JPH02275675A - Mos type semiconductor device - Google Patents

Mos type semiconductor device

Info

Publication number
JPH02275675A
JPH02275675A JP31847189A JP31847189A JPH02275675A JP H02275675 A JPH02275675 A JP H02275675A JP 31847189 A JP31847189 A JP 31847189A JP 31847189 A JP31847189 A JP 31847189A JP H02275675 A JPH02275675 A JP H02275675A
Authority
JP
Japan
Prior art keywords
layer
region
film
channel
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31847189A
Other languages
Japanese (ja)
Inventor
Shinji Nishiura
西浦 真治
Takeyoshi Nishimura
武義 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31847189A priority Critical patent/JPH02275675A/en
Priority to DE19893942640 priority patent/DE3942640C2/en
Priority to FR8917474A priority patent/FR2641417A1/en
Publication of JPH02275675A publication Critical patent/JPH02275675A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Abstract

PURPOSE:To prevent a parasitic transistor from breaking down due to operation of flow of an excess current by providing the same conductivity type region as that of a channel layer in a wide area covering the extended part of a gate film. CONSTITUTION:A P<+> type layer 31 formed by diffusing simultaneously with a p<+> type layer 3 exists at the center of four cells. A source layer is not formed in the P<+> type layer and hence not operated as a FET but a diode is formed with an N<-> type layer 1. It is connected to a source electrode via a contact hole 81 opened at a PSG film 7 on the layer 31. Accordingly, a reverse voltage applied between the layer 1 and the layers 2, 3 via the source electrode is also applied between the layer 1 and the layer 31. When the reverse voltage is raised to break over, a breakover current flows to the diode at the center of the layer 1 to prevent it from flowing to each cell. Thus, it can prevent it from breaking down due to an excess current at the time of breaking over.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、第一導電形の第一領域の表面部に複数の第二
導電形の第二領域が縦横配置され、その第二頭域の表面
部に外周との間にチャネル形成領域を残して環状の第一
導電形の第三領域が形成され、そのチャネル形成領域の
表面上から第一領域の露出面上にかけて絶縁膜を介して
ゲート膜が設けられ、第三領域およびそれに取囲まれた
第二領域の表面に一つの主電極が接触する、例えば電力
用たて型MOS F ETあるいは絶縁ゲート型バイポ
ーラトランジスタ (以下i GBTと記す)のような
MOS型半導体装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a first conductivity type in which a plurality of second conductivity type second regions are arranged vertically and horizontally on the surface of a first conductivity type first region; An annular third region of the first conductivity type is formed on the surface of the channel forming region with a channel forming region remaining between the outer periphery and an insulating film is formed from the surface of the channel forming region to the exposed surface of the first region. For example, a power vertical MOSFET or an insulated gate bipolar transistor (hereinafter referred to as iGBT) has a gate film and one main electrode contacts the surface of the third region and the second region surrounded by it. ) related to MOS type semiconductor devices.

C従来の技術〕 第2図+a1. (b)、 tc+は電力用たて型MO
S F ETあるいは1GBTのMOS構造部の四つの
セルを示し、平面図(alのC−C線断面図の山)に示
すように、N−層1の表面部に設けられる一つのセルは
、P−チャネル層2とP゛低抵抗層3からなる2層と、
その表面部に設けられるN゛ソース層4、N4ソ一ス層
4とN−Jilの間にはさまれたチャネル層2の上にゲ
ート酸化膜5を介して設けられる多結晶シリコンゲート
膜6と、多結晶シリコンゲート膜6を覆うPSG膜7と
からなる。PSG膜7に明けられたコンタクトホール8
で図示しないソース電極がP″層3およびソー゛1−4
に接触している、この構造では図(alのD−D線断面
図である図tc+に示すようにMOSセルのない部分で
は酸化膜5の上を多結晶シリコン膜6とPsG膜7が一
面に覆っており、従ってこれらの膜が各セルを取囲んで
いる。
C. Prior art] Figure 2 + a1. (b), tc+ is a power vertical MO
Four cells of an SFET or 1GBT MOS structure are shown, and as shown in the plan view (the mountain in the C-C cross-sectional view of al), one cell provided on the surface of the N-layer 1 is: two layers consisting of a P-channel layer 2 and a P-low resistance layer 3;
A polycrystalline silicon gate film 6 is provided on the channel layer 2 sandwiched between the N source layer 4, the N4 source layer 4, and the N-Jil provided on the surface thereof, with a gate oxide film 5 interposed therebetween. and a PSG film 7 covering the polycrystalline silicon gate film 6. Contact hole 8 made in PSG film 7
The source electrode (not shown) is connected to the P'' layer 3 and the source electrode 1-4.
In this structure, as shown in Figure tc+, which is a cross-sectional view taken along the line D-D of Figure (Al), in the area where there is no MOS cell, the polycrystalline silicon film 6 and the PsG film 7 are all over the oxide film 5. These membranes therefore surround each cell.

