick oxide film (27) can be used as a mask. The number of changed masks can be minimized.

(ト)発明の効果 以上に説明した如く、本発明によれば最外周のP型拡散
領域(25)を内側の領域(26)と分離したので、素
子のアバランシェ領域における降伏型itがP型拡散領
域(24)を伝ってMOSセル部に流れ込むことが無く
、従ってMOSセルの寄生トランジスタが導通しないの
で、素子を破壊から保護でき、素子のアバランシェ耐量
を増大できる。
(G) Effects of the Invention As explained above, according to the present invention, the outermost P-type diffusion region (25) is separated from the inner region (26), so that the breakdown type IT in the avalanche region of the element is P-type. Since it does not flow into the MOS cell portion through the diffusion region (24), and therefore the parasitic transistor of the MOS cell does not become conductive, the device can be protected from destruction and the avalanche resistance of the device can be increased.

また、厚い酸化膜り37)を活用することにより、設計
変更に要するホトマスクの枚数を最少限に抑えることが
できる。
Furthermore, by utilizing the thick oxide film 37), the number of photomasks required for design changes can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図と第3図は夫々本発明を説明するための
平面図、拡大平面図と第1図のAA線拡大断面図、第4
図A−Cはその製造方法を説明するための断面図、第5
図〜第8図は夫々従来例を説明するための断面図、平面
図、回路図および拡大断面図である。 第2図 第5図 第6図 第 囚 第8図
1, 2, and 3 are a plan view, an enlarged plan view, an enlarged sectional view taken along line AA of FIG. 1, and FIG.
Figures A-C are cross-sectional views for explaining the manufacturing method.
8 are a sectional view, a plan view, a circuit diagram, and an enlarged sectional view, respectively, for explaining the conventional example. Figure 2 Figure 5 Figure 6 Prisoner Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)共通ドレインとなる一導電型の半導体基体と、 前記半導体基体の表面に格子状に形成した逆導電型の拡
散領域と、 前記逆導電型拡散領域の表面に形成した一導電型のソー
ス領域と、 前記ソース領域と前記基体の表面にはさまれたチャンネ
ル部上に絶縁膜を介して配置したゲート電極と、 前記ソース領域と前記逆導電型拡散領域との両方にコン
タクトするソース電極とを具備する縦型MOSFETに
おいて、 前記格子状拡散領域の最外周の拡散領域を内側の拡散領
域とは分離し、ソース領域を除去してフローティング状
態にすると共に、前記ソース電極を前記最外周拡散領域
にもコンタクトさせたことを特徴とする縦型MOSFE
T。
(1) A semiconductor substrate of one conductivity type serving as a common drain, a diffusion region of an opposite conductivity type formed in a lattice shape on the surface of the semiconductor substrate, and a source of one conductivity type formed on the surface of the diffusion region of the opposite conductivity type. a gate electrode disposed on a channel portion sandwiched between the source region and the surface of the base body with an insulating film interposed therebetween; and a source electrode in contact with both the source region and the opposite conductivity type diffusion region. In the vertical MOSFET, the outermost diffusion region of the lattice-shaped diffusion region is separated from the inner diffusion region, the source region is removed to create a floating state, and the source electrode is connected to the outermost diffusion region. A vertical MOSFE characterized by being in contact with
T.
(2)前記最外周拡散領域のさらに外側をガードリング
領域が囲むことを特徴とする請求項第1項に記載の縦型
MOSFET。
(2) The vertical MOSFET according to claim 1, wherein a guard ring region surrounds the outermost diffusion region.
JP1294702A 1989-11-13 1989-11-13 Vertical mosfet Pending JPH03155167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1294702A JPH03155167A (en) 1989-11-13 1989-11-13 Vertical mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1294702A JPH03155167A (en) 1989-11-13 1989-11-13 Vertical mosfet

Publications (1)

Publication Number Publication Date
JPH03155167A true JPH03155167A (en) 1991-07-03

