JPS59149056A - Vertical metal oxide semiconductor transistor - Google Patents

Vertical metal oxide semiconductor transistor

Info

Publication number
JPS59149056A
JPS59149056A JP58023198A JP2319883A JPS59149056A JP S59149056 A JPS59149056 A JP S59149056A JP 58023198 A JP58023198 A JP 58023198A JP 2319883 A JP2319883 A JP 2319883A JP S59149056 A JPS59149056 A JP S59149056A
Authority
JP
Japan
Prior art keywords
region
well region
type
type well
breakdown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58023198A
Other languages
Japanese (ja)
Inventor
Tamotsu Tominaga
富永 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58023198A priority Critical patent/JPS59149056A/en
Publication of JPS59149056A publication Critical patent/JPS59149056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure

Abstract

PURPOSE:To protect an element region from a thermal breakdown by drawing out breakdown currents through the inside of a high-concentration well region formed around the element region when high voltage such as a surge is applied between a source and a drain. CONSTITUTION:A vertical MOS transistor is constituted by an N<-> type drain region 5, a P type well region 7, an N<+> type source region 8, a gate electrode 10, etc. A P<+> well region 20 is formed around an element region, and thedepth of the diffusion of the region 20 is formed up to depth deeper than the depth of the P type well region 7. In the vertical MOS transistor constituted in this manner, field concentration is generated at the corner sections 21 of the P<+> type well region 20 when inverse voltage at high voltage is applied between a source and a drain, and a breakdown is generated at the corner sections 21. Since the P<+> type well region 20 is conducted to a source electrode 11, breakdown currents do not flow in the element region, and are drawn out directly to the source electrode 11 through the inside of the P<+> type well region 20, thus prventing the breakdown of the element region.

Description

【発明の詳細な説明】 この発明は、リーク電流の発生やブレークダウンによる
素子領域の破壊を防止するための改良を施した縦型MO
8l−ランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a vertical MO
8l-Relating to a transistor.

従来の縦型MO8l−ランジスタとしては、例えば第1
図に示すような構造のものが良く知られている。同図に
示す縦型MO8I−ランジスタは、ドレイン電極3が接
合されるN生型(N型高濃度)の半導体基板4と、この
N十型基板4の上面に積層されたN−型(N型紙S度)
領域5と、このN−型領域5内に所定間隔をおいて複数
形成されたP型ウェル領域7と、このP型ウェル領域7
内に形成されたN中型ソース領域8と、このN中型ソー
ス領域8と実質的なドレイン領域となる上記N−型領域
5の双方にまたがった状態でゲート酸化膜9を介して形
成されたゲート電極1oとを具備してなるものである。
As a conventional vertical MO8l-transistor, for example, the first
The structure shown in the figure is well known. The vertical MO8I-transistor shown in the figure includes an N-type (high concentration of N-type) semiconductor substrate 4 to which a drain electrode 3 is bonded, and an N-type (N-type) (N Pattern S degree)
region 5, a plurality of P-type well regions 7 formed at predetermined intervals within this N-type region 5, and this P-type well region 7.
and a gate formed via a gate oxide film 9 in a state spanning both the N medium-sized source region 8 and the N- type region 5, which becomes a substantial drain region. It is equipped with an electrode 1o.

また、ゲート電極10の引き出し部分を除く上面部分が
PSG膜12で被覆されており、更にソース電極11が
、P型ウェル領域内に形成されたP生型コンタクト領域
13とN中型ソース領域8に接合するように形成されて
いる。
Further, the upper surface portion of the gate electrode 10 except for the extended portion is covered with a PSG film 12, and the source electrode 11 is further connected to the P type contact region 13 formed in the P type well region and the N medium type source region 8. formed to join.

この種のMOS l−ランジスタでは、比較的高圧・大
電流のスイッチングを行なう必要性から、素子の耐圧を
向上させる工夫が種々なされており、例えば第1図に示
す如く、複数のP型ウェル領域7が形成された素子形成
領域の周囲にガードリングと呼ばれるP小型の浅く拡散
形成されたリング状ウェル領域14を設けたものがある
In this type of MOS l-transistor, various efforts have been made to improve the withstand voltage of the element due to the need to perform relatively high voltage and large current switching. There is a device in which a ring-shaped well region 14 called a guard ring, which is a small P-shaped shallow diffusion-formed well region, is provided around the element formation region in which P is formed.

