JPH02202063A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02202063A
JPH02202063A JP2137589A JP2137589A JPH02202063A JP H02202063 A JPH02202063 A JP H02202063A JP 2137589 A JP2137589 A JP 2137589A JP 2137589 A JP2137589 A JP 2137589A JP H02202063 A JPH02202063 A JP H02202063A
Authority
JP
Japan
Prior art keywords
conductivity type
layer
current
semiconductor layer
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2137589A
Other languages
Japanese (ja)
Inventor
Mitsutaka Katada
満孝 堅田
Seiji Fujino
藤野 誠二
Kazuhiro Tsuruta
和弘 鶴田
Tadashi Hattori
正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP2137589A priority Critical patent/JPH02202063A/en
Publication of JPH02202063A publication Critical patent/JPH02202063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent a latch-up phenomenon from occurring in a semiconductor device of this design by a method wherein a current extracting layer, whose conductivity type is the same as those of well regions and which is to be connected to a source electrode, is provided between the well regions under a gate electrode. CONSTITUTION:A first conductivity type semiconductor layer is formed by diffusion in a part of a second conductivity type semiconductor layer 12 sandwiched between two or more well regions 131 and 132 under a gate oxide film 15 and connected to a source electrode 19 for the formation of a current extracting layer 24 which shunts a current introduced into the well regions 131 and 132 from the second conductivity type semiconductor layer 12. A part of a hole current introduced from the second conductivity type semiconductor layer 12 into two or more well regions 131 and 132 branches off to flow into the current extraction layer 24 and flows directly to the source electrode 19. As the current extraction layer 24 is located just under the gate, the layer 24 reduces a hole current which flows from the part just under the gate circuiting the part just under the source regions 141 and 142 and restrains the potential of the well regions 131 and 132 from increasing. By this setup, a semiconductor device of this design can be protected from a latch-up phenomenon.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置の構造に関し、特に縦型の絶縁ゲー
ト型バイポーラトランジスタ構造を有し、高耐圧電力用
スイッチング素子として使用可能で、そのラッチアップ
耐量が向上した半導体装置の構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of a semiconductor device, and in particular has a vertical insulated gate bipolar transistor structure, which can be used as a switching element for high voltage power, and which can be used as a latch. The present invention relates to a structure of a semiconductor device with improved upstand capability.

[従来の技術] 近年、高耐圧電力用スイッチング素子として、従来の縦
型パワーMO8FET (金属酸化物半導体電界効果ト
ランジスタ)におけるトレイン領域をソース領域とは逆
の導電型とした絶縁ゲート型バイポーラトランジスタ(
IGBT>が知られている。絶縁ゲート型バイポーラト
ランジスタは、従来の縦型パワーMO8FETに比しオ
ン抵抗が低く、大電流を流すことが可能であることがら
、これに代わる素子として注目されている。
[Prior Art] In recent years, insulated gate bipolar transistors (insulated gate bipolar transistors in which the train region of a conventional vertical power MO8FET (metal oxide semiconductor field effect transistor) has a conductivity type opposite to that of the source region) have been developed as high-voltage power switching elements.
IGBT> is known. Insulated gate bipolar transistors have a lower on-resistance than conventional vertical power MO8FETs and are capable of passing large currents, so they are attracting attention as an alternative element.

この絶縁ゲート型バイポーラトランジスタの構成を第7
図に示す。図において、高濃度、例えば1 X 10i
8/cdの不純物濃度を有する基板(ここでは例えばP
型とした)11上には、これとは逆の導電型(例えばP
型に対してはN型)を有する低濃度層12(例えば不純
物濃度lXl0”/a!以下、厚さ50μm以上)を形
成しである。低濃度層12には、上記基板11とは反対
側の表面に、低濃度層12とは逆の導電型(例えばN型
に対してはP型)を有するウェル領域131.132を
拡散形成し、さらに該ウェル領域131.132内にこ
れとは逆の導電型(例えばP型に対してはN型)を有す
る高濃度(例えば不純物濃度1×1019/−以上)の
ソース領域141.142が拡散形成しである。これら
ウェル領域131.132およびソース領域141,1
42は2重拡散法により形成され、上記ウェル領域13
1.132を拡散形成した拡散窓の一部をソース領域1
41.142の拡散窓として用いて形成される。
The structure of this insulated gate bipolar transistor is shown in the seventh section.
As shown in the figure. In the figure, high concentrations, e.g. 1 X 10i
A substrate having an impurity concentration of 8/cd (here, for example, P
11 of the opposite conductivity type (for example, P
A low concentration layer 12 (for example, an impurity concentration of lXl0''/a! or less, a thickness of 50 μm or more) having an N type) is formed. Well regions 131 and 132 having a conductivity type opposite to that of the low concentration layer 12 (for example, P type for N type) are formed by diffusion on the surface of the well region 131 and 132. Source regions 141 and 142 of high concentration (for example, impurity concentration of 1×10 19 /- or more) having a conductivity type (for example, N type for P type) are formed by diffusion.These well regions 131 and 132 and the source Area 141,1
42 is formed by a double diffusion method, and is formed in the well region 13.
1.132 is diffused into the source region 1.
41.142 is used as a diffusion window.