〔発明が解決しようとするi!!題〕[The invention tries to solve i! ! Title]

上記のようなMOS構造をもつ半導体装置のゲート膜6
の下にあって23層3およびP−層2を取囲むN−Ji
の面積は、縦横配置のセルの間の部分よりも四つのセル
の中間にある面積が大きい。
Gate film 6 of a semiconductor device having a MOS structure as described above
N-Ji below and surrounding 23 layer 3 and P- layer 2
The area between the four cells is larger than the area between the cells arranged vertically and horizontally.

従って、2層2.3とNl!!Jlとの間に印加される
逆電圧が耐量をこえてブレークオーバするとき、その大
きい面積の部分からの、他の小さい面積の部分からに比
して大きな過剰電流がチャネル層に流れ込み、N゛ソー
ス層4P−チャネル層2゜N−1111からなる寄生ト
ランジスタが動作し、破壊を起こすという問題があった
Therefore, 2 layers 2.3 and Nl! ! When the reverse voltage applied between N There is a problem in that a parasitic transistor consisting of the source layer 4P and the channel layer 2°N-1111 operates and causes destruction.

この問題をi GBTに関してさらにくわしく述べる。This issue will be discussed in more detail regarding iGBT.

第3図は従来のi GBTの一部断面図である。このI
 GBTでは、N−層1の下にN゛バフフ1層9介して
Po ドレインQIOが設けられ、そのドレイン層10
に接触するドレイン11極11とコンタクトホール8で
P”13およびソース層4に接触するソース電極12が
主電極として対向している。このi GBTの導通状態
において、点線で示すように電子はソースN4からチャ
ネル層2を通ってN−層1とN“層9からPo ドレイ
ン層10へ注入され、これに呼応してドレイン層10か
らN。
FIG. 3 is a partial cross-sectional view of a conventional iGBT. This I
In the GBT, a Po drain QIO is provided under the N− layer 1 via the N−buff 1 layer 9, and the drain layer 10
The drain 11 pole 11 in contact with the drain 11 and the source electrode 12 in contact with the P" 13 and the source layer 4 in the contact hole 8 face each other as main electrodes. In this iGBT conductive state, electrons are transferred to the source as shown by the dotted line. Po is injected from N4 through the channel layer 2 from the N- layer 1 and the N'' layer 9 into the drain layer 10, and in response, N is injected from the drain layer 10.

層9を通ってN−層1に正孔が実線で示すように注入さ
れ、その結果N−層lが伝導度変調をおこして低抵抗に
なる。正孔はN゛ソース14下側に沿って2層2内を流
れる。2層2は比較的低抵抗であるため、正孔の過剰な
流れによりソース層4の下部に位置するA点の電位が上
昇し、この値がPN接合の接合電位を越えると、P[2
とN゛114の間のPN接合が順バイアスされ、前記の
ように寄生NPN)ランジスタがオンしてラフチアツブ
現象をおこし、素子の破壊に至ることがある。
Holes are injected into the N-layer 1 through the layer 9 as shown by the solid line, so that the N-layer l undergoes conductivity modulation and has a low resistance. The holes flow in the two layer 2 along the underside of the N source 14. Since the second layer 2 has a relatively low resistance, the potential at point A located at the bottom of the source layer 4 increases due to the excessive flow of holes, and when this value exceeds the junction potential of the PN junction, P[2
The PN junction between N and N114 is forward biased, and as described above, the parasitic NPN transistor is turned on, causing a ruff-up phenomenon, which may lead to destruction of the device.