これは、ソース・ドレイン間に高圧の逆方向電圧が印加
されたときに、素子形成領域周縁部のP型ウェル領域内
の曲率半径の小さい角部15において電界集中が起こっ
てブレークダウンを生じ易いことから、上記のガードリ
ンク14によって上記角部15における空乏層16の曲
率半径を大きくすることで素子の耐圧の向上を図ったも
のである。
This is because when a high reverse voltage is applied between the source and drain, electric field concentration occurs at the corner 15 with a small radius of curvature in the P-type well region at the periphery of the element formation region, which tends to cause breakdown. Therefore, the guard link 14 increases the radius of curvature of the depletion layer 16 at the corner 15, thereby improving the breakdown voltage of the device.

ところが、このような従来の縦型MO8l−ランジスタ
にあっては、ソース・ドレイン間に更に高圧(第2図A
点で示す)が印加されると、ガードリング14とP型ウ
ェル領域7の間のN−型領域5表面にP型反転層17が
生じ、ガードリング14とP型ウェル領域7とが導通し
てしまう。すると、ガードリング14の角部18に電界
集中が起こって、この角部18でブレークダウンが起こ
り、上記P型層転層17を通ってリーク電流が素子領域
内へ流れる。このリーク電流の電流値は反転層17の抵
抗により制限されるため、それほど大きな値とはならな
いが、素子の耐圧特性上の信頼性を低下させることとな
る。
However, in such a conventional vertical MO8l-transistor, even higher voltage (see Fig. 2A) is applied between the source and drain.
) is applied, a P-type inversion layer 17 is generated on the surface of the N- type region 5 between the guard ring 14 and the P-type well region 7, and the guard ring 14 and the P-type well region 7 are electrically connected. I end up. Then, electric field concentration occurs at the corner 18 of the guard ring 14, breakdown occurs at the corner 18, and leakage current flows into the element region through the P-type layer transfer layer 17. The current value of this leakage current is limited by the resistance of the inversion layer 17, so it is not a very large value, but it does reduce the reliability of the breakdown voltage characteristics of the device.

また、更に印加電圧が高くなると(第2図B点で示す)
、やはりP型ウェル領域内の角部15でブレークダウン
が起こり、素子領域が熱破壊される虞れがある。
Furthermore, when the applied voltage becomes higher (as shown by point B in Figure 2)
There is also a risk that breakdown will occur at the corner 15 in the P-type well region and the element region will be thermally destroyed.

この発明は上記の事情に鑑みてなされたもので、その目
的とするところは、上記のようなリーク電流の発生やブ
レークダウンによる素子破壊を防止することにある。
The present invention has been made in view of the above circumstances, and its purpose is to prevent element destruction due to the occurrence of leakage current and breakdown as described above.

この発明は上記目的を達成するために、前記のような縦
型MO8l−ランジスタにおいて、素子形成領域の周囲
に基板の導電型とは逆の導電型で、かつ高濃度のウェル
領域(ガードリングに相当)を設けるとともに、該高濃
度つJル領域を基板側の電極とは反対の電極に導通させ
たことを特徴とするものである。
In order to achieve the above object, the present invention provides a vertical MO8l-transistor as described above, in which a well region (with a guard ring) having a conductivity type opposite to that of the substrate and having a high concentration is provided around the element formation region. This is characterized in that the high concentration drop region is electrically connected to an electrode opposite to the electrode on the substrate side.

以下この発明の一実施例を第3図を用いて詳細に説明す
る。なお、同図において第1図に示した従来の縦型MO
8l−ランジスタと同一構成部分には同一の符号を付し
てその説明は省略する。
An embodiment of the present invention will be described in detail below with reference to FIG. In addition, in the same figure, the conventional vertical MO shown in FIG.
Components that are the same as those of the 8l-transistor are given the same reference numerals, and their explanations will be omitted.

第3図に示す如く、この実施例の縦型MOSトランジス
タの各単位素子領域は、第1図に示した従来例の縦型M
O8I−ランジスタと同様にN−型ドレイン領域5と、
P型ウェル領域7と、N生型ソース領域8と、ゲート電
極10等から構成されている。
As shown in FIG. 3, each unit element region of the vertical MOS transistor of this embodiment is different from the vertical MOS transistor of the conventional example shown in FIG.
Similar to the O8I-transistor, an N-type drain region 5,
It is composed of a P-type well region 7, an N-type source region 8, a gate electrode 10, and the like.