低濃度層12とソース領域141.142に挟まれたウ
ェル領域131.132表面はチャネル領域171.1
72となり、該チャネル領域171.172および低濃
度層12上面には、ゲート酸化WA15を介してゲート
電極16が形成しである。
The surface of the well region 131.132 sandwiched between the low concentration layer 12 and the source region 141.142 is the channel region 171.1.
72, and a gate electrode 16 is formed on the upper surface of the channel regions 171 and 172 and the low concentration layer 12 via the gate oxide WA15.

ソース領域141.142およびゲート電極16を形成
しないウェル領域131.132の上面には、オーミッ
ク接触によりソース電極19が、これら領域を短絡した
状態で形成され、接続孔201と接続孔202とを接続
している。ソース電極19とゲート電極16とは眉間絶
縁膜18により絶縁分離されている。また、基板11の
下面にはこれとオーミック接触するドレイン電極21が
形成されている。
A source electrode 19 is formed by ohmic contact on the upper surface of the well region 131, 132 where the source region 141, 142 and the gate electrode 16 are not formed, with these regions short-circuited, and connects the contact hole 201 and the contact hole 202. are doing. The source electrode 19 and the gate electrode 16 are insulated and separated by a glabella insulating film 18 . Further, a drain electrode 21 is formed on the lower surface of the substrate 11 and is in ohmic contact therewith.

かかる構造の絶縁ゲート型バイポーラトランジスタ(N
型)の作動を説明すると、ドレイン電極21がソース電
極19に対し正電位にバイアスされ、ゲート電極16に
電圧が印加されると、チャネル領域171.172に電
子が蓄積され反転層が形成される。そして、ソース領域
141.142からチャネル領域171.172を通っ
て低濃度層12に至る電子の流れ22により、基板11
から正孔の注入が起こり、低濃度層12が導電変調を起
こす。このなめ低濃度層12の抵抗が低下し、従来の縦
型MO8FETに比べ低いオン抵抗が可能となる。
An insulated gate bipolar transistor (N
To explain the operation of the type), when the drain electrode 21 is biased to a positive potential with respect to the source electrode 19 and a voltage is applied to the gate electrode 16, electrons are accumulated in the channel region 171 and 172, forming an inversion layer. . The electron flow 22 from the source regions 141 and 142 through the channel regions 171 and 172 to the low concentration layer 12 causes the substrate
Holes are injected from there, causing conductivity modulation in the low concentration layer 12. The resistance of this slanted low concentration layer 12 is reduced, and a lower on-resistance than that of the conventional vertical MO8FET is possible.

[発明が解決しようとする課題] ところで、このような構造の絶縁ゲート型バイポーラト
ランジスタでは、ソース領域141.142、ウェル領
域131.132、低濃度M12、基板11によりNP
NPのサイリスタ構造が形成されており、ドレイン電極
21−ソース電極19間を流れる電流がある臨界値以上
になるとサイリスタ動作に入るという問題があった。
[Problems to be Solved by the Invention] Incidentally, in an insulated gate bipolar transistor having such a structure, the source region 141, 142, the well region 131, 132, the low concentration M12, and the substrate 11 form an NP.
A NP thyristor structure is formed, and there is a problem that when the current flowing between the drain electrode 21 and the source electrode 19 exceeds a certain critical value, the thyristor operation begins.