本発明の目的は、上述の問題を解決し、セル間に介在す
る面積の不均一によるブレークオーバ時の過剰電流によ
る破壊を防止したMOS型半導体装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a MOS type semiconductor device which solves the above-mentioned problems and prevents damage caused by excessive current during breakover due to non-uniform area between cells.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するために、本発明は、第一導電形の
第一領域の表面部に複数の第二導電形の第二領域が縦横
配置され、その第二領域の表面部に外周との間にチャネ
ル形成領域を残して環状の第一導電形の第三領域が形成
され、前記チャネル形成領域の表面上から第一領域の露
出面にかけて絶縁膜を介してゲート膜が設けられ、第三
領域およびそれに取囲まれた第二領域の表面に主電極の
一つが接触するMOS型半導体装置において、四つの第
二領域に囲まれる第一領域の表面部の中央に第二導電形
の第四領域を備えたものとする。
In order to achieve the above-mentioned object, the present invention has a plurality of second regions of a second conductivity type arranged horizontally and vertically on the surface of a first region of a first conductivity type, and an outer periphery and an outer periphery on the surface of the second region. An annular third region of the first conductivity type is formed with a channel formation region left in between, a gate film is provided from the surface of the channel formation region to the exposed surface of the first region via an insulating film, and In a MOS type semiconductor device in which one of the main electrodes is in contact with the surface of the three regions and the second region surrounded by the three regions, a second conductivity type electrode of the second conductivity type is located in the center of the surface of the first region surrounded by the four second regions. It shall have four areas.

〔作用〕[Effect]

四つの第二11域に囲まれた領域の中央に形成される第
二i1形の第四領域を一方の主電極を接続すれば、第四
領域の多数キャリアが第一領域から流れ込み、その分、
第一領域から第二領域に流れ込む電流が減少する。また
、主電極が接続されない場合も第四領域が第二領域に流
れ込む電流の通路を狭くするため、第二領域に流れ込む
電流が減少する。四つの第二領域それぞれ形成されるM
O8構造に囲まれた領域は、隣接する二つの第二領域に
それぞれ形成されるMOS構造にはさまれた領域より面
積が大きく、耐量をこえる逆電圧が加わったとき、この
部分からチャネル層に特に過剰な電流が流れ込むのを、
これにより防止することができ、各MOSセルのチャネ
ル層には周囲から均一に逆電流が流れ込むようになる。
If one main electrode is connected to the fourth region of the second i1 type formed in the center of the region surrounded by the four second 11 regions, the majority carriers in the fourth region will flow from the first region, and the ,
The current flowing from the first region to the second region is reduced. Further, even when the main electrode is not connected, the fourth region narrows the path of the current flowing into the second region, so the current flowing into the second region is reduced. M formed in each of the four second regions
The region surrounded by the O8 structure has a larger area than the region sandwiched between the MOS structures formed in the two adjacent second regions, and when a reverse voltage exceeding the withstand voltage is applied, the region from this region flows into the channel layer. Especially when excessive current flows,
This can be prevented, and a reverse current uniformly flows into the channel layer of each MOS cell from the surroundings.

これによって過剰電流の流れ込みによる寄生トランジス
タの動作が起こりにくくなる。
This makes it difficult for parasitic transistors to operate due to excessive current flow.

〔実施例〕〔Example〕

第1図fat、 (bl、 [C)は本発明の一実施例
を示し、図(alは平面図1図(blは(alのA−A
線断面図、図(C)は(alのB−B線断面図であり、
第2図と共通の部分には同一の符号が付されている。第
1図(alおよびtelかられかるように、四つのセル
の中央部にp゛層3同時拡散で形成されるP+層31が
存在する。
Figure 1 (fat, (bl, [C)] shows an embodiment of the present invention;
Line sectional view, Figure (C) is a BB line sectional view of (al),
Components common to those in FIG. 2 are given the same reference numerals. As can be seen from FIG. 1 (al and tel), there is a P+ layer 31 formed by simultaneous diffusion of the P layer 3 in the center of the four cells.