そして、前記従来例におけるガードリンク14の如く、
前記素子領域の周囲に、P小型のウェル領域20が形成
されており、このP生型ウェル領域20には、ソース電
極11が接合されている。
And, like the guard link 14 in the conventional example,
A P-sized well region 20 is formed around the element region, and a source electrode 11 is connected to this P-type well region 20.

更に、上記P生型ウェル領域20は、その拡散の深さが
上記P型ウェル領域7の深さよりも深く形成されている
。ずなわら、前記P型ウェル領域7の底面からN中型領
域4までの距離をd+、前記P生型ウェル領域20の底
面からN生型領域45− までの距離をd2とすればd2<d+の関係が成り立つ
Further, the P type well region 20 is formed so that its diffusion depth is deeper than the depth of the P type well region 7. If the distance from the bottom of the P-type well region 7 to the N medium-sized region 4 is d+, and the distance from the bottom of the P-type well region 20 to the N-type region 45- is d2, then d2<d+. The relationship holds true.

このように構成された縦型MO8l−ランジスタにおい
て、ソース・ドレイン間に高圧の逆方向電圧が印加され
ると、前記従来例におけるガードリンク14の場合と同
様にして、P生型ウェル領域20の角部21に電界集中
が起こり、この角部21でブレークダウンが起こる。
In the vertical MO8l-transistor configured in this way, when a high reverse voltage is applied between the source and drain, the P-type well region 20 is damaged in the same manner as in the case of the guard link 14 in the conventional example. Electric field concentration occurs at the corner 21, and breakdown occurs at this corner 21.

そして、P生型ウェル領域20がソース電極11に導通
しているため、上記ブレークダウンの発生によって流れ
るブレークダウン電流は、素子領域内は流れず、P十型
ウェル領域20内を通って   ・直接ソース電極11
へ導出されることとなり、素子領域の破壊を防止するこ
とができる。
Since the P type well region 20 is electrically connected to the source electrode 11, the breakdown current that flows due to the occurrence of the breakdown does not flow within the element region, but directly through the P type well region 20. Source electrode 11
Therefore, destruction of the element region can be prevented.

また、上記P生型ウェル領域20の拡散深さをP型ウェ
ル領域7より深くしたことによって、上記高圧の逆方向
電圧が印加されても、P生型ウェル領域20とP型ウェ
ル領域7との間のN−型ドレイン領域5の表面にP型層
転層が形成されないため、従来例のようなリーク電流が
素子領域内を6一 流れることがない。
Furthermore, by making the diffusion depth of the P-type well region 20 deeper than that of the P-type well region 7, even if the high voltage in the reverse direction is applied, the P-type well region 20 and the P-type well region 7 can be separated. Since no P-type layer transfer layer is formed on the surface of the N-type drain region 5 between the two, leakage current does not flow through the device region as in the conventional example.

更に、上記P生型ウェル領域20を設【プたことによっ
て、素子の耐圧は、このP+型ウェル領域20とN中型
領域4との間の耐圧で決まることとなる。そして、上記
P生型ウェル領域20の下面からN中型領域4の上面ま
での距離d2をリーチスルー降伏の起こる距離よりも短
くすれば、素子の耐圧は素子のオン抵抗を変えることな
く、上記路IIItd2を変えることによって調整する
ことができる。
Further, by providing the above-mentioned P type well region 20, the breakdown voltage of the device is determined by the breakdown voltage between this P+ type well region 20 and the N medium size region 4. If the distance d2 from the bottom surface of the P-type well region 20 to the top surface of the N medium-sized region 4 is made shorter than the distance at which reach-through breakdown occurs, the withstand voltage of the device can be increased as described above without changing the on-resistance of the device. It can be adjusted by changing IIItd2.