N型素子の場合、正孔電流は、ドレイン電極21全面か
らソース電極19のウェル領域131.132に接する
部分に向かって流れるが、特にゲート直下の正孔は、図
に矢印23で示したようにチャネル領域171.172
直下からソース領域141.142直下を周回して流れ
るという挙動を示す。従って、正孔電流が増大すると、
このゲート直下よりソース領域141.142直下を周
回して流れる正孔電流により、チャネル領域171.1
72直下からソース領域141.142に至るまでのウ
ェル領域131.132の電位が高くなり、これがソー
ス領域141.142とウェル領域131.132の間
に生じる拡散電位より高くなると、電子はチャネル領域
171.172を通過せずにウェル領域131.132
に直接流れ、ゲート電圧でドレイン電極21−ソース電
極19間の電流が制御できなくなる、いわゆるラッチア
ップ現象が発生し、極端な場合には素子破壊にいたる。
In the case of an N-type device, the hole current flows from the entire surface of the drain electrode 21 toward the part of the source electrode 19 that is in contact with the well regions 131 and 132. In particular, the holes directly under the gate flow as shown by the arrow 23 in the figure. channel area 171.172
It exhibits a behavior in which it flows from directly below to circulating around the source regions 141 and 142. Therefore, when the hole current increases,
The channel region 171.1 is caused by the hole current flowing from directly under the gate to around the source region 141.142.
When the potential of the well region 131 . well area 131.132 without passing through .172
A so-called latch-up phenomenon occurs in which the current between the drain electrode 21 and the source electrode 19 cannot be controlled by the gate voltage, and in extreme cases, the device may be destroyed.

このため、例えばウェル領域131.132とソース領
域141,142の接続部直下に深いP型層を形成して
正孔電流経路の抵抗を下げることが行われている。しか
しながら、この方法では正孔電流は全てP型ウェル領域
を経由してソース電極19に至るため、上記正孔電流経
路の抵抗が多少小さくなっても、やはりウェル領域の電
位は上昇し、ラッチアップが発生する臨界電流を十分高
くすることができなかった。
For this reason, for example, a deep P-type layer is formed directly under the connection between the well regions 131 and 132 and the source regions 141 and 142 to lower the resistance of the hole current path. However, in this method, all of the hole current reaches the source electrode 19 via the P-type well region, so even if the resistance of the hole current path becomes somewhat small, the potential of the well region still rises and latch-up occurs. It was not possible to make the critical current generated sufficiently high.

本発明は上記実情に鑑みてなされたもので、大電流動作
時においてもラッチアップ現象が発生しにくい構造を有
する半導体装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a semiconductor device having a structure in which latch-up phenomenon is less likely to occur even during high current operation.

[課題を解決するための手段] 本発明の半導体装置の構成を第1図で説明すると、第1
導電型の半導体基板11と、この基板11上に形成され
た高抵抗の第2導電型半導体層12と、第2導電型半導
体層12表面の複数箇所に拡散形成された第1導電型の
ウェル領域131.132と、ウェル領域131.13
2内に拡散形成された低抵抗の第2導電型のソース領域
141.142と、ソース領域141.142と上記第
2導電型半導体層12とに挟まれたウェル領域表面13
1.132の一部および上記第2導電型半導体層12表
面にゲート酸化膜15を介して形成されたゲート電極1
6と、ソース領域141.142の表面およびウェル領
域131.132の残る表面の双方にオーミック接触す
るソース電極19とを有し、上記第2導電型半導体層1
2には、ゲート酸化膜15下でかつ複数のウェル領域1
31.132に挟まれた領域の一部に第1導電型半導体
層を拡散形成して上記ソース電極19に接続し、上記第
2導電型半導体層12よりウェル領域131.132に
導入される電流を分流する電流抜出層24となしである
[Means for Solving the Problems] When the configuration of the semiconductor device of the present invention is explained with reference to FIG.
A conductive type semiconductor substrate 11, a high-resistance second conductive type semiconductor layer 12 formed on the substrate 11, and a first conductive type well formed by diffusion at multiple locations on the surface of the second conductive type semiconductor layer 12. Region 131.132 and well region 131.13
a well region surface 13 sandwiched between the source region 141, 142 and the second conductivity type semiconductor layer 12;
1. Gate electrode 1 formed on a part of 132 and the surface of the second conductivity type semiconductor layer 12 with a gate oxide film 15 interposed therebetween.
6 and a source electrode 19 in ohmic contact with both the surfaces of the source regions 141 and 142 and the remaining surfaces of the well regions 131 and 132, and the second conductive type semiconductor layer 1
2, a plurality of well regions 1 are formed under the gate oxide film 15.
A first conductive type semiconductor layer is formed by diffusion in a part of the region sandwiched by the second conductive type semiconductor layer 12 and connected to the source electrode 19, and current is introduced from the second conductive type semiconductor layer 12 into the well region 131 and 132. There is no current extraction layer 24 that shunts the current.