この20層にはソース層は形成されておらず、従ってF
ETとしては動作しないでN−1’llとによりダイオ
ードを形成する。そして、図示しないソース電極とはP
′″層31の上にPSG膜7に明けられたコンタクトホ
ール81を介して接続される。従って、ソース電極によ
りN−111と2層2.3の間に印加される逆電圧はこ
のN°層1と2層31の間にもかかり、その逆電圧が高
くなってブレークオーバするときは、広いN−層1の中
央に存在するこのダイオードにブレークオーバ電流が流
れ込み、各セルに流れ込むのを防止する。
No source layer is formed in these 20 layers, so F
It does not operate as an ET, but forms a diode with N-1'll. The source electrode (not shown) is P
'' layer 31 through a contact hole 81 made in the PSG film 7. Therefore, the reverse voltage applied between N-111 and the second layer 2.3 by the source electrode is When the reverse voltage applied between layer 1 and layer 2 31 becomes high and causes a breakover, the breakover current flows into this diode located in the center of the wide N-layer 1, preventing it from flowing into each cell. To prevent.

第4図は本発明の実施例のi GBTを斜視図で示し、
第3図と共通の部分には同一の符号が付されている0図
においてソース電極12はSiN膜などからなる表面保
護膜13で覆われており、表面保護膜の凹部21〜26
の直下にソース電極12の接触するコンタクトホール8
あるいは81が存在する。ゲート膜6は凹部21と22
.21と23.22と24.23と24のそれぞれの中
間の下に設けられている。凹部25゜26の下ではソー
ス電極12は24層31に接触している。このi GB
Tでは、ランチアップ耐量がこれまでの30Aから35
〜40Aに向上した。
FIG. 4 shows a perspective view of an iGBT according to an embodiment of the present invention;
In FIG. 0, in which parts common to those in FIG.
A contact hole 8 directly below the source electrode 12 is in contact with the source electrode 12.
Or there are 81. The gate film 6 has recesses 21 and 22
.. 21, 23, 22, 24, and below the middle of 23 and 24, respectively. Below the recesses 25.degree. 26, the source electrode 12 is in contact with the 24 layer 31. This i GB
For T, the launch-up capacity has been increased from 30A to 35A.
It improved to ~40A.

第5図は本発明の他の実施例のi GBTを示し、l 
GBTの基板面の平面図で、鎖線で囲んだ領域が四つの
MOS構造を有する一つのユニットをあられす0図示し
ないソース電極はコンタクトホール8でP゛層3よびそ
れを取り囲むN゛層4接触し、第1図、第4図における
と同様、四つのコンタクトホール8の中心に位宜するコ
ンタクトホール81で20層31に接触している。N°
層5の外側をチャネル層2のチャネル形成領域が取り囲
んでいる。チャネル層2の外側のゲート酸化膜の下にN
−層1が露出している。領界を点線61であられし、領
域を斜線を引いて示したゲート膜6がコンタクトホール
8,81を取り囲む絶縁膜の上に設けられている。この
ゲート膜には、それを覆う表面保護膜のコンタクトホー
ル82でゲート配線が接触している。
FIG. 5 shows an i GBT according to another embodiment of the present invention;
In the plan view of the GBT substrate surface, the region surrounded by the chain line represents one unit having four MOS structures.The source electrode (not shown) is in contact with the P layer 3 and the surrounding N layer 4 through the contact hole 8. However, as in FIGS. 1 and 4, the contact hole 81 located at the center of the four contact holes 8 contacts the 20th layer 31. N°
A channel forming region of channel layer 2 surrounds the outside of layer 5 . N under the gate oxide film outside the channel layer 2
- Layer 1 is exposed. A gate film 6 whose boundaries are indicated by dotted lines 61 and whose regions are indicated by diagonal lines is provided on the insulating film surrounding the contact holes 8 and 81. The gate wiring is in contact with this gate film through a contact hole 82 in a surface protection film covering it.