上記リーチスルー降伏とは、上記路111td2を、P
+型ウェル領域20の角部21でブレークダウンが起こ
るときの空乏層の拡がり幅よりも短くすることによって
、上記角部21でブレークダウンが起こる前にP+型ウ
ェル領域20の下面の空乏層16がN中型領域4に到達
することによってこの部分で先にブレークダウンが起こ
る現象を表わしており、このとき、ブレークダウン電流
はP+型ウェル領域20の底面の広い範囲を通って流れ
るため、熱集中を起こすことがなく、より効果的に素子
を保護することができる。
The above-mentioned reach-through yield means that the above-mentioned path 111td2 is
By making the expansion width of the depletion layer shorter than the width of the depletion layer when breakdown occurs at the corner 21 of the + type well region 20, the depletion layer 16 on the lower surface of the P+ type well region 20 is expanded before breakdown occurs at the corner 21. This represents a phenomenon in which breakdown occurs first in this part when the current reaches the N medium-sized region 4, and at this time, the breakdown current flows through a wide range at the bottom of the P+ type well region 20, causing heat concentration. The device can be more effectively protected without causing any damage.

次に、上記の縦型MoSトランジスタの製造工程の一例
を第4図を用いて簡単に説明する。
Next, an example of the manufacturing process of the above vertical MoS transistor will be briefly explained using FIG. 4.

まず第4図(a )に示す如く、N十型半導体基板4の
上面に例えばエピタキシャル成長法によってN−型領域
5を積層形成し、このN−型領域5の表面に熱酸化によ
ってゲート酸化膜9を形成する。
First, as shown in FIG. 4(a), an N-type region 5 is layered on the upper surface of an N0-type semiconductor substrate 4 by, for example, epitaxial growth, and a gate oxide film 9 is formed on the surface of this N-type region 5 by thermal oxidation. form.

次に、所定のパターンのレジストをマスクとしてボロン
イオンをN−型領域5の表面に導入した後、熱拡散させ
て同図(b)に示ず如く、P生型つェル領[20を形成
する。
Next, boron ions are introduced into the surface of the N-type region 5 using a resist with a predetermined pattern as a mask, and then thermally diffused to form a P-type well region [20] as shown in FIG. Form.

このとき、上記ボロンイオンの単位面積当りの導入数や
熱拡散処理時間を調整して、上記P生型ウェル領域20
の拡散深さを所定の深さに設定する。
At this time, the number of introduced boron ions per unit area and the thermal diffusion treatment time are adjusted to
The diffusion depth of is set to a predetermined depth.

次に同図(C)に示す如く、部分的にゲート酸化膜9を
成長させ、同じ(ポリシリコンをデポジットし、更にフ
ォトエツチング処理を行なって、所定の位置にゲート電
極10を形成する。
Next, as shown in FIG. 3C, a gate oxide film 9 is grown partially, the same polysilicon is deposited, and a photo-etching process is performed to form a gate electrode 10 at a predetermined position.

次に、上記ゲート電極10およびレジスト30をマスク
として、ボロンイオンをN−型領域5の表面に導入した
後、熱拡散を行ない、更に、レジスト31を用いてボロ
ンイオンの導入および熱拡散を行なって、同図(d )
に示す如く、P型ウェル領域7とP生型コンタクト領域
13を形成する。
Next, using the gate electrode 10 and the resist 30 as a mask, boron ions are introduced into the surface of the N-type region 5, and then thermally diffused, and further, boron ions are introduced and thermally diffused using the resist 31. The same figure (d)
As shown in FIG. 2, a P-type well region 7 and a P-type contact region 13 are formed.

次に、上記P型ウェル領域7の表面のソース形成予定領
域のみに所定パターンのレジストを用いてリンイオンの
導入を行なった後、熱拡散を行なって、N生型ソース領
域8を形成し、次に、素子表面にPSG膜12を形成し
た後、フォトエツチング処理によって、ソースコンタク
トホールの孔間けを行ない、アルミニウム蒸着によって
ソース電極11を形成することによって、同図(e)に
示すようなMOS トランジスタ構造を得ることができ
る。
Next, phosphorus ions are introduced only into the region where the source is to be formed on the surface of the P-type well region 7 using a resist with a predetermined pattern, and then thermal diffusion is performed to form the N-type source region 8. After forming a PSG film 12 on the element surface, a source contact hole is formed by photo-etching, and a source electrode 11 is formed by aluminum evaporation, thereby creating a MOS as shown in FIG. A transistor structure can be obtained.