[作用] 上記構造において、第2導電型半導体7112より複数
のウェル領域131.132に導入される正孔電流(N
型の場合)の一部は、これらの間に設けた電流抜出層2
4に分流し、直接ソース電極19に抜ける。電流抜出層
24はゲート直下に位置するので、ゲート直下よりソー
ス領域141.142直下を周回して流れる正孔電流を
効果的に低減し、ウェル領域131.132の電位の上
昇を抑制して、ラッチアップ現象の発生を防止する。
[Operation] In the above structure, the hole current (N
(in the case of a mold), a part of the current extraction layer 2 provided between these
4 and passes directly to the source electrode 19. Since the current extraction layer 24 is located directly under the gate, it effectively reduces the hole current that circulates from directly under the gate to directly under the source region 141, 142, and suppresses the rise in potential of the well region 131, 132. , prevent the occurrence of latch-up phenomenon.

[実施例] 第1図および第2図により本発明の半導体装置の具体的
実施例を説明する。なお、上記従来の構造と共通の要素
については同一の番号を符した。
[Example] A specific example of the semiconductor device of the present invention will be described with reference to FIGS. 1 and 2. Note that elements common to the above conventional structure are designated by the same numbers.

第1図は、例えば耐圧600vを設計目標としたN型絶
縁ゲート型バイポーラトランジスタであり、不純物濃度
1×10i8/−以上のP型窩濃度基板11の上面には
、例えば厚さ50μm以上、不純物濃度I X 10”
/−以下のN型低濃度層12が、エピタキシャル法ある
いは接合法により形成しである。N型低濃度層12上に
は、厚さ1000A程度のゲート酸化M15が熱酸化法
により形成され、さらにその上面には、例えば多結晶シ
リコンあるいは高融点金属により形成されたゲート電極
16が形成しである。
FIG. 1 shows an N-type insulated gate bipolar transistor with a design target of, for example, a withstand voltage of 600V. Concentration I x 10”
The N-type low concentration layer 12 having a thickness of /- or less is formed by an epitaxial method or a bonding method. A gate oxide M15 having a thickness of about 1000 A is formed on the N-type low concentration layer 12 by a thermal oxidation method, and a gate electrode 16 made of, for example, polycrystalline silicon or a high melting point metal is formed on its upper surface. It is.

N型低濃度層12の表面には、このゲート酸化膜15、
ゲート電極16を拡散マスクとして、2重拡散法により
、例えば拡散深さ4μmの複数のP型ウェル領域131
.132、および例えば拡散深さ0.8μmの高濃度の
N型ソース領域141.142が形成されている。
On the surface of the N-type low concentration layer 12, this gate oxide film 15,
Using the gate electrode 16 as a diffusion mask, a plurality of P-type well regions 131 with a diffusion depth of 4 μm, for example, are formed by a double diffusion method.
.. 132, and heavily doped N-type source regions 141 and 142 with a diffusion depth of 0.8 μm, for example.

N型低濃度層12には、さらに、ゲート酸化膜15直下
で、かつ複数のP型ウェル領域131.132に挟まれ
た領域の一部に、N型半導体装置であればP型の導電型
を有する半導体層を拡散形成してあり、ソース電極19
に接続して正札電流の抜出層24としである。
In the N-type low concentration layer 12, in a part of the region immediately below the gate oxide film 15 and sandwiched between the plurality of P-type well regions 131 and 132, a P-type conductivity layer is added in the case of an N-type semiconductor device. A semiconductor layer having a source electrode 19 is formed by diffusion.
The layer 24 is connected to the current extraction layer 24 for the correct current.

第2図には抜出!24とソース電極19の接続法を示す
。第1図は第2図のI−I線断面図に相当する。抜出層
24に分流する正孔電流がソース領域141.142下
部のウェル領域131.132を経由せず、直接ソース
電極19に到達するように、N型低濃度層12の表面に
は、抜出層24とウェル領域131.132とをそれぞ
れ接続するP型経路251.252が形成されている。
Extracted from Figure 2! 24 and the source electrode 19 are shown. FIG. 1 corresponds to the sectional view taken along line II in FIG. 2. An extraction layer is provided on the surface of the N-type low concentration layer 12 so that the hole current that flows into the extraction layer 24 directly reaches the source electrode 19 without passing through the well region 131.132 below the source region 141.142. P-type paths 251 and 252 are formed to connect the output layer 24 and the well regions 131 and 132, respectively.