第6図は本発明のさらに別の実施例のI C,BTを示
し、第5図と異なることは、ゲート配線との接続のため
のコンタクトホール82直下において絶縁#7の下のN
−層1にP゛拡散層32がP°層31と同時に形成され
ている。このP”7132はソース電極に接続されない
ので、正孔の引き抜きには役立たないが、N−層1の面
積を小さくして、チャネル1i2に流れ込む正札の通路
を狭くし、その結果、チャネル層に入る正孔が制限され
、ランチアップが起こりにくくなる。このように配置す
ることにより、P゛拡散層32を形成してもゲート膜の
面積は減少せず、各ユニットごとにゲート膜6に対する
コンタクトホール82を設けることができ、ゲート抵抗
を下げることが可能になる。
FIG. 6 shows IC and BT according to still another embodiment of the present invention. What is different from FIG. 5 is that the N
- The P' diffusion layer 32 is formed in the layer 1 at the same time as the P' layer 31. Since this P"7132 is not connected to the source electrode, it is not useful for extracting holes, but it reduces the area of the N- layer 1 and narrows the path of the genuine plate flowing into the channel 1i2, and as a result, the channel layer Holes that enter are restricted, making it difficult for launch-up to occur.By arranging in this way, even if the P diffusion layer 32 is formed, the area of the gate film does not decrease, and the contact with the gate film 6 is made for each unit. The hole 82 can be provided, making it possible to lower the gate resistance.

第7図は、ソース電極12の接触面積を大きくすること
なく、すなわちMOS構造間の間隔を広げることなく、
P°層31の面積を大きくする実施例を示す。この場合
は、P°層31を点線で示したゲート膜6の縁部61か
らゲート膜6の下へ入り込ませて形成している。このよ
うにP゛層31をゲート膜6の下へ入り込ませることに
より、正孔がP−層2を遣ってソース電極に流れに<<
シている。
FIG. 7 shows that without increasing the contact area of the source electrode 12, that is, without increasing the distance between the MOS structures,
An example will be shown in which the area of the P° layer 31 is increased. In this case, the P° layer 31 is formed by entering under the gate film 6 from the edge 61 of the gate film 6 shown by the dotted line. By making the P' layer 31 enter under the gate film 6 in this way, holes flow to the source electrode using the P' layer 2.
It's on.

また、正孔電流の集中するP−層2の角部、にP゛層3
1の一辺を対向させることにより、正孔がPo[31に
流れ込みやすくしている。これにより、ランチアンプ耐
量をさらに向上させることができる。
In addition, the P' layer 3 is located at the corner of the P' layer 2 where the hole current is concentrated.
By arranging one side of 1 to face each other, holes can easily flow into Po[31. Thereby, the launch amplifier durability can be further improved.

P0拡散層31.32により正孔電流のみでなく、電子
電流も抑えられるが、P°層31.32を適度の大きさ
に形成することにより、電子電流の抑制効果を適度に洲
整でき、動作電流に影響を与えずラッチアップ耐量の向
上を図ることができる。
Not only the hole current but also the electron current can be suppressed by the P0 diffusion layer 31.32, but by forming the P° layer 31.32 to an appropriate size, the effect of suppressing the electron current can be moderated, The latch-up resistance can be improved without affecting the operating current.

各実施例のi GBTにおいて、N゛層9N−層1はド
レイン層10の上にエピタキシャル法により順次形成さ
れた。そしてN−層1の表面部にP゛層3形成したのち
、表面にゲート酸化膜5を介して多結晶シリコン層を堆
積し、窓開けしてゲートWs6を形成した。このゲート
膜6をマスクにしてP型チャネル層2の拡散を行った。
In the iGBT of each example, the N' layer 9N- layer 1 was sequentially formed on the drain layer 10 by an epitaxial method. After forming a P layer 3 on the surface of the N- layer 1, a polycrystalline silicon layer was deposited on the surface with a gate oxide film 5 interposed therebetween, and a window was opened to form a gate Ws6. Using this gate film 6 as a mask, the P-type channel layer 2 was diffused.