なお以上の説明では、Nチャンネル型の縦型MOSトラ
ンジスタについて記述しであるが、この発明は、Pチャ
ンネル型の縦型MO8I−ランジスタにも同様にして適
用できることは明らかであり、−9= この場合NをPに又PをNに変更することによって容易
に形成できる。
Although the above description describes an N-channel type vertical MOS transistor, it is clear that the present invention can be similarly applied to a P-channel type vertical MO8I-transistor. The case can be easily formed by changing N to P and P to N.

以上詳細に説明したようにこの発明の縦型MOSトラン
ジスタにあっては、ソース・ドレイン間にサージ等の高
電圧が印加された場合に、ブレークダウン電流が素子領
域の周囲に設けられlζ高高濃ウェル領域内を通って導
出されることによって、リーク電流やブレークダウン電
流が素子領域内を流れることがなく、素子領域を熱破壊
から守り、また素子の耐圧特性の信頼性を向上させるこ
とができる。
As explained in detail above, in the vertical MOS transistor of the present invention, when a high voltage such as a surge is applied between the source and drain, a breakdown current is generated around the element region and By passing through the deep well region, leakage current and breakdown current do not flow within the device region, which protects the device region from thermal damage and improves the reliability of the device's breakdown voltage characteristics. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の縦型MO8t−ランジスタを示す素子断
面図、第2図は同素子のドレイン電流とソース・ドレイ
ン間電圧の特性を示す図、第3図は本発明に係る縦型M
O8hランジスタの素子周縁部における構造を示す素子
断面図、第4図は同素子の製造工程図である。 3・・・ドレイン電極 4・・・N生型領域 10− 5・・・・・・N−型領域 7・・・・・・P型ウェル領域 8・・・・・・ソース領域 11・・・ソース電極 21・・・P十型ウェル領域 特許出願人 日産自動車株式会社 11− 第3図
FIG. 1 is a cross-sectional view of a conventional vertical MO8T-transistor, FIG. 2 is a diagram showing the drain current and source-drain voltage characteristics of the same device, and FIG. 3 is a vertical MO8T transistor according to the present invention.
FIG. 4 is a cross-sectional view of the O8h transistor showing the structure at the peripheral edge of the element, and is a manufacturing process diagram of the same element. 3... Drain electrode 4... N-type region 10- 5... N- type region 7... P-type well region 8... Source region 11...・Source electrode 21...P-shaped well region Patent applicant Nissan Motor Co., Ltd. 11- Fig. 3

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板の上面側の素子形成領域内
に形成された第2導電型ウエル領域と、該第2導電型ウ
エル領域内に形成された第1導電型領域とを備え、前記
第1導電型領域をソース電極またはドレイン電極の一方
に導通させるとともに、他方の電極には前記基板の下面
側が導通する縦型MOSトランジスタにおいて; 前記素子形成領域の周囲に第2導電型で、かつ高濃度の
ウェル領域を設けるとともに、該高?11麿ウェル領域
は前記第1導電型領域に導通する電極と同電位の電極に
導通することを特徴とする縦型MOSトランジスタ。
(1) comprising a second conductivity type well region formed within an element formation region on the upper surface side of a first conductivity type semiconductor substrate, and a first conductivity type region formed within the second conductivity type well region; In a vertical MOS transistor in which the first conductivity type region is electrically connected to one of a source electrode or a drain electrode, and the lower surface side of the substrate is electrically connected to the other electrode; In addition to providing a high concentration well region, the high concentration? 11. A vertical MOS transistor, wherein the well region is electrically connected to an electrode having the same potential as the electrode electrically connected to the first conductivity type region.
JP58023198A 1983-02-15 1983-02-15 Vertical metal oxide semiconductor transistor Pending JPS59149056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023198A JPS59149056A (en) 1983-02-15 1983-02-15 Vertical metal oxide semiconductor transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023198A JPS59149056A (en) 1983-02-15 1983-02-15 Vertical metal oxide semiconductor transistor

Publications (1)

Publication Number Publication Date
JPS59149056A true JPS59149056A (en) 1984-08-25

Family

ID=12103969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023198A Pending JPS59149056A (en) 1983-02-15 1983-02-15 Vertical metal oxide semiconductor transistor

Country Status (1)