また、経路251.252に沿ってゲート電極16は凹
状にバターニングされている。これによりゲート電極1
6下を流れる正孔電流は、一部が抜出層24に分流し、
経路251.252を経てソース電極19に達する。従
って、ラッチアップ現象の発生に大きく影響する、ソー
ス領域141.142下部のウェル領域131.132
を経由して流れる電流が減少するので、ウェル領域13
1.132の電位の上昇は抑制される。
Further, the gate electrode 16 is patterned in a concave shape along the paths 251 and 252. As a result, gate electrode 1
A part of the hole current flowing under 6 is diverted to the extraction layer 24,
The source electrode 19 is reached via paths 251 and 252. Therefore, the well region 131.132 below the source region 141.142 greatly affects the occurrence of latch-up phenomenon.
Since the current flowing through the well region 13 is reduced,
1.132 potential increase is suppressed.

抜出層24はウェル領域131.132形成時、あるい
は2重拡散時に形成することが可能であり、抜出層24
の寸法は、例えばウェル領域131.132と同時に形
成される場合にはその拡散深さに制限され、本実施例の
場合、拡散時の窓を含めると14μm程度となる。また
、2重拡散時にチャネル領域の形成とは別に抜出層24
の形成を行えば、深さ、幅が最適値となるように自由に
設定できる。このとき、多結晶シリコンにより形成した
ゲート電極16は、抜出層24により互いに島状に分断
されるため、抜出層24表面を熱処理するかあるいは、
CVD (化学気相蒸着)、スパッタ、蒸着等により、
再度多結晶シリコンを堆積するか、あるいは多結晶シリ
コンとオーミック接続可能な金属により各ゲート電極を
接続する。
The extraction layer 24 can be formed when forming the well regions 131 and 132 or during double diffusion.
For example, when the well regions 131 and 132 are formed at the same time, the size of the well regions 131 and 132 is limited by the diffusion depth thereof, and in this embodiment, including the window for diffusion, it is about 14 μm. In addition, in addition to forming the channel region during double diffusion, the extraction layer 24 is
By forming this, the depth and width can be freely set to the optimum values. At this time, the gate electrodes 16 formed of polycrystalline silicon are divided into islands by the extraction layer 24, so the surface of the extraction layer 24 is heat-treated or
By CVD (chemical vapor deposition), sputtering, vapor deposition, etc.
Either polycrystalline silicon is deposited again, or each gate electrode is connected to the polycrystalline silicon using a metal that can make an ohmic connection.

シミュレーションによる検討によれば、拡散深さ(d)
1μm以上、幅(W)3μm以上であれば正孔電流のう
ち20%以上を抜出層24に分流させることが可能であ
る。好適には、マスク精度を考慮し、オン抵抗の増大の
影響がなく、しかも本効果を有効にし得るには、拡散深
さ(d)1〜2μm、幅(W)3〜5μmの範囲とする
ことが望ましい。また、ラッチアップ臨界電流が流れる
ときには電子電流の比率が増加するため、正孔電流の抜
出層24への分岐量の比率が前述の如く20%程度の場
合、ラッチアップ臨界電流は約25%増加する。従って
、本実施例による構造のトランジスタを用いれば、従来
の構造のトランジスタに比較して大電流を流し得る。
According to simulation studies, the diffusion depth (d)
If the width (W) is 1 μm or more and the width (W) is 3 μm or more, 20% or more of the hole current can be shunted to the extraction layer 24. Preferably, the diffusion depth (d) should be in the range of 1 to 2 μm and the width (W) should be in the range of 3 to 5 μm, taking mask accuracy into consideration and in order to avoid the influence of an increase in on-resistance and to make this effect effective. This is desirable. Further, when the latch-up critical current flows, the ratio of electron current increases, so if the ratio of the amount of hole current branched to the extraction layer 24 is about 20% as described above, the latch-up critical current will be about 25%. To increase. Therefore, if the transistor having the structure according to this embodiment is used, a larger current can flow than the transistor having the conventional structure.