このあと、ゲート膜6を再びマスクの一部として用いて
、N0ソ一ス層4を形成し、表面を絶縁膜7で1い、接
続のための六開けを行ってソース電極12を接触させ、
またP+層10にドレイン電極11を接触させた。
After that, using the gate film 6 as a part of the mask again, an N0 source layer 4 is formed, the surface is covered with an insulating film 7, and a hole is made for connection to bring the source electrode 12 into contact. ,
Further, a drain electrode 11 was brought into contact with the P+ layer 10.

本発明により設けられるP゛層31.32は、抵抗が低
ければ低いほど望ましい、従って、上記工程の21層3
.P層2の形成のための拡散のたびに、20層31.3
2の個所にドーピングすれば、低抵抗のP°層が得られ
る。
The lower the resistance of the P layer 31, 32 provided according to the present invention, the more desirable it is.
.. For each diffusion for the formation of P layer 2, 20 layers 31.3
By doping at point 2, a low resistance P° layer can be obtained.

なお、以上の実施例はすべてNチャネルIGBTである
が、導電形を入れ換えることによりPチャネルi GB
Tにおいても実施することができることはいうまでもな
い。
Note that all of the above embodiments are N-channel IGBTs, but by switching the conductivity types, P-channel IGBTs
It goes without saying that this method can also be implemented in T.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、それぞれ主電極をとり囲むMO8構造
の設けられるチャネル層の中間にあって、ゲート膜の延
長部に覆われる広い面積にチャネル層と同導電形の領域
を設けることにより、その領域を主電極と接続してチャ
ネルを流れるキャリアと逆のキャリアを主電極に引き抜
くか、逆のキャリアの通路を狭くして流れにくくするこ
とにより、逆のキャリアからなる過剰電流の流れ込みに
より寄生トランジスタが動作して破壊が起こるのを防止
し、逆方向電流耐量の高いMOS型半導体装置を得るこ
とができた。
According to the present invention, by providing a region having the same conductivity type as the channel layer in a wide area covered by the extension of the gate film and located in the middle of the channel layer provided with the MO8 structure surrounding the main electrode, the region By connecting the channel to the main electrode and drawing carriers opposite to the carriers flowing through the channel to the main electrode, or by narrowing the passage of the opposite carriers to make it difficult to flow, the parasitic transistor is It was possible to obtain a MOS type semiconductor device which was prevented from being destroyed due to operation and had a high reverse current withstand capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のMO5型半導体装置を示し
、(a)は平面図、山)は(alのA−AvAに沿って
の断面図、(C1はfa)のB−B!l!jlに沿ッテ
ノ断面図、第2図は従来のMOS型半導体装置を示し、
(5)は平面図、山)はtlllのC−C線に沿っての
断面図、fclはfalのD−D線に沿っての断面図、
第3図は従来のI GBTの部分断面図、第4図は本発
明の別の実施例のI GBTの部分斜視断面図、第5図
、第6図、第7図はそれぞれ本発明の異なる実施例の[
GBT半導体基板の部分平面図である。 1−N−層、2:P−チャネル層、3.31.32:2
3層、4:N゛ソース層5:ゲート酸化膜、6:ゲート
膜、’l:PsG膜、8.81.82:17タクトホー
ル、10: ドレイン層、11: ドレイン電極、12
:ソース電極。 第1図 第2図 第4図 第5図