Country Link
JP (1) JPS59149056A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540433A1 (en) * 1984-11-20 1986-05-22 Mitsubishi Denki K.K., Tokio/Tokyo Integrated MOSFET component
JPS61182264A (en) * 1985-02-08 1986-08-14 Nissan Motor Co Ltd Vertical type mos transistor
JPS63194366A (en) * 1987-02-09 1988-08-11 Toshiba Corp High breakdown-voltage planar type semiconductor element
JPS6422067A (en) * 1987-07-17 1989-01-25 Toshiba Corp Double diffusion type insulated-gate field effect transistor
JPH01215067A (en) * 1988-02-24 1989-08-29 Hitachi Ltd Vertical insulating gate field effect transistor
JPH04767A (en) * 1990-04-02 1992-01-06 Fuji Electric Co Ltd Mos semiconductor element
US5208471A (en) * 1989-06-12 1993-05-04 Hitachi, Ltd. Semiconductor device and manufacturing method therefor
US5221850A (en) * 1991-03-20 1993-06-22 Fuji Electric Co., Ltd. Conductivity-modulating mosfet
WO1998010469A1 (en) * 1996-09-06 1998-03-12 Mitsubishi Denki Kabushiki Kaisha Transistor and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206073A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Mis semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206073A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Mis semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540433A1 (en) * 1984-11-20 1986-05-22 Mitsubishi Denki K.K., Tokio/Tokyo Integrated MOSFET component
JPS61182264A (en) * 1985-02-08 1986-08-14 Nissan Motor Co Ltd Vertical type mos transistor
US4819044A (en) * 1985-02-08 1989-04-04 Nissan Motor Co., Ltd. Vertical type MOS transistor and its chip
JPH051626B2 (en) * 1985-02-08 1993-01-08 Nissan Motor
JPS63194366A (en) * 1987-02-09 1988-08-11 Toshiba Corp High breakdown-voltage planar type semiconductor element
JPS6422067A (en) * 1987-07-17 1989-01-25 Toshiba Corp Double diffusion type insulated-gate field effect transistor
JPH01215067A (en) * 1988-02-24 1989-08-29 Hitachi Ltd Vertical insulating gate field effect transistor
US5208471A (en) * 1989-06-12 1993-05-04 Hitachi, Ltd. Semiconductor device and manufacturing method therefor
JPH04767A (en) * 1990-04-02 1992-01-06 Fuji Electric Co Ltd Mos semiconductor element
US5221850A (en) * 1991-03-20 1993-06-22 Fuji Electric Co., Ltd. Conductivity-modulating mosfet
WO1998010469A1 (en) * 1996-09-06 1998-03-12 Mitsubishi Denki Kabushiki Kaisha Transistor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2766239B2 (en) High voltage semiconductor device
US5723890A (en) MOS type semiconductor device
US5621234A (en) Vertical semiconductor device with breakdown voltage improvement region
US6407413B1 (en) Semiconductor device with guard ring and Zener diode layer thereover
JP2692350B2 (en) MOS type semiconductor device
JPH03270273A (en) Semiconductor device and its manufacture
US20030160262A1 (en) Diode device and transistor device
JPH03219678A (en) Semiconductor device
JPS59149056A (en) Vertical metal oxide semiconductor transistor
US5763914A (en) Cell topology for power transistors with increased packing density
JPH08130308A (en) Semiconductor device
JPS62176168A (en) Vertical mos transistor
US6563169B1 (en) Semiconductor device with high withstand voltage and a drain layer having a highly conductive region connectable to a diffused source layer by an inverted layer
JPS59132671A (en) Vertical type metal oxide semiconductor transistor
JP4264316B2 (en) Semiconductor device and manufacturing method thereof
JP4666708B2 (en) Field effect transistor
JPH03155167A (en) Vertical mosfet
JPH07273320A (en) Semiconductor device
JPS5994873A (en) Metal oxide semiconductor transistor
JPH0997844A (en) Semiconductor integrated circuit device
JPS62141754A (en) High-dielectric-strength semiconductor device
JP2624373B2 (en) Semiconductor device
JPH11145452A (en) Semiconductor device provided with vertical field effect transistor
JPH02202063A (en) Semiconductor device
EP0717449B1 (en) Cell structure of a MOS type semiconductor device