また、抜出層24においては反転層は形成されないため
、第3図に示す如く、抜出層24上部のゲート酸化膜1
5を他の部分より厚く形成することにより、基板11と
ゲート電極16間の浮遊容量を減少させることができ、
スイッチング時の高速化が可能となる。
Further, since no inversion layer is formed in the extraction layer 24, as shown in FIG.
By forming 5 thicker than other parts, the stray capacitance between the substrate 11 and the gate electrode 16 can be reduced.
It is possible to increase the speed of switching.

また、ウェル領域131.132と同一の導電型である
ため、オフ時にはガードリングと同等の働きを行い、ゲ
ート電極16直下でのブレークダウンを防止することが
可能となる。さらに、従来の構造では、高いゲート電圧
が印加されるとチャネル領域171.172の空乏層は
ドレイン領域21側へ延びるためウェル領域131.1
32のうち正孔電流が流れ得る経路は狭められてしまい
、事実上ソース電極へ至る抵抗が高くなってラッチアッ
プに対する耐量はさらに低減するが、本発明では、抜出
層24は反転しないため、より多くの正孔電流が抜出層
24へ分岐することによりラッチアップに対する耐量は
向上する。
Furthermore, since it has the same conductivity type as the well regions 131 and 132, it functions similarly to a guard ring when off, making it possible to prevent breakdown directly under the gate electrode 16. Furthermore, in the conventional structure, when a high gate voltage is applied, the depletion layer in the channel region 171.172 extends toward the drain region 21, so that the well region 131.1
32, the path through which the hole current can flow is narrowed, effectively increasing the resistance to the source electrode and further reducing the resistance to latch-up. However, in the present invention, since the extraction layer 24 is not reversed, By branching more hole current to the extraction layer 24, the resistance to latch-up is improved.

第4図には本発明の第3の実施例を示す。上記実施例で
は、抜出層24とウェル領域131.132とを接続す
る経路251.252を、抜出層24を挟んで対向する
位置に形成したが、本実施例では、ウェル領域131に
接続する経路251とウェル領域132に接続する経路
252とを異なった場所に形成しである。これにより、
ソース電極へ至るまでの抜出124の抵抗値を低減する
ことができる。
FIG. 4 shows a third embodiment of the invention. In the above embodiment, the paths 251 and 252 connecting the extraction layer 24 and the well regions 131 and 132 were formed at positions facing each other with the extraction layer 24 in between. A path 251 connecting to the well region 132 and a path 252 connecting to the well region 132 are formed at different locations. This results in
The resistance value of the extraction 124 leading to the source electrode can be reduced.

第5図には本発明の第4の実施例を示す。本実施例では
、角型としたN型低濃度層12を多数配列してその周囲
を取囲むように抜出層24を形成し、その−辺よりN型
低濃度層12内に設けたウェル領域131.132に接
続する経路251.252を形成しである。このように
しても同様の効果が得られる。なお、経路は一辺に限ら
ず、複数形成しても構わない。
FIG. 5 shows a fourth embodiment of the present invention. In this embodiment, a large number of rectangular N-type low concentration layers 12 are arranged, an extraction layer 24 is formed to surround them, and a well provided in the N-type low concentration layer 12 is formed from the negative side. Paths 251 and 252 are formed to connect to regions 131 and 132. Similar effects can also be obtained in this manner. Note that the number of routes is not limited to one side, and a plurality of routes may be formed.

第6図には本発明の第5の実施例を示す。本実施例では
上記第3の実施例同様、角型の低濃度層12周囲に正孔
の抜出層24を形成してあり、経路251.252は各
頂点より対角状に形成しである。
FIG. 6 shows a fifth embodiment of the present invention. In this embodiment, as in the third embodiment, a hole extraction layer 24 is formed around the rectangular low concentration layer 12, and paths 251 and 252 are formed diagonally from each vertex. .

一般にゲート電極の幅が大きいほどラッチアップ臨界電
流値は低下する。従って、角型セル構造においては対角
線の距離がラッチアップ耐量を制約することになるが、
本実施例においてはこの対角線上に経路251.252
を形成したので、ゲート電極の幅を小さくすることがで
き、従来の角型セル構造の素子に比べ臨界ラッチアップ
電流値を向上させることができる。
Generally, the larger the width of the gate electrode, the lower the latch-up critical current value. Therefore, in a square cell structure, the diagonal distance limits the latch-up resistance.
In this embodiment, routes 251 and 252 are on this diagonal.
, the width of the gate electrode can be reduced, and the critical latch-up current value can be improved compared to an element with a conventional square cell structure.