FIG. 1 shows an MO5 type semiconductor device according to an embodiment of the present invention, (a) is a plan view, (mountain) is a cross-sectional view along A-AvA of (al), and (C1 is fa) B-B A cross-sectional view taken along the !l!jl line, FIG. 2 shows a conventional MOS type semiconductor device.
(5) is a plan view, tllll is a cross-sectional view along the C-C line, fcl is a cross-sectional view of fal along the D-D line,
FIG. 3 is a partial sectional view of a conventional IGBT, FIG. 4 is a partial perspective sectional view of an IGBT according to another embodiment of the present invention, and FIGS. Example [
FIG. 2 is a partial plan view of a GBT semiconductor substrate. 1-N-layer, 2:P-channel layer, 3.31.32:2
3 layers, 4: N source layer 5: gate oxide film, 6: gate film, 'l: PsG film, 8.81.82: 17 tact hole, 10: drain layer, 11: drain electrode, 12
: Source electrode. Figure 1 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)第一導電形の第一領域の表面部に複数の第二導電
形の第二領域が縦横配置され、その第二領域の表面部に
外周との間にチャネル形成領域を残して環状の第一導電
形の第三領域が形成され、前記チャネル形成領域の表面
上から第一領域の露出面にかけて絶縁膜を介してゲート
膜が設けられ、第三領域およびそれに取囲まれた第二領
域の表面に主電極の一つが接触するものにおいて、四つ
の第二領域に囲まれる第一領域の表面部の中央に第二導
電形の第四領域を備えたことを特徴とするMOS型半導
体装置。
(1) A plurality of second regions of the second conductivity type are arranged vertically and horizontally on the surface of the first region of the first conductivity type, and a channel formation region is left between the surface of the second region and the outer periphery in an annular shape. A third region of the first conductivity type is formed, a gate film is provided from the surface of the channel forming region to the exposed surface of the first region via an insulating film, and the third region and the second region surrounded by the third region are formed. A MOS type semiconductor in which one of the main electrodes is in contact with the surface of the region, characterized in that a fourth region of the second conductivity type is provided at the center of the surface of the first region surrounded by four second regions. Device.
JP31847189A 1988-12-29 1989-12-07 Mos type semiconductor device Pending JPH02275675A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31847189A JPH02275675A (en) 1988-12-29 1989-12-07 Mos type semiconductor device
DE19893942640 DE3942640C2 (en) 1988-12-29 1989-12-22 MOS semiconductor device
FR8917474A FR2641417A1 (en) 1988-12-29 1989-12-29 MOS TYPE SEMICONDUCTOR DEVICE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-332826 1988-12-29
JP33282688 1988-12-29
JP31847189A JPH02275675A (en) 1988-12-29 1989-12-07 Mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPH02275675A true JPH02275675A (en) 1990-11-09