Family

ID=17811195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1294702A Pending JPH03155167A (en) 1989-11-13 1989-11-13 Vertical mosfet

Country Status (1)

Country Link
JP (1) JPH03155167A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430316A (en) * 1992-02-18 1995-07-04 Sgs-Thomson Microeletronics, S.R.L. VDMOS transistor with improved breakdown characteristics
US5430324A (en) * 1992-07-23 1995-07-04 Siliconix, Incorporated High voltage transistor having edge termination utilizing trench technology
US5905294A (en) * 1996-01-24 1999-05-18 Toyota Jidosha Kabushihi Kaisha High rated voltage semiconductor device with floating diffusion regions
WO2000063972A1 (en) * 1999-04-21 2000-10-26 Infineon Technologies Ag Semiconductor component
JP2003069016A (en) * 2001-08-29 2003-03-07 Denso Corp Semiconductor device and method of manufacturing the same
US6639260B2 (en) 2000-12-18 2003-10-28 Denso Corporation Semiconductor device having a vertical semiconductor element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430316A (en) * 1992-02-18 1995-07-04 Sgs-Thomson Microeletronics, S.R.L. VDMOS transistor with improved breakdown characteristics
US5589405A (en) * 1992-02-18 1996-12-31 Sgs-Thomson Microelectronics, S.R.L. Method for fabricating VDMOS transistor with improved breakdown characteristics
US5430324A (en) * 1992-07-23 1995-07-04 Siliconix, Incorporated High voltage transistor having edge termination utilizing trench technology
US5605852A (en) * 1992-07-23 1997-02-25 Siliconix Incorporated Method for fabricating high voltage transistor having trenched termination
US5905294A (en) * 1996-01-24 1999-05-18 Toyota Jidosha Kabushihi Kaisha High rated voltage semiconductor device with floating diffusion regions
WO2000063972A1 (en) * 1999-04-21 2000-10-26 Infineon Technologies Ag Semiconductor component
US6936866B2 (en) 1999-04-21 2005-08-30 Infineon Technologies Ag Semiconductor component
US6639260B2 (en) 2000-12-18 2003-10-28 Denso Corporation Semiconductor device having a vertical semiconductor element
US6982459B2 (en) 2000-12-18 2006-01-03 Denso Corporation Semiconductor device having a vertical type semiconductor element
JP2003069016A (en) * 2001-08-29 2003-03-07 Denso Corp Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2766239B2 (en) High voltage semiconductor device
EP0416805B1 (en) Transistor with voltage clamp
US4831424A (en) Insulated gate semiconductor device with back-to-back diodes
JP3717195B2 (en) Power MOSFET and manufacturing method thereof
JPH03270273A (en) Semiconductor device and its manufacture
JP2002164541A (en) Semiconductor device and its fabricating method
JP4122113B2 (en) High breakdown strength field effect transistor
JPH10270370A (en) Impurity diffusing method, semiconductor device, and manufacture of the device
JPH03155167A (en) Vertical mosfet
US6563169B1 (en) Semiconductor device with high withstand voltage and a drain layer having a highly conductive region connectable to a diffused source layer by an inverted layer
JP5134746B2 (en) Method for manufacturing field effect transistor
JP4177229B2 (en) Semiconductor device and manufacturing method thereof
JP3738127B2 (en) High voltage semiconductor device
JPS59149056A (en) Vertical metal oxide semiconductor transistor
JP4406535B2 (en) Transistor with Schottky diode
JPH09162399A (en) Semiconductor device
JPH03156977A (en) Vertical mosfet
JPH01238174A (en) Vertical mosfet
JP2002141505A (en) Field-effect transistor
JPH0371673A (en) Vertical mosfet
JP4294016B2 (en) Manufacturing method of semiconductor device
JP2988047B2 (en) Semiconductor device
JPH0435069A (en) Field effect semiconductor device
JP3869581B2 (en) Semiconductor device and manufacturing method thereof
EP0568692B1 (en) Power fet with shielded channels