なお、上記実施例においては、いずれもN型の半導体装
置について説明したが、本発明はP型の半導体装置につ
いても全く同様の効果を有する。
In the above embodiments, N-type semiconductor devices have been described, but the present invention has exactly the same effect on P-type semiconductor devices.

また、高濃度の第1導電型半導体基板と、低濃度の第2
導電型半導体層との間に、該第2導電型半導体層よりも
高濃度の第2導電型半導体層を有する構造としてもよい
In addition, a first conductivity type semiconductor substrate with a high concentration and a second conductivity type semiconductor substrate with a low concentration
A structure may be provided in which a second conductive type semiconductor layer having a higher concentration than the second conductive type semiconductor layer is provided between the conductive type semiconductor layer and the second conductive type semiconductor layer.

また、上記実施例では、縞状および万里のパターンのも
のについて説明を行ったが、六角型等信のパターンとし
てもよく、いずれも同様の効果が得られる。
Further, in the above embodiments, striped and striped patterns have been described, but hexagonal and circular patterns may also be used, and the same effect can be obtained in either case.

[発明の効果] 以上のように、本発明によれば、ゲート電極下のウェル
領域間に、ウェル領域と同じ導電型を有し、ソース電極
に接続する抜出層を形成したので、ラッチアップの原因
となる、ゲート電極直下より各ウェル領域に流れ込む正
孔電流(N型の場合、P型の場合は電子電流)を効率よ
く分流し、直接ソース電極に到達させることができる。
[Effects of the Invention] As described above, according to the present invention, an extraction layer having the same conductivity type as the well region and connected to the source electrode is formed between the well regions under the gate electrode, thereby preventing latch-up. The hole current (in the case of N-type, electron current in case of P-type) flowing into each well region from directly below the gate electrode, which causes the problem, can be efficiently shunted and allowed to directly reach the source electrode.

従ってラッチアップ臨界電流が上昇し、大電流を流すこ
とができるので、例えば高耐圧電力用スイッチング素子
として極めて有用である。
Therefore, the latch-up critical current increases and a large current can flow, making it extremely useful as, for example, a high-voltage power switching element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示し、第1図
は半導体装置の全体断面図で、第2図の■−■線断面図
、第2図は半導体装置の拡散パターンを示す平面図、第
3図は本発明の第2の実施例を示す半導体装置の全体断
面図、第4図〜第6図は本発明の第3〜第5の実施例を
示す半導体装置の平面図、第7図は従来の半導体装置の
全体断面図である。 11・・・・・・P型高濃度基板(第1導電型半導体基
板)12・・・・・・N型低濃度層(第2導電型半導体
層)131.132・・・・・・P型ウェル領域(第1
導電型ウエル領域) 141.142・・・・・・N型ソース領域(第2導電
型ソース領域) 16・・・・・・ゲート電極 19・・・・・・ソース電極 24・・・・・・抜出層(電流抜出層)第1図 第2図 2条16 第3図 第5図 第4図 第6図
1 and 2 show one embodiment of the present invention. FIG. 1 is an overall sectional view of a semiconductor device, FIG. 2 is a sectional view taken along the line ■-■ in FIG. FIG. 3 is an overall sectional view of a semiconductor device showing a second embodiment of the present invention, and FIGS. 4 to 6 are plan views of a semiconductor device showing third to fifth embodiments of the present invention. 7 are overall sectional views of a conventional semiconductor device. 11...P-type high concentration substrate (first conductivity type semiconductor substrate) 12...N-type low concentration layer (second conductivity type semiconductor layer) 131.132...P Type well area (first
conductivity type well region) 141.142...N type source region (second conductivity type source region) 16...gate electrode 19...source electrode 24...・Extraction layer (current extraction layer) Figure 1 Figure 2 Article 2 16 Figure 3 Figure 5 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板と、この基板上に形成された高
抵抗の第2導電型半導体層と、第2導電型半導体層表面
の複数箇所に拡散形成された第1導電型のウェル領域と
、ウェル領域内に拡散形成された低抵抗の第2導電型の
ソース領域と、ソース領域と上記第2導電型半導体層と
に挟まれたウェル領域の表面の一部および上記第2導電
型半導体層の表面にゲート酸化膜を介して形成されたゲ
ート電極と、ソース領域の表面および上記ウェル領域の
残る表面の双方にオーミック接触するソース電極とを有
し、上記第2導電型半導体層には、上記ゲート酸化膜下
でかつ複数のウェル領域に挟まれた領域の一部に第1導
電型半導体層を拡散形成して上記ソース電極に接続し、
上記第2導電型半導体層よりウェル領域に導入される電
流を分流する電流抜出層となしたことを特徴とする半導
体装置。
a semiconductor substrate of a first conductivity type; a high-resistance semiconductor layer of a second conductivity type formed on the substrate; and well regions of a first conductivity type diffused at multiple locations on the surface of the semiconductor layer of the second conductivity type. , a low resistance second conductivity type source region diffused in the well region, a part of the surface of the well region sandwiched between the source region and the second conductivity type semiconductor layer, and the second conductivity type semiconductor layer. The second conductivity type semiconductor layer has a gate electrode formed on the surface of the layer via a gate oxide film, and a source electrode in ohmic contact with both the surface of the source region and the remaining surface of the well region. , a first conductivity type semiconductor layer is diffused and formed in a part of the region sandwiched between the plurality of well regions under the gate oxide film and connected to the source electrode;
A semiconductor device comprising: a current extraction layer that shunts the current introduced into the well region from the second conductivity type semiconductor layer.
JP2137589A 1989-01-31 1989-01-31 Semiconductor device Pending JPH02202063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2137589A JPH02202063A (en) 1989-01-31 1989-01-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2137589A JPH02202063A (en) 1989-01-31 1989-01-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02202063A true JPH02202063A (en) 1990-08-10