Family

ID=26569380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31847189A Pending JPH02275675A (en) 1988-12-29 1989-12-07 Mos type semiconductor device

Country Status (3)

Country Link
JP (1) JPH02275675A (en)
DE (1) DE3942640C2 (en)
FR (1) FR2641417A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621234A (en) * 1991-10-07 1997-04-15 Niipondenso Co., Ltd. Vertical semiconductor device with breakdown voltage improvement region
JP2001523894A (en) * 1997-11-18 2001-11-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Semiconductor module
JP2010539728A (en) * 2007-09-18 2010-12-16 クリー・インコーポレーテッド Insulated gate bipolar conductive transistor (IBCT) and related fabrication methods

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705173B1 (en) * 1993-05-10 1995-07-28 Sgs Thomson Microelectronics SERIAL CURRENT LIMITING COMPONENT.
EP0865085A1 (en) 1997-03-11 1998-09-16 STMicroelectronics S.r.l. Insulated gate bipolar transistor with high dynamic ruggedness
US7728402B2 (en) 2006-08-01 2010-06-01 Cree, Inc. Semiconductor devices including schottky diodes with controlled breakdown
US8432012B2 (en) 2006-08-01 2013-04-30 Cree, Inc. Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same
WO2008020911A2 (en) 2006-08-17 2008-02-21 Cree, Inc. High power insulated gate bipolar transistors
US8835987B2 (en) 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US8232558B2 (en) 2008-05-21 2012-07-31 Cree, Inc. Junction barrier Schottky diodes with current surge capability
US8294507B2 (en) 2009-05-08 2012-10-23 Cree, Inc. Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits
US8629509B2 (en) 2009-06-02 2014-01-14 Cree, Inc. High voltage insulated gate bipolar transistors with minority carrier diverter
US8193848B2 (en) 2009-06-02 2012-06-05 Cree, Inc. Power switching devices having controllable surge current capabilities
US8541787B2 (en) 2009-07-15 2013-09-24 Cree, Inc. High breakdown voltage wide band-gap MOS-gated bipolar junction transistors with avalanche capability
US8354690B2 (en) 2009-08-31 2013-01-15 Cree, Inc. Solid-state pinch off thyristor circuits
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US8415671B2 (en) 2010-04-16 2013-04-09 Cree, Inc. Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
US8680587B2 (en) 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
WO2013036370A1 (en) 2011-09-11 2013-03-14 Cree, Inc. High current density power module comprising transistors with improved layout
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US8618582B2 (en) 2011-09-11 2013-12-31 Cree, Inc. Edge termination structure employing recesses for edge termination elements
US8664665B2 (en) 2011-09-11 2014-03-04 Cree, Inc. Schottky diode employing recesses for elements of junction barrier array
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164473A (en) * 1986-12-26 1988-07-07 Fujitsu Ltd Semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3103444A1 (en) * 1981-02-02 1982-10-21 Siemens AG, 1000 Berlin und 8000 München VERTICAL MIS FIELD EFFECT TRANSISTOR WITH SMALL THROUGH RESISTANCE
JPS57206073A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Mis semiconductor device
DE3224642A1 (en) * 1982-07-01 1984-01-05 Siemens AG, 1000 Berlin und 8000 München IGFET WITH INJECTOR ZONE
US4779123A (en) * 1985-12-13 1988-10-18 Siliconix Incorporated Insulated gate transistor array
EP0279403A3 (en) * 1987-02-16 1988-12-07 Nec Corporation Vertical mos field effect transistor having a high withstand voltage and a high switching speed

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164473A (en) * 1986-12-26 1988-07-07 Fujitsu Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621234A (en) * 1991-10-07 1997-04-15 Niipondenso Co., Ltd. Vertical semiconductor device with breakdown voltage improvement region
JP2001523894A (en) * 1997-11-18 2001-11-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Semiconductor module
JP4718004B2 (en) * 1997-11-18 2011-07-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Semiconductor module
JP2010539728A (en) * 2007-09-18 2010-12-16 クリー・インコーポレーテッド Insulated gate bipolar conductive transistor (IBCT) and related fabrication methods

Also Published As

Publication number Publication date
FR2641417A1 (en) 1990-07-06
DE3942640A1 (en) 1990-08-02
FR2641417B1 (en) 1995-03-24
DE3942640C2 (en) 1997-05-15

Similar Documents

Publication Publication Date Title
JPH02275675A (en) Mos type semiconductor device
EP0581246B1 (en) MIS-type semiconductor device
JPH01125979A (en) Insulated gate bipolar transistor
JPH0687504B2 (en) Semiconductor device
JPH08139319A (en) Semiconductor device and its manufacture
JPH0575110A (en) Semiconductor device
US5397905A (en) Power semiconductor device having an insulated gate field effect transistor and a bipolar transistor
JP3302275B2 (en) Semiconductor devices
JPH0851197A (en) Mos control thyristor having electric current saturation property
JPH08274321A (en) Semiconductor device
JP3522983B2 (en) Horizontal IGBT
JPH10321859A (en) Power semiconductor device containing discontinuous emitter area for preventing parasitic thyristor latch up
JP2000294770A (en) Semiconductor device
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP3497716B2 (en) Horizontal insulated gate bipolar transistor
JPH0342866A (en) Semiconductor device and its manufacture
JPH08130312A (en) Lateral semiconductor device and its use
JP2903452B2 (en) Field effect transistor
JP3217552B2 (en) Horizontal high voltage semiconductor device
JP2728453B2 (en) Output circuit
JP2988047B2 (en) Semiconductor device
JP2646765B2 (en) MIS gate controlled thyristor semiconductor device
JPH0870121A (en) Insulated gate semiconductor device
JPH07235668A (en) Mos type transistor
JPH05160409A (en) Semiconductor device