Family

ID=12053349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2137589A Pending JPH02202063A (en) 1989-01-31 1989-01-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02202063A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010469A1 (en) * 1996-09-06 1998-03-12 Mitsubishi Denki Kabushiki Kaisha Transistor and method of manufacturing the same
JP2008198652A (en) * 2007-02-08 2008-08-28 Toyota Central R&D Labs Inc Semiconductor device
JP2009099714A (en) * 2007-10-16 2009-05-07 Oki Semiconductor Co Ltd Semiconductor apparatus and method of manufacturing the same
CN109768080A (en) * 2019-01-23 2019-05-17 电子科技大学 A kind of IGBT device with MOS control hole access

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010469A1 (en) * 1996-09-06 1998-03-12 Mitsubishi Denki Kabushiki Kaisha Transistor and method of manufacturing the same
JP2008198652A (en) * 2007-02-08 2008-08-28 Toyota Central R&D Labs Inc Semiconductor device
JP2009099714A (en) * 2007-10-16 2009-05-07 Oki Semiconductor Co Ltd Semiconductor apparatus and method of manufacturing the same
CN109768080A (en) * 2019-01-23 2019-05-17 电子科技大学 A kind of IGBT device with MOS control hole access
CN109768080B (en) * 2019-01-23 2021-03-30 电子科技大学 IGBT device with MOS control hole access

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
JP3417013B2 (en) Insulated gate bipolar transistor
US8334563B2 (en) Field-effect semiconductor device and method of producing the same
JP2689703B2 (en) MOS type semiconductor device
US7135718B2 (en) Diode device and transistor device
JPH02275675A (en) Mos type semiconductor device
JP2017005117A (en) Semiconductor device and semiconductor device manufacturing method
JPH02307274A (en) Semiconductor device
JP2877408B2 (en) Conduction modulation type MOSFET
JPH0621358A (en) Insulated gate type bipolar transistor
JP2937185B2 (en) High breakdown voltage MOS type semiconductor device
US6563169B1 (en) Semiconductor device with high withstand voltage and a drain layer having a highly conductive region connectable to a diffused source layer by an inverted layer
JPH05226638A (en) Semiconductor device
JPH02202063A (en) Semiconductor device
US4520382A (en) Semiconductor integrated circuit with inversion preventing electrode
JP2000294770A (en) Semiconductor device
JP2019012803A (en) Semiconductor device
JP4666708B2 (en) Field effect transistor
JP3497716B2 (en) Horizontal insulated gate bipolar transistor
JPH11251590A (en) High breakdown voltage semiconductor device
JPH05136015A (en) Semiconductor device
JP2002141505A (en) Field-effect transistor
JP3474776B2 (en) Insulated gate field effect transistor
JP2003332577A (en) Semiconductor device and its manufacturing method
JPH05259437A (en) Semiconductor device